University of the Peloponnese

Electrical and Computer

Engineering Department

DIGITAL SIGNAL PROCESSING

Solved Examples

Prof. Michael Paraskevas

SET \#5 - Z Transformation

- Bilateral Z-Transform and Region of Convergence
- Equation of Z Transformation to other Transformations
- Transformation Properties G
- Poles and Zeros

1. Bllateral Z-Transform and Region of Convergence

Example 1

Calculate the Z-transform of discrete-time signals of infinite duration:
(a) $x_{1}[n]=a^{n} u[n], 0<|a|<\infty$,
(b) $x_{2}[n]=-b^{n} u[-n-1], 0<|b|<\infty$ and
(c) $x[n]=x_{1}[n]+x_{2}[n]$

Answer: (a) The signal $x_{1}[n]$ is causal (right-sided) sequence and has values only for positive - time. The bilateral Z-transform is:

$$
X_{1}(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
$$

The function $X_{1}(z)$ converges when $\left|a z^{-1}\right|<1 \Rightarrow|z|>|a|$. So the region of convergence is the outer surface of a circle defined by the set of points for which $R_{x 1}:|z|>|a|$. That is:

$$
R_{x 1}:|\alpha|<|z|<\infty
$$

Also, there is a pole for $z=a$ and a zero for $z=0$.
(b) The signal $x_{2}[n]$ is anti-causal (left-sided) sequence and has values only for negative - time. The bilateral Z-transform is:

$$
X_{2}(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=-\infty}^{\infty}-b^{n} u[-n-1] z^{-n}=-\sum_{n=-\infty}^{-1}\left(b z^{-1}\right)^{n}
$$

We set $m=-n$ and have:

$$
X_{2}(z)=-\sum_{m=1}^{\infty}\left(b^{-1} z\right)^{m}=1-\sum_{m=1}^{\infty}\left(b^{-1} z\right)^{m}=1-\frac{1}{1-b z^{-1}}=\frac{z}{z-b}
$$

The function $X_{2}(z)$ converges when $\left|b^{-1} z\right|<1 \Rightarrow|z|<|b|$. So the region of convergence is the interior surface of a circle defined by the set of points for which $R_{x 2}:|z|<|b|$. That is:

$$
R_{x 2}: 0<|z|<|b|
$$

Also, there is a pole for $z=b$ and a zero for $z=0$.

Regions of convergence (ROC) of sequences $x_{1}[n]$ and $x_{2}[n]$.

We notice that if in the above sequences we put $a=b$, then while the sequences will be different $x_{1}[n] \neq x_{2}[n]$, the functions of the Z-transforms will be the same, that is $X_{1}(z)=$ $X_{2}(z)$, but with different regions of convergence ($R_{x 1} \neq R_{x 2}$). Therefore, the complete calculation of the Z-transform requires, not only the calculation of the function $X(z)$, but also the determination of the region of convergence (ROC).
(c) The signal $x[n]$ is the sum $x_{1}[n]+x_{2}[n]=a^{n} u[n]-b^{n} u[-n-1]$ and is called a two - side sequence or non-causal. The Z-transform is:

$$
\begin{aligned}
& X(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}-\sum_{n=-\infty}^{-1} b^{n} z^{-n} \\
&=\left\{\frac{z_{z}^{z-a}}{z_{z}}, R_{x 1}:|z|>|\alpha|\right\}+\left\{\frac{z}{z-b}, R_{x 2}:|z|<|b|\right\} \\
&=\frac{z}{z-a}+\frac{z}{z-b}, R_{x}=R_{x 1} \cap R_{x 2}
\end{aligned}
$$

- If $|b|<|a|$, then the region of convergence R_{x} does not exist, because the intersection of the regions of convergence $R_{x 1}$ and $R_{x 2}$ is the empty set.
- If $|a|<|b|$, then the region of convergence is $R_{x}:|\alpha|<|z|<|b|$.

Comments: From the solution of the above example it follows that for signals of infinite duration the convergence region is distinguished in the following cases:

- Right side signals (causal): the region of convergence (ROC) is the exterior of a circle with radius R_{x}-the maximum radius of the poles of $X(z)$ or $|z|>R_{x-}$.
- Right side signs (anti-causal): The region of convergence (ROC) is the inner circle with radius R_{x+} the minimum radius of the poles of $X(z)$ or $|z|<R_{x+}$.
- Double-sided signals (non-causal): The region of convergence (ROC) is the interior of a ring with an inner radius R_{x-} and an outer radius R_{x+}, which correspond to the maximum and minimum radius of its poles $X(z)$, i.e. holds $R_{x-}<|z|<R_{x+}$.

The region of convergence of infinite sequences is shown in the next figure.

Regions of convergence of sequences of infinite duration

Elample 2

Find the region of convergence (ROC) of the Z transform. without directly calculating it, $X(z)$, for the following signals of infinite duration:
(a) $x_{1}[n]=\left[(0.5)^{n}+(0.25)^{n}\right] u[n]$
(b) $x_{2}[n]=3^{n} u[-n]$

Answer: (a) Since $x_{1}[n]$ is a right-sided sequence, the region of convergence is the outer surface of a circle with radius the maximum radius of the poles. The poles are: $z_{1}=0.5$ derived from the term $(0.5)^{n}$, and $z_{2}=0.25$ derived from the term $(0.25)^{n}$. Therefore, the region of convergence is $R_{x}:|z|>0.5$.
(b) Since $x_{2}[n]$ is a left-sided sequence, the region of convergence covers the interior surface of a circle with radius the minimum radius of the poles. The function has a pole at $z=$ 3. Therefore, the region of convergence is $R_{x}:|z|<3$.

2. Relationship between Z-Transform and other Transforms

Example 3

The Z-transform of a sequence $x[n]$ is:

$$
X(z)=\frac{z+2 z^{-2}+z^{-3}}{1-3 z^{-4}+z^{-5}}
$$

If the region of convergence includes the unit circle, find the DTFT of $x[n], \gamma \iota \alpha \omega=\pi$.

Answer: If $X(z)$ is the Z -transform of the sequence $x[n]$ and the unit circle is inside the region of convergence, then its $x[n]$ DTFT can be found by computing it $X(z)$ on the unit circle, that is:

$$
X\left(e^{j \omega}\right)=\left.X(z)\right|_{z=e^{j \omega}}
$$

We remind you that $e^{j \omega}=\cos \omega+j \sin \omega$: Therefore for $\omega=\pi$ we have $e^{j \pi}=\cos \pi+$ $j \sin \pi=-1$ and the DTFT at the point $\omega=\pi$, is:

$$
\left.X\left(e^{j \omega}\right)\right|_{\omega=\pi}=\left.X(z)\right|_{z=e^{j \pi}}=\left.X(z)\right|_{z=-1}
$$

Therefore we have:

$$
\left.X\left(e^{j \omega}\right)\right|_{\omega=\pi}=\left.\frac{z+2 z^{-2}+z^{-3}}{1-3 z^{-4}+z^{-5}}\right|_{z=-1}=\frac{-1+2-1}{1-3-1}=0
$$

3. Propertles of Z-Transform

EDxample 4

Assuming known the Z- transform of the sequence $x[n]$, find the Z- transform of the sequence:

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

Answer: The given equation $y[n]=\sum_{k=-\infty}^{n} x[k]$ can be written $y[n]=y[n-1]+x[n]$. Therefore:

$$
x[n]=y[n]-y[n-1]
$$

If we transform both members of the equation and use the time-shift property of the Z transform, we find:

$$
X(z)=Y(z)-z^{-1} Y(z) \Rightarrow X(z)=Y(z)\left[1-z^{-1}\right]
$$

We solve in terms of $Y(z)$:

$$
Y(z)=\frac{1}{1-z^{-1}} X(z)
$$

Therefore:

$$
y[n]=\sum_{k=-\infty}^{n} x[k] \stackrel{Z}{\leftrightarrow} \frac{1}{1-z^{-1}} X(z)
$$

This equation is also referred to as the property of overlap.

Example 5

Calculate the Z-transform of the discrete-time signal:

$$
x[n]=(0.4)^{-n} u[-n]
$$

Answer: We know that:

$$
(0.4)^{n} u[n] \stackrel{Z}{\leftrightarrow} \frac{1}{1-0.4 z^{-1}}, \quad R_{x}:|z|>0.4
$$

From the time inverse property it follows:

$$
(0.4)^{-n} u[-n] \stackrel{Z}{\leftrightarrow} \frac{1}{1-0.4\left(\mathrm{z}^{-1}\right)^{-1}}=\frac{1}{1-0.4 z}
$$

and region of convergence (ROC):

$$
R_{x}^{\prime}=1 / R_{x}=|z|<1 / 0.4
$$

[1] Example 6

Calculate the Z-transform of the discrete-time signal:

$$
x[n]=(0.4)^{n / 2} u[n / 2]
$$

Answer: We know that:

$$
(0.4)^{n} u[n] \stackrel{Z}{\leftrightarrow} \frac{1}{1-0.4 z^{-1}}, \quad R_{x}:|z|>0.4
$$

From the time scaling property it follows:

$$
(0.4)^{n / 2} u[n / 2] \stackrel{z}{\leftrightarrow} \frac{1}{1-0.4\left(\mathrm{z}^{-1}\right)^{2}}=\frac{1}{1-0.4 z^{-2}}=\frac{1}{1-0.2 z^{-1}} \cdot \frac{1}{1+0.2 z^{-1}}
$$

Example 7

Calculate the Z-transform of the discrete-time signal:

$$
x[n]=\left(3 e^{j \pi}\right)^{n}(0.4)^{n} u[n]
$$

Answer: We know that:

$$
(0.4)^{n} u[n] \stackrel{Z}{\leftrightarrow} \frac{1}{1-0.4 z^{-1}}, \quad R_{x}:|z|>0.4
$$

From the complex frequency scaling property it follows:

$$
\left(e^{j \pi}\right)^{n}(0.4)^{n} u[n] \stackrel{Z}{\leftrightarrow} \frac{1}{1-0.4\left(\mathrm{z} / 3 e^{j \pi}\right)^{-1}}=\frac{1}{1-1.2 e^{j \pi} z^{-1}}
$$

The region of convergence (ROC) is:

$$
R_{x}^{\prime}:\left|3 e^{j \pi}\right||z|>0.4 \Rightarrow|z|>1.2
$$

and region of convergence (ROC):

$$
R_{x}^{\prime}=R_{x}^{1 / 2}:|z|>\sqrt{0.4}=0.2
$$

(1) Example 8

Using the Z-transform calculate the convolution between the sequences $x[n]=$ $\{\hat{1},-2,0,3,-1\}$ and $h[n]=\{2, \widehat{3}, 0,1\}$.

Answer: We calculate the Z-transform of each sequence using the time shift property and we have:

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{+\infty} x[n] z^{-n}=\sum_{n=0}^{4} x[n] z^{-n}=1-z^{-1}+3 z^{-3}-z^{-4} \\
& H(z)=\sum_{n=-\infty}^{+\infty} h[n] z^{-n}=\sum_{n=-1}^{2} h[n] z^{-n}=2 z+3+z^{-2}
\end{aligned}
$$

Based on the convolution property we have:

$$
\begin{aligned}
Y(z)=X(z) H & (z)=\left(1-2 z^{-1}+3 z^{-3}-z^{-4}\right)\left(2 z+3+z^{-2}\right) \\
& =2 z+3+z^{-2}-4-6 z^{-1}-2 z^{-3}+6 z^{-2}+9 z^{-3}+3 z^{-5}-2 z^{-3} \\
& -3 z^{-4}-z^{-6} \\
& =2 z-1-6 z^{-1}+7 z^{-2}+5 z^{-3}-3 z^{-4}+3 z^{-5}-z^{-6} \\
& =\sum_{n=-1}^{6} y[n] z^{-n}
\end{aligned}
$$

Using the time shift property once more, we get the result:

$$
y[n]=\{2,-\hat{1},-6,7,5,-3,3,-1\}
$$

[1] Example 9

Calculate the Z-transform of the discrete-time signal:

$$
x[n]=-n(0.4)^{n} u[n]
$$

Answer: We know that:

$$
(0.4)^{n} u[n] \stackrel{Z}{\leftrightarrow} \frac{1}{1-0.4 z^{-1}}, \quad R_{x}:|z|>0.4
$$

From the derivation property at frequency z it follows:

$$
-n(0.4)^{n} u[n] \stackrel{Z}{\leftrightarrow} z\left(\frac{1}{1-0.4 z^{-1}}\right)^{\prime}=\frac{-0.4}{\left(1-0.4 z^{-1}\right)^{2}}
$$

and region of convergence (ROC):

$$
R_{x}^{\prime}=R_{x}:|z|>0.4
$$

1 Example 10

A discrete-time causal signal has a Z-transform given by the equation:

$$
X(z)=\frac{1}{1-a z^{-1}}
$$

Calculate the value of the signal $x[n]$ at position $n=0$ and for $n \rightarrow \infty$.

Answer: For $x[0]$ from the initial value theorem it follows:

$$
x[0]=\lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty} \frac{1}{1-a z^{-1}}=1
$$

(1) Example 11

A discrete-time causal signal has a Z-transform given by the equation:

$$
X(z)=\frac{4 z^{2}+3 z+1}{(z-1)(z+2)^{2}}
$$

Calculate the value of the signal $x[n]$ at position $n=0$ and for $n \rightarrow \infty$.

Answer: For $x[\infty]$ from the final value theorem it follows:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} x[n]=\lim _{z \rightarrow 1}(z-1) X(z)=\lim _{z \rightarrow 1}(z-1) \frac{4 z^{2}+3 z+1}{(z-1)(z+2)^{2}} \\
=\lim _{z \rightarrow 1} \frac{4 z^{2}+3 z+2}{(z+2)^{2}}=\frac{4+3+1}{3^{2}}=\frac{8}{9}
\end{gathered}
$$

4. Poles and Zeros

DDExample 12

Draw the pole and zero diagram of the function:

$$
X(z)=\frac{2 z^{2}+3 z}{z^{2}+0.4 z+1}
$$

Answer: To find the zeros we calculate the roots of the numerator. Is:

$$
2 z^{2}+3 z=0 \Rightarrow z(2 z+3)=0 \Rightarrow z_{1}=0 \kappa \alpha \iota z_{2}=-3 / 2
$$

To find the poles we calculate the roots of the denominator. Is:

$$
z^{2}+0.4 z+1=0 \Rightarrow p_{1,2}=-0.20 \pm j 0.98
$$

We observe that there are two complex conjugate poles $p_{1,2}=-0.20 \pm j 0.98$, placed on the unit circle and two zeros placed at the positions $z_{1}=0$ and $z_{2}=-1.5$.

Pole-zero diagram

