University of the Peloponnese

Electrical and Computer

Engineering Department

DIGITAL SIGNAL PROCESSING

Solved Examples

Teacher: M. Paraskevas

SET \#9 - Discrete Fourier Transform

- DFT properties
- Relation of circular to linear convolution

1. DFT properties

Example 1

Using the sequence $x[n]=(0.8)^{n}$ to $0 \leq n \leq 10$, confirm the circular folding property.
Answer:

$$
\text { Real and imaginary part of DFTs } X[k] \kappa \alpha \iota Y[k]
$$

Comparing real and imaginary part diagrams of DFTs $X[k]$ and $Y[k]$, we find that the relation holds $Y[k]=X[N-k]$, so the circular folding property is confirmed.

메Nample 2

Calculate the DFT of the circularly shifted sequence $y[n]=x[[n-8]]_{15}$,where $x[n]=$ $(0.9)^{n}$ for $0 \leq n \leq 10$.

Answer:

Following $x[n] \kappa \alpha \iota \kappa \cup \kappa \lambda \iota \kappa \alpha ́ ~ \mu \varepsilon \tau \alpha \tau о \pi \iota \sigma \mu \varepsilon ́ v \eta ~ \alpha \kappa о \lambda о \cup \theta$ '́ $\alpha y[n]=x[[n-8]]_{15}$

Measure and phase of the DFT $X[k]$

DFT gauge plots $X[k]$ and $Y[k]$ we find that they are the same, while the phase diagrams show a phase shift equal to the phase of the term $W_{15}^{8 k}$.

2. Relation of circular to linear convolution

[DExample 3

Calculate the circular convolution of 4 points between the sequences $x[n]=$ $\{\hat{0}, 1,2,3\}$ and $h[n]=\{1, \hat{2}, 0,-1\}$ using the DFT .

Answer: (a) We rewrite the given sequences as:

$$
\begin{gathered}
x[n]=\{0,1,2,3\}, n=0,1,2,3 \\
h[n]=\{1,2,0,-1\}, n=-1,0,1,2
\end{gathered}
$$

We note that the sequence $h[n]$ can be thought of as the circular shift by one unit to the left of a sequence $g[n]=\{1,2,0,-1\}, n=0,1,2,3$, that is, it is:

$$
h[n]=g[[n+1]]_{4}
$$

We calculate through the DFT the output from the circular convolution $y[n]=x[n](4)$
$\mathrm{g}[n] \stackrel{D F T}{\longleftrightarrow} X[k] G[k]$ and then apply a circular shift to the left by one unit.

```
    % Length of circular convolution
    N = 4;
    % Set time scale and sequences x [ n ] and g [ n ]
    n = [0, 1, 2, 3]? x = [0, 1, 2, 3]? g = [1, 2, 0, -1];
    DFT calculation of N points X [ k ] and G [ k ]
    X = fft( x, N ); G = fft(g, N);
    % Multiply Y[ k ] = X [ k ]. G [ k ]
    Y = X . * G ;
    % Inverse DFT calculation
    y = ifft ( Y , N );
    % Circular shift by -1
    y = circleshift (y,-1)
Result: }\quady=-117
```

We notice that the result is in agreement with the calculation result of circular convolution in the time domain.

