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• Introduction to Digital Filters

o Filter gain control

o Minimum, maximum, mixed and linear phase filters

o Ideal frequency selection filters

o Specifications of real digital filters

o Stages of implementation of digital filters

• Finite Impulse Response (FIR) Filters

o Description of FIR filters in the time and frequency domains

o FIR Filter as a Delay Line

o Types of FIR Linear Phase Filters

2



Lecture Contents

• FIR Filter Design Methods

o Window method

o Frequency Sampling Method

o Optimal Design Method (Equiripple Method)

• Study of Window Sequences

o Rectangular Window

o Triangular Window (Bartlett)

o Hanning

o Hamming window

o Blackman window

o Kaiser window

3



Introduction to Digital Filters

• Filter gain control

• Minimum, maximum, mixed and linear phase filters

• Ideal frequency selection filters

• Specifications of real digital filters
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Introduction to Digital Filters

• If ℎ[𝑛] a complex exponential sequence is applied to the input of an LSI system 

with impulse response 𝑥 𝑛 = 𝛢𝑒𝑗𝑛𝜔0 , −∞ < 𝑛 < +∞, digital frequency 𝜔0, 

then the output is calculated from the convolution:

𝑦 𝑛 = 𝛢 𝑒𝑗𝑛𝜔0 ෍

𝑘=−∞

+∞

ℎ 𝑘 𝑒−𝑗𝜔0𝑘

• The complex function 𝐻 𝑒𝑗𝜔 is called the frequency response and is calculated 

from the DTFT of the impulse response:

𝐻 𝑒𝑗𝜔 = ෍

𝑘=−∞

+∞

ℎ[𝑘] 𝑒−𝑗𝜔𝑘

• The output 𝑦[𝑛] is written 𝑦 𝑛 = 𝛢 𝑒𝑗𝑛𝜔0 𝐻 𝑒𝑗𝜔 = 𝑥 𝑛 𝐻 𝑒𝑗𝜔 . Therefore if 

the input is a complex sequence of frequency output 𝜔0, then the output is also 

a complex sequence of the same frequency output 𝜔0 multiplied by the 

function 𝐻 𝑒𝑗𝜔 .
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Introduction to Digital Filters

• The frequency response is written in polar form (magnitude, phase) as:

𝐻 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑒𝑗𝜑𝐻(𝜔)

• Their plots (usually expressed in dB) are the magnitude and phase spectra,

respectively.

• If the impulse response is a real sequence then the real part and the amplitude 

of the filter's frequency response exhibit even symmetry:

𝐻𝑅 𝑒𝑗𝜔 = 𝐻𝑅 𝑒−𝑗𝜔 and 𝐻𝑅 𝑒𝑗𝜔 = 𝐻𝑅 𝑒−𝑗𝜔

• The imaginary part, phase and group delay exhibit redundant symmetry:

𝐻𝐼 𝑒𝑗𝜔 = −𝐻𝐼 𝑒−𝑗𝜔 , 𝜑𝐻 ω = −𝜑𝐻 −ω and 𝜏𝐻 ω = −𝜏𝐻 −ω

• A digital filter to be practically implementable must be stable and obviously 

causal.

• Practical digital filters are also desirable to be linear and shift-invariant (LSI).
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Filter Gain Control

• If 𝐻 𝑒𝑗𝜔0 > 1then the filter causes amplification of the input signal.

• If, then 𝐻 𝑒𝑗𝜔0 < 1 attenuation of the input signal occurs.

• This process is called filtering the input signal and can lead to the production of 
an output with desired spectral characteristics.

• Question: By what digital filter design can the amplitude of the frequency 
response at a given frequency be appropriately determined 𝜔0 to result in 
either amplification or attenuation of the input signal at that frequency?

• The frequency response of the filter can be written:

𝐻 𝑒𝑗𝜔 =
σ𝑚=0

𝑀 𝑏[𝑚]𝑒−𝑗𝑚𝜔

σ𝑘=0
𝑁 𝑎[𝑘]𝑒−𝑗𝑘𝜔

= 𝑏[0] 𝑒𝑗(𝑁−𝑀)𝜔
ς𝑚=1

𝑀 (𝑒𝑗𝜔 − 𝑧𝑚)

ς𝑘=1
𝑁 (𝑒𝑗𝜔 − 𝑝𝑘)

where 𝑧𝑚 are the zeros and are 𝑝𝑘 the poles of the frequency response.
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Filter Gain Control

• The magnitude response can be expressed as the quotient of the sum of the 
distances of the zeros from the unit circle to the sum of the distances of the 
poles from the unit circle, for each value of the digital frequency.

• Considering that a causal LSI system is stable if and only if all its poles lie 
inside the unit circle, it follows that for a certain frequency 𝜔0:

– If it is desired to amplify the input signal, then we place a pole very close to 
the unit circle (inside it) at an angle equal to the frequency 𝜔0.

– If attenuation of the input signal is desired, then we place a null very close 
to the unit circle at an angle equal to the frequency 𝜔0.

• In any case, it is imperative that all filter poles lie within the unit circle so that 
the filter remains stable.
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Minimum and Maximum Phase Filters

The position of the filter nulls affects the phase of the frequency response. 
Specifically, the system is:

• Minimum phase when all zeros are within the unit circle.

• Maximum phase when all zeros are outside the unit circle.

• Mixed phase when some zeros are inside the unit circle and the rest outside it.

E.g. the transfer function filter:

𝐻(𝑧) =
(𝑧 − 0.2)(𝑧 + 0.4)

(𝑧 + 0.5)(𝑧 − 0.7)

is of minimum phase, because the positions of the zeros 𝑧1 = 0.2and 𝑧2 = −0.4 lie 
inside the unit circle.
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Linear Phase Filters

• Digital filters have linear phase, when the frequency response can be written as:

𝐻 𝑒𝑗𝜔 = 𝐴 𝑒𝑗𝜔 𝑒−𝑗𝑎𝜔, 𝑎 ∈ 𝑅

where 𝐴 𝑒𝑗𝜔 is a real function of frequency 𝜔.

• For the phase of the frequency response 𝐻 𝑒𝑗𝜔 :

𝜑𝛨 𝜔 = ቐ
−𝛼𝜔 when 𝐴 𝑒𝑗𝜔 ≥ 0

−𝛼𝜔 + 𝜋 when 𝐴 𝑒𝑗𝜔 < 0

• The sufficient and necessary condition for achieving a linear phase is the symmetry 
of the impulse response coefficients.

• In linear phase filters the group delay is constant. So all frequencies of the input 
signal experience the same delay when passing through the digital filter and thus 
the signal structure is not altered.

• Linear phase is an important intrinsic characteristic of FIR filters.
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Ideal Frequency Selection Filters
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• Passband: the frequency range in which 𝐻 𝑒𝑗𝜔 = 1.

• Stopband: the frequency range in which 𝐻 𝑒𝑗𝜔 = 0.

• Cut-off frequencies: the cut-off frequencies that mark the ends of the pass and stop bands.



Ideal Frequency Selection Filters

• Low Pass Filter (LPF):

𝐻 𝑒𝑗𝜔 = ቊ
1, 0 ≤ 𝜔 ≤ 𝜔𝑐

0, 𝜔𝑐 < 𝜔 < 𝜋

• High Pass Filter (HPF):

𝐻 𝑒𝑗𝜔 = ቊ
1, 𝜔𝑐 < 𝜔 < 𝜋

0, 0 ≤ 𝜔 ≤ 𝜔𝑐

• Band Pass Filter (BPF):

𝐻 𝑒𝑗𝜔 = ቊ
1, 𝜔1 ≤ 𝜔 ≤ 𝜔2

0, 0 < 𝜔 < 𝜔1 και 𝜔2 < 𝜔 < 𝜋

• Band Stop Filter (BSF):

𝐻 𝑒𝑗𝜔 = ቊ
1, 0 < 𝜔 < 𝜔1 και 𝜔2 < 𝜔 < 𝜋

0, 𝜔1 ≤ 𝜔 ≤ 𝜔2

• Caution ! Ideal filters [ FIR, IIR ] are non-causal, thus non-implementable.
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Example 1

Let be ℎ[𝑛]the impulse response of an ideal low-pass filter with cutoff frequency 
𝜔𝑐. What type of ideal filter has a impulse response 𝑔[𝑛] = −1 𝑛ℎ[𝑛] ?

Answer: The frequency response 𝐺 𝑒𝑗𝜔 is:

𝐺 𝑒𝑗𝜔 = ෍

𝑛=−∞

∞

𝑔[𝑛]𝑒−𝑗𝑛𝜔 = ෍

𝑛=−∞

∞

−1 𝑛ℎ[𝑛]𝑒−𝑗𝑛𝜔 = ෍

𝑛=−∞

∞

ℎ[𝑛]𝑒−𝑗𝑛 𝜔−𝜋

= 𝐻 𝑒𝑗 𝜔−𝜋

Therefore, the function 𝐺 𝑒𝑗𝜔 is formed by shifting it 𝐻 𝑒𝑗𝜔 in frequency by 𝜋.

Thus, if the passband of the ideal low-pass filter is |𝜔| ≤ |𝜔𝑐|, then the passband of 

the frequency-responsive filter 𝐺 𝑒𝑗𝜔 will be 𝜋 − 𝜔𝑐 < |𝜔| ≤ 𝜋.

Therefore, the impulse response filter 𝑔(𝑛)is an ideal high-pass filter.
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Specifications of Real Digital Filters

By accepting deviations from the ideal response, we make real filters.

For example to design a real low-pass filter  we set:

• 1 − 𝛿𝑝 < 𝐻 𝑒−𝑗𝜔 ≤ 1 + 𝛿𝑝 0 ≤ 𝜔 < 𝜔𝑝(transit zone)

• 𝐻 𝑒−𝑗𝜔 ≤ 𝛿𝑠 𝜔𝑠 ≤ 𝜔 < 𝜋(cutoff zone)

Absolute specifications:

• 𝝎𝒑: cutoff frequency 

in the passband

• 𝝎𝒔: cutoff frequency 
in the stopband

• 𝜹𝒑:deviation in the passband

• 𝜹𝒔: deviation in stopband

• [𝝎𝒑, 𝝎𝒔]: transition band
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Specifications of Real Digital Filters

Related specifications:

• 𝑹𝒑: passband ripple

𝑅𝑝 = −20log10

1 − 𝛿𝑝

1 + 𝛿𝑝
(𝑑𝐵)

• 𝑨𝒔: stopband attenuation

𝐴𝑠 = −20log10

𝛿𝑠

1 + 𝛿𝑝
(𝑑𝐵)

• N: filter order, is the 
maximum number 
of coefficients of ℎ[𝑛]
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Finite Impulse Response Filters

Finite Impulse Response 
(FIR) Filters

16



Description of FIR filters in the time domain

• They are described in the time domain by the impulse response:

ℎ 𝑛 = ෍

𝑚=0

𝛭−1

𝑏 𝑚 𝛿 𝑛 − 𝑚

• And from LDECC:

𝑦 𝑛 = ෍

𝑚=0

𝛭−1

𝑏 𝑚 𝑥 𝑛 − 𝑚 = ෍

𝑚=0

𝛭−1

ℎ 𝑚 𝑥 𝑛 − 𝑚

• The order of the filter is equal to the length 𝜧 of the impulse response.

• The number of input samples that must be stored to compute an output 
sample determines the order of the filter.

• For each output sample are required 𝜧 multiplications and 𝜧 + 𝟏 additions.
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FIR filter as a “Delay Line"

• We consider an FIR filter as a delay line, in which the samples of the input signal are 
shifted 𝑥[𝑛] and by the coefficients ℎ[𝑛]multiplied by delays 𝑥[𝑛 − 𝑚].

• The results of the multiplications are added to give the final output of the filter 𝑦[𝑛].

• E.g 10th order filter will store ten incoming samples that precede the current sample. 
All eleven samples will affect the output sample of the FIR filter.
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Description of FIR filters in the Frequency Domain

• Transfer function:

𝐻 𝑧 = ෍

𝑚=0

𝑀−1

𝑏𝑚 𝑧−𝑚

• Frequency response:

𝐻 𝑒𝑗𝜔 = ෍

𝑚=0

𝑀−1

ℎ 𝑚 𝑒−𝑗𝜔𝑚

• Advantages of FIR filters:

– Always stable, even after trimming decimal places of their coefficients.

– Always linear phase.

– Simple in design, they are implemented with simple calculations.

– They find many practical applications

• Disadvantages of FIR filters:

– They are implemented with more calculations, so they need more computing 
resources.

– Some responses cannot be implemented with FIR filters.
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Types of FIR Linear Phase Filters

Type 1: order 𝛮 is odd and ℎ[𝑛] symmetric with 
respect to the point (𝑁 − 1)/2.

Type 3: The order N is odd, and ℎ[𝑛] is 
antisymmetric with respect to the point                  
(𝑁−1)/2.

Type 2: order 𝛮 is even and ℎ[𝑛]symmetric with 
respect to a central point that does not coincide 
with some value of ℎ[𝑛].

Type 4: order 𝛮 is  even and ℎ[𝑛]antisymmetric 
with respect to a central point that does not 
coincide with some value of ℎ[𝑛].
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Frequency Responses of FIR Filters

Type 1: order 𝛮 odd and n ℎ[𝑛]is symmetric about the point (𝑁 − 1)/2:

𝐻(𝑒𝑗𝜔) = 𝑒−𝑗𝛮𝜔/2 ෍

𝑘=1

(𝑁+1)/2

𝑐[𝑘] cos(𝜔(𝑘 − 1/2))

𝑐 𝑘 = 2ℎ
𝑁 + 1

2
− 𝑘 , 𝑘 = 1,2, … ,

𝑁 + 1

2

Type 2: order 𝛮 even and n ℎ[𝑛] is symmetric with respect to a central point that 
does not coincide with some value of ℎ[𝑛]:

𝐻(𝑒𝑗𝜔) = 𝑒−𝑗𝛮𝜔/2 ෍

𝑘=0

𝑁/2

𝑐[𝑘] cos(𝜔𝑘)

𝑐 𝑘 = 2ℎ 𝑁/2 − 𝑘 , 𝑘 = 1,2, … , 𝑁/2

𝑐[0] = ℎ 𝑁/2
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Frequency Responses of FIR Filters

Type 3: order 𝛮 odd and ℎ[𝑛] is anti-symmetric with respect to the point (𝑁 − 1)/2:

𝐻(𝑒𝑗𝜔) = 𝑒−𝑗𝛮𝜔/2 ෍

𝑘=1

(𝑁+1)/2

𝑐[𝑘] sin(𝜔(𝑘 − 1/2))

𝑐 𝑘 = 2ℎ
𝑁 + 1

2
− 𝑘 , 𝑘 = 1,2, … ,

𝑁 + 1

2

Type 4: order 𝛮 even and n ℎ[𝑛] is anti-symmetric with respect to a central point 
that does not coincide with some value of ℎ[𝑛]:

𝐻(𝑒𝑗𝜔) = 𝑒−𝑗𝛮𝜔/2 ෍

𝑘=0

𝑁/2

𝑐[𝑘] sin(𝜔𝑘)

𝑐 𝑘 = 2ℎ
𝑁

2
− 𝑘 , 𝑘 = 1,2, … ,

𝑁

2
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FIR Filter Design Methods

• Window method

• Frequency Sampling Method

• Optimal Method (Equiripple Filter)
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Stages of Implementation of Digital Filters

1. Defining 
the filter specifications

2. Calculation 
of the filter coefficients

3. Defining the implementation 
structure

4. Analysis of errors due to 
the finite length 
of coefficients

5. Software or Hardware 
Implementation
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FIR Filter Design Methods

• Planning filter = calculate the coefficients ℎ[𝑛] so that the filter meets the desired 
magnitude and phase specifications.

• FIR filter design methods:

– Windows method - Due to its simplicity and efficiency, it is the most frequently used.

– Frequency sampling method - Easy to understand and use, but produces filters with 
low attenuation in the cutoff band.

– Optimal design method - Gives the best possible frequency response for a certain 
number of coefficients.

• All methods can produce linear phase FIR filters.

• The calculation of the order of  the filter results from an iterative process. If the transition 
band of the designed filter is:

– wider than needed, then the order of the filter is increased.

– narrower than required, then the filter order is reduced to save hardware and/or 
software resources.
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Window method
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FIR Filter design using Window Method

• Let the design of an ideal low-pass (LPF) FIR filter with frequency response be:

𝐻𝑑 𝑒𝑗𝜔 = ൝
𝑒−𝑗𝛼𝜔, 𝜔 < 𝜔𝑐

0, 𝜔𝑐 < 𝜔 ≤ 𝜋

• The impulse response ℎ𝑑[𝑛]of the ideal LPF filter is:

ℎ𝑑 𝑛 = 𝐹−1 𝐻𝑑 𝑒𝑗𝜔 = ⋯ =
sin 𝜔𝑐 𝑛 − 𝑎

𝜋(𝑛 − 𝑎)

• We limit the generally infinite length response ℎ𝑑[𝑛] with a window𝑤 𝑛 :

ℎ[𝑛] = ℎ𝑑[𝑛] 𝑤[𝑛]

• The window must be symmetrical (i.e. 𝑤[𝑛] = 𝑤[𝑁 − 𝑛]), to have linear phase.

• We shift in time the ℎ[𝑛] vs 𝑛0 = (𝑁 − 1)/2 samples, so that the filter becomes causal.

• The frequency response of the filter is:

𝐻 𝑒𝑗𝜔 =
1

2𝜋
𝐻𝑑 𝑒𝑗𝜔 ∗ 𝑊 𝑒𝑗𝜔 =

1

2π
න

−𝜋

𝜋

𝐻𝑑 𝑒𝑗𝜃 𝑊 𝑒𝑗(𝜔−𝜃) 𝑑𝜃
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Commonly used Window functions

• Rectangle:

𝑤 𝑛 = ቊ
1 0 ≤ 𝑛 < 𝑁
0 αλλού

• Hamming:

𝑤[𝑛] = ቐ
0.54 − 0.46 cos

2𝜋𝑛

𝑁
, 0 ≤ 𝑛 < 𝑁

0 αλλού

• Hannah:

𝑤[𝑛] = ቐ
0.5 − 0.5 cos

2𝜋𝑛

𝑁
, 0 ≤ 𝑛 < 𝑁

0 αλλού

• Blackman:

𝑤[𝑛] = ቐ
0.42 − 0.5 cos

2𝜋𝑛

𝑁
+ 0.08 cos

4𝜋𝑛

𝑁
, 0 ≤ 𝑛 < 𝑁

0 αλλού
28



• The width (D) of its main lobe 𝑊 𝑒𝑗𝜔 determines the width of the transition 

band (filter selectivity, selectivity) in the frequency response 𝐻𝑑 𝑒𝑗𝜔 .

• The apical width (A) of the lateral lobe her 𝑊 𝑒𝑗𝜔 determines the ripple in the 

frequency response 𝐻𝑑 𝑒𝑗𝜔 .

An ideal window is one that ensures:

• Narrow as possible.
Width of side lobes as 
limited as possible.

DTFT of standard window function

Effects of windowing on filter characteristics
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Frequency response of commonly used 
window functions

30

Windowed frequency response: (a) in linear, (b) in semi-logarithmic scale



Window type
Normalized main lobe 

range Δ (N=20)
Transition 

Zone (N=20)

Minimal window 
clipping zone 

fading

Minimal filter 
cutoff band 
attenuation

Rectangle 0.1p 0.041p 13 dB 21dB

Bartlett 0.2p 0.11p 26dB 26dB

Hanning _ 0.21p 0.12p 31dB _ 44dB

Hamming 0.23p 0.14p 41dB _ 53dB

Blackman 0.32p 0.2p 58dB _ 75dB _

Comparison of windows’ features
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• Rectangular window: very low attenuation in the cutoff band (13 dB). Not preferred 
for FIR filter design.

• Likewise the triangular one. However, when high attenuations are not required it 
can be used because it provides an easy way to calculate its coefficients.

• Hanning: has stronger attenuation than triangular, while for the same attenuation 
requirements it has a narrower transition region, which is considered its advantage.

• Hamming: ensures minimum attenuation in the cutoff band of  53 dB, which is 
sufficient for most applications. The transition zone is somewhat larger than 
Hanning 's. Very popular.

• Blackman: along with Kaiser and Hamming windows are the most popular 
windows. The high attenuation of the designed filter (~75 dB), makes this window 
suitable for almost all applications.

• In all cases increasing the order of the filter reduces the width of the transition band,
but does not affect the attenuation in the cutoff band.

Comparison of windows’ features
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Frequency Sampling Method
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• The desired frequency response 𝐻𝑑 𝑒𝑗𝜔 of the ideal filter is subject to sampling at 

evenly spaced frequencies in the frequency range [0, 2𝜋], that is:

𝜔𝑘 =
2𝜋

𝑁
𝑘, 𝑘 = 0,1, … , 𝑁 − 1

and the sequence is produced 𝐻[𝑘]:

𝐻[𝑘] = 𝐻𝑑(𝑒𝑗2𝜋𝑘/𝑁), 𝑘 = 0,1, … , 𝑁 − 1

• The sequence 𝐻[𝑘] constitutes an N-point DFT transform, from which the impulse 
response of the approximation filter can be derived.

• The frequency response 𝐻 𝑒𝑗𝜔 of the approximation filter is obtained by interpolating 

its samples 𝐻 𝑘 and is:

𝐻 𝑒𝑗𝜔 =
1 − 𝑒−𝑗𝜔𝑁

𝑁
෍

𝑘=0

𝑁−1
𝐻 𝑘

1 − 𝑒−𝑗𝜔𝑒𝑗2𝜋𝑘/𝑁

• The transfer function of the filter is:

𝐻 𝑧 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 𝑧−𝑛 =
1 − 𝑧−𝑁

𝑁
෍

𝑘=0

𝑁−1
𝐻 𝑘

1 − 𝑧−1𝑒𝑗2𝜋𝑘/𝑁

Frequency Sampling Method
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• If it is desired that the filter has a linear phase, then the sequence 𝐻[𝑘] must have 
conjugate symmetry:

o N: odd: 𝐻 𝑘 = 𝐻∗ 𝑁 − 𝑘 , 𝑘 = 1,2, … ,
𝑁−1

2

o N: even: 𝐻 𝑘 = 𝐻∗ 𝑁 − 𝑘 , 𝐻
𝑁

2
= 0, 𝑘 = 1,2, … ,

𝑁

2
− 1

• The approximate impulse response ℎ[𝑛] of the order 𝛮 − 1 FIR filter is obtained by 
inverse Fourier transform:

ℎ[𝑛] =
1

𝑁
෍

𝑘=0

𝑁−1

𝐻 𝑘 𝑒𝑗2𝜋𝑛𝑘/𝑁 , 0 ≤ 𝑛 < 𝑁 − 1

• The impulse response ℎ[𝑛] for N even, (for 𝑛 = 0,1, … , 𝑁 − 1) is:

ℎ 𝑛 =
𝐻 0

𝑁
+

1

𝑁
෍

𝑘=0

𝑁/2−1

2 −1 𝑘𝐻 𝑘 cos
𝜋𝑘(1 + 2𝑛)

𝑁

• For N odd we replace the upper bound of the sum with (𝑁 − 1)/2.

• The approximate impulse response ℎ[𝑛] is related to the ideal impulse response ℎ𝑑[𝑛]:

ℎ[𝑛] = ෍

𝑘=−∞

∞

ℎ𝑑[𝑛 + 𝑘𝑁] , 0 ≤ 𝑛 < 𝑁 − 1

Frequency Sampling Method
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• The above process has the following results:

– At the frequencies for which the samples are taken 𝐻𝑑 𝑒𝑗𝜔 , the difference 

between 𝐻𝑑 𝑒𝑗𝜔 and 𝐻 𝑒𝑗𝜔 is zero, so at the specific frequencies the 

approximation error of the method is zero.

– At the remaining frequencies, the approximation error depends on its 𝐻𝑑 𝑒𝑗𝜔

shape and becomes larger when it 𝐻𝑑 𝑒𝑗𝜔 has strong changes.

– The approximation error is largest at the boundaries between the pass and 
cutoff bands of the filter.

• The frequency sampling method does not have an inherent mechanism to control the 
error in the frequencies interpolated between the samples.

• Control of the error can be achieved by adding one or more samples to the 
transition regions and applying an iterative algorithm that maximizes attenuation 
in the cutoff band or minimizes ripple in the passband.

Frequency Sampling Method
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To design a low pass filter (LPF) with linear phase, cutoff frequency 
𝜔𝑐 = 0.4𝜋 and length 𝛮 = 10 coefficients.

Answer: We divide the frequency domain [0, 2π] into N=10 equal-sized parts based on the 
relation 𝜔𝑘 = (2𝜋/10)𝑘 = 0.2𝜋𝑘, 𝑘 = 0,1, … , 9.

The impulse response ℎ[𝑛] of the approximation filter for 0 ≤ 𝑛 < 9 is:

ℎ 𝑛 =
1

𝑁
෍

𝑘=0

𝑁−1

𝐻 𝑘 𝑒𝑗2𝜋𝑛𝑘/𝑁 =
1

10
෍

𝑘=0

9

𝐻 𝑘 𝑒𝑗2𝜋𝑛𝑘/10

=
1

10
1𝑒0 + 1𝑒𝑗2𝜋𝑛/10 + 1𝑒𝑗4𝜋𝑛/10 + 1𝑒𝑗16𝜋𝑛/10 + 1𝑒𝑗18𝜋𝑛/10

Example 2
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𝑘 = 0, 𝜔0 = 0, 𝛨 0 = 1
𝑘 = 1, 𝜔1 = 0.2𝜋, 𝛨 1 = 1
𝑘 = 2, 𝜔2 = 0.4𝜋, 𝛨 2 = 1
𝑘 = 3, 𝜔3 = 0.6𝜋, 𝛨 3 = 0
𝑘 = 4, 𝜔4 = 0.8𝜋, 𝛨 4 = 0

𝑘 = 5, 𝜔5 = 𝜋, 𝛨 5 = 0
𝑘 = 6, 𝜔6 = 1.2𝜋, 𝛨 6 = 0
𝑘 = 7, 𝜔7 = 1.4𝜋, 𝛨 7 = 0
𝑘 = 8, 𝜔8 = 1.6𝜋, 𝛨 8 = 1
𝑘 = 9, 𝜔9 = 1.8𝜋, 𝛨 9 = 1



• Matlab code we obtain the sampled frequency response and the impulse 
response of the approximation filter:

(a) Sampled frequency response (interval [0.2π]) 
(b) Impulse response of approximating filter

Example 2 (continued)
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Matlab code we get 
the frequency response of the 
FIR approximation filter 

• We find the design performs poorly, as significant ripple occurs in the passband while the 
attenuation in the cutoff is only ~ 10dB.

• We improve the performance of the method by increasing the order of the filter. However, 
even for large values of the order there still remains a ripple in the passband and a small 
attenuation in the cutoff band.

• An improvement of the method is based on the addition of samples in the transition 
zone.

Example 2 (continued)
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Optimal Design Method 
(Equiripple Method)
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Optimal Design Method (Equiripple)

• Windowing and frequency sampling methods do not produce optimal filters 
because:

o They do not offer passband and cutoff ripple control.

o They introduce ambiguity in determining the cutoff frequencies of the pass 
and cutoff bands.

o They exhibit an inability to uniformly distribute the error between the ideal 
and the approximate frequency response in all frequency bands.

• To control the ripple, the filter specification is overestimated, however the ripple 
is still uneven in the pass and cutoff bands.

• The requirement for stable and controlled ripple in the pass and cutoff bands leads 
to the definition of the equiripple filter.

• The Equiripple filter is considered the optimal FIR filter because it achieves the 
best possible frequency response specification with the smallest number of 
coefficients.
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Optimal Design Method (Equiripple)

• The frequency response of a linear phase FIR filter is written:

𝐻 𝑒𝑗𝜔 = 𝐴 𝑒𝑗𝜔 𝑒−𝑗𝛼𝜔

• If the filter is type 1, the amplitude response is written as a Chebyshev polynomial of 
cos𝜔order 𝐿:

𝐴 𝑒𝑗𝜔 = ෍
𝑘=0

𝐿

𝛼 𝑘 cos(𝑘𝜔) = ෍
𝑘=0

𝐿

𝛼 𝑘 cos𝜔 𝑘

• Although 𝛢𝑑 𝑒𝑗𝜔 are 𝛢 𝑒𝑗𝜔 the amplitude responses of the ideal and approximation 

filters, we define the error between them:

𝐸 𝑒𝑗𝜔 = 𝑊 𝑒𝑗𝜔 𝐴𝑑 𝑒𝑗𝜔 − 𝐴 𝑒𝑗𝜔

• 𝑊 𝑒𝑗𝜔 is a positive weighting function, which we can define appropriately to control the 

ripple in either the passband or the cutoff band.

• Parks–McClellan algorithm: selection of appropriate 𝑎(𝑘) filter coefficients to minimize the 

maximum absolute value of the error 𝐸 𝑒𝑗𝜔 along a set of frequencies (peaks) in the 

passband and cutoff band, but not in the transition band (indifference region).

• Mathematical formulation:

min
𝛼[𝑘]

max
𝜔∈𝑆

𝐸 𝑒𝑗𝜔 όπου𝑆 ≜ 0, 𝜔𝑝 ∪ [𝜔𝑠, 𝜋]
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1. We choose an initial set of 𝐿 + 2 extreme frequencies (extrema).

2. We calculate the maximum weighted error (𝜀)by solving the system:

3. We estimate the error function 𝐸 𝑒𝑗𝜔 over the entire set of frequencies 𝑆,by Lagrange 

interpolation at the extreme frequencies.

4. We find the 𝐿 + 2 local maxima of the function 𝐸 𝑒𝑗𝜔 for the whole set 𝑆and then 

calculate the maximum weighted errormax
𝜔∈𝑆

𝐸 𝑒𝑗𝜔 .

5. If the commutation theorem is satisfied, that is, max
𝜔∈𝑆

𝐸 𝑒𝑗𝜔 < 𝜀, then the solution is 

completed and from the current set of infinite frequencies we find the coefficients ℎ[𝑛]

of the inverse filter DTFT in the function 𝐻 𝑒𝑗𝜔 .

6. If the commutation theorem is not satisfied, that is max
𝜔∈𝑆

𝐸 𝑒𝑗𝜔 > 𝜀, then we add new 

frequencies to the points where the function 𝐸 𝑒𝑗𝜔 has local maxima and repeat the 

process from step 2.

Parks–McClellan Algorithm
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Perfect Design Method (Equiripple)

• The algorithm keeps constant the quantities 𝛮, 𝜔𝑝 and 𝜔𝑠 in order to control the limits 

of the zones and allows the change of 𝛿𝑝 and 𝛿𝑠.

• The designer can know in advance the number of factors required.

Park - McClellan optimization algorithm:

• We assume that the frequency extremes (extrema) are evenly spaced 
in the pass and cutoff bands.

• We perform polynomial interpolation 
and redefine the positions 
of the local extremities.

• We move the extremities to new 
positions and repeat until 
the extremities stop 
moving.
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Specify Filter Order

• Determining the appropriate order 𝛮of the FIR filter is the initial step in 

designing the filter.

• Various empirical formulas have been proposed for linear phase FIR filters. 

The simplest is the Kaiser formula:

𝑁 =
−20 log10 𝛿𝑝𝛿𝑠 − 13

2.285 𝜔𝑠 − 𝜔𝑝

− 1

• Other approximate types of order calculation are reported in the literature.

• At the start of the Parks - McClellan algorithm, an initial value is given to the 

filter order, which may then change as the order is inversely connected 

according to the maximum weighted error.
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Study of Window Sequences

• Rectangular window

• Triangular window (Bartlett)

• Hanning window

• Hamming window

• Blackman window

• Kaiser window
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“Windowing” process

• In this section it will be investigated whether the use of a window to slice the 
signal into individual segments affects the spectral content of the signal.

• Windowing: 𝑥𝑤 𝑛 = 𝑥 𝑛 𝑤 𝑛 , where 𝑥[𝑛]discrete-time signal, 𝑤[𝑛] window 
and 𝑥𝑤[𝑛] the "windowed" part of the signal.

• The DTFT of the signal 𝑥𝑤[𝑛] is: 𝑋𝑤(𝑒𝑗𝜔) =
1

2𝜋
𝜋−׬

𝜋
𝑋 𝑒𝑗𝜃 𝑊 𝑒𝑗 𝜔−𝜃 𝑑𝜃, 

where 𝑋𝑤 𝑒𝑗𝜃 and 𝑊 𝑒𝑗𝜃 are the DTFTs of the signals 𝑥𝑤[𝑛]and 𝑤[𝑛], 

respectively.

• Spread Spectral: "Windoing" causes the spectrum of the original signal to be 
broadened by the effective spectral bandwidth of the window sequence.

• The longer the length of the window sequence, the smaller its effective 
bandwidth and therefore the smaller the spectral spread.

• So to reduce the spectral dispersion it is necessary to increase the length of the 
window sequence.
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Rectangular Window

• Rectangular window (rectangular, boxcar) of 𝑁point length

𝑤[𝑛] = ቊ
1, 𝑛 = 0,1,2, … , 𝑁 − 1
0, αλλού

• DTFT:

𝑊 𝑒𝑗𝜔 = 𝑒−𝑗𝜔 𝛮−1 /2
sin 𝜔𝛮/2

sin(𝜔/2)

• Amplitude Response:

𝑊𝑟 𝜔 =
sin 𝜔𝛮/2

sin(𝜔/2)

Rectangular window and width spectrum (gain, dB) (𝑁 = 64)
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Rectangular Window

• The magnitude response 𝑊𝑟 𝜔 has a central lobe and many lateral ones, due to the term 
sin 𝜔𝛮/2 / sin(𝜔/2).

• Center Lobe Frequency Bandwidth = 4𝜋/𝛮- Width =𝛮.

• The width of the first lateral lobe is ~2𝑁/3𝜋(less 13,3 𝑑𝐵 than the width of the main 
lobe). The remaining sidelobes decay at a rate proportional to 1/𝜔(6 dB /octave).

• The side lobes cause ripples in the spectrum of the window, i.e. energy leakage from the 
central to the side lobes. This causes frequencies that were not present in the original 
signal to appear (distortion).

• Leakage depends on the width ratio between the center and side lobes. The higher this 
ratio, the lower the energy leakage.

• In order to reduce the energy leakage it is necessary to increase the degree of attenuation 
of the width of the sidelobes. This requirement, however, is in conflict with the 
requirement to reduce spectral dispersion.

• As the window duration tends to infinity, the width of the sidelobes tends to zero and the 
window spectrum tends to the shock function 𝛿 𝜔 . Therefore, there is no spectral effect 
on the signal (ideal window). But this window is of no practical use, as it does not slice 
the signal into segments.
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Triangular Window

• Triangular window:

𝑤[𝑛] = 1 −
2 𝑛 −

𝑁 − 1
2

𝑁 − 1
, 0 ≤ 𝑛 ≤ 𝑁 − 1

• The difference between the width of the center and the first sidelobe 
is -26.5 dB, the bandwidth of the center lobe is -26.5 dB, the bandwidth 
of the center lobe is 8𝜋/𝛮and the attenuation rate of the sidelobes 
is 12 dB.

Triangular window and amplitude spectrum (𝑁 = 64)
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Hanning Window

• Hanning window:

𝑤[𝑛] =
1

2
1 − cos

2𝜋𝑛

𝛮 − 1
, 0 ≤ 𝑛 ≤ 𝑁 − 1

• The difference between the width of the center and the first sidelobe is 
-31.5 dB, the bandwidth of the center lobe is 8𝜋/𝛮and the attenuation rate 
of the sidelobes is 18 dB /octave.

Hanning window and amplitude spectrum (𝑁 = 64)
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Hamming Window

• Hamming window:

𝑤[𝑛] = 0.54 − 0.46 cos
2𝜋𝑛

𝛮 − 1
, 0 ≤ 𝑛 ≤ 𝑁 − 1

• The difference between the width of the center and the first sidelobe is 
- 42.7 dB, the bandwidth of the center lobe is 8𝜋/𝛮and the attenuation rate 
of the sidelobes is 6 dB /octave.

Hamming window and amplitude spectrum (𝑁 = 64)
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Blackman Window

• Blackman window:

𝑤 𝑛 = 0.42 − 0.5 cos
2𝜋𝑛

𝛮 − 1
+ 0.08 cos

4𝜋𝑛

𝛮 − 1
, 0 ≤ 𝑛 ≤ 𝑁 − 1

• The difference between the width of the central and the first lateral lobe is 
- 58.1 dB, the bandwidth of the center lobe is 12𝜋/𝛮and the attenuation rate 
of the side lobes is 18 dB /octave.

Blackman window and amplitude spectrum (𝑁 = 64)
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Kaiser Window

• Kaiser window:

𝑤[𝑛] =
𝐼0 𝛽 1 − 1 −

2𝑁
𝑁 − 1

2

𝐼𝑜(𝛽)
, 0 ≤ 𝑛 ≤ 𝑁 − 1

• 𝐼0(𝛽) modified Bessel function of zero order

• 𝛽 parameter that depends on 𝛮and is chosen to achieve various transition band widths 
and near-optimal attenuation in the cutoff band.

• For the 𝛽 = 0 Kaiser window it turns into a rectangular window.

• The difference between the width of the central and the first side lobe: 25 dB,

Kaiser window and amplitude spectrum (𝑁 = 64)
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Summary of Windows’ Features
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Window 

sequence

Main lobe 

range

Sidelobe Attenuation 

Rate (dB)

Maximum Sidelobe 

Magnitude (dB)

Rectangle 4𝜋/𝛮 -6 -13.3

Bartlett 8𝜋/𝛮 -12 -26.5

Hanning 8𝜋/𝛮 -18 -31.5

Hamming 8𝜋/𝛮 -6 -42.7

Blackman 12𝜋/𝛮 -18 -58.1


