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DIGITAL SIGNAL PROCESSING 

Solved Examples  

Prof. Michael Paraskevas 

 

SET #8 - Discrete Fourier Transform  

• Discrete Fourier Transform (DFT) 

• Relationship between DFT and other Transforms 

• Calculation DFT with Linear Algebra 

• Periodic sequence expansion - Periodic convolution 

• Circular sequence shift - Circular convolution 

 

1. Discrete Fourier Transform (DFT) 

Example 1 

Compute the N-point DFT of the exponential sequence 𝑥[𝑛] = 𝛼𝑛, όπου 0 ≤ 𝑛 ≤ 𝑁 − 1. 

Answer: The DFT can be calculated from the definition as follows: 

𝑋[𝑘] = ∑ 𝑥[𝑛] 𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

= ∑ 𝛼𝑛 𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

= ∑(𝛼𝑊𝑁
𝑘)

𝑛
𝑁−1

𝑛=0

=
1 − (𝛼𝑊𝑁

𝑘)
𝑁

1 − 𝛼𝑊𝑁
𝑘

=
1 − 𝛼𝑁

1 − 𝛼𝑊𝑁
𝑘 , 𝑘 = 0,1, … , 𝑁 − 1 

 

Example 2 

Calculate the N-point 𝑥[𝑛] = 𝑒𝑗2𝜋𝑘0𝑛/𝑁, όπου 0 ≤ 𝑛 ≤ 𝑁 − 1DFT of the signal. 

Answer: The DFT can be calculated from its definition as follows: 

𝑋[𝑘] = ∑ 𝑥[𝑛] 𝑒− 𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0

= ∑ 𝑒𝑗2𝜋𝑘0𝑛/𝑁𝑒 −𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0

= ∑ 𝑒−𝑗2𝜋(𝑘−𝑘0)𝑛/𝑁

𝑁−1

𝑛=0

=
1 − 𝑒−𝑗2𝜋(𝑘−𝑘0)

1 − 𝑒−𝑗2𝜋(𝑘−𝑘0)/𝑁
, 𝑘 = 0,1, … , 𝑁 − 1 

For 𝑘 ≠ 𝑘0 the numerator takes a value of zero, so 𝑋[𝑘] = 0. For 𝑘 = 𝑘0 the numerator 
and the denominator take a value of zero, so by the Del'Hospital rule we find: 

𝑋[𝑘] = lim
𝑘→𝑘0

𝑑

𝑑𝑘
[

1 − 𝑒−𝑗2𝜋(𝑘−𝑘0)

1 − 𝑒−𝑗2𝜋(𝑘−𝑘0)/𝑁
] =

2𝜋𝑗 𝑒−𝑗2𝜋(𝑘−𝑘0)

2𝜋𝑗
𝑁 𝑒−

𝑗2𝜋(𝑘−𝑘0)
𝑁

|

𝑘=𝑘0

= 𝑁 
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Therefore: 

𝑋[𝑘] = {
0, 𝑘 ≠ 𝑘0

𝛮, 𝑘 = 𝑘0
= 𝛮 𝛿[𝑘 − 𝑘0] 

2. Relationship between DFT and other Transforms 

Example 3 

(a) For the pulse 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 4] calculate the 4-point DFT and compare it 
with the DTFT (see Example 9.7.b). 

(b) Repeat the solution for 8-points DFT, after applying the procedure of zero-padding 
in sequence 𝑥[𝑛]. 

 

Answer: (a) The sequence is written: 𝑥[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] + 𝛿[𝑛 − 3]. We 
compute the 4-point DFT from the definition of DFT: 

𝑋[𝑘] = ∑ 𝑥[𝑛]

3

𝑛=0

𝑊4
𝑛𝑘 = 𝑊4

0 + 𝑊4
1𝑘 + 𝑊4

2𝑘 + 𝑊4
3𝑘 , 0 ≤ 𝑘 ≤ 3 

We will calculate the points 𝑋[𝑘] for 0 ≤ 𝑘 ≤ 3. Taking into account the values of the 
phase factors we calculated in section 12.4.3, we have: 

𝑋[0] = 𝑊4
0 + 𝑊4

0 + 𝑊4
0 + 𝑊4

0 = 1 + 1 + 1 + 1 = 4 

𝑋[1] = 𝑊4
0 + 𝑊4

1 + 𝑊4
2 + 𝑊4

3 = 1 − 𝑗 − 1 + 𝑗 = 0 

𝑋[2] = 𝑊4
0 + 𝑊4

2 + 𝑊4
4 + 𝑊4

6 = 1 − 1 + 1 − 1 = 0 

𝑋[3] = 𝑊4
0 + 𝑊4

3 + 𝑊4
6 + 𝑊4

9 = 1 + 𝑗 − 1 − 𝑗 = 0 

Hence the 4-point DFT of the pulse 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 4] given by: 

𝑋[𝑘] = {
4, 𝑛 = 0
0, 𝑛 = 1,2, …

 

From Example 10.8 it follows that the DTFT of the pulse 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 4] is: 

𝑋(𝑒𝑗𝜔) = 𝑒− 
𝑗3𝜔

2  
sin (2𝜔)

sin(𝜔/2)
 

DTFT magnitude spectrum plot is shown in red in next figure, while the DFT points are 
shown in blue. We notice that the points of the DFT are obtained by sampling from the 

DTFT according to the equation 𝑋[𝑘] = 𝑋(𝑒𝑗𝜔)|
𝜔=𝜋𝑘/2

, 𝑘 = 0,1,2,3. 

  

DTFT (red color) and 4-point DFT (blue color) magnitude and phase spectra of the 
pulse 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 4] in the frequency domain[0,2𝜋) 
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(b) The 8-point DFT of the pulse 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 4] is: 

𝑋[𝑘] = ∑ 𝑥[𝑛]

7

𝑛=0

𝑊8
𝑛𝑘 , 0 ≤ 𝑘 ≤ 7 

We calculate the points 𝑋[𝑘] for 0 ≤ 𝑘 ≤ 7: 

𝑋[0] = 1𝑊8
0 + 1𝑊8

0 + 1𝑊8
0 + 1𝑊8

0 + 0𝑊8
0 + 0𝑊8

0 + 0𝑊8
0 + 0𝑊8

0 = 4 

𝑋[1] = 1𝑊8
0 + 1𝑊8

1 + 1𝑊8
2 + 1𝑊8

3 + 0𝑊8
4 + 0𝑊8

5 + 0𝑊8
6 + 0𝑊8

7 =  1 − 2.41𝑗 

𝑋[2] = 1𝑊8
0 + 1𝑊8

2 + 1𝑊8
4 + 1𝑊8

6 + 0𝑊8
8 + 0𝑊8

10 + 0𝑊8
12 + 0𝑊8

14 = 0 

𝑋[3] = 1𝑊8
0 + 1𝑊8

3 + 1𝑊8
6 + 1𝑊8

9 + 0𝑊8
12 + 0𝑊8

15 + 0𝑊8
18 + 0𝑊8

21 =  1 − 0.41𝑗 

𝑋[4] = 1𝑊8
0 + 1𝑊8

4 + 1𝑊8
8 + 1𝑊8

12 + 0𝑊8
16 + 0𝑊8

20 + 0𝑊8
24 + 0𝑊8

28 = 0 

𝑋[5] = 1𝑊8
0 + 1𝑊8

5 + 1𝑊8
10 + 1𝑊8

15 + 0𝑊8
20 + 0𝑊8

25 + 0𝑊8
30 + 0𝑊8

35 = 1 + 0.41𝑗 

𝑋[6] = 1𝑊8
0 + 1𝑊8

6 + 1𝑊8
12 + 1𝑊8

18 + 0𝑊8
24 + 0𝑊8

30 + 0𝑊8
36 + 0𝑊8

42 = 0 

𝑋[7] = 1𝑊8
0 + 1𝑊8

7 + 1𝑊8
14 + 1𝑊8

21 + 0𝑊8
28 + 0𝑊8

35 + 0𝑊8
42 + 0𝑊8

49 = 1 +  2.41𝑗 

and we get the figure: 

 

DTFT (red color) and 8-point DFT (blue color) magnitude and phase spectra of the 
pulse 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 4] in the frequency domain[0,2𝜋) 

We repeat for 32-point DFT and obtain the form: 

 

DTFT (red color) and 32-point DFT (blue color) magnitude and phase spectra of the 
pulse 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 4] in the frequency domain[0,2𝜋) 

 



4 

Comments: 

• From the above figures we find that the magnitude and phase of the DFT have 
even and odd symmetry, respectively. Therefore, we can keep only the frequency 
part [0, 𝜋), i.e. the values 𝑋[𝑘], 𝑘 = 0,1, … , (𝑁/2) − 1, because the information of 
the part [−𝜋, 0) is identical. 

• As we mentioned above, if for a given aperiodic sequence 𝑥[𝑛]we wish to in-
crease the density of DFT samples, then we must increase the number of samples 
of 𝑥[𝑛]. This is done by adding zeros (zero-padding), by applying the following 
procedure: 

o We create a periodic extension 𝑥̃[𝑛] of 𝑥[𝑛] length 𝐿 ≥ 𝑁, adding 𝐿 − 𝑁 zeros 
to its end. 

o We compute the L-point DFT 𝑋̃[𝑘] of the sequence 𝑥̃[𝑛]. 

o DFT 𝑋[𝑘] of sequence 𝑥[𝑛] is: 𝑋[𝑘] = 𝑋̃[𝑘],    για 0 ≤ 𝑘 ≤ 𝐿 − 1. 

• Adding the zeros does not change anything in the sum of equation (12.9), so it 
does not improve the sharpness of the DFT, it just reduces the distance between 
successive samples of 𝑋[𝑘]. To increase the sharpness of the DTF, more data 
must be obtained from the signal, that is, the number of samples of the signal 
must be increased. 

• If the sequence is periodic, then to increase the sharpness of the DFT, we do not 
add zeros but include in the DFT calculation more than one period of the se-
quence. 

 

Example 4 

Calculate the N-points DFT of the sequence 𝑥[𝑛] = 𝛿[𝑛 − 𝑛0], where 0 < 𝑛0 < 𝑁, by 
sampling in the Z-transform. 

Answer: From Table 9.1 we know that for the sequence 𝛿[𝑛 − 𝑛0]: 

𝛿[𝑛 − 𝑛0]
 𝛧 
↔ 𝑋(𝑧) = 𝑧−𝑛0 

The region of convergence is the entire field z, except 0 when 𝑛0 > 0. So, the unit circle is 
inside the region of convergence of the Z-transform, so by sampling the function 𝑋(𝑧) at 
the points 𝑧 = 𝑊𝑁

−𝑘for 𝑘 = 0,1, … , 𝑁 − 1, we find: 

𝑋[𝑘] = 𝑊𝑁
𝑛0𝑘

, 𝑘 = 0,1, … , 𝑁 − 1 

Alternative spelling: 

𝑋[𝑘] = [1, 𝑊𝑁
𝑛0 , 𝑊𝑁

2𝑛0 , … , 𝑊𝑁
(𝛮−1)𝑛0] 

 

3. Periodic sequence expansion - Periodic convolution 

 Example 5 

Calculate the periodic convolution between the discrete-time signals  
𝑥[𝑛] = {0̂, 1, 2, 3} and ℎ[𝑛] = {1, 2̂, 0, −1}. 

 

Answer: The graph of 𝑥[𝑛] and its periodic expansion 𝑥̃[𝑛] for 𝛮 = 4 is shown in the fig-
ure 
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Sequence of finite length𝑥[𝑛] and its periodic expansion 𝑥̃[𝑛] = 𝑥[𝑛 𝑚𝑜𝑑 4] = 𝑥[[𝑛]]
4

 

 

 

Sequence ℎ[𝑘] and its reflection ℎ[−𝑘] 

 

We use the graphical way of calculating the convolutional sum: 

𝑦̃[𝑛] = ∑ 𝑥̃[𝑘] ℎ̃[𝑛 − 𝑘] 

𝑁−1

𝑘=0

 

The graph of ℎ[𝑛], its reflection ℎ[−𝑘] and its periodic expansion ℎ̃[−𝑘] for 𝛮 = 4, shown 

in the next figure. The 𝑦̃[0] is founded by summing the products 𝑥̃[𝑘] ℎ̃[−𝑘] for 𝑘 = 0 up 
to 3. Is: 𝑦̃[0] = 0𝑥2 + 1𝑥1 + 2𝑥(−1) + 3𝑥0 = −1. 

Then, ℎ̃[−𝑘] is shifted to the right by 1, resulting in ℎ̃[1 − 𝑘]. The 𝑦̃[1] is found by sum-

ming the products 𝑥̃[𝑘] ℎ̃[1 − 𝑘] for 𝑘 = 0 up to 3. Is: 𝑦̃[1] = 0𝑥0 + 1𝑥2 + 2𝑥1 +
3𝑥(−1) = 1. 

 

Periodic extension ℎ[[−𝑘]]
4

and shifted periodic extension ℎ̃[1 − 𝑘] = ℎ[[1 − 𝑘]]
4

 

 

Shifting ℎ̃[−𝑘] to the right by 2 yields ℎ̃[2 − 𝑘], figure 12.13 (a). The 𝑦̃[2] is found by sum-
ming the products 𝑥̃[𝑘] ℎ̃[2 − 𝑘]for𝑘 = 0 up to 3. Is: 𝑦̃[2] = 0𝑥(−1) + 1𝑥0 + 2𝑥2 + 3𝑥1 =
7. 

Finally, shifted ℎ̃[−𝑘] to the right by 3, resulting in ℎ̃[3 − 𝑘]. The 𝑦̃[3] is founded by 
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summing the products 𝑥̃[𝑘] ℎ̃[3 − 𝑘] for 𝑘 = 0 up to 3. Is: 𝑦̃[3] = 0𝑥1 + 1𝑥(−1) + 2𝑥0 +
3𝑥2 = 5. 

 

Shifted periodic extension ℎ̃[2 − 𝑘] = ℎ[[2 − 𝑘]]
4

 

and shifted periodic extension ℎ̃[3 − 𝑘] = ℎ[[3 − 𝑘]]
4

 

 

Therefore, the periodic convolution is: 𝑦̃[𝑛] = {−1, 1, 7, 5, −1̂, 1, 7, 5, −1, 1, 7, 5}. The re-
sult is shown in the figure: 

 

Periodic convolution 𝑦̃[𝑛] 

 

4. Shifted Circular sequence - Circular convolution 

 Example 6 

To calculate the circular convolution of 4 points between the discrete time signals 

𝑥[𝑛] = {0̂, 1, 2, 3}and ℎ[𝑛] = {1, 2̂, 0, −1}. 

 

Answer: We calculate the circular convolution of four points from the equation: 

𝑦[𝑛] = [∑ 𝑥[𝑘] ℎ̃[𝑛 − 𝑘]
3

𝑘=0
] 𝑅4[𝑛] 

For 𝑛 = 0: 

𝑦[0] = [∑ 𝑥[𝑘] ℎ̃[−𝑘]
3

𝑘=0
] 𝑅4[𝑛] = ∑ {0̂, 1, 2, 3} {2̂, 1, −1, 0}

3

𝑘=0

= ∑ {0̂, 1, −2, 0}
3

𝑘=0

 
⇒ 𝑦[0] = −1 

For 𝑛 = 1: 
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𝑦[1] = [∑ 𝑥[𝑘] ℎ̃[1 − 𝑘]
3

𝑘=0
] 𝑅4[𝑛] = ∑ {0̂, 1, 2, 3} {0̂, 2, 1, −1}

3

𝑘=0

= ∑ {0̂, 2, 2, −3}
3

𝑘=0

 
⇒ 𝑦[1] = 1 

For 𝑛 = 2: 

𝑦[2] = [∑ 𝑥[𝑘] ℎ̃[2 − 𝑘]
3

𝑘=0
] 𝑅4[𝑛] = ∑ {0̂, 1, 2, 3} {−1̂, 0, 2, 1}

3

𝑘=0

= ∑ {0̂, 0, 4, 3}
3

𝑘=0

 
⇒ 𝑦[2] = 7 

For 𝑛 = 3: 

𝑦[3] = [∑ 𝑥[𝑘] ℎ̃[3 − 𝑘]
3

𝑘=0
] 𝑅4[𝑛] = ∑ {0̂, 1, 2, 3} {1̂, −1, 0, 2}

3

𝑘=0

= ∑ {0̂, − 1, 0, 6}
3

𝑘=0

 
⇒ 𝑦[3] = 5 

Therefore it is: 

𝑦[𝑛] = ℎ[𝑛] 𝑥[𝑛] = {−1̂, 1, 7, 5} 

We observe that it verifies the equation 𝑦[𝑛] = 𝑥1[𝑛] 𝑥2[𝑛] = [𝑥̃2[𝑛] ⊛ 𝑥̃1[𝑛]]𝑅𝑁[𝑛]. 

The linear convolution between ℎ[𝑛] and 𝑥[𝑛], is the following sequence of six points: 

ℎ[𝑛] ∗ 𝑥[𝑛] = {1, 4̂, 7, 5, −2, −3} 

We notice that linear convolution and circular convolution of the same sequences give 
different results. 


