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Lecture Content

• Discrete Fourier Transform (DFT)

o DFT of Periodic Signals

o DFT of Aperiodic Signals

o Phase/Twiddle Factors

o Magnitude and Phase Spectra

• Relationship of DFT with other Transforms

o With the DTFT transform

o With the Z-transform

• DFT Calculation using Linear Algebra

• Circular Sequence Expansion – Circular Convolution
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Lecture Content

• DFT

o Linearity

o Circular Folding in Time

o Cyclic Shift in Time

o Conjugation

o DFT Symmetry for Real Sequences

o Symmetry of DFT for Complex Sequences

o Cyclic Shift in Frequency

o Circular Convolution

o Sequence Multiplication

o Parseval's theorem
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Lecture Content

• Relationship between Circular and Linear Convolution

o Calculation of Circular Convolution using DFT

• Computation of Convolution by Blocks

o Overlap-Save Method

o Overlap-Add Method

• Fast Fourier Transform

o Computational Cost of DFT

o Strategy for Constructing Efficient DFT Computing Algorithms

o FFT Algorithm Decimation in Time

o FFT Algorithm Decimation in Frequency
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Discrete Fourier Series (DFS)
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Discrete Fourier Series (DFS)

A periodic sequence 𝑥[𝑛] with period 𝛮 and fundamental cyclic frequency 
𝜔0 = 2𝜋/𝛮, resolves into a sum of 𝛮 harmonically correlated complex exponential 
terms:

𝑥 𝑛 = ෍

𝑘=0

𝛮−1

𝑋 𝑘 𝑒 𝑗2𝜋𝑛𝑘/𝛮 , 0 ≤ 𝑛 ≤ 𝑁 − 1

where the coefficients of the discrete Fourier series 𝑋 𝑘 are calculated by:

𝑋 𝑘 =
1

𝑁
෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−𝑗2𝜋𝑛𝑘/𝛮 , 0 ≤ 𝑘 ≤ 𝑁 − 1

The coefficients 𝑋 𝑘 correspond to harmonic frequencies 𝑘𝜔0𝑛, 0 ≤ 𝑘 ≤ 𝑁 − 1. 
In the intermediate frequency values the signal ෤𝑥 𝑛 has no spectral content.

The exponential Fourier series in its discrete form is inherently periodic with 
period 𝛮, because of the term𝑒−𝑗2𝜋/𝛮 .
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Discrete Fourier Transform (DFT)

• DFT of Periodic Signals
• DFT of Aperiodic Signals
• Phase / Twiddle Factors
• Magnitude and Phase Spectra

7



DFT of Periodic Signals

Direct DFT (analysis equation):

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥[𝑛] 𝑒−𝑗2𝜋𝑛𝑘/𝑁 , 0 ≤ 𝑘 ≤ 𝑁 − 1

The coefficients 𝑋 𝑘 correspond to the harmonic frequencies 2𝜋𝑛𝑘/𝑁, όπου

0 ≤ 𝑘 ≤ 𝑁 − 1. In the intermediate frequency values the spectral content of the 

signal 𝑥[𝑛] is zero.

Inverse DFT (composition equation):

𝑥 𝑛 =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋[𝑘] 𝑒−𝑗2𝜋𝑛𝑘/𝑁 , 0 ≤ 𝑛 ≤ 𝑁 − 1

If we calculate its value 𝑥 𝑛 for 𝑛 ≥ 𝑁 then we will get a periodic expansion ෤𝑥 𝑛

of it 𝑥 𝑛 and not zero values, as one might expect.
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DFT of Aperiodic Signals

If 𝑥[𝑛] it is an aperiodic signal, we can calculate its DFT by sampling 𝐿 points in the 

DTFT 𝑋 𝑒𝑗𝜔 , i.e. at frequencies 𝜔𝑘 = 2𝜋𝑘/𝐿, 0 ≤ 𝑘 ≤ 𝐿 − 1.

But sampling in the time domain creates periodicity in the frequency domain and 

vice versa. Therefore, pointwise 𝐿 sampling of the DTFT 𝑋 𝑒𝑗𝜔 will produce 

periodicity in time, i.e. when calculating the inverse DFT the periodic signal will be 
produced:

෤𝑥[𝑛] = ෍

𝑘=−∞

∞

𝑥 𝑛 + 𝑘𝐿

If the aperiodic signal 𝑥[𝑛] is of finite length 𝛮and zeros outside the interval 
[0, 𝛮 − 1], then the periodic extension ෤𝑥[𝑛] of the signal 𝑥[𝑛] is:

෤𝑥 𝑛 = 𝑥[𝑛 mod 𝑁] = 𝑥 𝑛
𝑁

The operation 𝑥[𝑛 mod 𝑁] shifts the values of the sequence in the interval from 0
to 𝑁 − 1.
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DFT of Aperiodic Signals

We distinguish the following cases depending on the values of the parameters 𝐿
and 𝑁:

• If 𝐿 = 𝑁 then the first period of the periodic expansion ෤𝑥 𝑛 exactly coincides 
with the signal 𝑥[𝑛].

• If 𝐿 ≥ 𝑁 then the first period of the periodic expansion ෤𝑥 𝑛 is identical to the 
signal 𝑥[𝑛] by adding 𝐿 − 𝑁 zeros to its end.

• If 𝐿 < 𝑁 then the first period of the periodic expansion ෤𝑥 𝑛 is not identical to 
the signal 𝑥[𝑛], as time-shifted versions of the signal are added and create the 
effect of folding in time (time - aliasing), as shown in the figure on the next 
slide.

The first two cases are acceptable, while the third is not.

To avoid time folding, the length 𝐿 of the DFT must be greater than or equal to the 
duration 𝛮of the aperiodic signal (𝐿 ≥ 𝑁).

In this case the DFT of the periodic expansion ෤𝑥 𝑛 is:

෨𝑋 𝑘 = ෍

𝑛=0

𝛮−1

෤𝑥 𝑛 𝑒− 𝑗2𝜋𝑛𝑘/𝐿, 0 ≤ 𝑘 ≤ 𝐿 − 1
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DFT of Aperiodic Signals

(a)

(b)

(c)

(a) Aperiodic signal 𝑥[𝑛], (b) Its periodic expansion ෤𝑥[𝑛]for 𝐿 ≥ 𝑁, 
(c) For periodic expansion for 𝐿 < 𝑁 appears convolution 

in the time domain.
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DFT of Aperiodic Signals

The DFT of the aperiodic signal 𝑥 𝑛 is:

𝑋 𝑘 = ቚ𝑋 𝑒𝑗𝜔

𝜔=2𝜋𝑘/𝐿
= ෍

𝑛=0

𝐿−1

𝑥 𝑛 𝑒− 𝑗2𝜋𝑛𝑘/𝐿, 0 ≤ 𝑘 ≤ 𝐿 − 1

The inverse DFT is the exponential Fourier series of ෤𝑥 𝑛 , that is:

𝑥 𝑛 =
1

𝐿
෍

𝑘=0

𝐿−1

𝑋 𝑘 𝑒 𝑗2𝜋𝑛𝑘/𝐿 , 0 ≤ 𝑛 ≤ 𝐿 − 1

where 𝑋 𝑘 = ห𝑋 𝑒𝑗𝜔
𝜔=2𝜋𝑘/𝐿

, that is, the 𝐿 samples of DTFT.

In practice we do not need to create a periodic extension of the aperiodic signal, 
but it is enough to add a number of zeros (zero padding) at the end of it to satisfy 
the condition 𝐿 ≥ 𝑁.
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Definition of DFT

In both cases of signals (periodic, aperiodic) the term 𝑒−𝑗2𝜋/𝑁 makes the sequence 
periodic 𝑋 𝑘 of the DFT coefficients, with a period equal to the number 𝛮of samples of 
the sequence 𝑥[𝑛].

Its samples 𝑋 𝑘 start from 𝑘 = 0, which corresponds to the frequency 𝜔 = 0, and reach 
up to 𝑘 = 𝑁 − 1. They do not include 𝑘 = 𝑁, which corresponds to frequency 𝜔 = 2𝜋 and 
is included in the next period.

Putting the term 𝑊𝑁 = 𝑒−
𝑗2𝜋

𝑁 , we get the definitions:

• Direct DFT

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥[𝑛] 𝑊𝑁
𝑛𝑘 , 0 ≤ 𝑘 ≤ 𝑁 − 1

• Inverse DFT 

𝑥 𝑛 =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑊𝑁
−𝑛𝑘 , 0 ≤ 𝑛 ≤ 𝑁 − 1

The complex terms 𝑊𝑁 = 𝑒−
𝑗2𝜋

𝑁 are called phase factors or twiddle factors.
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Phase / Twiddle Factors

• The phase/twiddle factors 𝑊𝑁
𝑘 are given by the equation:

𝑊𝑁 = 𝑒−
𝑗2𝜋

𝑁 = cos
2𝜋

𝛮
− 𝑗 sin

2𝜋

𝛮

• They are the N-th complex root of unity, as they have unit Magnitude and 
simply different phase.

• They are rendered as vectors on the unit circle in the complex plane.

• Phase / Twiddle factors for N=4:

14

𝑊4
0 = 1

𝑊4
1 = −𝑗

𝑊4
2 = −1

𝑊4
3 = 𝑗

𝑊4
4 = 𝑊4

0 = 1

𝑊4
5 = 𝑊4

1 = −𝑗

𝑊4
6 = 𝑊4

2 = −1

𝑊4
7 = 𝑊4

3 = 𝑗

𝑊4
8 = 𝑊4

0 = 1

𝑊4
9 = 𝑊4

1 = −𝑗

𝑊4
10 = 𝑊4

2 = −1

𝑊4
11 = 𝑊4

3 = 𝑗



Properties of Phase / Twiddle Factors

4-point DFT 
phase/twiddle factors
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Properties of Phase / Twiddle Factors

• 𝑊𝛮
𝑘+𝑁 = 𝑊𝛮

𝑘(periodicity)

• 𝑊𝛮

𝑘+
𝑁

2 = −𝑊𝛮
𝑘(symmetry)

• 𝑊𝛮
2 = 𝑊𝛮/2

• If 𝛮 is a power of 2, the vectors 
appear in pairs of conjugate complex numbers.

The implementation of the properties in the DFT calculation leads to a significant 
reduction in the number of operations to calculate the phase factors and thus 
dramatically reduces the cost of the DFT calculation.



Magnitude, Phase and Power Spectra

• Magnitude Spectrum:

𝑋[𝑘] = 𝑋𝑅
2[𝑘] + 𝑋𝐼

2[𝑘], 0 ≤ 𝑘 ≤ 𝑁 − 1

Even symmetry because: 𝑋 𝑁 − 𝑘 = 𝑋 𝑘

• Phase Spectrum:

𝜑𝑋 𝑘 = 𝑡𝑎𝑛−1
𝑋𝛪 𝑘

𝑋𝑅 𝑘
, 0 ≤ 𝑘 ≤ 𝑁 − 1

Odd symmetry because: ∡𝑋 𝑁 − 𝑘 = −∡𝑋 𝑘

• Power Spectrum:

𝑃 𝑘 =
1

𝑁2 𝑋 𝑘 2 =
1

𝑁2 𝑋𝑅
2[𝑘] + 𝑋𝐼

2 𝑘 , 0 ≤ 𝑘 ≤ 𝑁 − 1
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Example 1

Compute the N-point DFT of the following sequences:

(a) 𝑥[𝑛] = 𝛿[𝑛] (b)𝑥[𝑛] = 𝛿[𝑛 − 𝑛0]

Answer: (a) 𝛿[𝑛] DFT will be calculated from the definition:

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝛿 𝑛 𝑊𝑁
𝑛𝑘 = 𝛿 0 𝑊𝑁

0 = 1, 𝑘 = 0,1, … , 𝑁 − 1

That is, it is 𝑋[𝑘] = [1,1,1, … 1](set N).

(b) Likewise:

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝛿 𝑛 − 𝑛0 𝑊𝑁
𝑛𝑘 = 𝛿 0 𝑊𝑁

𝑛0 = 𝑊𝑁
𝑛0 , 𝑘 = 0,1, … , 𝑁 − 1

That is, it is 𝑋[𝑘] = 1, 𝑊𝑁
𝑛0 , 𝑊𝑁

2𝑛0 , … , 𝑊𝑁
𝛮−1 𝑛0

Comparing the results, we notice that the time shift of 𝛿[𝑛] by 𝑛0 produces a DFT 
of the same magnitude but with a phase shift.
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Example 2

Compute the N-point DFT of 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 𝑛0 of, (0 ≤ 𝑛0 ≤ 𝑁 − 1).

Answer: The DFT of the given pulse is calculated from the definition, as follows:

𝑋[𝑘] = ෍

𝑛=0

𝑛0−1

𝑊𝑁
𝑛𝑘 =

1 − 𝑊𝑁
𝑘𝑛0

1 − 𝑊𝑁
𝑘 , 𝑘 = 0,1, … , 𝑁 − 1

Factoring out the term 𝑊𝑁
Τ𝑘𝑛0 2

in the numerator and the term 𝑊𝑁
Τ𝑘 2 in the 

denominator, the DFT is written:

𝑋 𝑘 =
𝑊𝑁

Τ𝑘𝑛0 2
𝑊𝑁

Τ−𝑘𝑛0 2
− 𝑊𝑁

Τ𝑘𝑛0 2

𝑊𝑁
Τ𝑘 2 𝑊𝑁

Τ−𝑘 2 − 𝑊𝑁
Τ𝑘 2

= 𝑊𝑁
Τ𝑘 𝑛0−1 2

𝑊𝑁
Τ−𝑘𝑛0 2

− 𝑊𝑁
Τ𝑘𝑛0 2

𝑊𝑁
Τ−𝑘 2 − 𝑊𝑁

Τ𝑘 2

Using the Euler equation, we have:

𝑋[𝑘] = 𝑒
−𝑗

2𝜋𝑘
𝑁

𝑛0−1
2

𝑠𝑖𝑛 Τ𝑛0𝜋𝑘 𝑁

𝑠𝑖𝑛 Τ𝜋𝑘 𝑁
, 𝑘 = 0,1, … , 𝑁 − 1
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Example 2 (continued)

(a) Rectangular pulse 

𝑥[𝑛] = 𝑢 𝑛 − 𝑢[𝑛 − 4]

(b) Spectrum of a 16-point DFT
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Relationship of DFT 
with other Transforms

• With the Discrete Time Fourier 
Transform (DTFT)

• With the Z-transform

20



Relationship between DFT and DTFT

• DTFT of aperiodic sequence 𝑥[𝑛] of finite length 𝛮 points:

𝑋 𝑒𝑗𝜔 = ෍

𝑛=0

𝛮−1

𝑥[𝑛] 𝑒−𝑗𝑛𝜔 , 0 ≤ 𝜔 ≤ 2𝜋

• We convert the continuous frequency 𝜔 to a discrete frequency 𝜔𝑘:

𝜔𝑘 =
2𝜋

𝛮
𝑘, 𝑘 = 0,1, … , 𝑁 − 1

• We sample the continuous function 𝑋(𝑒𝑗𝜔) and obtain:

𝑋 𝑘 ≡ 𝑋
2𝜋

𝛮
𝑘 = ቚ𝑋 𝑒𝑗𝜔

𝜔=
2𝜋𝑘

𝑁

= ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−
𝑗2𝜋

𝑁 𝑛𝑘 , 0 ≤ 𝑘 ≤ 𝑁 − 1

• Therefore, the DFT 𝑋 𝑘 results from sampling the DTFT 𝑿 𝒆𝒋𝝎 .

• Indicators: 𝑛– time, 𝑘 – frequency
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Relationship between DFT and DTFT

• The quantity 𝛥𝜔 = 2𝜋/𝛮 is the distance between successive samples of the 
DTFT and is called the density of the DFT in the frequency domain.

• The density improves as the number of 𝛮 DFT coefficients increases.

• Attention: We must not confuse the density of the spectrum with the sharpness 
of the spectrum (see next Example).
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Important notes about DTFT

• If 𝑥[𝑛] it is periodic with a period then the 𝛮, DFT values are the coefficients of 
the exponential Fourier series, which exist only at the harmonic frequencies 
2𝑘𝜋/𝛮.

• If 𝑥[𝑛] is aperiodic, then the number of possible frequencies depends on the 
length 𝐿chosen to calculate the DFT. If 𝐿 ≥ 𝑁 the frequencies we calculate the 
DFT can be considered as frequencies on the unit circle.

• In both signal cases (periodic, aperiodic) it is desirable to have a significant 
number of points on the unit circle in order to adequately describe the 
frequency content of the signal.

• The number of frequencies is related to the frequency resolution of the DFT.
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Important notes about DTFT

• If the signal is aperiodic, we can increase the frequency resolution of the DFT 
by increasing the number of samples of the signal by adding zeros to the end of 
the signal. Adding zeros does not affect the frequency content of the signal, but 
increases the number of spectral coefficients produced by the DFT.

• If the signal is periodic with period 𝛮, then the harmonic frequencies are 
placed in the positions 2𝑘𝜋/𝛮. In this case we cannot add zero points because 
they are not part of the periodic signal, but we can get more periods of the 
signal in the DFT calculation.

• The DFT values correspond to the harmonic frequencies regardless of the 
number of periods we will use. The more periods we include, the higher the 
frequency definition will be.
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Example 3

(a) Compute the 4-point DFT of the pulse 𝑥 𝑛 = 𝑢 𝑛 − 𝑢 𝑛 − 4

Answer: Valid: 𝑥 𝑛 = 𝛿 𝑛 + 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] + 𝛿[𝑛 − 3]. The 4-point DFT is:

𝑋 𝑘 = ෍

𝑛=0

3

𝑥 𝑛 𝑊4
𝑛𝑘 = 𝑊4

0 + 𝑊4
1𝑘 + 𝑊4

2𝑘 + 𝑊4
3𝑘 , 0 ≤ 𝑘 ≤ 3

We calculate the points 𝑋[𝑘]for 0 ≤ 𝑘 ≤ 3. Is:

𝑋 0 = 𝑊4
0 + 𝑊4

0 + 𝑊4
0 + 𝑊4

0 = 1 + 1 + 1 + 1 = 4

𝑋 1 = 𝑊4
0 + 𝑊4

1 + 𝑊4
2 + 𝑊4

3 = 1 − 𝑗 − 1 + 𝑗 = 0

𝑋 2 = 𝑊4
0 + 𝑊4

2 + 𝑊4
4 + 𝑊4

6 = 1 − 1 + 1 − 1 = 0

𝑋 3 = 𝑊4
0 + 𝑊4

3 + 𝑊4
6 + 𝑊4

9 = 1 + 𝑗 − 1 − 𝑗 = 0

Therefore the 4-point DFT is:

𝑋[𝑘] = ቊ
4, 𝑛 = 0
0, 𝑛 = 1,2, …

DTFT is:

𝑋 𝑒𝑗𝜔 = 𝑒−
𝑗3𝜔

2
sin(2𝜔)

sin(𝜔/2)
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Example 3 (continued)

DTFT width spectrum (red color) and 

4-point DFT (blue color) of the pulse

𝑥[𝑛] = 𝑢[𝑛]−𝑢[𝑛−4] in the 

frequency range [0,2𝜋). The phase is zero.

The points of the DFT are obtained by sampling the DTFT, according to the equation:

𝑋 𝑘 = ቚ𝑋 𝑒𝑗𝜔

𝜔=𝜋𝑘/2
, 𝑘 = 0,1,2,3
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Example 3 (continued)

(b) To repeat the solution for 8-point (𝛮 = 8)DFT, after applying the procedure of adding 
zeros (zero padding) to the sequence 𝑥 𝑛 .

Answer: The 8-point 𝑥[𝑛] = 𝑢 𝑛 − 𝑢[𝑛 − 4]DFT of the pulse is:

𝑋 𝑘 = ෍

𝑛=0

7

𝑥 𝑛 𝑊8
𝑛𝑘 , 0 ≤ 𝑘 ≤ 7

We calculate the points 𝑋[𝑘]for 0 ≤ 𝑘 ≤ 7. Is:

• 𝑋 0 = 1𝑊8
0 + 1𝑊8

0 + 1𝑊8
0 + 1𝑊8

0 + 0𝑊8
0 + 0𝑊8

0 + 0𝑊8
0 + 0𝑊8

0 = 4

• 𝑋 1 = 1𝑊8
0 + 1𝑊8

1 + 1𝑊8
2 + 1𝑊8

3 + 0𝑊8
4 + 0𝑊8

5 + 0𝑊8
6 + 0𝑊8

7 = 1 − 2.41𝑗

• 𝑋 2 = 1𝑊8
0 + 1𝑊8

2 + 1𝑊8
4 + 1𝑊8

6 + 0𝑊8
8 + 0𝑊8

10 + 0𝑊8
12 + 0𝑊8

14 = 0

• 𝑋 3 = 1𝑊8
0 + 1𝑊8

3 + 1𝑊8
6 + 1𝑊8

9 + 0𝑊8
12 + 0𝑊8

15 + 0𝑊8
18 + 0𝑊8

21 = 1 − 0.41𝑗

• 𝑋 4 = 1𝑊8
0 + 1𝑊8

4 + 1𝑊8
8 + 1𝑊8

12 + 0𝑊8
16 + 0𝑊8

20 + 0𝑊8
24 + 0𝑊8

28 = 0

• 𝑋 5 = 1𝑊8
0 + 1𝑊8

5 + 1𝑊8
10 + 1𝑊8

15 + 0𝑊8
20 + 0𝑊8

25 + 0𝑊8
30 + 0𝑊8

35 = 1 + 0.41𝑗

• 𝑋 6 = 1𝑊8
0 + 1𝑊8

6 + 1𝑊8
12 + 1𝑊8

18 + 0𝑊8
24 + 0𝑊8

30 + 0𝑊8
36 + 0𝑊8

42 = 0

• 𝑋 7 = 1𝑊8
0 + 1𝑊8

7 + 1𝑊8
14 + 1𝑊8

21 + 0𝑊8
28 + 0𝑊8

35 + 0𝑊8
42 + 0𝑊8

49 = 1 + 2.41𝑗

27



Example 3 (continued)

Spectra of magnitude and phase for DTFT (red color) and 8-point DFT (blue color) 

of the pulse 𝑥[𝑛]=𝑢[𝑛]−𝑢[𝑛−4] in the frequency range [0,2𝜋).  
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Example 3 (continued)

Spectra of magnitude and phase for DTFT (red color) and 32-point DFT (blue color) 
of the pulse 𝑥[𝑛]=𝑢[𝑛]−𝑢[𝑛−4] in the frequency range [0,2𝜋).
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Example 3 (conclusions)

• The magnitude and phase of the DFT have even and odd symmetry, respectively. 
Therefore, we keep only the part [0, 𝜋), i.e. 𝑋 𝑘 , 𝑘 = 0,1, … , (𝑁/2) − 1.

• For a given sequence, the density of DFT samples increases proportionally to the 
number of samples of 𝑥[𝑛]. This is done by the process of adding zeros (zero-
padding):

o We create a periodic extension ෤𝑥[𝑛] of 𝑥[𝑛] length 𝐿 ≥ 𝑁, adding 𝐿 − 𝑁 zeros 
to its end.

o We compute the L-point DFT ෨𝑋 𝑘 of the sequence ෤𝑥[𝑛].

o DFT 𝑋 𝑘 of sequence 𝑥[𝑛] is: 𝑋 𝑘 = ෨𝑋 𝑘 , για 0 ≤ 𝑘 ≤ 𝐿 − 1.

• Adding zeros does not improve the sharpness of the DFT, it simply reduces the 
distance between its successive samples 𝑋 𝑘 .

• The sharpness  of the DTF increases according to the number of samples of the 
signal.

• If the sequence is periodic, then the sharpness of the DFT increases if more than 
one period of the sequence is included in the DFT calculation.
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Example 4

Calculate and design in Matlab the DFT of the signal:

𝑥[𝑛] = 𝑐𝑜𝑠
4𝜋𝑛

9
+ 𝑐𝑜𝑠

5𝜋𝑛

9

for the following cases:

α) DFT with 10 points for 0≤𝑛≤9.

β) DFT with 100 points for 0≤𝑛≤9 and the remaining 90 points being zero.

γ) DFT with 100 points for 0≤𝑛≤99.

Answer: Given the Matlab code of example 10.5 of the book, the following 
diagrams result.
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Example 4 (continued)

(a) Signal of length 10 points and magnitude spectrum of a 10-point DFT. 

(b) Signal of length 10 points with 90 zeros and magnitude spectrum of a 100-
point DFT.

Adding zeros and calculating a longer DFT increased the density of the spectrum, but 
failed to identify the two different frequencies contained in the signal 𝑥[𝑛], as both are 
rendered as one peak.
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Example 4 (continued)

(c) 100-point length signal and 
100-point DFT width spectrum

From diagrams (b) and (c), it can be seen that adding more periods of the signal 
(instead of zeros) and calculating a longer DFT increased the sharpness of the 
spectrum and accurately located the two different frequencies contained in the 
signal 𝑥[𝑛].
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Relationship between DFT and Z-transform 

• DFT coefficients correspond to 𝛮 samples of 𝑋(𝑧), which have been taken at𝛮

equidistant points on the unit circle:

𝑋 𝑘 = ቚ𝑋 𝑧
𝑧=𝑒𝑗2𝜋𝑘/𝑁

• The above is valid under the condition that the unit circle is contained in the 

region of convergence of the Z-transform.
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DFT Calculation 
using Linear Algebra

35



DFT Calculation using Linear Algebra

The straight DFT is calculated from:

𝑿𝑇 = 𝑾𝑵 𝒙𝑇

• 𝒙𝑇 = 𝑥 0 , 𝑥 1 , … , 𝑥 𝑁 − 1 transpose input sequence table.

• 𝑿𝑇 = 𝑋 0 , 𝑋 1 , … , 𝑋 𝑁 − 1 inverse matrix of the sequence of coefficients 
of the DFT.

• 𝑾𝑵 symmetric matrix of dimensions 𝛮𝑥𝑁generated by the phase factors:



DFT Calculation using Linear Algebra

Each column 𝑾𝒊 of the matrix 𝑾𝑵 is called the basis vector of the DFT:

𝑾𝒊 =

1
𝑊𝑁

𝑖

𝑊𝑁
2𝑖

⋮

𝑊𝑁
𝑁−1 𝑖

If the inverse matrix exists 𝑾𝑵
−𝟏, then the inverse DFT given by:

𝒙𝑇 = 𝑾𝑵
−𝟏 𝑿𝑇

Since holds 𝑾𝑵
−𝟏 = (1/𝛮)𝑾𝑵

∗ , where 𝑾𝑵
∗ is its conjugate complex matrix 𝑾𝑵, it 

follows that the inverse DFT is:

𝒙𝑇 =
1

𝛮
𝑾𝑵

∗ 𝑿𝑇

In the next section we will study a more efficient way of computing the DFT, which 

exploits the symmetry properties of the DFT and the phase factor and drastically 

reduces the number of required operations.
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Example 5

Calculate the 4-point DFT of sequence 𝑥 𝑛 = 1, 3, 5, 7

Answer: The table 𝑾𝟒is:

𝑾𝟒 =

𝑊4
0 𝑊4

0 𝑊4
0 𝑊4

0

𝑊4
0 𝑊4

1 𝑊4
2 𝑊4

3

𝑊4
0 𝑊4

2 𝑊4
4 𝑊4

6

𝑊4
0 𝑊4

3 𝑊4
6 𝑊4

9

=

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

The DFT values are calculated from:

𝑿𝑇 = 𝑾𝑵 𝒙𝑇֜

𝑋 0
𝑋 1

𝑋 2
𝑋 3

=

𝑊4
0 𝑊4

0 𝑊4
0 𝑊4

0

𝑊4
0 𝑊4

1 𝑊4
2 𝑊4

3

𝑊4
0 𝑊4

2 𝑊4
4 𝑊4

6

𝑊4
0 𝑊4

3 𝑊4
6 𝑊4

9

𝑥 0
𝑥 1

𝑥 2
𝑥 3
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Example 5 (continued)

=

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

1
3
5
7

֜

𝑋 0
𝑋 1

𝑋 2
𝑋 3

=

16
−4 + 4𝑗

−4
−4 − 4𝑗

Therefore the DFT is: 𝑋[𝑘] = {16, −4 + 4𝑗, −4, −4 − 4𝑗}
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Circular Convolution

• Periodic sequence extension

• Periodic convolution

• Circular shift sequence

• Calculation of circular convolution
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The Concept of Circular Convolution

When the sequences are periodic, the procedure for calculating the 

convolution is different.

To explain it we will need to define:

– the periodic extension of a sequence

– the circular shift of the periodic expansion

Also, we will study the terms of periodic convolution and circular 

convolution.
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Periodic Sequence Extension

For any sequence 𝑥[𝑛]of finite length, a periodic sequence 0 ≤ 𝑛 ≤ 𝑁 − 1with 
fundamental period 𝑁, called the periodic extension of the sequence by samples, 𝑁
can be defined ෤𝑥[𝑛] according to the equation:

෤𝑥 𝑛 = 𝑥 𝑛 mod 𝑁 = 𝑥 𝑛
𝑁

(a) (b)

(a) Sequence of finite length 𝑥[𝑛]

(b) Its periodic extension ෤𝑥 𝑛 = 𝑥 𝑛 𝑚𝑜𝑑 4 = 𝑥 𝑛
4
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Periodic Convolution

We define periodic convolution ෤𝑦 𝑛 ,of two discrete-time periodic signals 𝑥1 𝑛

and 𝑥2[𝑛] having the same fundamental period 𝑁, from the equation:

෤𝑦 𝑛 = ෍

𝑘=0

𝑁−1

෤𝑥1 𝑘 ෤𝑥2[𝑛 − 𝑘] = ෍

𝑘=0

𝑁−1

෤𝑥2 𝑛 − 𝑘 ෤𝑥1[𝑘]

where ෤𝑥1 𝑛 and ෤𝑥2 𝑛 are the periodic extensions of the sequences 𝑥1[𝑛] and 

𝑥2[𝑛], respectively. Periodic convolution is denoted as follows:

෤𝑦 𝑛 = ෤𝑥1 𝑛 ⊛ ෤𝑥2 𝑛

• We notice that the only difference between the two types of convolution 

is that in periodic convolution the sum is calculated over a single period, while 

in linear convolution it is calculated over all values of 𝒌.

• Can be used to calculate the periodic convolution that were presented in the 

previous sections to calculate the linear convolution.
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Example 6

Calculate the periodic convolution between the sequences 𝑥[𝑛] = {෠0, 1, 2, 3}
and ℎ[𝑛] = {1, ෠2, 0, −1}.

Answer: We use the graphical way of calculating the sum:

෤𝑦 𝑛 = ෍

𝑘=0

𝑁−1

෤𝑥 𝑘 ෨ℎ 𝑛 − 𝑘

The graph of 𝑥[𝑛] and its periodic expansion ෤𝑥 𝑛 for 𝛮 = 4 is:
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Example 6 (continued)

The graph of ℎ[𝑛], its reflection ℎ[−𝑘] and its periodic expansion ෨ℎ −𝑘 for 𝛮 = 4, is 
shown in the figure:

෤𝑦[0] is founded by summing the products ෤𝑥 𝑘 ෨ℎ[−𝑘] from 𝑘 = 0 to 3. They are: 

෤𝑦[0] = 0𝑥2 + 1𝑥1 + 2𝑥 −1 + 3𝑥0 = −1
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Example 6 (continued)

Then, is ෨ℎ[−𝑘] shifted to the right by 1 sample, resulting in ෨ℎ[1 − 𝑘], as shown in 
the figure:

Periodic expansion ℎ −𝑘
4

and periodic expansion slip෨ℎ 1 − 𝑘 = ℎ 1 − 𝑘
4

෤𝑦[1] is founded by summing the products ෤𝑥 𝑘 ෨ℎ 1 − 𝑘 from 𝑘 = 0 to 3. They are:

෤𝑦[1] = 0𝑥0 + 1𝑥2 + 2𝑥1 + 3𝑥(−1) = 1
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Example 6 (continued)

Shifting it ෨ℎ[−𝑘] to the right by 2 and 3 samples yields ෨ℎ[2 − 𝑘] and ෨ℎ[3 − 𝑘], as 
shown in the figure:

Periodic extension slip  ෨ℎ 2 − 𝑘
4

= ℎ 2 − 𝑘
4

and periodic extension slip  ෨ℎ 3 − 𝑘 = ℎ 3 − 𝑘
4

෤𝑦[2] is founded by summing the products ෤𝑥 𝑘 ෨ℎ[2 − 𝑘] from 𝑘 = 0 to 3. It is:

෤𝑦[2] = 0𝑥(−1) + 1𝑥0 + 2𝑥2 + 3𝑥1 = 7

෤𝑦[3] is founded by summing the products ෤𝑥 𝑘 ෨ℎ[3 − 𝑘] from 𝑘 = 0 to 3. It is:

෤𝑦[3] = 0𝑥1 + 1𝑥(−1) + 2𝑥0 + 3𝑥2 = 5
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Example 6 (continued)

Therefore, the periodic convolution is:

෤𝑦 𝑛 = {−1, 1, 7, 5, −෠1, 1, 7, 5, −1, 1, 7, 5}

The result is shown in the following figure:

Periodic convolution ෤𝑦 𝑛
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Circular Sequence Shift

The circular shift of the periodic extension ෤𝑥 𝑛 of a sequence 𝑥[𝑛], by an amount of time 𝑛0, 
is defined by the equation:

෤𝑥 𝑛 − 𝑛0 = 𝑥 𝑛 − 𝑛0 𝑁
𝑅𝑁 𝑛

where the rectangular window 𝑅𝑁[𝑛] is defined by the following equation and multiplied by 
the signal outputs a period of the signal:

𝑅𝑁[𝑛] = ቊ
1, 0 ≤ 𝑛 < 𝑁

0, elsewhere

Cyclic shifting is performed by shifting the sequence ෤𝑥 𝑛 pointwise 𝑛0 (to the left if 𝑛0 < 0
or to the right if 𝑛0 > 0) and keeping only the part that lies within the fundamental period 𝛮. 
The process is shown in the figure:

Cyclic shift of the periodic expansion ෤𝑥 𝑛 , in one period.
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Circular Sequence Shift

By applying the equation:

෤𝑥 𝑛 − 𝑛0 = 𝑥 𝑛 − 𝑛0 𝑁
𝑅𝑁 𝑛

it follows that the sequences depicted in the previous figure are described by the 
following relations:

• ෤𝑥 𝑛 = 𝑥 𝑛
4

𝑅4 𝑛

• ෤𝑥 𝑛 − 1 = 𝑥 𝑛 − 1
4

𝑅4 𝑛

• ෤𝑥 𝑛 − 2 = 𝑥 𝑛 − 2
4

𝑅4 𝑛

• ෤𝑥 𝑛 − 3 = 𝑥 𝑛 − 3
4

𝑅4 𝑛

We notice that the circular shift creates a different sequence than the simple time 
shift we studied in lecture 2.

Because of this difference arises the different result between linear convolution 
and circular convolution, which we will see next.
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Circular Convolution

The point circular convolution of two sequences 𝑥1[𝑛]and 𝑥2[𝑛], 𝛮 each of point 

length, is defined as:

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

෤𝑥1 𝑘 ෤𝑥2[𝑛 − 𝑘] 𝑅𝑁[𝑛] = ෍

𝑘=0

𝑁−1

෤𝑥2 𝑛 − 𝑘 ෤𝑥1[𝑘] 𝑅𝑁[𝑛]

where ෤𝑥1 𝑛 and ෤𝑥2 𝑛 are the periodic extensions of the sequences 𝑥1[𝑛] and 

𝑥2[𝑛], respectively.

Since ෤𝑥1 𝑛 = 𝑥1[𝑛]for 0 ≤ 𝑛 ≤ 𝑁 − 1, the above equation is written:

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑥1 𝑘 ෤𝑥2 𝑛 − 𝑘 𝑅𝑁[𝑛]

The sequence 𝑦[𝑛] is called circular convolution and is denoted as follows:

෤𝑦 𝑛 = ෤𝑥1 𝑛 ෤𝑥2 𝑛 = ෤𝑥2 𝑛 ෤𝑥1 𝑛
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Circular Convolution

Remarks:

• The cyclic convolution of two sequences 𝑥1[𝑛] and 𝑥2[𝑛] is equivalent to one 

period of the periodic convolution of the periodic expansions ෤𝑥1 𝑛 and ෤𝑥2 𝑛 , 

that is, it holds:

𝑦 𝑛 = 𝑥1 𝑛 𝑥2 𝑛 = ෤𝑥2 𝑛 ⊛ ෤𝑥1 𝑛 𝑅𝑁[𝑛]

• If the signal 𝑥1[𝑛] is of finite length 𝑁1 and the signal 𝑥2[𝑛] is of finite length 𝑁2, 

where 𝑁1 ≠ 𝑁2, then the circular convolution 𝑁 points are of finite length 

𝑁 ≥ max (𝑁1, 𝑁2)and are calculated by padding the signals at the end with 

zeros (zero - padding), so that they have the same length 𝑁.

• Point circular convolution 𝑁and point circular convolution 𝑀, where 

𝑁 ≠ 𝑀, are not generally equal to each other.

• Circular convolution is not the same as linear convolution. Their difference 

lies in the limits of the sum and the displacement 𝛮of points.
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Example 7

Calculate the circular convolution of 4-points between the discrete time signals 𝑥[𝑛] =

{෠0, 1, 2, 3} and ℎ[𝑛] = {1, ෠2, 0, −1}.

Answer: We calculate the circular convolution of 4-points from the equation:

𝑦[𝑛] = ෍
𝑘=0

3

𝑥 𝑘 ෨ℎ 𝑛 − 𝑘 𝑅4[𝑛]

For 𝑛 = 0:

𝑦 0 = ෍
𝑘=0

3

𝑥 𝑘 ෨ℎ −𝑘 𝑅4 𝑛 = ෍
𝑘=0

3
෠0, 1, 2, 3 ෠2, 1, −1, 0

= ෍
𝑘=0

3
෠0, 1, −2, 0 ֜𝑦 0 = −1

For 𝑛 = 1:

𝑦 1 = ෍
𝑘=0

3

𝑥 𝑘 ෨ℎ 1 − 𝑘 𝑅4 𝑛 = ෍
𝑘=0

3
෠0, 1, 2, 3 ෠0, 2, 1, −1

= ෍
𝑘=0

3
෠0, 2, 2, −3 ֜𝑦 1 = 1
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Example 7 (continued)

For 𝑛 = 2:

𝑦 2 = ෍
𝑘=0

3

𝑥 𝑘 ෨ℎ 2 − 𝑘 𝑅4 𝑛 = ෍
𝑘=0

3
෠0, 1, 2, 3 −෠1, 0, 2, 1

= ෍
𝑘=0

3
෠0, 0, 4, 3 ֜ 𝑦 2 = 7

For 𝑛 = 3:

𝑦 3 = ෍
𝑘=0

3

𝑥 𝑘 ෨ℎ 3 − 𝑘 𝑅4 𝑛 = ෍
𝑘=0

3
෠0, 1, 2, 3 ෠1, −1, 0, 2

= ෍
𝑘=0

3
෠0, − 1, 0, 6 ֜𝑦 3 = 5

Therefore it is:𝑦 𝑛 = ℎ 𝑛 𝑥 𝑛 = −෠1, 1, 7, 5

• Comparing the result with the result of Example 15, we notice that it verifies the 

relationship 𝑦 𝑛 = 𝑥1 𝑛 𝑥2 𝑛 = ෤𝑥2 𝑛 ⊛ ෤𝑥1 𝑛 𝑅𝑁[𝑛]

• The linear convolution between ℎ[𝑛] and 𝑥[𝑛], is the sequence of six points:

ℎ 𝑛 ∗ 𝑥[𝑛] = 1, ෠4, 7, 5, −2, −3

• We notice that linear convolution and circular convolution of the same sequences give 
different results.
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DFT properties

• Linearity

• Circular Folding in Time

• Cyclic Shift in Time

• Conjugation

• DFT Symmetry for Real Sequences

• Symmetry of DFT for Complex Sequences

• Cyclic Shift in Frequency

• Cyclic Shift in Time

• Circular Convolution

• Sequence Multiplication

• Parseval's theorem
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Linearity

DFT transformations of the sequences 𝑥1 𝑛 and 𝑥2 𝑛 are:

𝑥1 𝑛
𝐷𝐹𝑇

𝑋1[𝑘]and𝑥2 𝑛
𝐷𝐹𝑇

𝑋2[𝑘]

then the DFT of the linear combination 𝑎1𝑥1[𝑛] + 𝛼2𝑥2[𝑛] is:

𝛼1𝑥1[𝑛] + 𝛼2𝑥2 𝑛
DFT

𝑎1𝑋1[𝑘] + 𝛼2𝑋2[𝑘]

• The equation holds for sequences of equal length.

• If the lengths of the sequences are different, then we pad the shorter sequence 

with zeroes so that it becomes the same length as the longer one.
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Circular Folding in Time

• If 𝑥 𝑛 is a sequence 𝛮 of points and 𝑋[𝑘] is the 𝛮-point DFT of it, then for the 
modulo N inverted sequence 𝑦 𝑛 :

𝑦 𝑛 = 𝑥[ −𝑛 ]𝑁

𝐷𝐹𝑇
𝑋[ −𝑘 ]𝑁

Sequence 𝑥[𝑛] and circular 
folding 𝑦 𝑛 = 𝑥[ −𝑛 ]11

Real and imaginary parts 
of DFT of 𝑋 𝑘 and 𝑌 𝑘
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Cyclic Shift in Time

If 𝑥 𝑛 is a sequence 𝛮 of points and 𝑋[𝑘] is the 𝛮-point DFT of it, then for the 

circularly shifted by 𝑛0sequence, defined as:

෤𝑥 𝑛 − 𝑛0 = 𝑥 𝑛 − 𝑛0 𝑁
𝑅𝑁 𝑛

where the rectangular window 𝑅𝑁[𝑛] extracts one period of the signal and is 

defined by the equation:

𝑅𝑁[𝑛] = ቊ
1, 0 ≤ 𝑛 < 𝑁
0, elsewhere

then the DFT of the circularly shifted sequence ෤𝑥 𝑛 − 𝑛0 is given by:

𝑥 𝑛 − 𝑛0 𝑁
𝑅𝑁 𝑛

𝐷𝐹𝑇
𝑊𝑁

𝑘𝑛0 𝑋[𝑘]

• Since 𝑊𝑁
𝑘𝑛0 = 1, the Magnitude of the DFT of the circularly shifted sequence 

is the same as the Magnitude of the DFT of the original sequence.

• The phase of the DFT is shifted by the phase of the term 𝑊𝑁
𝑘𝑛0 .
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Cyclic Shift in Time

Sequence 𝑥[𝑛] and circularly 
shifted sequence 𝑦 𝑛 = 𝑥[ 𝑛 − 8 ]15

Magnitude and phase 
of DFT 𝑋 𝑘 and 𝑌 𝑘
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Cyclic Shift in Frequency

• This property is dual to the property of circular displacement in 
time and is described by the equation:

𝑊𝑁
−𝑘0𝑛

𝑥[𝑛]
𝐷𝐹𝑇

𝑋 𝑘 − 𝑘0 𝑁
𝑅𝑁(𝑘)

• Therefore, if 𝑥 𝑛 is a sequence 𝛮-points and 𝑋[𝑘] is the 𝛮-DFT of 

its points, then multiplying the sequence by the term 𝑊𝑁
−𝑘0𝑛

has 

DFT the DFT of the sequence circularly shifted at frequency 𝑘0.
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Conjugation

The symmetry property is combined with the conjugacy property, which 

states that if 𝑥 𝑛 is a sequence 𝛮-points and 𝑋[𝑘] is the 𝛮-point DFT of it, 

then for the conjugate sequence 𝑥∗ 𝑛 also 𝛮-points, holds:

𝑥∗ 𝑛
𝐷𝐹𝑇

𝑋∗ −𝑘
𝑁

= −𝑋∗ 𝑁 − 𝑘
𝑁

This property introduces the concept of circular folding in frequency.
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Symmetry Types of Real Sequences

A real sequence 𝑥 𝑛 of point length 𝛮 with 0 ≤ 𝑛 ≤ 𝑁 − 1, is called:

• Circularly even if:

𝑥 𝑛 = 𝑥 −𝑛
𝑁

= 𝑥 𝑁 − 𝑛
𝑁

• Cyclic odd if:

𝑥 𝑛 = −𝑥 −𝑛
𝑁

= −𝑥 𝑁 − 𝑛
𝑁

The real sequence 𝑥 𝑛 can be decomposed into a cyclic even 𝑥𝑐𝑒[𝑛] and one 
cyclically odd 𝑥𝑐𝑜[𝑛] component, namely:

𝑥 𝑛 = 𝑥𝑐𝑒 𝑛 + 𝑥𝑐𝑜 𝑛 , 0 ≤ 𝑛 ≤ 𝑁 − 1

where:

𝑥𝑐𝑒 𝑛 =
1

2
𝑥 𝑛 + 𝑥 −𝑛

𝑁
, 0 ≤ 𝑛 ≤ 𝑁 − 1

𝑥𝑐𝑜 𝑛 =
1

2
𝑥 𝑛 − 𝑥 −𝑛

𝑁
, 0 ≤ 𝑛 ≤ 𝑁 − 1
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DFT Symmetry for Real Sequences

• The components 𝑥𝑐𝑒[𝑛] and 𝑥𝑐𝑜[𝑛] are sequences of length 𝛮 points and their 
N-points DFT are:

𝑋𝑒𝑐[𝑘] = 𝑅𝑒 𝑋 𝑘 = 𝑅𝑒 𝑋 −𝑘
𝑁

𝑋𝑜𝑐[𝑘] = 𝐼𝑚 𝑋 𝑘 = 𝐼𝑚 𝑋 −𝑘
𝑁

• The DFT of a real sequence is circularly symmetric, i.e.:

𝑋 𝑘 = 𝑋∗ −𝑘
𝑁

= 𝑋∗ 𝑁 − 𝑘
𝑁

• This equation is analyzed:

𝑅𝑒 𝑋 𝑘 = 𝑅𝑒 𝑋 −𝑘
𝑁

𝐼𝑚 𝑋 𝑘 = −𝐼𝑚 𝑋 𝑁 − 𝑘
𝑁

𝑋 𝑘 = 𝑋 −𝑘
𝑁

∡𝑋 𝑘 = −∡𝑋 −𝑘
𝑁
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DFT Symmetry for Real Sequences

• For a real sequence 𝑥[𝑛], the DFT coefficients 𝑋[0] and 𝑋 𝛮/2 are real 
numbers since:

𝑋[0] = 𝑋∗ −0
𝑁

= 𝑋∗ 0

𝑋
𝑁

2
= 𝑋∗ −

𝑁

2
𝑁

= 𝑋∗
𝑁

2

• The 𝑋 𝛮/2 is called the Nyquist coefficient, as for 𝑘 = 𝑁/2 the frequency is 
𝜔𝛮/2 = (𝛮/2)(2𝜋/𝛮) = 𝜋, which is the digital Nyquist frequency.

• The symmetry property reduces the operations for the DFT calculation 
by 50%. Specifically, we calculate the values𝑋[𝑘] only for:

𝑘 = 0,1, … ,
𝑁

2
, αν 𝛮 άρτιο

𝑘 = 0,1, … ,
𝑁 − 1

2
, αν 𝛮 περιττό

• This property is exploited by the Fast Fourier Transform (FFT).
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DFT Symmetry for Real Sequences

Initial sequence, cyclic even 
and cyclic odd components

Real parts 𝑋[𝑘] and 𝑋𝑐𝑒 𝑘

Imaginary parts 𝑋 𝑘 𝑎𝑛𝑑 𝑋𝑐𝑜 𝑘
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Symmetry Types of Complex Sequences

A complex sequence of 𝑥 𝑛 point 0 ≤ 𝑛 ≤ 𝑁 − 1 length with 𝛮, is called:

• Conjugate and circular symmetrical if:

𝑥 𝑛 = 𝑥∗ −𝑛
𝑁

= 𝑥∗ 𝑁 − 𝑛
𝑁

• Conjugate and circular anti-symmetric if:

𝑥 𝑛 = −𝑥∗ −𝑛
𝑁

= −𝑥∗ 𝑁 − 𝑛
𝑁

The complex sequence 𝑥 𝑛 can be decomposed into a conjugate circular symmetrical 
𝑥𝑐𝑠[𝑛] and one conjugate and circular anti-symmetric 𝑥𝑐𝑎[𝑛] sequence, namely:

𝑥 𝑛 = 𝑥𝑐𝑠 𝑛 + 𝑥𝑐𝑎 𝑛 , 0 ≤ 𝑛 ≤ 𝑁 − 1

where:

𝑥𝑐𝑠 𝑛 =
1

2
𝑥 𝑛 + 𝑥∗ −𝑛

𝑁
, 0 ≤ 𝑛 ≤ 𝑁 − 1

𝑥𝑐𝑎 𝑛 =
1

2
𝑥 𝑛 − 𝑥∗ −𝑛

𝑁
, 0 ≤ 𝑛 ≤ 𝑁 − 1
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Symmetry of DFT for Complex Sequences

• The DFT of a real sequence is:

o Conjugate circularly symmetric, if applicable:

𝑋 𝑘 = 𝑋∗ −𝑘
𝑁

= 𝑋∗ 𝑁 − 𝑘
𝑁

o Conjugate cyclically anti-symmetric, if true:

𝑋 𝑘 = −𝑋∗ −𝑘
𝑁

= −𝑋∗ 𝑁 − 𝑘
𝑁

• The (complex) 𝛸 𝑘 DFT sequence can be written as:

𝑋 𝑘 = 𝑋𝑐𝑠 𝑘 + 𝑋𝑐𝑎 𝑘 , 0 ≤ 𝑘 ≤ 𝑁 − 1

where:

𝑋𝑐𝑠 𝑘 =
1

2
𝑋 𝑘 + 𝑋∗ −𝑘

𝑁
, 0 ≤ 𝑘 ≤ 𝑁 − 1

𝑋𝑐𝑎 𝑘 =
1

2
𝑋 𝑘 − 𝑋∗ −𝑘

𝑁
, 0 ≤ 𝑘 ≤ 𝑁 − 1

67



Circular Convolution

• When two sequences 𝑥1 𝑛 και 𝑥2 𝑛 N-points length each, are convoluted, then the 
resulting sequence has a longer length.

• If we want the result of the convolution to be strictly bounded in the space 
0 ≤ 𝑛 ≤ 𝑁 − 1, then we use circular convolution, which is defined by:

𝑥1 𝑛 (N) 𝑥2 𝑛 = ෍

𝑘=0

𝑁−1

𝑥1 𝑘 𝑥2[ 𝑛 − 𝑘 ]𝛮 𝑅𝑁 𝑛 , 0 ≤ 𝑛 ≤ 𝑁 − 1

• Circular convolution produces sequence of length 𝛮points. It has the same structure 
as linear convolution, but differs in the limit of summation and the use of circular 
displacement.

• The DFT property for circular convolution is:

𝑥1 𝑛 𝑁 𝑥2 𝑛
𝐷𝐹𝑇

𝑋1 𝑘 𝑋2[𝑘]

• Therefore, if we multiply two DFTs 𝑁-point each, in the frequency domain, the 
result is circular convolution (rather than linear convolution) in the time domain.
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Sequence Multiplication

• This property is a binary of the previous property and states that 
the DTFT of the product of two sequences 𝑥[𝑛] and 𝑦[𝑛] is the 

periodic convolution of the individual DTFTs 𝑋 𝑒𝑗𝜔 and 𝑌 𝑒𝑗𝜔

the signals.

𝑥 𝑛 𝑦 𝑛
𝐷𝑇𝐹𝑇 1

2𝜋
න

−𝜋

𝜋

𝑋 𝑒𝑗𝜃 𝑌 𝑒𝑗 𝜔−𝜃 𝑑𝜃 = 𝑋 𝑒𝑗𝜔 ⊛ 𝑌 𝑒𝑗𝜔

• Because of the periodicity of the DTFT there is no perfect duality 
between time-domain convolution and frequency-domain 
multiplication. In particular, the multiplication of two aperiodic 
sequences is equivalent to the periodic (rather than linear) 
convolution of DTFTs.
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Parseval’s Theorem

• The well-known Parseval equation that applies to the Fourier transform, the 

Z-transform and the DTFT, and which calculates the energy of the signal in the 

time and frequency domains, also applies to the DFT:

𝐸𝑥 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 2 =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 2

• 𝑋 𝑘 2/𝛮: spectral energy density, expresses the amount of energy per 

spectral coefficient.

• If the sequence is periodic, then the quantity ෨𝑋 𝑘 /𝛮
2

is called the power 

spectral density.
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Relationship between 
Circular and Linear Convolution

Calculation of linear convolution using DFT
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Relationship between 
Circular and Linear Convolution

• Linear convolution offers the most important possibility of calculating the 

output of a LSI system when the input 𝑥[𝑛] and the impulse response ℎ[𝑛] of 

the system are known, but its calculation requires a high computational cost.

• DFT offers efficient tools for analyzing signals and systems in the frequency 

domain through fast computational implementations such as the FFT 

algorithm.

• Since circular convolution can be easily calculated by DFT, the question arises, 

how can DFT be used to calculate linear convolution?
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Relationship between 
Circular and Linear Convolution

If 𝑥 𝑛 και ℎ[𝑛] sequences of duration 𝛮𝑥 and 𝛮ℎ-points respectively, then:

• The linear convolution between 𝑥 𝑛 and ℎ[𝑛], is:

𝑦𝐿 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 = ෍

𝑘=0

𝑁𝑥+𝑁ℎ

𝑥 𝑘 ℎ 𝑛 − 𝑘

• The circular convolution between the 𝑥 𝑛 και ℎ[𝑛], duration 𝛮 = 𝑁𝑥 + 𝑁ℎ − 1
points each, is:

𝑦𝐶 𝑛 = 𝑥 𝑛 ℎ 𝑛 = ෍

𝑘=0

𝑁𝑥−1

𝑥 𝑘 ℎ 𝑛 − 𝑘
𝑁

𝑅𝑁 𝑛

It turns out that:

𝑦𝐶 𝑛 = ෍

𝑟=−∞

∞

𝑦𝐿 𝑛 + 𝑟𝑁 𝑅𝑁[𝑛]

• So circular convolution 𝑦𝑐 𝑛 is an altered form of linear 𝑦𝐿[𝑛].

• If the sequence 𝑦𝐿[𝑛]has duration 𝜨 ≥ 𝑵𝒙 + 𝑵𝒉 − 𝟏, then the linear convolution 
is identical to the circular one.
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Calculation of Linear Convolution using DFT

• The linear convolution of two sequences 𝑥 𝑛 and ℎ[𝑛] with duration 𝛮𝑥 and 𝛮ℎ

samples respectively, is calculated by DFT with the following steps:

o The sequences 𝑥 𝑛 and ℎ[𝑛] are extended with an appropriate number of 

zeros so that each one has a length of 𝛮 ≥ 𝑁𝑥 + 𝑁ℎ − 1 samples.

o The point 𝑥 𝑛 DFTs of the sequences 𝛮and are calculated ℎ[𝑛] and the 

sequences 𝑋[𝑘] and are generated 𝐻[𝑘].

o The product is calculated 𝑌 𝑘 = 𝑋 𝑘 𝐻[𝑘].

o The inverse DFT 𝛮-points of is calculated 𝑌[𝑘], so the circular convolution 

𝑦𝐶 𝑛 = 𝑥 𝑛 (N) is found ℎ 𝑛 .

o Since 𝛮 ≥ 𝑁𝑥 + 𝑁ℎ − 1 linear convolution is equal to circular convolution.

• If the length of the circular convolution is set 𝑁 = max(𝑁𝑥, 𝑁ℎ), then the first 

(𝛭 − 1)samples of the circular convolution are different from the corresponding 

samples of the linear convolution, where 𝑀 = min(𝑁𝑥, 𝑁ℎ). All samples coincide.
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Convolution Calculation by Blocks

• Overlap – Save Method

• Overlap – Add Method
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Convolution Calculation by Blocks

• If the sequence 𝑥[𝑛] is long, then the DFT for a large value of 𝛮does not provide 
significant information about the spectrum, because its calculation results as an 
average of a long calculation and does not clearly render the spectrum of the 
transition regions of the signal.

• In this case we prefer to slice the signal into individual blocks of finite duration and 
calculate the DFT of each block.

• Similarly we do to calculate the output of a system for input a signal of long length.

• Slicing the signal into individual blocks 𝑥𝑟 𝑛 of finite duration is done by 
multiplying it by a window 𝑤𝑁[𝑛] of length 𝛮:

𝑥𝑟 𝑛 = 𝑥 𝑛 𝑤𝑁[𝑛 − 𝑟𝑁]

• This process is called block convolution and is implemented with the techniques:

o overlap - save 

o overlap - add 
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Overlap – Save Method

The method is described by the following algorithm:

1. We generate the first point 𝑥1[𝑛] N-length block from the total signal 𝑥1[𝑛], 
through the equation:

𝑥1[𝑛] = ቊ
0, 0 ≤ 𝑛 < 𝑀 − 1
𝑥[𝑛 − 𝑀 + 1], 𝑀 − 1 ≤ 𝑛 ≤ 𝑁 − 1

2. We calculate the N-point DFTs 𝑋1[𝑘] of the sequence 𝑥1[𝑛] and 𝐻 𝑘 of impulse
response ℎ[𝑛] of the system.

3. We calculate the product 𝑌1 𝑘 = 𝑋1 𝑘 𝐻[𝑘].

4. By inverse N-point DFT 𝑌1 𝑘 we obtain the 𝑦1 𝑛 , equivalent of circular 
convolution 𝑥1 𝑛 ⊛ ℎ[𝑛]. The first (𝛭 − 1) values of the sequence 𝑦1[𝑛] are 
false and the remaining (𝑁 − 𝑀 + 1) values correspond to linear convolution 
𝑥1[𝑛] ∗ ℎ[𝑛]. The last (𝑁 − 𝑀 + 1) values of 𝑦1[𝑛] are the first (𝑁 − 𝑀 + 1)
values of the output sequence 𝑦[𝑛], that is:

𝑦[𝑛] = 𝑦1[𝑛 + 𝑀 − 1], 0 ≤ 𝑛 < 𝑀 − 1
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Overlap – Save Method

5. Let be 𝑥2[𝑛] a sequence 𝛮of -points extracted from 𝑥[𝑛] with (𝑀 − 1) its first 
values overlapping with those of 𝑥1[𝑛].

6. We perform steps 3 and 4 and obtain 𝑦2[𝑛]. Its first (𝑀 − 1) values 𝑦2[𝑛] are 
discarded and its last values are kept and combined with its (𝑁 − 𝑀 + 1)
reserved:

𝑦[𝑛 + 𝑁 − 𝑀 + 1] = 𝑦2 𝑛 + 𝑀 − 1 , 0 ≤ 𝑛 < 𝑁 − 𝑀

7. We repeat steps 5 and 6 until all values of the linear convolution are 
calculated.
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Overlap – Save Method
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Overlap – Add Method

The method is described by the following algorithm:

• We slice the sequence 𝑥[𝑛] into time-shifted blocks N-point length:

𝑥 𝑛 = ෍

𝑖=0

∞

𝑥𝑖[𝑛 − 𝛮𝑖]

where 𝑥𝑖[𝑛] = ቊ
𝑥 𝑛 + 𝛮𝑖 , 𝑛 = 0,1, … , 𝛮 − 1

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

• If ℎ[𝑛] is the impulse response length 𝛭of a LSI system, then its output to input 
signal 𝑥[𝑛] will be:

𝑦 𝑛 = ෍

𝑘=0

𝛭−1

ℎ 𝑘 𝑥 𝑛 − 𝑘 = ෍

𝑖=0

∞

𝑥𝑖[𝑛 − 𝛮𝑖] ∗ ℎ[𝑛] = ෍

𝑖=0

∞

𝑦𝑖[𝑛 − 𝛮𝑖]

where 𝑦𝑖[𝑛] = 𝑥𝑖[𝑛] ∗ ℎ[𝑛]

• Each subsequence 𝑦𝑖[𝑛] can be easily calculated by 𝛮-points DFT of 𝑥𝑖[𝑛] and 
ℎ[𝑛] and will have length 𝑁 + 𝑀 − 1 points.

• The consecutive sequences 𝑦𝑖[𝑛] and 𝑦𝑖+1[𝑛] overlap at (𝛮 − 𝛭) points and the 
overlapping points are added.
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Overlap – Add Method
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Fast Fourier Transform

• Decimation in Time FFT Algorithm (Radix-2)

• Decimation in Frequency FFT Algorithm (Radix-2)
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Computational Cost DFT

The N-point DFT of a N-points sequence 𝑥 𝑛 is:

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑊𝑁
𝑛𝑘 = 𝑥 0 𝑊𝑁

0𝑘 + 𝑥 1 𝑊𝑁
1𝑘 + ⋯ + 𝑥 𝛮 − 1 𝑊𝑁

𝛮−1 𝑘
, 𝑘 = 0,1, … 𝑁 − 1

• To calculate each point 𝑋[𝑘] you need:

o 𝛮complex multiplications

o (𝛮 − 1) complex additions

• Calculating all 𝛮 DFT values requires:

o 𝑁2 complex multiplications and

o 𝛮(𝛮 − 1) ≅ 𝑁2complex additions

• To store the phase factors 𝑊𝑁
𝑛𝑘 you need:

o 𝑁2 seats

• The computational cost of DFT is 𝜪(𝜨𝟐) and becomes prohibitively high for 
large values of N.
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Strategy for constructing an efficient DFT algorithm

• The N-point DFT calculation is based on DFTs of successively shorter length, 

e.g. 𝛮/2-points. It is done by divide of the sequence 𝑥[𝑛] of length 𝛮-points 

(𝑁even) into two subsequences 𝑥1[𝑛] and 𝑥2[𝑛], N/2-points, each.

• DFT has a computational 𝑂(𝑁2/4) cost 𝛮/2. For both sequences is 2 𝑂(𝑁2/4), 

significantly smaller than 𝛰(𝛮2), especially for large values of 𝛮.

• When 𝛮 is a power of 2, then the computational cost is just 𝜪(𝜨/𝟐 𝒍𝒐𝒈𝑵).

• A way to calculate the point DFT 𝛮 from the point DFT is requested 𝛮/2. The 

point DFT 𝑁/2can then be decomposed into point DFTs 𝑁/4, etc.

• The most popular techniques for implementing the FFT are:

o Decimation in Time 

o Decimation in Frequency 
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Decimation in Time FFT Algorithm (Radix-2)

A sequence of 𝑥[𝑛] length 𝛮 = 2𝜈 is split into two sequences, length 𝛮/2 each:

• 𝑔1 𝑛 = 𝑥 2𝑛 , 0 ≤ 𝑛 ≤ 𝛮/2 − 1 Samples of it 𝑥[𝑛] with an even index

• 𝑔2[𝑛] = 𝑥[2𝑛 + 1], 0 ≤ 𝑛 ≤ 𝛮/2 − 1 Samples of it 𝑥[𝑛] with an unnecessary index

N-point DFT of 𝑥[𝑛] has computational cost 𝛰 𝛮2 and 𝑋[𝑘] = σ𝑛=0
𝑁−1 𝑥[𝑛] 𝑊𝑁

𝑛𝑘

Because 𝑥 𝑛 = 𝑔1 𝑛 + 𝑔2 𝑛 , it is true:

𝑋[𝑘] = ෍

𝑚=0

𝑁/2−1

𝑔1[𝑚] 𝑊𝑁
2𝑚𝑘 + 𝑊𝑁

𝑘 ෍

𝑚=0

𝑁/2−1

𝑔2[𝑚] 𝑊𝑁
(2𝑚+1)𝑘

Because  𝑊𝛮
2𝑚𝑘 = 𝑊𝛮/2

𝑚𝑘 , the above equation is written:

𝑋[𝑘] = ෍

𝑚=0

𝑁/2−1

𝑔1[𝑚] 𝑊𝑁/2
𝑚𝑘 + 𝑊𝑁

𝑘 ෍

𝑚=0

𝑁/2−1

𝑔2[𝑚] 𝑊𝑁/2
𝑚𝑘

or briefly:

𝑋[𝑘] = 𝐺1[𝑘] + 𝑊𝑁
𝑘𝐺2[𝑘], 0 ≤ 𝑘 ≤ 𝛮 − 1
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Decimation in Time FFT Algorithm (Radix-2)

• Therefore, the N-point DFT of 𝑥[𝑛] is equal to the sum of the point 𝑔1[𝑛] DFTs 

of 𝛮/2 and 𝑔2[𝑛].

• DFT has a computational 𝑂(𝑁2/4) cost 𝛮/2. So the total computational cost is 

2 𝑂(𝑁2/4)(significantly less than 𝛰(𝛮2)).

• The above process of splitting the input sequence into sequences of even and 

odd terms is repeated 𝜈times, until we arrive at a 2-point DFT.

• This process is called "decimation in time" (DIT - FFT) and is shown in the next 

figure, for an 8-point FFT.

• Total computational cost of FFT is 𝛰(𝑁 log2 𝑁). If 𝛮 is large then it can be 

further reduced, to 𝛰
𝑁

2
log2 𝑁 .
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Decimation in Time FFT Algorithm (Radix-2)

FFT structure (DIT-FFT) for 𝑁 = 8
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2- and 4-point DFT study

• DFT of 2 points:

𝑋 𝑘 = ෍

𝑛=0

1

𝑥 𝑛 𝑊2
𝑛𝑘 = 𝑥 0 𝑊2

0𝑘 + 𝑥 1 𝑊2
1𝑘 = 𝑥 0 𝑒−𝑗0 + 𝑥 1 𝑒−𝑗𝜋𝑘

Therefore 𝑋 𝑘 = 𝑥 0 + −1 𝑘𝑥 1 , 0 ≤ 𝑘 ≤ 1, which resolves into 𝑋[0] = 𝑥 0 +
𝑥 1 and𝑋 1 = 𝑥 0 − 𝑥 1

Butterfly diagram
2-point FFT

• DFT of 4 points:

𝑋 𝑘 = ෍

𝑛=0

3

𝑥 𝑛 𝑊4
𝑛𝑘 = 𝑥 0 𝑊4

0𝑘 + 𝑥 1 𝑊4
1𝑘 + 𝑥 2 𝑊4

2𝑘 + 𝑥 3 𝑊4
3𝑘 , 0 ≤ 𝑘 ≤ 3

In tabular form they are:

𝑿𝑇 = 𝑾𝟒 𝒙𝑇֜

𝑋 0

𝑋 1
𝑋 2

𝑋 3

=

𝑊4
0 𝑊4

0 𝑊4
0 𝑊4

0

𝑊4
0 𝑊4

1 𝑊4
2 𝑊4

3

𝑊4
0 𝑊4

2 𝑊4
4 𝑊4

6

𝑊4
0 𝑊4

3 𝑊4
6 𝑊4

9

𝑥 0

𝑥 1
𝑥 2

𝑥 3

Therefore the DFT calculation requires 16 complex multiplications.
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2- and 4-point DFT study

The phase factors we will need are 𝑊4
0, 𝑊4

1, 𝑊4
2, 𝑊4

3, 𝑊4
4, 𝑊4

6, 𝑊4
9.

Due to the symmetry properties of the phase factor we find:

𝑊4
0 = 𝑊4

4 = 1, 𝑊4
1 = 𝑊4

9 = −𝑗,𝑊4
2 = 𝑊4

6 = −1, 𝑊4
3 = 𝑗

Therefore matrix multiplication is written:

𝑋 0

𝑋 1
𝑋 2

𝑋 3

=

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

𝑥 0

𝑥 1
𝑥 2

𝑥 3

We break down the calculation for each coefficient 𝑋[𝑘]:

• 𝑋 0 = 𝑥 0 + 𝑥 1 + 𝑥 2 + 𝑥 3 = 𝑥 0 + 𝑥 2 + 𝑥 1 + 𝑥 3 = 𝑔1 + 𝑔2

• 𝑋 1 = 𝑥 0 − 𝑗 𝑥 1 − 𝑥 2 + 𝑗 𝑥 3 = 𝑥 0 − 𝑥 2 − 𝑗 𝑥 1 − 𝑥 3 = ℎ1 − 𝑗ℎ2

• 𝑋 2 = 𝑥 0 − 𝑥 1 + 𝑥 2 − 𝑥 3 = 𝑥 0 + 𝑥 2 − 𝑥 1 + 𝑥 3 = 𝑔1 − 𝑔2

• 𝑋 3 = 𝑥 0 + 𝑗 𝑥 1 − 𝑥 2 − 𝑗 𝑥 3 = 𝑥 0 − 𝑥 2 + 𝑗 𝑥 1 − 𝑥 3 = ℎ1 + 𝑗ℎ2
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2- and 4-point DFT study

• The coefficients 𝑋[0]and 𝛸[2]can be calculated by adding and subtracting 𝑔1and 𝑔2, 

respectively. Depending on 𝑋[1]and 𝛸[3].

• Therefore, we can perform the 

calculation of 𝑋[𝑘]from the table:

• This way of calculating the 4-point DFT requires only 2 complex multiplications,

compared to 16 from the definition.

The calculation process is graphically rendered in the 

4-point FFT flowchart
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Step 1 Step 2

𝑔1 = 𝑥[0] + 𝑥[2]
𝑔2 = 𝑥[1] + 𝑥[3]
ℎ1 = 𝑥 0 − 𝑥[2]
ℎ2 = 𝑥 1 − 𝑥[3]

𝑋[0] = 𝑔1 + 𝑔2

𝑋 1 = ℎ1 − 𝑗ℎ2

𝑋 2 = 𝑔1 − 𝑔2

𝑋[3] = ℎ1 + 𝑗ℎ2



Example 8

Compute the 4-point DFT 𝑥 𝑛 = {1, 3, 5, 7} of the sequence with the DIT - FFT 

algorithm.

Answer: Based on the previous DIT - FFT 4 point flowchart we find:

Therefore the DFT is𝑋[𝑘] = {16, −4 + 4𝑗, −4, −4 − 4𝑗}
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Step 1 Step 2

𝑔1 = 𝑥 0 + 𝑥 2 = 1 + 5 = 6

𝑔2 = 𝑥 1 + 𝑥 3 = 3 + 7 = 10

ℎ1 = 𝑥 0 − 𝑥 2 = 1 − 5 = −4

ℎ2 = 𝑥 1 − 𝑥 3 = 3 − 7 = −4

𝑋 0 = 𝑔1 + 𝑔2 = 6 + 10 = 16

𝑋 1 = ℎ1 − 𝑗ℎ2 = −4 + 4𝑗

𝑋 2 = 𝑔1 − 𝑔2 = 6 − 10 = −4

𝑋 3 = ℎ1 + 𝑗ℎ2 = −4 − 4𝑗



Decimation in Frequency FFT Algorithm (Radix-2)

• Another approach: Separate calculation of even and odd samples of the DFT.

• For sequence 𝑥[𝑛] length 𝛮 = 2𝜈 and N-points DFT , the even DFT samples are:

𝑋 2𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑊𝑁
𝑛𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥 𝑛 𝑊𝑁/2
𝑛𝑘 + ෍

𝑛=𝑁/2

𝑁−1

𝑥 𝑛 𝑊𝑁/2
𝑛𝑘

= ෍

𝑛=0

𝑁/2−1

𝑥 𝑛 𝑊𝑁/2
𝑛𝑘 + ෍

𝑛=0

𝑁/2−1

𝑥 𝑛 +
𝑁

2
𝑊𝑁/2

𝑛+𝑁/2 𝑘

• Since 𝑊𝑁/2
𝑛+𝑁/2 𝑘

= 𝑊𝑁/2
𝑛𝑘 , the above equation is written:

𝑋 2𝑘 = ෍

𝑛=0

𝑁/2−1

𝑥 𝑛 + 𝑥 𝑛 +
𝑁

2
𝑊𝑁/2

𝑛𝑘

• So the even samples of the N-point DFT are calculated from the point DFT 𝑁/2 in a 
sequence formed by its first 𝛮/2 and last 𝑁/2 points 𝑥[𝑛].

• Accordingly, the redundant samples of the N-point DFT are given by:

𝑋[2𝑘 + 1] = ෍

𝑛=0

𝑁/2−1

𝑊𝑁
𝑛 𝑥[𝑛] − 𝑥 𝑛 +

𝑁

2
𝑊𝑁/2

𝑛𝑘
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Decimation in Frequency FFT Algorithm (Radix-2)

Decimation-in-frequency FFT (DIF-FFT) structure for 𝑁 = 8
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Example 9

Suppose that a complex pulse takes 1 µs and that the total running time of the DFT is 
determined by the computation time of the multiplications alone.

(a) How long would it take to compute a 1024-point DFT directly?

(b) How long will it take if we use FFT algorithm ?

(c) Plot in Matlab the number of complex multiplications for DFT and FFT for values of N 
from 1 to 2048.

Answer: (a) Number of complex (c) 
DFT multiplications: 𝑁2

DFT time -1024 points:
𝑡𝐷𝐹𝑇 = 10242 10−6 sec ≈ 1,05 𝑠𝑒𝑐

(b) Number of complex multiplications 
for radix -2 FFT: (𝛮/2) 𝑙𝑜𝑔 𝑁

Time FFT -1024 points:
𝑡𝐹𝐹𝑇 = 5120. 10−6 sec = 5,12 𝑚𝑠𝑒𝑐
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