University of the Peloponnese

Electrical and Computer Engineering Department

DIGITAL SIGNAL PROCESSING

Solved Examples

Prof. Michael Paraskevas

SET \#3 - Discrete Time Systems

- Categorization of Discrete Time Systems
- System Description with Convolutional Sum
- Study of Systems with the Method of Convolution

1. Categorization of Discrete TIme Systems

[1] Example 1

Examine whether the following systems are time shift invariant.
(a) $y[n]=\sum_{k=-\infty}^{n} x[k]$
(b) $\quad \sum_{k=0}^{N} a_{k} y[n-k]=\sum_{m=0}^{M} b_{m} x[n-m]$
(a) From the input-output relationship and considering that $n \rightarrow \infty$, we find the time shifted response:

$$
y\left[n-n_{0}\right]=\sum_{k=-\infty}^{n} x\left[k-n_{0}\right]=\sum_{k=-\infty}^{+\infty} x\left[k-n_{0}\right]
$$

The response of the system to the time-shifted input $x^{\prime}[n]=x\left[n-n_{0}\right]$, is:

$$
y^{\prime}[n]=\sum_{k=-\infty}^{+\infty} x^{\prime}[k]=\sum_{k=-\infty}^{+\infty} x\left[k-n_{0}\right]
$$

Because $y^{\prime}[n]=y\left[n-n_{0}\right]$ the system is time-shift invariant.
(b) The shifted response by n_{0} is:

$$
y\left[n-n_{0}\right]=\sum_{k=0}^{N} a_{k} y\left[n-n_{0}-k\right]=\sum_{m=0}^{M} b_{m} x\left[n-n_{0}-m\right]
$$

The response of the system to the shifted input $x^{\prime}[n]=x\left[n-n_{0}\right]$, is:

$$
y^{\prime}[n]=\sum_{k=0}^{N} a_{k} y^{\prime}[n-k]=\sum_{m=0}^{M} b_{m} x^{\prime}[n-m]=\sum_{m=0}^{M} b_{m} x\left[n-n_{0}-m\right]
$$

Because $y^{\prime}[n]=y\left[n-n_{0}\right]$ the system is time-shift invariant.

Example 2

Examine whether the discrete-time system is linear with an input-output relationship:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{m=0}^{M} b_{m} x[n-m]
$$

Answer: For inputs $x_{1}[n]$ and $x_{2}[n]$ the corresponding outputs $T\left\{x_{1}[n]\right\}$ and $T\left\{x_{2}[n]\right\}$ are:

$$
\begin{aligned}
& y_{1}[n]=T\left\{x_{1}[n]\right\}=\sum_{k=0}^{N} a_{k} y_{1}[n-k]=\sum_{m=0}^{M} b_{m} x_{1}[n-m] \\
& y_{2}[n]=T\left\{x_{2}[n]\right\}=\sum_{k=0}^{N} a_{k} y_{2}[n-k]=\sum_{m=0}^{M} b_{m} x_{2}[n-m]
\end{aligned}
$$

For the combined entry $x[n]=\alpha x_{1}[n]+\beta x_{2}[n]$ applies:

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{m=0}^{M} b_{m} x[n-m]=\sum_{m=0}^{M} b_{m}\left(\alpha x_{1}[n-m]+\beta x_{2}[n-m]\right) \tag{1}
\end{equation*}
$$

The combined output $y[n]=\alpha y_{1}[n]+\beta y_{2}[n]$ of the system are:

$$
\begin{align*}
a \sum_{k=0}^{N} a_{k} y_{1}[n-k]+\beta \sum_{k=0}^{N} a_{k} y_{2}[n-k] & =a \sum_{m=0}^{M} b_{m} x_{1}[n-m]+\beta \sum_{m=0}^{M} b_{m} x_{2}[n-m] \Rightarrow \\
\sum_{k=0}^{N} \alpha a_{k} y_{1}[n-k]+\sum_{k=0}^{N} \beta a_{k} y_{2}[n-k] & =\sum_{m=0}^{M} \alpha b_{m} x_{1}[n-m]+\sum_{m=0}^{M} \beta b_{m} x_{2}[n-m] \Rightarrow \\
\sum_{k=0}^{N} a_{k}\left(\alpha y_{1}[n-k]+\beta y_{2}[n-k]\right) & =\sum_{k=0}^{N} b_{m}\left(\alpha x_{1}[n-k]+\beta x_{2}[n-k]\right)(2) \tag{2}
\end{align*}
$$

Since the second members of equations (1) and (2) are equal, it follows that the first members are also equal, i.e.:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{N} a_{k}\left(\alpha y_{1}[n-k]+\beta y_{2}[n-k]\right)
$$

Because the output for combined input equals the combined output, the system is linear.

[a] Example 3

Check if the system is linear with the following input-output relationship:

$$
y[n]=\sum_{k=-\infty}^{+\infty} x[k] x[n+k]
$$

Answer: We observe that it is $y[n]$ formed by the sum of its products $x[n]$ with shifted versions of itself. E.g.:

$$
y[0]=\sum_{k=-\infty}^{+\infty} x[k] x[k]=\sum_{k=-\infty}^{+\infty} x^{2}[k]
$$

The squared term is expected to make the system non-linear. We use an example:

- If $x[n]=\delta[n]$, then $y[n]=\delta[n]$.
- If $x[n]=2 \delta[n]$, then $y[n]=4 \delta[n]$.

Therefore, the system is not homogeneous. Therefore it is not linear either, because homogeneity is a condition of linearity.

Example 4

Examine whether the system is stable with an input-output relationship:

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

Answer: To judge the stability of the system we will set a blocked input and examine if the output is also blocked (BIBO stability). If the input is blocked, that is $|x[n]| \leq A<\infty$, then the measure of the output is:

$$
|y[n]|=\left|\sum_{k=-\infty}^{n} x[k]\right|<\sum_{k=-\infty}^{n}|x[k]|<\sum_{k=-\infty}^{n} A
$$

This sum tends to infinity for $n \rightarrow \infty$. Therefore, the outlet is not blocked so the system is not BIBO-stable.

2. Description of a System using the Convolutional Sum

Example 5

Find the impulse response of an LSI and causal system when for input $x[n]=u[n]$ the system produces output $y[n]=\delta[n]$.

Answer: We write the equatio $y[n]=\sum_{k=0}^{N-1} x[k] h[n-k]$ as follows:

$$
y[n]=x[0] h[n]+\sum_{k=1}^{N-1} x[k] h[n-k]
$$

We solve for $h[n]$ and we find:

$$
h[n]=\frac{1}{x[0]}\left[y[n]-\sum_{k=1}^{N-1} x[k] h[n-k]\right]
$$

This process is called deconvolution and offers a recursive way to calculate the shock response through the following steps for various values of n :

$$
\begin{aligned}
& n=0, h[0]=\frac{1}{x[0]}[y[0]] \\
& n=1, h[1]=\frac{1}{x[0]}[y[1]-h[0] x[1]]
\end{aligned}
$$

$$
n=2, h[2]=\frac{1}{x[0]}[y[2]-h[0] x[2]-h[1] x[1]]
$$

We apply for the given input and output functions and get:

$$
\begin{aligned}
& n=0, h[0]=\frac{1}{u[0]}[\delta[0]]=1 \\
& n=1, h[1]=\frac{1}{u[0]}[\delta[1]-h[0] u[1]]=(0-1)=-1 \\
& n=2, h[2]=\frac{1}{u[0]}[\delta[2]-h[0] u[2]-h[1] u[1]]=(0-1+1)=0 \\
& n=3, h[3]=\frac{1}{u[0]}[\delta[3]-h[0] u[3]-h[1] u[2]-h[2] u[1]]=(0-1+1-0)=0
\end{aligned}
$$

More generally, the solution is $h[n]=\delta[n]+\delta[n-1]$

3. Study of Systems using Convolution

(1) Example 6

Calculate the convolution between $x[n]=(0.9)^{n} u[n]$ and $h[n]=n u[n]$.

Answer: Convolution is:

$$
y[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k]=\sum_{k=-\infty}^{+\infty}\left\{(0.9)^{k} u[k]\right\}\{[n-k] u[n-k]\}
$$

Since $u[k]=0 \gamma \iota \alpha k<0$ and $u[n-k]=0 \gamma \iota \alpha k>n$, we have:

$$
y[n]=\sum_{k=0}^{n}[n-k](0.9)^{k}=n \sum_{k=0}^{n}(0.9)^{k}-\sum_{k=0}^{n} k(0.9)^{k} \gamma \iota \alpha n \geq 0
$$

Using the formulas:

$$
\begin{aligned}
& \sum_{n=0}^{N-1} \alpha^{n}=\frac{1-a^{N}}{1-a} \\
& \sum_{n=0}^{N-1} n \alpha^{n}=\frac{(N-1) a^{N+1}-N a^{N}+a}{(1-a)^{2}}
\end{aligned}
$$

we get:

$$
\begin{gathered}
y[n]=n \frac{1-(0.9)^{n+1}}{1-0.9}-\frac{n(0.9)^{n+2}-[n+1](0.9)^{n+1}+0.9}{[1-0.9]^{2}} \\
=10 n\left\{1-(0.9)^{n+1}\right\}-100\left\{n(0.9)^{n+2}-[n+1](0.9)^{n+1}+0.9\right\} n \geq 0 \\
=\left\{10 n-90+90(0.9)^{n}\right\} u[n]
\end{gathered}
$$

Example 7

Calculate the convolution between signals $x[n]=\{\hat{1},-2,0,3,-1\}$ and $h[n]=\{2, \widehat{3}, 0,1\}$ using the Toeplitz table method.

Answer: The signal $x[n]$ is of finite duration in the space $[0,4]$ of length $L_{x}=5$, while the signal $h[n]$ is of finite duration in the space $[-1,2]$ of length $L_{h}=4$. Therefore, the convolution is of finite length in the time interval $[0+(-1), 4+2]=[-1,6]$ and has a length equal to $L_{y}=L_{x}+L_{h}-1=5+4-1=8$ samples.

The vector \boldsymbol{x} has dimensions $\left[L_{x}, 1\right]=[5,1]$ and are: $x=\left[\begin{array}{c}1 \\ -2 \\ 0 \\ 3 \\ -1\end{array}\right]$
The Table \boldsymbol{H} has dimensions $\left[L_{y}, L_{x}\right]=[8,5]$ and are: $H=\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 & 0 \\ 1 & 0 & 3 & 2 & 0 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
We calculate the vector \boldsymbol{y}^{T} :

$$
\boldsymbol{y}^{T}=\boldsymbol{H} \boldsymbol{x}^{T}=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 0 \\
1 & 3 & 2 & 0 & 0 \\
2 & 1 & 3 & 2 & 0 \\
0 & 2 & 1 & 3 & 2 \\
0 & 0 & 2 & 1 & 3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
0 \\
3 \\
-1
\end{array}\right]=\cdots=\left[\begin{array}{c}
2 \\
-1 \\
-6 \\
7 \\
5 \\
-3 \\
3 \\
-1
\end{array}\right]
$$

Therefore the convolution is:

$$
y[n]=\{2,-\hat{1},-6,7,5,-3,3,-1\}
$$

