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Lecture Contents

• Description of a Discrete-Time System in the Z-plane

o Transfer function

o Relationship between Transfer Function and Difference Equation

o Frequency Response

o Poles and Zeros of the Transfer Function

o All-Pole and All-Zero Systems

o Theorems of Causality and Stability of Systems
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Lecture Contents

• Solving Equations of Difference

• Solving Differential Equations

• Properties of Frequency Response

• DTFT Applications:
o Calculation of Frequency Response

o Solving Differential Equations

o Design of Inverse Systems

o Systems Connections

• Study of Systems in State-Space

o Solving dynamic equations
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Discrete-Time System modelling
in complex frequencies (z-plane)

• Transfer Function

• Derivation of Transfer Function from Difference Equation

• Frequency Response

• Poles and Zeros of the Transfer Function

• All-Pole and All-Zero Systems

• Theorems of Causality and Stability of Systems
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LSI System Transfer Function

For an LSI discrete-time system according to the convolution theorem we have:

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛]
𝑍

𝑌 𝑧 = 𝐻 𝑧 𝑋 𝑧

where ℎ 𝑛 the impulse response of the system, 𝑥[𝑛] the signal applied to its input 

and 𝐻(𝑧) the 𝑋(𝑧)corresponding transformations Z. Solving for 𝐻(𝑧) we have:

𝐻 𝑧 =
𝑌(𝑧)

𝑋(𝑧)

The function 𝐻(𝑧) is called the transfer function of the system and is unique for 

each system.
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LSI System Transfer Function

The transfer function of a LSI system is the Z-transform of the impulse response 

ℎ[𝑛] of the system, that is:

𝐻 𝑧 = ෍

𝑛=−∞

∞

ℎ[𝑛] 𝑧−𝑛

from ℎ[𝑛] to be complete, 𝐻 𝑧 the area of convergence should also be determined. 

If this is not possible, then other characteristics of the system, such as causality 

and stability, should be known.
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Example 1

A discrete-time LSI system accepts input 𝑥[𝑛] = 0.5 𝑛 𝑢[𝑛] and produces output given by

𝑦 𝑛 = −1 𝑛 + 1 𝑢[𝑛].

(a) Calculate the impulse response ℎ 𝑛 of the system.

(b) Calculate the output of the system for input 𝑥 𝑛 = (−0.2)𝑛 𝑢[𝑛].

Answer: (a) For the signals 𝑥[𝑛] and 𝑦 𝑛 we calculate the functions 𝑋(𝑧) and 𝑌(𝑧):

𝑋 𝑧 =
1

1 − 0.5𝑛𝑧−1
=

𝑧

𝑧 − 0.5
, 𝑅𝑥: 𝑧 > 0.5

𝑌 𝑧 =
𝑧

𝑧 + 1
+

𝑧

𝑧 − 1
=

2𝑧2

(𝑧 − 1)(𝑧 + 1)
, 𝑅𝑦: 𝑧 > 1

The transfer function is:

𝐻 𝑧 =
𝑌(𝑧)

𝑋(𝑧)
=

2𝑧2

(𝑧 − 1)(𝑧 + 1)
𝑧

𝑧 − 0.25

=
2𝑧(𝑧 − 0.5)

(𝑧 − 1)(𝑧 + 1)
, 𝑅ℎ: 𝑧 > 1

Z-transform we calculate the impulse response ℎ[𝑛]:

ℎ 𝑛 = 0.5 + 1.5 −1 𝑛 𝑢[𝑛]
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Example 1 (continued)

(b) First we calculate the function 𝛸 𝑧 , then the product 𝐻 𝑧 𝑋 𝑧 = 𝑌 𝑧 and 

finally with inverse Z-transform the sequence 𝑦[𝑛].

𝑋 𝑧 =
1

1 − 0.2𝑛𝑧−1
=

𝑧

𝑧 − 0.2
, 𝑅𝑥: 𝑧 > 0.2

𝑌 𝑧 = 𝐻 𝑧 𝑋 𝑧 =
2𝑧2(𝑧 − 0.5)

(𝑧 − 1)(𝑧 + 1)(𝑧 − 0.2)
, 𝑅𝑦 = 𝑅ℎ ∩ 𝑅𝑥: 𝑧 > 1

Since η 𝑌(𝑧) is expressed in factors of the term 𝑧, we calculate the expansion of the 

expression ෨𝑌 𝑧 = 𝑌 𝑧 /𝑧. Is:

𝑌 𝑧

𝑧
= ෨𝑌 𝑧 =

2𝑧 𝑧 − 0.5

𝑧 − 1 𝑧 + 1 𝑧 − 0.2
=

𝑅1

𝑧 − 1
+

𝑅2

𝑧 + 1
+

𝑅3

𝑧 − 0.2

where the rest 𝑅1, 𝑅2 and 𝑅3 are given by the relations:

𝑅1 = 𝑧 − 1 ෨𝑌 𝑧 𝑧=1 =
2𝑧(𝑧 − 0.5)

(𝑧 + 1)(𝑧 − 0.2)
𝑧=1

=
5

8
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Example 1 (continued)

𝑅2 = 𝑧 + 1 ෨𝑌 𝑧 𝑧=−1 =
2𝑧(𝑧 − 0.5)

(𝑧 − 1)(𝑧 − 0.2)
𝑧=−1

=
5

4

𝑅3 = 𝑧 − 0.2 ෨𝑌 𝑧 𝑧=0.2 =
2𝑧(𝑧 − 0.5)

(𝑧 − 1)(𝑧 + 1)
𝑧=0.2

=
1

8

Therefore, the expansion of the function 𝑌(𝑧) is:

𝑌 𝑧 =
5

8

𝑧

𝑧 − 1
+

5

4

𝑧

𝑧 + 1
+

1

8

𝑧

𝑧 − 0.2

Since the region of convergence is 𝑅𝑦: 𝑧 > 1 it follows that the subsequences are 

right-sided, so the output of the system is:

𝑦 𝑛 =
5

8
+

5

4
−1 𝑛 +

1

8
0.2 𝑛 𝑢[𝑛]
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Relationship between Transfer Function and Difference Equation

• The Linear Difference Equation with Constant Coefficients (LDECC) that 

describes a LSI system, which is initially relaxed (zero state), is:

𝑦[𝑛] = ෍

𝑚=0

𝛭

𝑏𝑚 𝑥[𝑛 − 𝑚] − ෍

𝑘=1

𝑁

𝑎𝑘 𝑦[𝑛 − 𝑘]

• Calculating the Z-transform of both terms and using the time-shift property 

we obtain:

𝑌(𝑧) = ෍

𝑚=0

𝑀

𝑏𝑚 𝑧−𝑚 𝑋 𝑧 − ෍

𝑘=1

𝑁

𝑎𝑘 𝑧−𝑘 𝑌 𝑧

• Solving for 𝑌(𝑧)/𝑋(𝑧), gives the transfer function 𝐻 𝑧 which is given by the 

equation:

𝐻 𝑧 ≜
𝑌 𝑧

𝑋 𝑧
=

σ𝑚=0
𝑀 𝑏𝑚 𝑧−𝑚

1 + σ𝑘=1
𝑁 𝑎𝑘 𝑧−𝑘

=
𝐵 𝑧

𝐴 𝑧
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Example 2

A LSI system is described by LDECC:

𝑦 𝑛 = 0.5𝑦[𝑛 − 1] + 𝑥 𝑛 − 1

Calculate: (a) the Transfer Function and (b) the impulse response of the system.

Answer: (a) We write the LDECC, transferring the terms 𝑦 to the right-hand 

member:

𝑦 𝑛 − 0.5 𝑦[𝑛 − 1] = 𝑥 𝑛 − 1

We calculate the Z-transform of both members of the LDECC. Using the time shift 

property we get:

𝑌 𝑧 −
1

2
𝑧−1𝑌 𝑧 = 𝑧−1𝑋 𝑧 ֜𝑌 𝑧 1 − 0.5 𝑧−1 = 𝑧−1𝑋 𝑧 ֜

𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
=

𝑧−1

1 − 0.5 𝑧−1 =
1

𝑧 − 0.5
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Example 2 (continued)

(b) Because the impulse response is calculated with an inverse Z-transform in the 

transfer function (ℎ[𝑛] = 𝑍−1[𝐻(𝑧)]), we develop in a sum of some fractions the 

expression:

𝐻 𝑧

𝑧
=

1

𝑧 𝑧 − 0.5
=

𝑅1

𝑧
+

𝑅2

𝑧 −
1
2

We find the rest: 𝑅1 = −2 και 𝑅2 = 2.

The Tansfer Function is:

𝐻 𝑧 = −2 +
2𝑧

𝑧 − 0.5

Therefore the impulse response is:

ℎ[𝑛] = −2𝛿[𝑛] + 2 0.5 𝑛𝑢[𝑛]
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Example 3

Write the LDECC implemented by the system with a transfer function:

𝐻 𝑧 =
1 − 0.5𝑧−1 + 𝑧−3

1 + 0.5𝑧−1 + 0.75𝑧−2

Answer: Because:

𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧

by cross multiplication of the right and left members we have:

1 + 0.5𝑧−1 + 0.75𝑧−2 𝑌 𝑧 = 1 − 0.5𝑧−1 + 𝑧−3 𝑋 𝑧

Calculating the inverse Z-transform of each term, we find the LDECC:

𝑦 𝑛 + 0.5𝑦 𝑛 − 1 + 0.75𝑦 𝑛 − 2 = 𝑥 𝑛 − 0.5𝑥 𝑛 − 1 + 𝑥 𝑛 − 3 ֜

𝑦 𝑛 = −0.5𝑦 𝑛 − 1 − 0.75𝑦 𝑛 − 2 + 𝑥[𝑛] − 0.5𝑥[𝑛 − 1] + 𝑥[𝑛 − 3]
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Example 4

For an LSI system is initially relaxed an has a transfer function, calculate:

𝐻(𝑧) =
𝑧 − 1

𝑧2 − 𝑧 + 0.25

(a) The LDECC describing the system.

(b) The impulse response of the system.

(c) The system output for input 𝑥[𝑛] = 𝑢[𝑛]

Answer: (a) We calculate the transfer function from: 𝐻 𝑧 = 𝑌(𝑧)/𝑋(𝑧), so we have:

𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
=

𝑧 − 1

𝑧2 − 𝑧 + 0.25
=

𝑧−1 − 𝑧−2

1 − 𝑧−1 + 0.25𝑧−2

We cross-multiply the fractions and get:

𝑌(𝑧) − 𝑧−1𝑌(𝑧) + 0.25𝑧−2𝑌(𝑧) = 𝑧−1𝑋(𝑧) − 𝑧−2𝑋(𝑧)

We apply inverse Z-transform and get the LDECC:

𝑦[𝑛] − 𝑦[𝑛 − 1] + 0.25𝑦[𝑛 − 2] = 𝑥[𝑛 − 1] − 𝑥[𝑛 − 2]֜

𝑦 𝑛 = 𝑦 𝑛 − 1 − 0.25𝑦 𝑛 − 2 + 𝑥[𝑛 − 1] − 𝑥[𝑛 − 2]
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Example 4 (continued)

(b) Because in the expression of the transfer function 𝐻 𝑧 in terms 𝑧−𝑛 the degree 
of the numerator is the same as the degree of the denominator we will develop the 
function in some fractions ෩𝛨 𝑧 :

෩𝛨 𝑧 =
𝐻 𝑧

𝑧
=

𝑧 − 1

𝑧 𝑧2 − 𝑧 + 0.25
=

𝑧 − 1

𝑧 𝑧 − 0.5 2

The development is:

෩𝛨 𝑧 =
𝐻 𝑧

𝑧
=

𝑅1

𝑧
+

𝑅2

𝑧 − 0.5 2 +
𝑅3

(𝑧 − 0.5)

We find the rest 𝑅1 and 𝑅2:

𝑅1 = 𝑧 ෩𝛨 𝑧
𝑧=0

=
𝑧 − 1

𝑧 − 0.5 2
𝑧=0

= −4

𝑅2 = 𝑧 − 0.5 2 ෩𝛨 𝑧
𝑧=0.5

=
𝑧 − 1

𝑧
𝑧=0.5

= −1
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Example 4 (continued)

To find the remainder 𝑅3 we substitute random values of 𝑧, which must not be poles. 
We put 𝑧 = 1 in equation (1) and we have:

෩𝛨 1 =
𝐻 1

1
=

1 − 1

1 1 − 0.5 2 = 0֜
−4

1
+

−1

1 − 0.5 2 +
𝑅3

1 − 0.5
= 0֜

= −4 − 4 +
𝑅3

0.5
֜ 𝑅3 = 4

Therefore:

𝐻 𝑧 =
𝑅1 𝑧

𝑧
+

𝑅2 𝑧

𝑧 − 0.5 2
+

𝑅3 𝑧

𝑧 − 0.5
= −4 − 2

0.5 𝑧

𝑧 − 0.5 2
+ 4

𝑧

(𝑧 − 0.5)

Based on Table 9.1 (p. 421 of the book), the impulse response is:

ℎ 𝑛 = −4𝛿 𝑛 − 2𝑛 0.5 𝑛 𝑢 𝑛 + 4 0.5 𝑛 𝑢 𝑛
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Example 4 (continued)

(c) We can compute the output by either convolution 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛] or inverse 

transformation 𝑦[𝑛] = 𝑍−1{𝑋 𝑧 𝐻 𝑧 }. We will follow the second way. The Z-transform of 

the input is:

𝑋 𝑧 =
1

1 − 𝑧−1
=

1

𝑧 − 1
, 𝑧 > 1

Therefore:

𝑌 𝑧 = 𝑋 𝑧 𝐻 𝑧 =
1

𝑧 − 1
.

𝑧 − 1

𝑧2 − 𝑧 + 0.25
=

1

𝑧2 − 𝑧 + 0.25
=

𝑧−2

(1 − 𝑧−1 + 0.25𝑧−2)

=
𝑧−2

1 − 0.5𝑧−1 2

Since the expression in the denominator is quadratic (double root) we use equation (9.39) 

and obtain the expansion:

𝑌 𝑧 =
𝑅1

1 − 0.5𝑧−1
+

𝑅2𝑧−1

1 − 0.5𝑧−1 2
(1)

We calculate it 𝑅2 from the equation (9.38):

𝑅2 = 1 − 0.5𝑧−1 2 𝑌 𝑧 𝑧=2 = 𝑧−2
𝑧=2 =

1

4
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Example 4 (continued)

To calculate it 𝑅1 we choose a value of 𝑧which is not a pole of the function 𝑌(𝑧). Let's say 

that 𝑧 = 1. We calculate it 𝑌(1) from the definition:

𝑌 1 =
1−2

1 − 0.5 1−1 2 =
1

0.52 = 4

We calculate it 𝑌(1) from the expansion (equation 1). Is:

𝑌 1 =
𝑅1

1 − 0.5 1−1 +
𝑅2 1−1

1 − 0.5 1−1 2 =
𝑅1

0.5
+

0.25

0.25
=

𝑅1

0.5
+ 1

Apply:

𝑅1

0.5
+ 1 = 4֜𝑅1 =

3

2

So the development is:

𝑌 𝑧 =
3

2

1

1 − 0.5𝑧−1 +
1

2

0.5 𝑧−1

1 − 0.5𝑧−1 2

From Table 9.1 we have:

𝑦 𝑛 =
3

2
0.5 𝑛 𝑢 𝑛 +

1

2
0.5 𝑛 𝑛𝑢 𝑛 =

1

2
3 + 𝑛 0.5 𝑛 𝑢[𝑛]
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Example 5

To solve the LDECC with zero initial conditions and input 𝑥[𝑛] = 𝑢[𝑛]:

𝑦 𝑛 = 1.6 𝑦 𝑛 − 1 − 0.64 𝑦 𝑛 − 2 + 𝑥[𝑛]

Answer: We write the LDECC, transferring the terms 𝑦[ ] to the left member:

𝑦 𝑛 − 1.6 𝑦 𝑛 − 1 − 0.64 𝑦[𝑛 − 2] = 𝑥 𝑛

The Z-transform of the input is:

𝑋 𝑧 =
1

1 − 𝑧−1 =
1

𝑧 − 1
, 𝑧 > 1

We calculate the Z-transform of both members of the LDECC. Using the time shift 

property of the Z-transform we get:

𝑌 𝑧 − 1.6 𝑧−1𝑌 𝑧 − 0.64 𝑧−2𝑌(𝑧) = 𝑋 𝑧 ֜𝑌 𝑧 1 − 1.6𝑧−1 − 0.64𝑧−2 =
1

1 − 𝑧−1
֜

𝑌 𝑧 =
1

1 − 𝑧−1 (1 − 1.6𝑧−1 − 0.64𝑧−2)
=

1

(1 − 𝑧−1) 1 − 0.8𝑧−1 2
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Example 5 (continued)

Due to the existence of a multiple pole we use equation (9.39) and obtain the 

expansion:

𝑌 𝑧 =
𝑅1

1 − 𝑧−1 +
𝑅2

1 − 0.8𝑧−1 +
𝑅3𝑧−1

1 − 0.8𝑧−1 2 , (1)

We calculate 𝑅1and 𝑅3 from the equation (9.38):

𝑅1 = 1 − 𝑧−1 2 𝑌 𝑧 𝑧−1=1 =
1

1 − 0.8𝑧−1 2
𝑧−1=1

= ⋯ = 25

𝑅3 = 1 − 0.8𝑧−1 2 𝑌 𝑧 𝑧−1=1/0.8=1.25 =
1

(1 − 𝑧−1)
𝑧−1=1.25

= ⋯ = −4

To calculate it 𝑅2 we choose a value of 𝑧which is not a pole of the function 𝑌(𝑧). Let's 

say that 𝑧 = 2. We calculate it 𝑌(2) from the definition. Is:

𝑌 2 =
1

1 − 2−1 (1 − 0.8 2−1)
= ⋯ =

1

0.18
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Example 5 (continued)

We calculate it 𝑌(2) from the expansion (equation 1). Is:

𝑌 2 =
25

1 − 2−1 +
𝑅2

1 − 0.8 2−1 −
4 2−1

1 − 0.8 2−1 2 =
25

0.5
+

𝑅2

0.6
−

2

0.36

Doing the operations, we find:

𝑅2 = −
5

6
So the development is:

𝑌 𝑧 = 25
1

1 − 𝑧−1
+ −

5

6

1

1 − 0.8𝑧−1
+ −5

0.8 𝑧−1

1 − 0.8𝑧−1 2

and from Table 9.2 (p. 421) we find:

𝑦 𝑛 = 25 1 𝑛𝑢 𝑛 −
5

6
0.8 𝑛𝑢 𝑛 − 5 0.8 𝑛𝑛 𝑢 𝑛 = 25 − 5 𝑛 +

1

6
0.8 𝑛 𝑢[𝑛]
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Frequency Response

• If the unit circle (𝑧 = 𝑒𝑗𝜔) is included in the region of convergence, then we can 
calculate the transfer function 𝐻 𝑧 on the unit circle. The result is the frequency 
response of the system:

𝐻 𝑒𝑗𝜔 = 𝑏0 𝑒𝑗(𝑁−𝑀)𝜔
ς𝑚=1

𝑀 (𝑒𝑗𝜔 − 𝑧𝑚)

ς𝑘=1
𝑁 (𝑒𝑗𝜔 − 𝑝𝑘)

• The frequency response is a complex function, so in polar coordinates it can be 
expressed in a magnitude response and a phase response.

• The magnitude response is:

𝐻 𝑒𝑗𝜔 = 𝑏0

ς𝑚=1
𝑀 𝑒𝑗𝜔 − 𝑧𝑚

ς𝑘=1
𝑁 𝑒𝑗𝜔 − 𝑝𝑘

• The phase response is:

∡𝐻 𝑒𝑗𝜔 = 0 𝜂 𝜋 + 𝛮 − 𝛭 𝜔 + ෍

𝑚=1

𝑀

∡(𝑒𝑗𝜔−𝑧𝑚) − ෍

𝑘=1

𝑁

(∡𝑒𝑗𝜔 − 𝑝𝑘)
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Frequency Response

• Since each term 𝑒𝑗𝜔 − 𝑧𝑚 represents the distance of the null 𝑧𝑚 from the unit 

circle for frequency 𝜔, and likewise each term 𝑒𝑗𝜔 − 𝑝𝑘 represents the 

distance of the pole 𝑝𝑘 from the unit circle for frequency 𝜔, it follows that the 
meter response translates as the quotient of the sum of the distances of the 
nulls from unit circle, to the sum of the distances of the poles from the unit 
circle, for each value of the digital frequency 𝜔.

• The phase response is the sum of a constant term [0 or π], a linear coefficient 
(𝛮 − 𝛭) with respect to frequency ω and a non-linear factor. The non-linear 
factor is the difference of the sum of the pole vectors from the sum of the zero 
vectors.
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Poles and Zeros of the Transfer Function

• Factoring the numerator and denominator polynomials of the transfer 
function, we have:

𝐻 𝑧 = 𝑏0 𝑧𝑁−𝑀
ς𝑚=1

𝑀 (𝑧 − 𝑧𝑚)

ς𝑘=1
𝑁 (𝑧 − 𝑝𝑘)

• The poles 𝑝𝑘are not included in the convergence region 𝑅𝐻because the transfer 
function tends to infinity: lim

𝑧→𝑝𝑘

𝐻(𝑧) = ∞.

• The graphical representation of poles and zeros forms the pole - zero map.

• If there is a pole and a zero in the same position of the diagram, then they 
cancel each other out.

• Because of the term 𝑧𝑁−𝑀 we will have |𝛮 − 𝛭| zeros in the 𝑧 = 0 if position 
𝛮 > 𝑀 or |𝛮 − 𝛭| poles if 𝛮 < 𝛭.

• The pole-zero diagram is useful in studying critical properties of a system, such 
as stability and causality, and in the design of digital systems and filters.
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All-Zero Systems

• If 𝛼𝑘 = 0 για 1 ≤ 𝑘 ≤ 𝑁, then the transfer function, is written:

𝐻 𝑧 = ෍

𝑚=0

𝛭

𝑏𝑚 𝑧−𝑚 =
1

𝑧𝑀 ෍

𝑚=0

𝛭

𝑏𝑚 𝑧𝑀−𝑚

• All-Zero system because it has only zeros and no poles. Alternatively, we can 
consider that all its poles are concentrated at the point 𝑧 = 0 (with multiplicity 
M).

• By inverse Z-transform we find that the impulse response of the All-Zero
system is given by the following equation, which describes a non-recursive 
system:

ℎ[𝑛] = ෍

𝑚=0

𝑀

𝑏𝑚 𝛿[𝑛 − 𝑚]

• Non-recursive systems have a finite impulse response (FIR).

• FIR systems are always stable, which is a major advantage.
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All-Pole Systems

• In the case that 𝑏𝑘 = 0 για 1 < 𝑘 ≤ 𝑀, then the transfer function is written:

𝐻 𝑧 =
𝑏0

1 + σ𝑘=1
𝑁 𝑎 𝑘 𝑧−𝑘

• All-Pole system because it has only poles and no zeros. The impulse response of 

the all-pole system is calculated from the equation:

ℎ[𝑛] = 𝑍−1 𝐻 𝑧

• All-Pole systems are a subcase of recursive systems.

• Recursive systems are also called infinite impulse response (IIR).

• If all its poles 𝐻(𝑧) lie inside the unit circle, then the system is stable.
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Theorems of Causality and Stability of Systems

System Stability Theorem: An LSI system is stable if and only if the Region of 

Convergence (ROC) of the transfer function 𝐻(𝑧) includes the unit circle |𝑧| = 1.

Theorem of Causality and Stability of Systems: An causal LSI system is stable if and 

only if all its poles lie inside the unit circle.

• A stable system includes in the ROC the unit circle. The reverse is also true.

• If the system is causal and has a ROC 𝑅ℎ: 𝑧 > 𝑎, where 𝛼 < 1 then the ROC 

includes the unit circle.

• Since the ROC cannot contain poles, it follows that a causal LSI system is stable 

when all its poles lie inside the unit circle. The reverse is also true.

Depending on the value of α, the pole can be either inside the unit circle ( 𝛼 < 1)

or outside ( 𝛼 > 1) or on the circle ( 𝛼 = 1). More specifically, it can take six 

different positions: α < −1, 𝛼 = −1, 1 < 𝑎 ≤ 0, 0 ≤ 𝑎 < 1, 𝛼 = 1 και 𝛼 > 1, as 

shown in the following figures.
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Stability Study of Systems using Z-transform

Let be system with impulse response ℎ 𝑛 = 𝑎𝑛𝑢[𝑛] and transfer function:

𝐻 𝑧 =
1

1 − 𝑎𝑧−1 =
𝑧

𝑧 − 𝑎
, 𝑅𝑥: 𝑧 > 𝑎

The system has a pole at 𝑧 = 𝑎 and a zero at 𝑧 = 0.

(a) 𝑎 > 1: Pole outside the unit circle (right half-plane)
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Stability Study of Systems using Z-transform

(b) 𝑎 = 1: Pole on the unit circle (right half-plane)

(c) 0 ≤ 𝑎 < 1: Pole inside the unit circle (right half-plane)
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Stability Study of Systems using Z-transform

(d) 1 < 𝑎 ≤ 0: Pole inside the unit circle (left half plane)

(e) 𝑎 = −1: Pole on the unit circle (left half plane)
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Stability Study of Systems using Z-transform

(f) 𝑎 < −1: Pole outside the unit circle (left half plane)

• When the pole is in the right half-plane the sequence is monotonic.

• When the pole is inside the unit circle 𝛼 < 1, then ℎ[𝑛] tends to zero 
for 𝑛 → ∞, so the system is stable.

• When the pole lies on the unit circle 𝛼 = 1, then ℎ 𝑛 has a constant value 
and infinite duration, so the system is marginally stable.

• When the pole is outside the unit circle 𝛼 > 1, then, ℎ[𝑛] tends to infinity 
for 𝑛 → ∞, so the system is unstable.

The same applies to the case of complex poles.
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Example 6

An LSI system is described by the transfer function:

𝐻 𝑧 =
3

1 − 0.5𝑧−1 +
4

1 − 2𝑧−1

Determine the region of convergence 𝑅ℎ and calculate the impulse response ℎ[𝑛]

so that the system is: (a) Stable, (b) Causal.

Answer: The poles of the system are 𝑝1 = 0.5 and 𝑝2 = 2.

(a) For the system to be stable, according to the stability theorem, the ROC 𝑅ℎmust 

include the unit circle. 

So, the ROC must satisfy the equation:

𝑅ℎ: 0.5 < 𝑧 < 2 or 𝑧 > 0.5 also 𝑧 < 2

Since 𝑧 > 0.5, the first part of the transfer function 𝐻(𝑧), that is, the function 

𝐻1 𝑧 = 3/(1 − 0.5𝑧−1) has an inverse transformation Z the right-hand side 

sequence ℎ1 𝑛 = 3 0.5 𝑛𝑢[𝑛], which is causal and stable.
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Example 6 (continued)

Since 𝑧 < 2,the function 𝐻2 𝑧 = 4/(1 − 2𝑧−1) has an inverse Z-transform the 

left-hand side sequence ℎ2 𝑛 = −4 2 𝑛𝑢[−𝑛 − 1], which is stable but not causal. 

Therefore, the total impulse response is:

ℎ 𝑛 = ℎ1 𝑛 + ℎ2 𝑛 = 3 0.5 𝑛𝑢[𝑛] − 4 2 𝑛𝑢[−𝑛 − 1]

We observe that the impulse response for 𝑛 → ∞ tends to zero, so the system is 

stable. But it is not causal, because of the left side sequence ℎ2 𝑛 .
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Example 6 (continued)

(b) For the system to be causal, the ROC must be a region outside the circle that has 

a radius greater than the farthest pole. So, the ROC must satisfy the equation

𝑅ℎ: 𝑧 > 2.

Since 𝑧 > 2and 𝑧 > 0.5. So, its inverse transformation 𝐻1 𝑧 = 3/(1 − 0.5𝑧−1) is 

the right-hand side sequence ℎ1 𝑛 = 3 0.5 𝑛𝑢[𝑛], which is causal and stable.

Since 𝑧 > 2, the function 𝐻2 𝑧 = 4/(1 − 2𝑧−1) has an inverse Z-transform  the 

right-hand side sequence ℎ2 𝑛 = 4 2 𝑛𝑢[𝑛], which is causal but unstable because 

it tends to infinity for 𝑛 → ∞. Therefore, the total impulse response is:

ℎ 𝑛 = ℎ1 𝑛 + ℎ2 𝑛 = 3 0.5 𝑛𝑢 𝑛 + 4 2 𝑛𝑢[𝑛]

We observe that the impulse response is causal, but not stable due to the 

sequence ℎ2 𝑛 .
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Solving Difference Equations
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Solving LDECC with Z + (1/4)

• In practical discrete-time systems the input signals are causal, while it is 

common for the system not to be in an initial quiescent state.

• We will present a methodology for solving a Linear Difference Equation with 

Constant Coefficients (LDECC) with initial conditions that describes a LSI 

system that is not initially relaxed, making use of the one-sided transformation 

𝛧+.

• For the solution we will use the property of the displacement in time of 𝛧+, 

which is described by:

𝑥 𝑛 − 𝑛0 𝑢 𝑛
𝑍+

𝑧−𝑛0𝑋+ 𝑧 + ෍

𝑛=1

𝑛0

𝑥 −𝑛 𝑧𝑛−𝑛0
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Solving LDECC with Z + (2/4)

• We consider a discrete-time LSI system described by LDECC:

𝑦[𝑛] = ෍

𝑚=0

𝛭

𝑏𝑚𝑥 𝑛 − 𝑚 − ෍

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 (1)

with initial conditions 𝑦[−1], 𝑦[−2], … , 𝑦[−𝑁]. The signal 𝑥[𝑛] is causal.

• Calculating the one-sided transformation 𝛧+of both members of the LDECC

and from the time shift property of 𝛧+, we have:

𝑌+ 𝑧 = ෍

𝑚=0

𝑀

𝑏𝑚 𝑧−𝑚 𝑋+ 𝑧 − ෍

𝑘=1

𝑁

𝑎𝑘 𝑧−𝑘 𝑌+ 𝑧 + ෍

𝑘=1

𝑁

𝑧−𝑘 ෍

𝑛=0

𝑁−1

𝑦[−𝑛]𝑧𝑛

• We transfer to the left member the terms 𝑌+ 𝑧 , and we have:

𝑌+ 𝑧 ෍

𝑘=0

𝑁

𝑎𝑘 𝑧−𝑘 = 𝑋+ 𝑧 ෍

𝑚=0

𝑀

𝑏𝑚 𝑧−𝑚 + ෍

𝑘=1

𝑁

𝑧−𝑘 ෍

𝑛=0

𝑁−1

𝑦 −𝑛 𝑧𝑛
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Solving LDECC with Z + (3/4)

• Calling the polynomials 𝐴 𝑧 = σ𝑘=0
𝑁 𝑎𝑘 𝑧−𝑘, 𝐵 𝑧 = σ𝑚=0

𝛭 𝑏𝑚𝑧−𝑚 and 

𝐼(𝑧) = σ𝑘=1
𝑁 𝑧−𝑘 σ𝑛=0

𝑁−1 𝑦[−𝑛]𝑧𝑛, the previous equation is written:

𝑌+ 𝑧 𝐴 𝑧 = 𝑋+ 𝑧 𝐵 𝑧 + 𝐼(𝑧)

• Solving for 𝑌+ 𝑧 and because 𝐻 𝑧 = 𝐵(𝑧)/𝐴 𝑧 we get:

𝑌+ 𝑧 =
𝐵 𝑧

𝐴 𝑧
𝑋+ 𝑧 +

𝐼 𝑧

𝐴 𝑧
= 𝐻 𝑧 𝑋+ 𝑧 +

𝐼 𝑧

𝐴 𝑧
(2)

• We notice that in the case of a system that is not initially relaxed, the response 

also has the term 𝐼(𝑧)/𝐴(𝑧), where the polynomial 𝐼(𝑧)is due to the initial 

conditions of the system.

• We recall that the response of a system at initial rest is:

𝑌+ 𝑧 = 𝐻 𝑧 𝑋+ 𝑧
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Solving LDECC with Z + (4/4)

• The inverse Z-transform of the first fraction of (2) gives the zero initial state 
response, while the inverse Z -transform of the second fraction gives the zero 
input response, i.e.

o Zero-state response:

𝑦𝑧𝑠 𝑛 = 𝑍−1 𝐻 𝑧 𝑋+ 𝑧

o Zero-input response:

𝑦𝑧𝑖[𝑛] = 𝑍−1
𝐼 𝑧

𝐴 𝑧

• Because the polynomial 𝐼(𝑧) describes the initial conditions of the system, we 
conclude that the zero-input response is the output due solely to the (non-
zero) initial state of the system.

• Therefore, the total output of an LSI system that is not at initial rest and 
receives a causal signal at its input is:

𝑦 𝑛 = 𝑦𝑧𝑖 𝑛 + 𝑦𝑧𝑠[𝑛]
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Example 7

To find the response of the LSI system described by LDECC 𝑦 𝑛 = 0.2𝑦 𝑛 − 1 +

0.8𝑦 𝑛 − 2 + 𝑥[𝑛], for entry 𝑥[𝑛] = 0.5 𝑛 𝑢[𝑛] and initial conditions 𝑦[−1] =

5and 𝑦[−2] = 10.

Answer: We calculate 𝑍+each of the terms of the LDECC:

𝑌+ 𝑧 = 0.2 𝑧−1𝑌+ 𝑧 + 𝑦 −1 + 0.8 𝑧−2 𝑌+ 𝑧 + 𝑧−1𝑦 −1 + 𝑦 −2 + 𝑋+ 𝑧

Substituting the values of the initial conditions, we have:

𝑌+ 𝑧 = 0.2 [𝑧−1 𝑌+ 𝑧 + 5] + 0.8 [𝑧−2 𝑌+ 𝑧 + 5𝑧−1 + 10] + 𝑋+ 𝑧 ֜

𝑌+ 𝑧 = 0.2 𝑧−1 𝑌+ 𝑧 + 1 + 0.8 𝑧−2 𝑌+ 𝑧 + 4𝑧−1 + 8 + 𝑋+ 𝑧

Transferring the terms containing the 𝑌+ 𝑧 to the left member, we have:

𝑌+ 𝑧 1 − 0.2𝑧−1 − 0.8𝑧−2 = 9 + 4𝑧−1 + 𝑋+ 𝑧
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Example 7 (continued)

Because 𝑋+(𝑧) its one-sided transformation𝑥[𝑛] = 0.5 𝑛𝑢[𝑛] is: 
𝑋+ 𝑧 = 1/(1 − 0.5𝑧−1), we get:

𝑌+ 𝑧 1 − 0.2𝑧−1 − 0.8𝑧−2 = (9 + 4𝑧−1) +
1

1 − 0.5𝑧−1

Solving for 𝑌+ 𝑧 we have:

𝑌+ 𝑧 =
(9 + 4𝑧−1)

1 − 0.2𝑧−1 − 0.8𝑧−2 +

1
1 − 0.5𝑧−1

1 − 0.2𝑧−1 − 0.8𝑧−2 (1)

By adding the fractions and then factoring the denominator, we have:

𝑌+ 𝑧 =
10 − 0.5𝑧−1 − 2𝑧−2

(1 − 0.2𝑧−1 − 0.8𝑧−2)(1 − 0.5𝑧−1)
=

=
10 − 0.5 𝑧−1 − 2𝑧−2

1 − 𝑧−1 (1 + 0.8𝑧−1)(1 − 0.5𝑧−1)
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Example 7 (continued)

The ROC is |𝑧| > 1 and the poles of the system are 𝑧1 = 1, 𝑧2 = −0.8, 𝑧3 = 0.5. 

Because one pole lies on the unit circle (and the rest are inside the unit circle) the 

system is marginally stable.

To expand it 𝑌+ 𝑧 into some fractions, we will calculate the remainders 𝑅1, 𝑅2 and 𝑅3:

𝑌+ 𝑧 =
𝑅1

1 − 𝑧−1 +
𝑅2

1 + 0.8𝑧−1 +
𝑅3

1 − 0.5𝑧−1

Since the poles are simple and distinct (𝑧1 = 1, 𝑧2 = −0.8, 𝑧3 = 0.5), we calculate the 

residues 𝑅1, 𝑅2, 𝑅3 calculate residuals from the equation:

𝑅𝑘 = อ
෨𝑏[0] + ෨𝑏[1]𝑧−1 + ⋯ + ෨𝑏[𝑁 − 1]𝑧−(𝑁−1)

1 + 𝑎[1]𝑧−1 + ⋯ + 𝑎[𝑁]𝑧−𝑁 1 − 𝑝𝑘𝑧−1

𝑧=𝑝𝑘

and we have:
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Example 7 (continued)

• 𝑅1 = 𝑌+ 𝑧 1 − 𝑧−1
𝑧=1 =

10−0.5 𝑧−1−2𝑧−2

(1+0.8𝑧−1)(1−0.5𝑧−1) 𝑧=1
=

25

3

• 𝑅2 = 𝑌+ 𝑧 1 + 0.8𝑧−1
𝑧=−0.8 =

10−0.5 𝑧−1−2𝑧−2

1−𝑧−1 (1−0.5𝑧−1) 𝑧=−0.8
=

80

39

• 𝑅3 = 𝑌+ 𝑧 1 − 0.5𝑧−1
𝑧=0.5 =

10−0.5 𝑧−1−2𝑧−2

1−𝑧−1 (1+0.8𝑧−1) 𝑧=0.5
= −

10

26

Therefore, its expansion 𝑌+ 𝑧 into some fractions is:

𝑌+ 𝑧 =
25

3

1

1 − 𝑧−1 +
80

39

1

1 + 0.8𝑧−1 + −
10

26

1

1 − 0.5𝑧−1

Performing an inverse Z-transform yields the desired solution:

𝑦 𝑛 =
25

3
1 𝑛𝑢 𝑛 +

80

39
−0.8 𝑛𝑢 𝑛 + −

10

26
0.5 𝑛𝑢 𝑛

=
25

3
+

80

39
−0.8 𝑛 −

10

26
0.5 𝑛 𝑢 𝑛
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Example 7 (continued)

The overall solution can be expressed in the following ways:

• As the sum of the homogeneous solution and the partial solution:

𝑦 𝑛 =
25

3
+

80

39
−0.8 𝑛 𝑢 𝑛 + −

10

26
0.5 𝑛𝑢 𝑛

The homogeneous solution is due to the poles and the partial solution 
to the zeros of the input signal.

• As the sum of the transient state and the permanent state:

𝑦 𝑛 =
80

39
−0.8 𝑛 + −

10

26
0.5 𝑛 𝑢 𝑛 +

25

3
𝑢 𝑛

The transient state is attributed to poles located inside the unit circle, while 
the steady state is attributed to poles located on the unit circle. If there are 
poles outside the unit circle, then the response tends to infinity, and the 
system becomes unstable.
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Example 7 (continued)

• As the sum of the response zero input (or initial state) and response zero initial 

state. Specifically, the above equation (1) is a sum of two terms. The first term 

can be written as:

𝑌𝑧𝑖 𝑧 = 𝐻 𝑧 𝑋𝑖𝑐(𝑧)

represents the response for the given input, assuming a zero initial state and is 

called the zero initial state response.

The function 𝑋𝑖𝑐(𝑧) can be thought of as an equivalent initial state input which 

produces the same output 𝑌𝑧𝑖(𝑧) that is created by the initial conditions. In our 

example and based on equation (1) it follows: 𝑥𝑖𝑐[𝑛] = {෠9, 4}.

The second term can be written as:

𝑌𝑧𝑠 𝑧 = 𝐻 𝑧 𝑋(𝑧)

represents the response for zero input, with only the initial state applied, and 

is called the zero input response.
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Example 7 (continued)

• Calculating the inverse transformation Z of equation (1), we have:

𝑦 𝑛 = 𝑦𝑧𝑖 𝑛 + 𝑦𝑧𝑠 𝑛

where 𝑦𝑧𝑠 𝑛 is the zero input response given by:

𝑦𝑧𝑖 𝑛 =
65

9
1 𝑛𝑢 𝑛 +

116

45
−0.8 𝑛𝑢 𝑛

=
65

9
+

116

45
−0.8 𝑛 𝑢 𝑛

and 𝑦𝑧𝑠 𝑛 is the zero-state response, which is given by:

𝑦𝑧𝑠 𝑛 =
10

9
1 𝑛𝑢 𝑛 +

32

117
−0.8 𝑛𝑢 𝑛 +

5

13
0.5 𝑛𝑢 𝑛

=
32

117
−0.8 𝑛 +

5

13
0.5 𝑛 +

10

9
𝑢 𝑛
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Solving Differential Equations

The solution of linear differential equations with constant coefficients that we 

studied with the Laplace transform can also be performed with the Z-transform if 

we appropriately transform the derivatives into differences taking into account the 

sampling frequency. For this purpose we use the approximate relations:

𝑑𝑦 𝑡

𝑑𝑡
≈

𝑦 𝑡 − 𝑦(𝑡 − 𝑇𝑠)

𝑇𝑠

𝑑2𝑦 𝑡

𝑑𝑡2 =
𝑑

𝑑𝑡

𝑑𝑦 𝑡

𝑑𝑡
≈

𝑑

𝑑𝑡

𝑦 𝑡 − 𝑦 𝑡 − 𝑇𝑠

𝑇𝑠
=

𝑦 𝑡 − 2𝑦 𝑡 − 𝑇𝑠 + 𝑦(𝑡 − 2𝑇𝑠)

𝑇𝑠
2

In a similar way we can calculate the derivatives of higher order.
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Example 8

A linear time-invariant LTI continuous-time system that is initially relaxed is 

described by the Linear Differential Equation with Constant Coefficients:

𝑑2𝑦 𝑡

𝑑𝑡2
+ 5

𝑑𝑦 𝑡

𝑑𝑡
+ 6𝑦 𝑡 = 𝑥(𝑡)

To find the response of the system for input 𝑥(𝑡) = 𝑢[𝑡].

Answer: Applying Laplace transform to the differential equation we find:

𝑠2𝑌 𝑠 + 5𝑠𝑌 𝑠 + 6𝑌 𝑠 = 𝑋 𝑠 =
1

𝑠
֜𝑌 𝑠 =

1

𝑠(𝑠2 + 5𝑠 + 6)
= ⋯

=
1

6

1

𝑠
−

1

2

1

𝑠 + 2
+

1

3

1

𝑠 + 3

Therefore the response for step input is:

𝑦 𝑡 =
1

6
−

1

2
𝑒−2𝑡 +

1

3
𝑒−3𝑡 𝑢(𝑡)
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Example 8 (continued)

Applying the first and second derivative approximations given in relations (11.29) and 

(11.30) to the differential equation, we then set 𝑡 = 𝑛𝑇𝑠 and obtain:

𝑦 𝑡 − 2𝑦 𝑡 − 𝑇𝑠 + 𝑦 𝑡 − 2𝑇𝑠

𝑇𝑠
2 + 5

𝑦 𝑡 − 𝑦 𝑡 − 𝑇𝑠

𝑇𝑠
+ 6𝑦 𝑡 = 𝑥 𝑡

֜ 6 +
5

𝑇𝑠
+

1

𝑇𝑠
2 𝑦 𝑡 + −

5

𝑇𝑠
−

2

𝑇𝑠
2 𝑦 𝑡 − 𝑇𝑠 +

1

𝑇𝑠
2 𝑦 𝑡 − 2𝑇𝑠 = 𝑥 𝑡

֜ 6 +
5

𝑇𝑠
+

1

𝑇𝑠
2 𝑦 𝑛𝑇𝑠 + −

5

𝑇𝑠
−

2

𝑇𝑠
2 𝑦 (𝑛 − 1)𝑇𝑠 +

1

𝑇𝑠
2 𝑦 (𝑛 − 2)𝑇𝑠 = 𝑥(𝑛𝑇𝑠)

֜𝑎1𝑦 𝑛𝑇𝑠 + 𝑎2𝑦 (𝑛 − 1)𝑇𝑠 + 𝑎3𝑦 (𝑛 − 2)𝑇𝑠 = 𝑏1𝑥(𝑛𝑇𝑠)

where:

𝑎1 = 6 +
5

𝑇𝑠
+

1

𝑇𝑠
2 , 𝑎2 = −

5

𝑇𝑠
+

2

𝑇𝑠
2 , 𝑎3 =

1

𝑇𝑠
2 , 𝑏1 = 1
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Example 8 (continued)

The sampling period must have a sufficiently small value calculated by the Nyquist 

criterion. For simplicity we set 𝑇𝑠= 1 and get:

𝑎1 = 12, 𝑎2 = −7, 𝑎3 = 1, 𝑏1 = 1

Therefore, the given continuous-time system when sampled is described by the 

difference equation:

12𝑦 𝑛 − 7𝑦 𝑛 − 1 + 𝑦 𝑛 − 2 = 𝑥 𝑛 , 𝑛 > 0

For zero initial conditions we have 𝑦[0] = 1/12. From the final value theorem we find 

𝑦[𝑛] = 1/6 for 𝑛 → ∞. The Z-transform of the output is:

𝑌 𝑧 12 − 7𝑧−1 + 𝑧−2 =
1

1 − 𝑧−1 ֜ … ֜𝑌 𝑧 =
1

1 − 𝑧−1 3 − 𝑧−1 4 − 𝑧−1 = ⋯

=
1

6

1

1 − 𝑧−1 −
1

2

1

3 − 𝑧−1 +
1

3

1

4 − 𝑧−1

Calculating the inverse of Z using Table 9.2, we find:

𝑦 𝑛 =
1

6
−

1

2
3 𝑛 +

1

3
4 𝑛 𝑢 𝑛

This solution is approximate and not exact because we chose a large value for the 

sampling period 𝑇𝑠 = 1. With a smaller value, the solution becomes more accurate.
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Frequency Response

• Definition

• Properties
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Frequency Response

• The DTFT of the impulse response ℎ[𝑛] of an LSI stable system is called the 
frequency response and is calculated by:

𝐻 𝑒𝑗𝜔 = ෍

𝑘=−∞

+∞

ℎ[𝑘] 𝑒−𝑗𝜔𝑘

• Magnitude:

𝐻 𝑒𝑗𝜔 = 𝐻𝑅
2 𝑒𝑗𝜔 + 𝐻𝐼

2 𝑒𝑗𝜔

• Phase:

𝜑𝛨 ω = tan−1
𝐻𝐼 𝑒𝑗𝜔

𝐻𝑅 𝑒𝑗𝜔

• Gain diagram: 𝛢 𝜔 = 20𝑙𝑜𝑔 𝐻(𝑒𝑗𝜔) (dB)

• Apply: 𝐻(𝑒𝑗𝜔) = 1 → 0 𝑑𝐵, 𝐻(𝑒𝑗𝜔) = 10 → 20 𝑑𝐵, 𝐻(𝑒𝑗𝜔) = 0.1 → −20 𝑑𝐵

• Group delay: 

𝜏𝛨 𝜔 = −
𝑑𝜑𝛨 𝜔

𝑑𝜔
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Frequency Response Properties

• It has all the properties of DTFT. Particularly:

• Periodicity: The frequency response is a periodic function with a period 𝟐𝝅, ie 

it is valid 𝐻 𝑒𝑗𝜔0 = 𝐻 𝑒𝑗(𝜔0+2𝜋) .

• Spectral Symmetry: If ℎ[𝑛]is a real sequence, then 𝐻 𝑒𝑗𝜔 is a conjugate 

symmetric function of frequency, that is:

𝐻 𝑒−𝑗𝜔 = 𝐻∗ 𝑒𝑗𝜔

• Perfect symmetry - Actual part and width:

𝐻𝑅 𝑒𝑗𝜔 = 𝐻𝑅 𝑒−𝑗𝜔 and 𝐻𝑅 𝑒𝑗𝜔 = 𝐻𝑅 𝑒−𝑗𝜔

• Unnecessary symmetry - Fantasy part, phase and group delay:

𝐻𝐼 𝑒𝑗𝜔 = −𝐻𝐼 𝑒−𝑗𝜔 ,  𝜑𝐻 ω = −𝜑𝐻 −ω and 𝜏𝐻 ω = −𝜏𝐻 −ω

• Based on these properties, it follows that for the design of the frequency 

response 𝐻 𝑒𝑗𝜔 only half a period is sufficient, we usually choose 𝟎, 𝝅 .
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Frequency Response Properties

• Frequency Response Inversion: If the frequency response of an LSI system is:

𝐻 𝑒𝑗𝜔 = ෍

𝑛=−∞

+∞

ℎ[𝑛] 𝑒−𝑗𝑛𝜔

• The impulse response can be retrieved by integration over any interval of length 
2𝜋:

ℎ[𝑛] =
1

2𝜋
න

−𝜋

+𝜋

𝐻 𝑒𝑗𝜔 𝑒𝑗𝑛𝜔𝑑𝜔
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Example 9

To find the amplitude, phase and group delay of a system with impulse response 
ℎ[𝑛] = 𝛿[𝑛] − 𝛼𝛿[𝑛 − 1], where 𝛼 ∈ R.

Answer: The frequency response is:

𝐻 𝑒𝑗𝜔 = 1 − 𝑎𝑒−𝑗𝜔 = 1 − 𝑎 cos𝜔 + 𝑗𝑎 sin𝜔

The magnitude is:

𝐻 𝑒𝑗𝜔 2
= (1 − 𝛼 cos𝜔)2+(𝛼 sin𝜔)2

= 1 − 2𝛼 cos𝜔 + 𝛼2cos2𝜔 + 𝛼2sin2𝜔
= 1 − 2𝛼 cos𝜔 + 𝑎2

The phase is:

𝜑𝐻 𝜔 = 𝑡𝑎𝑛−1
𝐻𝐼(𝑒𝑗𝜔)

𝐻𝑅(𝑒𝑗𝜔)
= 𝑡𝑎𝑛−1

𝑎 𝑠𝑖𝑛𝜔

1 − 𝛼 𝑐𝑜𝑠𝜔

The group delay is:

𝜏𝛨(𝜔) =
𝑑𝜑𝛨𝜔

𝑑𝜔
= ⋯ =

𝛼2 − 𝛼 𝑐𝑜𝑠𝜔

1 − 2𝛼 𝑐𝑜𝑠𝜔 + 𝑎2
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Applications of DTFT

• Calculation of Frequency Response

• Solving Differential Equations

• Design of Inverse Systems

• Systems Connections
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Calculation of Frequency Response 
by Difference Equation

• We know that the following LDECC describes the input-output relationship of a 

LSI system:

𝑦[𝑛] = ෍

𝑚=0

𝛭

𝑏𝑚𝑥[𝑛 − 𝑚] − ෍

𝑘=1

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘]

• Applying DTFT to both members of the LDECC and from the linearity and time-

shift properties of the DTFT, the frequency response is obtained:

𝐻 𝑒𝑗𝜔 =
𝑌 𝑒𝑗𝜔

𝑋 𝑒𝑗𝜔
=

σ𝑚=0
𝑀 𝑏𝑚𝑒−𝑗𝑚𝜔

1 + σ𝑘=1
𝑁 𝑎𝑘𝑒−𝑗𝑘𝜔

=
σ𝑚=0

𝑀 𝑏𝑚𝑒−𝑗𝑚𝜔

σ𝑘=0
𝑁 𝑎𝑘𝑒−𝑗𝑘𝜔

• Because the LDECC is unique to each system and describes it uniqualy, so is the 

frequency response.
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Example 10

To find the frequency response of a discrete-time LSI system with LDECC: 
𝑦[𝑛] − 0.5𝑦[𝑛 − 1] = 𝑥[𝑛] + 2𝑥[𝑛 − 1] + 𝑥[𝑛 − 2] and with zero initial 
conditions.

Answer: We calculate the DTFT of each member of the difference equation:

𝑌 𝑒𝑗𝜔 − 0.5 𝑌 𝑒𝑗𝜔 𝑒−𝑗𝜔 = 𝑋 𝑒𝑗𝜔 + 2𝑒−𝑗𝜔𝑋 𝑒𝑗𝜔 + 𝑒−𝑗2𝜔𝑋 𝑒𝑗𝜔 ֜

֜ 1 − 0.5𝑒−𝑗𝜔 𝑌 𝑒𝑗𝜔 = 1 + 2𝑒−𝑗𝜔 + 𝑒−𝑗2𝜔 𝑋 𝑒𝑗𝜔

Solving for 𝑌(𝑒𝑗𝜔)/𝑋(𝑒𝑗𝜔), we find the frequency response:

𝐻 𝑒𝑗𝜔 =
𝑌 𝑒𝑗𝜔

𝑋 𝑒𝑗𝜔
=

1 + 2𝑒−𝑗𝜔 + 𝑒−𝑗2𝜔

1 − 0.5𝑒−𝑗𝜔
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Solving Difference Equations

• Solving the LDECC for 𝑌 𝑒𝑗𝜔 , we find:

𝑌 𝑒𝑗𝜔 =
σ𝑘=0

𝑀 𝑏𝑚 𝑒−𝑗𝑚𝜔

1 + σ𝑘=1
𝑁 𝑎𝑘 𝑒−𝑗𝑘𝜔

𝑋 𝑒𝑗𝜔

• For zero initial conditions, a LDECC is solved with the following steps:

o Transferring the problem to the frequency domain, calculating the DTFT 
of each term of the LDECC.

o Solving for 𝑌(𝑒𝑗𝜔).

o Returning to the time domain and finding 𝑦[𝑛], by computing the inverse 
DTFT of 𝑌(𝑒𝑗𝜔).

• It is a computationally simpler way than the method of finding a homogeneous 
and partial solution in the time domain.

• It is only applicable to the case of a system described by LDECC with zero 
initial conditions.

• If the system is not initially at rest, then the complete solution in the frequency 
domain is given by the one-sided Z-transform.
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Example 11

To find the impulse response of a LSI system described by LDECC: 

𝑦 𝑛 − 0.25𝑦 𝑛 − 1 = 𝑥 𝑛 − 𝑥 𝑛 − 2 (zero initial conditions).

Answer: We calculate the DFTF of each LDECC member:

𝑌 𝑒𝑗𝜔 − 0.25 𝑌 𝑒𝑗𝜔 𝑒−𝑗𝜔 = 𝑋 𝑒𝑗𝜔 − 𝑒−2𝑗𝜔𝑋 𝑒𝑗𝜔

Because 𝑋 𝑒𝑗𝜔 = 𝛥 𝑒𝑗𝜔 = 1 we have:

1 − 0.25𝑒−𝑗𝜔 𝑌 𝑒𝑗𝜔 = 1 − 𝑒−2𝑗𝜔

֜ 𝐻 𝑒𝑗𝜔 =
1 − 𝑒−2𝑗𝜔

1 − 0.25 𝑒−𝑗𝜔
=

1

1 − 0.25 𝑒−𝑗𝜔
−

𝑒−2𝑗𝜔

1 − 0.25 𝑒−𝑗𝜔

Because:

(0.25)𝑛𝑢[𝑛]
𝐷𝑇𝐹𝑇

1/(1 − 0.25 𝑒−𝑗𝜔)

and with the linearity and time-shift properties of the DTFT we find the inverse 

DTFT, i.e. the impulse response:
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Example 11 (continued)

Impulse response:

ℎ[𝑛] = 0.25 𝑛 𝑢[𝑛] − 0.25 𝑛−2𝑢[𝑛 − 2]

Impulse response ℎ[𝑛]
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Example 12
Find the LDECC of the LSI system with frequency response:

𝐻 𝑒𝑗𝜔 = 𝑒𝑗𝜔
1

1.1 + cos 𝜔

Answer: We express the 𝐻 𝑒𝑗𝜔 function of complex exponential terms:

𝐻 𝑒𝑗𝜔 =
𝑒𝑗𝜔

1.1 + 0.5𝑒−𝑗𝜔 + 0.5𝑒𝑗𝜔

Multiplying numerator and denominator by the quantity 2𝑒𝑗𝜔 we get:

𝐻 𝑒𝑗𝜔 =
𝑌 𝑒𝑗𝜔

𝑋 𝑒𝑗𝜔
=

2

1 + 2.2𝑒−𝑗𝜔 + 𝑒−2𝑗𝜔

Cross multiplying the terms of the right and left sides, we have:

1 + 2.2𝑒−𝑗𝜔 + 𝑒−2𝑗𝜔 𝑌 𝑒𝑗𝜔 = 2𝑋 𝑒𝑗𝜔

By inverse DTFT of each term we obtain the difference equation:

𝑦[𝑛] + 2.2𝑦[𝑛 − 1] + 𝑦[𝑛 − 2] = 2𝑥 𝑛
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Inverse Systems

• Given a discrete-time LSI system with impulse response ℎ[𝑛], inverse system 

has a impulse response 𝑔[𝑛] that satisfies the equation:

ℎ[𝑛] ∗ 𝑔[𝑛] = 𝛿[𝑛]

• The frequency response of the inverse system is:

𝐻 𝑒𝑗𝜔 𝐺 𝑒𝑗𝜔 = 1 ֜ 𝐺 𝑒𝑗𝜔 =
1

𝐻(𝑒𝑗𝜔)

• After inverting a practical system we should check whether the resulting 

inverse system is causal, i.e. practically realizable, as well as stable. For the 

latter to hold, the poles and zeros of the original system must lie within the 

unit circle.
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Example 13

To calculate the impulse response of the inverse system of an LSI system with 

frequency response:

𝐻 𝑒𝑗𝜔 =
1 − 0.4 𝑒−𝑗𝜔

1 + 0.7 𝑒−𝑗𝜔

Answer: The frequency response of the inverse system is:

𝐺 𝑒𝑗𝜔 =
1

𝐻(𝑒𝑗𝜔)
=

1 + 0.7 𝑒−𝑗𝜔

1 − 0.4 𝑒−𝑗𝜔
=

1

1 − 0.4 𝑒−𝑗𝜔
+

0.7 𝑒−𝑗𝜔

1 − 0.4 𝑒−𝑗𝜔

Using the DTFT pair:

1

1 − 𝛼 𝑒−𝑗𝜔

𝐷𝑇𝐹𝑇
𝛼𝑛𝑢[𝑛], 𝛼 < 1

and the time shift property:

𝑥[𝑛 − 𝑛0]
𝐷𝑇𝐹𝑇

𝑒−𝑗𝑛0𝜔𝑋 𝑒𝑗𝜔

we find the impulse response:

𝑔[𝑛] = 0.4 𝑛 𝑢[𝑛] + 0.7 0.4 𝑛−1𝑢[𝑛 − 1]
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Systems Connections

• Serial Connection

• Parallel Connection

• Feedback Connection
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Serial Connection

Serial connection of systems

• Total System Impulse Response:

ℎ[𝑛] = ℎ1[𝑛] ∗ ℎ2[𝑛]

• Total System Frequency Response:

𝐻 𝑒𝑗𝜔 = 𝐻1 𝑒𝑗𝜔 𝐻2 𝑒𝑗𝜔

• Relationships apply:

o 20𝑙𝑜𝑔 𝐻 𝑒𝑗𝜔 = 20𝑙𝑜𝑔 𝐻1 𝑒𝑗𝜔 + 20𝑙𝑜𝑔 𝐻2 𝑒𝑗𝜔

o 𝜑𝛨(𝜔) = 𝜑𝛨1(𝜔) + 𝜑𝛨2(𝜔)

o 𝜏𝛨(𝜔) = 𝜏𝛨1(𝜔) + 𝜏𝛨2(𝜔)
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Parallel Connection

Parallel connection of systems

• Total System Impulse Response:

ℎ 𝑛 = ℎ1 𝑛 + ℎ2[𝑛]

• Total System Frequency Response:

𝐻 𝑒𝑗𝜔 = 𝐻1 𝑒𝑗𝜔 + 𝐻2 𝑒𝑗𝜔
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Feedback Connection

Feedback (positive) connection of systems

• Total System Impulse Response:

ℎ[𝑛] =
ℎ1[𝑛]

1 − ℎ1[𝑛] ∗ ℎ2[𝑛]

• Total System Frequency Response:

𝐻 𝑒𝑗𝜔 =
𝐻1 𝑒𝑗𝜔

1 − 𝐻1 𝑒𝑗𝜔 𝐻2 𝑒𝑗𝜔
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Example 14

(a) For the following system wiring, calculate the overall frequency response, as a 
function of the responses 𝐻1(𝑒𝑗𝜔), 𝐻2(𝑒𝑗𝜔), 𝐻3(𝑒𝑗𝜔) and 𝐻4(𝑒𝑗𝜔).

(b) Calculate the overall frequency response given that:

• ℎ1[𝑛] = 𝛿[𝑛] + 2𝛿[𝑛 − 1] + 𝛿[𝑛 − 4]

• ℎ2[𝑛] = ℎ3[𝑛] = 0.2 𝑛𝑢[𝑛]

• ℎ4[𝑛] = 𝛿[𝑛 − 2]
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Example 14 (continued)

Answer: (a)𝐻 𝑒𝑗𝜔 = 𝐻1 𝑒𝑗𝜔 𝐻2 𝑒𝑗𝜔 + 𝐻3 𝑒𝑗𝜔 𝐻4 𝑒𝑗𝜔

(b) The individual responses of each system individually are:

𝐻1 𝑒𝑗𝜔 = 1 + 2𝑒−𝑗2𝜔 + 𝑒−𝑗4𝜔 = (1 + 𝑒−𝑗2𝜔)2

𝐻2 𝑒𝑗𝜔 = 𝐻3 𝑒𝑗𝜔 =
1

1 − 0.2 𝑒−𝑗𝜔

𝐻4 𝑒𝑗𝜔 = 𝑒−𝑗2𝜔

Therefore, the total frequency response is:

𝐻 𝑒𝑗𝜔 = 𝐻1 𝑒𝑗𝜔 𝐻2 𝑒𝑗𝜔 + 𝐻3 𝑒𝑗𝜔 𝐻4 𝑒𝑗𝜔

= 𝐻1 𝑒𝑗𝜔 𝐻2 𝑒𝑗𝜔 1 + 𝐻4 𝑒𝑗𝜔

=
(1 + 𝑒−𝑗2𝜔)3

1 − 0.2 𝑒−𝑗𝜔
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Example 15
If a filter with impulse response ℎ(𝑛) is implemented with a LDECC of the form:

𝑦 𝑛 = ෍

𝑚=1

𝑀

𝑏𝑚𝑥 𝑛 − 𝑚 − ෍

𝑘=1

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘]

in what way should the LDECC be modified, in order to implement the impulse 
response system 𝑔[𝑛] = −1 𝑛ℎ[𝑛] ?

Answer: The frequency response of the impulse response filter ℎ[𝑛] is:

𝐻(𝑒𝑗𝜔) =
σ𝑚=0

𝑀 𝑏𝑚𝑒−𝑗𝑚𝜔

1 − σ𝑘=1
𝑁 𝑎𝑘𝑒−𝑗𝑘𝜔

Multiplying ℎ[𝑛] by the term −1 𝑛 results in a system with a frequency response:

𝐺 𝑒𝑗𝜔 = 𝐻 𝑒𝑗 𝜔−𝜋 =
σ𝑚=0

𝑀 𝑏𝑚𝑒−𝑗𝑚 𝜔−𝜋

1 − σ𝑘=1
𝑁 𝑎𝑘 𝑒−𝑗𝑘 𝜔−𝜋
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Excercise 15 (continued)
Because 𝑒𝑗𝑘𝜋 = −1 𝑘 resulting:

𝐺 𝑒𝑗𝜔 =
σ𝑚=0

𝑀 −1 𝑚𝑏𝑚 𝑒−𝑗𝑚𝜔

1 − σ𝑘=1
𝑁 −1 𝑘𝑎𝑘 𝑒−𝑗𝑘𝜔

and the difference equation becomes:

𝑦 𝑛 = ෍

𝑚=1

𝑀

−1 𝑚 𝑏𝑚𝑥 𝑛 − 𝑚 − ෍

𝑘=1

𝑁

−1 𝑘𝑎𝑘𝑦[𝑛 − 𝑘]

Thus, the coefficients 𝑎𝑘 και 𝑏𝑚 for odd values of 𝑚 και 𝑘 take a negative sign.
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Methodology

A discrete-time LSI system is described by LDECC:

𝑦 𝑛 + 𝑎1𝑦 𝑛 − 1 + ⋯ + 𝑎𝑁𝑦 𝑛 − 𝑁 = 𝑏0𝑥 𝑛 + 𝑏1𝑥 𝑛 − 1 + ⋯ + 𝑏𝑀𝑥 𝑛 − 𝑀 , 𝑛 ≥ 0

with initial conditions 𝑦[−1], 𝑦[−2], … , 𝑦[−𝑁]. The signal 𝑥[𝑛] is causal and 𝛭 ≤ 𝛮.We 
describe the output lags of the above relationship with the variables:

𝑣1 𝑛 = 𝑦 𝑛 − 1
𝑣2[𝑛] = 𝑦[𝑛 − 2].

.

.
𝑣𝑁[𝑛] = 𝑦[𝑛 − 𝑁]

and we get the State-Space equations:

𝑣1 𝑛 + 1 = 𝑦 𝑛 = −𝑎1𝑣1 𝑛 − ⋯ − 𝑎𝑁𝑣𝑁 𝑛 + 𝑏0𝑥 𝑛 + ⋯ + 𝑏𝑀𝑥 𝑛 − 𝑀

𝑣2[𝑛 + 1] = 𝑣1[𝑛].
.
.

𝑣𝑁 𝑛 + 1 = 𝑣𝑁−1[𝑛]
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Methodology

as well as the output equation:

𝑦 𝑛 = −𝑎1𝑣1 𝑛 − ⋯ − 𝑎𝑁𝑣𝑁 𝑛 + 𝑏0𝑥 𝑛 + ⋯ + 𝑏𝛭 𝑥 𝑛 − 𝑀

The initial conditions of the equations of state are related to the initial conditions 
of the system through the equation:

𝑣1 0 = 𝑦 −1 , 𝑣2 0 = 𝑦 −2 , … , 𝑣𝑁 0 = 𝑦 −𝑁

The above equations (of state and output) are also known as dynamic equations 
and can be written in tabular form:

𝒗 𝑛 + 1 = 𝑨𝒗 𝑛 + 𝑩𝒙 𝑛

𝑦 𝑛 = 𝒄𝑇𝒗 𝑛 + 𝒅𝑇𝒙 𝑛 , 𝑛 ≥ 0

by appropriately defining the (system) tables 𝑨 and 𝑩 (input), the vectors 𝒄
(measurement) and 𝒅 (output), as well as the state vector 𝒗[𝑛] and the input 
vector 𝒙[𝑛].
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Solving Dynamic Equations

Solving the equation of state:

𝒗 𝑛 + 1 = 𝑨𝒗 𝑛 + 𝑩𝒙 𝑛 , 𝑛 ≥ 0

can be done by an iterative process:

𝒗 1 = 𝑨𝒗 0 + 𝑩𝒙 0

𝒗 2 = 𝑨𝒗 1 + 𝑩𝒙 1 = 𝑨𝟐𝒗 0 + 𝑨𝑩𝒙 0 + 𝑩𝒙 1
.
.
.

𝒗 𝑛 = 𝑨𝑛𝒗 0 + ෍
𝑘=0

𝑛−1

𝑨𝑛−1−𝑘𝑩𝒙[𝑘]

where 𝜜0 = 𝜤 is the unit matrix. The complete solution is given by the equation:

𝑦 𝑛 = 𝒄𝑇𝑨𝑛𝒗 0 + ෍

𝑘=0

𝑛−1

𝒄𝑇𝑨𝑛−1−𝑘𝑩𝒙[𝑘] + 𝒅𝒙 𝑛

The first term in the above equation is the zero input response:

𝑦𝑧𝑖 𝑛 = 𝒄𝑇𝑨𝑛𝒗 0
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Solving Dynamic Equations

and the second is the zero-state response:

𝑦𝑧𝑠 𝑛 = ෍

𝑘=0

𝑛−1

𝒄𝑇𝑨𝑛−1−𝑘𝑩𝒙[𝑘] + 𝒅𝒙 𝑛

Instead of the iterative solution we can use the one-sided transformation 𝛧+to obtain a 

closed expression of the solution. Specifically, calculating 𝛧+the state variables 

𝑉𝑖(𝑧) = 𝑍+{𝑣𝑖 𝑛 }, 𝑖 = 1, … , 𝑁, the input 𝑋𝑚(𝑧) = 𝑍{𝑥 𝑛 − 𝑚 }, 𝑚 = 0, … , 𝑀 and the 

output 𝑌(𝑧) = 𝑍 𝑦 𝑛 , we arrive at the following transformation expression 𝛧+:

𝑧𝑽 𝑧 − 𝑧𝒗 0 = 𝑨𝑽 𝑧 + 𝑩𝑿 𝑧 ֜ 𝑧𝑰 − 𝑨 𝑽 𝑧 = 𝑧𝒗 0 + 𝑩𝑿(𝑧)

Assuming that the inverse matrix of the term 𝑧𝑰 − 𝑨 can be computed, 

(i.e. det 𝑧𝑰 − 𝑨 ≠ 0), we solve for 𝑽 𝑧 and find:

𝑽 𝑧 = 𝑧𝑰 − 𝑨 −1𝑧𝒗 0 + 𝑧𝑰 − 𝑨 −1𝑩𝑿(𝑧)

Similarly, the transformation 𝛧+of the output is:

𝒀 𝑧 = 𝒄𝑇 𝑧𝑰 − 𝑨 −1𝑧𝒗 0 + [𝒄𝑇 𝑧𝑰 − 𝑨 −1𝑩 + 𝒅]𝑿(𝑧)

If the initial conditions 𝒗 0 are zero, then the transfer function is given by the equation:

𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
= 𝒄𝑇 𝑧𝑰 − 𝑨 −1𝑩 + 𝒅
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Solving Dynamic Equations

We recall that the inverse Matrix 𝑹−1 of a matrix 𝑹𝑛𝑥𝑛 is given by the equation
(Cramer's rule):

𝑹−1 =
𝑎𝑑𝑗(𝑹)

𝑑𝑒𝑡(𝑹)

where:

• 𝑑𝑒𝑡(𝑹) is the matrix determinant, and

• 𝑎𝑑𝑗(𝑹) is the complementary matrix of dimensions 𝑛 𝑥 𝑛, which has elements 
−1 𝑖+𝑗𝑑𝑒𝑡𝑅𝑖𝑗 , where 𝑅𝑖𝑗is the matrix resulting from the matrix 𝑹 if we delete 

the 𝑖 −row and the 𝑗 −column.

78



Example 16

Find the State-Space description of the discrete-time system described by the 

difference equation:

𝑦 𝑛 = 𝑦 𝑛 − 1 − 0.5𝑦 𝑛 − 2 + 0.25𝑥 𝑛

Answer: In the given difference equation we replace the output delays with the 

following state variables:

𝑣1[𝑛] = 𝑦[𝑛 − 2]

𝑣2 𝑛 = 𝑦 𝑛 − 1

This results in the description of the system in the State-Space:

𝑣1[𝑛 + 1] = 𝑣2[𝑛]

𝑣2 𝑛 + 1 = −0.5𝑣1 𝑛 + 𝑣2 𝑛 + 0.25𝑥[𝑛]

which in tabular form is written:

𝑣1[𝑛 + 1]

𝑣2 𝑛 + 1
=

0 1
−0.5 1

𝑣1[𝑛]

𝑣2 𝑛
+

0
0.25

𝑥[𝑛]
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Example 16 (continued)

Therefore the (system) matrices 𝑨 and 𝑩 (input), is:

𝜜 =
0 1

−0.5 1
𝜝 =

0
0.25

The difference equation is written:

𝑦 𝑛 = −0.5𝑣1 𝑛 + 𝑣2[𝑛] + 0.25𝑥 𝑛

and in tabular form are:

𝑦[𝑛] = −0.5 1
𝑣1[𝑛]

𝑣2 𝑛
+ 0.25 𝑥[𝑛]

Therefore, the vectors 𝒄 (measurement) and 𝒅 (output), is:

𝒄𝑻 = −0.5 1 𝒅 = 0.25
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