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Lecture Contents

Study of Discrete Time Systems using Difference Equations:

• Difference Equations

• Solving Differential Equations with Linear Coefficients 

• Classification of Systems according to the type of Impulse 

Response

• Asymptotic Stability LSI Discrete Time Systems
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System Description using Difference Equations

We have seen that in Discrete Time (DT) systems the input-output equationship 
can take the general form (difference equation):

𝑦 𝑛 = 

𝑚=0

𝑀

𝑏𝑚𝑥 𝑛 − 𝑚 − 

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 , 𝑛 ≥ 0

o 𝑎𝑘 , 𝑏𝑚 constants that define the system

o 𝑦 −𝑘 , 𝑘 = 1, … , 𝑁 initial state of the output

o 𝑥 −𝑚 , 𝑚 = 1, … , 𝑀 initial state of the input

• The above difference equation describes the structure of the system.

• If the system is causal, that is 𝑥 −𝑚 = 0 για 𝑚 = 1, … , 𝑀, to calculate the 
output, only the initial conditions of the output are required.

• If 𝑦 −𝑘 = 0, για 𝑘 = 1, … , 𝑁, then the system is initially relaxed. 
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System Description using Difference Equations

• The Difference Equation fully describes the DT system and is the counterpart 
of the Differential Equation for continuous-time systems.

• As in continuous-time systems, if the Difference Equation is linear with 
Constant Coefficients, zero initial conditions, and the input is zero for 𝑛 < 0, 
then it represents a Linear and Shift Invariant (LSI) system.

• In this case the above equationship is called a Linear Difference Equation with 
Constant Coefficients (LDECC) and constitutes an iterative way of calculating 
the output of the system.

• The Difference Equation provides the ability to describe a system with an 
infinite impulse response using a finite number of coefficients. This simplifies 
how to describe an LSI system.

• The LDECC can be resolved in both time domain and frequency domains using 
the Z-transform.

• The use of the Z-transform simplifies the solution of LDECC describing LSI
systems.
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Linear Difference Equation with Constant Coefficients (LDECC)

Linear Difference Equation with Constant Coefficients (LDECC): for an LSI system, 

the Difference Equation is linear, with constant coefficients, with zero initial 

conditions and the system input is zero for 𝑛 < 0.

Examples:

• LDECC first class (𝛭 = 𝛮 = 1):

𝑦 𝑛 = −𝑎1𝑦 𝑛 − 1 + 𝑏0𝑥 𝑛 + 𝑏1𝑥 𝑛 − 1

• LDECC second order (𝛭 = 𝛮 = 2):

𝑦 𝑛 = −𝑎2𝑦 𝑛 − 2 − 𝑎1𝑦 𝑛 − 1 + 𝑏0𝑥 𝑛 + 𝑏1𝑥 𝑛 − 1 + 𝑏2𝑥[𝑛 − 2]
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Example 1

Let the following discrete-time system, described by the input-output 

equationship and called as accumulator:

𝑦[𝑛] = 

𝑘=−∞

𝑛

𝑥[𝑘] = 

𝑘=−∞

𝑛−1

𝑥[𝑘] + 𝑥[𝑛] = 𝑦[𝑛 − 1] + 𝑥[𝑛]

From the initial part of the above equation we observe that the output 𝑦[𝑛] of the 

system at the present time results from the summation of all samples of the input 

signal, from the beginning of the input signal up to the current value 𝑥[𝑛].

From the last part of the equation we notice that the calculation of the signal value 

𝑦[𝑛] for the time instants 𝑛 ≥ 𝑛0 requires the knowledge of the input 𝑥[𝑛] and the 

initial condition 𝑦[𝑛0 − 1].

If, 𝑦 𝑛0 − 1 = 0, then the system is initially relaxed.
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Classification of Systems based 
on the duration of the Impulse Response

• Recursive or Infinite Impulse Response (IIR)

• Non-Recursive or Finite Impulse Response (FIR)
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Recursive Systems (IIR) (1/2)

• If even one term 𝛼(𝑘) of the LDECC is non-zero, i.e. 𝑎 𝑘 ≠ 0, 𝑘 = 1, … . , 𝛮

the system is called recursive and is described by the LDECC:

𝑦 𝑛 = 

𝑚=0

𝑀

𝑏𝑚𝑥 𝑛 − 𝑚 − 

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 , 𝑛 ≥ 0

• The output 𝑦[𝑛] is calculated, not only based on the samples of the input 𝑥[𝑛], 

but also on the previous samples of the output {𝑦[𝑛 − 𝑘], 𝑘 = 1, … , 𝑁}, 

(feedback of the output).
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Recursive Systems (IIR) (2/2)

• Recursive systems are also called Infinite Impulse Response (IIR), because the 

ℎ[𝑛] has infinite duration:

ℎ[𝑛] = 

𝑘=0

∞

𝑏𝑚 𝛿[𝑛 − 𝑘]

• Also called Autoregressive Moving Average (ARMA) filters of class (𝛮, 𝛭).

• At LSI recursive systems, the output 𝑦[𝑛] is computed by the convolution:

𝑦[𝑛] = 

𝑘=0

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]
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Example 2

To calculate the impulse response of the IIR (ARMA) system, which is initially 
relaxed and is described by the LDECC:

𝑦 𝑛 = −0.5𝑦[𝑛 − 1] + 𝑥[𝑛] − 𝑥[𝑛 − 1]

Answer: Since the impulse response is requested, ℎ[𝑛] we consider it an input 
𝑥[𝑛] = 𝛿[𝑛]. We iteratively solve the LDECC for values of 𝑛 = 0,1,2, …

• 𝑛 = 0, ℎ 0 = −0.5 ℎ −1 + 𝛿 0 − 𝛿 −1 = 0 + 1 − 0 ֜ ℎ 0 = 1

• 𝑛 = 1, ℎ 1 = −0.5 ℎ 0 + 𝛿 1 − 𝛿 0 = −0.5 + 0 − 1 ֜ ℎ 1 = −1.5

• 𝑛 = 2, ℎ 2 = −0.5 ℎ 1 + 𝛿 2 − 𝛿 1 = 0.75 + 0 − 0 ֜ ℎ 2 = 0.75

• 𝑛 = 3, ℎ 3 = −0.5 ℎ 2 + 𝛿 3 − 𝛿 2 = −0.375 + 0 − 0 ֜ ℎ 3 = −0.375

• 𝑛 = 4, ℎ 4 = −0.5 ℎ 3 + 𝛿 4 − 𝛿 3 = 0.1875 + 0 − 0 ֜ ℎ 4 = 0.1875
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Non-Recursive Systems (FIR) (1/2)

• In non-recursive systems, the input-output equationship results from the 

LDECC for 𝑎 𝑘 = 0, 𝑘 = 1, … . , 𝛮:

𝑦[𝑛] = 

𝑚=0

𝑀

𝑏𝑚𝑥[𝑛 − 𝑚]

• The current sample of the output 𝑦[𝑛] is calculated based on weighted and 

time-shifted values of the input only: {𝑏𝑚𝑥[𝑛 − 𝑚], 𝑚 = 0, … , 𝑀}.

• Their impulse response is given by the equation:

ℎ[𝑛] = 

𝑚=0

𝑀

𝑏𝑚𝛿[𝑛 − 𝑚]
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Non-Recursive Systems (FIR) (2/2)

• Non-recursive systems are also called Finite Impulse Response (FIR) or 
Moving Average (MA) systems.

• The coefficients of the convolution sum of a Finite Impulse Response (FIR) 
filter are the same as the coefficients of ℎ[𝑛] of the FIR filter:

𝑦 𝑛 = 

𝑘=0

𝑀

ℎ 𝑘 𝑥 𝑛 − 𝑘

• Important Note: The output can be computed from convolution, but with 
finite duration 𝛭+1 points:

𝑦[𝑛] = 

𝑚=0

𝑀

𝑏𝑚𝑥[𝑛 − 𝑚]

• The impulse response of an FIR filter is a finite duration signal. But when the 
input to the filter is of infinite duration, then the output of the filter is also of 
infinite duration.
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Example 3

Calculate the impulse response of the FIR system, which is initially relaxed and is 
described by the LDECC:

𝑦 𝑛 = 𝑥[𝑛] − 𝑥[𝑛 − 1]

Answer: As long as the impulse response is requested, ℎ[𝑛] we consider it an input 
𝑥[𝑛] = 𝛿[𝑛]. We iteratively solve the LDECC S for values of𝑛 = 0,1,2, …

• 𝑛 = 0, ℎ 0 = 𝛿 0 − 𝛿 −1 = 1 − 0 ֜ ℎ 0 = 1

• 𝑛 = 1, ℎ 1 = 𝛿 1 − 𝛿 0 = 0 − 1 ֜ ℎ 1 = −1

• 𝑛 = 2, ℎ 2 = 𝛿 2 − 𝛿 1 = 0 − 0 ֜ ℎ 2 = 0

• 𝑛 = 3, ℎ 3 = 𝛿 3 − 𝛿 2 = 0 − 0 ֜ ℎ 3 = 0

• 𝑛 = 4, ℎ 4 = 𝛿 4 − 𝛿 3 = 0 − 0 ֜ ℎ 4 = 0
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Impulse system response

Impulse response for: (a) Example 2, (b) Example 3
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Solving Difference Equations 
(in the time-domain)

• Finding the partial solution

• Finding the homogeneous solution
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Solving Differential Equations

The general solution of LDECC:

𝑦 𝑛 = 

𝑚=0

𝑀

𝑏𝑚𝑥 𝑛 − 𝑚 − 

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 , 𝑛 ≥ 0

can be broken-down into the following two parts:

𝑦[𝑛] = 𝑦ℎ[𝑛] + 𝑦𝑝[𝑛]

• 𝑦ℎ[𝑛] the homogeneous solution: is the response of the system for zero input 
and given initial conditions (also called zero input response or natural response) 
(also denoted as 𝑦𝑧𝑖[𝑛]).

• 𝑦𝑝[𝑛] the partial solution: the response of the system for the given input 𝑥[𝑛], 

assuming zero initial conditions (also called zero-state response or forced 
response) (also denoted as 𝑦𝑧𝑠[𝑛]).
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Finding the Homogeneous Solution (1/2)

The homogeneous solution 𝑦ℎ[𝑛] is the response of the system for zero input and 
given the initial conditions. The LDECC is written:

𝑦 𝑛 + 

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 = 0, 𝑛 ≥ 0

and is called a homogeneous LDECC, which has the solution (homogeneous 
solution):

𝑦ℎ[𝑛] = 𝜆𝑛

Substituting the homogeneous solution into the homogeneous LDECC we have:

𝜆𝑛 + 

𝑘=1

𝑁

𝑎𝑘𝜆𝑛−𝑘 = 0֜𝜆𝑛−𝛮 𝜆𝛮 + 𝑎1𝜆𝛮−1 + ⋯ + 𝑎𝑁−1𝜆 + 𝛼𝑁 = 0

The expression inside the brackets is called a characteristic polynomial 𝑄 𝜆 and has 
𝛮 roots:

𝑄 𝜆 = 𝜆𝛮 + 𝑎1𝜆𝛮−1 + ⋯ + 𝑎𝑁−1𝜆 + 𝛼𝑁
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Finding the Homogeneous Solution (2/2)

If the coefficients 𝑎[𝑘] are real numbers, then the roots 𝜆𝑘 , 𝑘 = 1, … . 𝑁 are complex 

conjugated. If the roots are simple, then the homogeneous solution is given by:

𝑦ℎ[𝑛] = 

𝑘=1

𝑁

𝐴𝑘 𝜆𝑘
𝑛

If there is any multiple root, even 𝜆1with multiplicity 𝑚, then the homogeneous 

solution is given by the equation:

𝑦ℎ 𝑛 = 𝛢1 + 𝛢2𝑛 + ⋯ + 𝐴𝑚𝑛𝑚−1 𝜆1
𝑛 + 

𝑘=𝑚+1

𝑁

𝐴𝑘 𝜆𝑘
𝑛

In both cases, the coefficients 𝐴𝑘 , 𝑘 = 1, … 𝑁, result from solving a system of equations 

with unknown coefficients 𝐴𝑘 , which is formed from the original LDECC with the 

general solution, substituting in it the initial conditions for 𝑛 = 0,1, … , 𝑁 − 1.
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Finding the Partial Solution

The partial solution 𝑦𝑝[𝑛] is the response of the system for the given input 𝑥[𝑛], 

assuming zero initial conditions.

Finding the partial solution is not a simple process, however for many common 
inputs the output has the same form as the input.

Some solutions for simple input signals:

Term in 𝑥[𝑛]: 𝐶 Partial solution: 𝐶1

𝐶 𝑛 𝐶1𝑛 + 𝐶2

𝐶 𝑎𝑛 𝐶1𝑎𝑛

𝐶 cos(𝑛𝜔0) 𝐶1 cos 𝑛𝜔0 + 𝐶2 𝑠𝑖𝑛 𝑛𝜔0

𝐶 sin(𝑛𝜔0) 𝐶1 cos 𝑛𝜔0 + 𝐶2 𝑠𝑖𝑛 𝑛𝜔0

𝐶 𝑎𝑛cos(𝑛𝜔0) 𝐶1𝑎𝑛 cos 𝑛𝜔0 + 𝐶2𝑎𝑛 𝑠𝑖𝑛 𝑛𝜔0

𝐶 𝛿(𝑛) None
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Impulse Response calculation of LSI Systems

• Since we are looking for the impulse response ℎ 𝑛 , we put in LDECC as 
input 𝑥[𝑛] = 𝛿[𝑛] and zero initial conditions, because the system is initially 
relaxed.

• But the appearance at the entrance of such an strong sequence as Delta 
creates new initial conditions in the system.

• The output in this case, i.e. the impulse response, will result from the 
solution of the homogeneous equation (i.e. zero input response) for the 
new initial conditions.

• Therefore, the problem of finding the impulse response from the LDECC
is reduced to finding the new initial conditions due to the Delta sequence 
and then solving the homogeneous solution to find the zero-input 
response, i.e. the impulse response.

• In the following examples we will deal with the calculation of the impulse 
response when the LDECC is known and the system is initially relaxed, i.e. 
it is an LSI system.
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Example 3

To find the impulse response of the recursive system described by LDECC:

𝑦 𝑛 +
3

4
𝑦 𝑛 − 1 +

1

8
𝑦 𝑛 − 2 = 𝑥 𝑛

Answer: We put as input 𝑥[𝑛] = 𝛿[𝑛] and zero initial conditions because the 
system is initially relaxed. We have:

ℎ 𝑛 +
3

4
ℎ 𝑛 − 1 +

1

8
ℎ 𝑛 − 2 = 𝛿 𝑛

The homogeneous equation is:

ℎ 𝑛 +
3

4
ℎ 𝑛 − 1 +

1

8
ℎ 𝑛 − 2 = 0

The characteristic polynomial is:

𝜆2 +
3

4
𝜆 +

1

8

and has roots 𝜆1 = −1/2 and 𝜆2 = −1/4. Therefore, the solution of the 
homogeneous equation (zero input response) is:

ℎ 𝑛 = 𝐴1𝜆1
𝑛 + 𝐴2𝜆2

𝑛 = 𝛢1 −
1

2

𝑛

+ 𝐴2 −
1

4

𝑛

, 𝑛 ≥ 0
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Example 3 (continued)

We will calculate the values of the constants 𝛢1and 𝛢2using the initial conditions. 
For the given LDECC apply:

ℎ 0 +
3

4
ℎ −1 +

1

8
ℎ −2 = 𝛿 0 ֜ℎ 0 + 0 + 0 = 1֜ℎ 0 = 1

and

ℎ 1 +
3

4
ℎ 0 +

1

8
ℎ −1 = 𝛿 1 ֜ℎ 1 +

3

4
+ 0 = 0֜ℎ 1 = −

3

4

Applying these initial conditions to the homogeneous solution so far, we have:

ℎ 0 = 𝛢1 −
1

2

0

+ 𝐴2 −
1

4

0

֜𝛢1 + 𝛢2 = 1

and

ℎ 1 = 𝛢1 −
1

2

1

+ 𝐴2 −
1

4

1

֜ −
1

2
𝛢1 −

1

4
𝛢2 = −

3

4
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Example 3 (continued)

We write the pair of equations with unknowns 𝐴1and 𝐴2 in tabular form:

1 1
−1/2 −1/4

Α1

Α2
=

1
−3/4

We solve the system and find: 𝐴1 = 2 and 𝛢2 = −1.

Since the right-hand member of the LDECC is 𝑥 𝑛 it follows that the impulse 
response is equal to the homogeneous solution, that is:

ℎ𝑔 𝑛 = ℎ 𝑛 = 2 −
1

2

𝑛

− −
1

4

𝑛

𝑢[𝑛]
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Example 4

Find the impulse response of the system with initial conditions given by 
𝑦 −1 = 𝑦 −2 = 1/8 and described by the LDECC:

𝑦 𝑛 − 8𝑦 𝑛 − 1 + 16𝑦 𝑛 − 2 = 𝑥 𝑛 − 2𝑥[𝑛 − 1]

Answer: Finding the partial solution: For input 𝑥[𝑛] = 𝛿[𝑛], the partial solution/ 
zero-state solution according to the table in slide 19 is:

𝑦𝑝 𝑛 = 0, 𝑛 ≥ 0

Finding the homogeneous solution:

• Characteristic polynomial: 𝜆2 − 8𝜆 + 16

• Natural frequencies: 𝜆1,2 =
1

2
(1 ± 𝑗 3) = 𝑒±𝑗𝜋/3

(imaginary conjugate)

• Homogeneous solution/ 
zero input: 𝑦ℎ[𝑛] = 𝐴1 𝑒𝑗𝑛𝜋/3 + 𝐴2 𝑒−𝑗𝑛𝜋/3

• General solution: 𝑦 𝑛 = 𝐴1 𝑒𝑗𝑛𝜋/3 + 𝐴2𝑒−𝑗𝑛𝜋/3, 𝑛 ≥ 0 (1)
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Example 4 (continued)

To calculate the constants 𝛢1 and 𝛢2, we solve the LDECC for 𝑛 = 0 and 𝑛 = 1 and

we have:

𝑦 0 = 8𝑦 −1 − 16𝑦 −2 + 𝑥 0 − 2𝑥 −1 = 1 − 2 + 1 − 0 = 0֜𝑦 0 = 0

𝑦 1 = 8𝑦 0 − 16𝑦 −1 + 𝑥 1 − 2𝑥 0 = 0 − 2 + 0 − 2֜𝑦 1 = 4

We substitute the new initial conditions into equation (1) and find:

𝑦 0 = 𝑦ℎ 0 = 𝐴1 𝑒0 + 𝐴2 𝑒0 = 𝐴1 + 𝐴2 = 0

𝑦[1] = 𝑦ℎ[1] = 𝐴1𝑒𝑗𝜋/3 + 𝐴2𝑒−𝑗𝜋/3 = 4

We write the pair of equations with unknowns 𝐴1 and 𝐴2 in tabular form:

1 1
𝑒𝑗𝜋/3 𝑒−𝑗𝜋/3

Α1

Α2
=

0
4

Solving the system, we find:

𝛢1 = 0 − 2.31𝑗 = 2.31 𝑒−𝑗𝜋/2

𝛢2 = 0 + 2.31𝑗 = 2.31 𝑒𝑗𝜋/2

25



Example 4 (continued)

Substituting the constants 𝐴1 και 𝐴2 in (1) and using the Euler equation we find:

ℎ 𝑛 = 2.31 (𝑒𝑗𝑛𝜋/3𝑒−𝑗𝜋/2 + 2.31 𝑒−𝑗𝑛𝜋/3𝑒𝑗𝜋/2) 𝑢[𝑛]

= 2.31 𝑒
𝑗𝜋

𝑛
3−

1
2 + 𝑒

−𝑗𝜋
𝑛
3−

1
2 𝑢[𝑛] = 4,62 𝑠𝑖𝑛

𝜋𝑛

3
𝑢[𝑛]

Since the right-hand member of the LDECC is 𝑥[𝑛] + 2𝑥[𝑛 − 1], the impulse 

response is equal to the sum ℎ 𝑛 + 2ℎ 𝑛 − 1 , i.e. it is:

ℎ𝑔 𝑛 = ℎ 𝑛 + 2ℎ 𝑛 − 1 = 4,62 𝑠𝑖𝑛
𝜋𝑛

3
+ 2 s𝑖𝑛

𝜋 𝑛 − 1

3
𝑢[𝑛]
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Example 5

Calculate the homogeneous solution (zero input response), the partial solution 
(zero state response), and the total output for input 𝑥[𝑛] = −0.6 𝑛𝑢[𝑛] for a 
recursive system with initial conditions 𝑦 −1 = 1 και 𝑦 −2 = 1 and LDECC given 
by:

𝑦 𝑛 −
3

2
𝑦 𝑛 − 1 − 𝑦 𝑛 − 2 = 𝑥 𝑛

Answer: Finding the partial solution: For input 𝑥[𝑛] = −0.6 𝑛𝑢[𝑛], the partial 
solution (zero state response) according to the table in slide 19, is:

𝑦𝑝 𝑛 = 𝐶1 −0.6 𝑛𝑢[𝑛]

The partial solution satisfies the LDECC, namely:

𝐶1 −0.6 𝑛𝑢 𝑛 −
3

2
𝐶1 −0.6 𝑛−1𝑢 𝑛 − 1 − 𝐶1 −0.6 𝑛−2𝑢 𝑛 − 2 = −0.6 𝑛𝑢[𝑛]
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Example 5 (continued)

We find its value 𝐶1 by putting 𝑛 = 2 in the above equation, so we have:

𝐶1 −0.6 2𝑢 2 −
3

2
𝐶1 −0.6 1𝑢 1 − 𝐶1 −0.6 0𝑢 0 = −0.6 2𝑢 2

from which we find:

𝐶1 =
18

13
So the partial solution is:

𝑦𝑝 𝑛 =
18

13
−0.6 𝑛𝑢 𝑛
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Example 5 (continued)

Finding the homogeneous solution: The characteristic polynomial is:

𝜆2 −
3

2
𝜆 − 1

and the natural frequencies are:

𝜆1 = −
1

2
και 𝜆2 = 2

Therefore, the homogeneous solution (i.e. zero input response) is:

𝑦ℎ[𝑛] = 𝐴1 −
1

2

𝑛

+ 𝐴2 2 𝑛

The total solution is the sum of the partial and homogeneous solutions. i.e.:

𝑦 𝑛 = 𝑦𝑝 𝑛 + 𝑦ℎ 𝑛 =
18

13
−0.6 𝑛𝑢 𝑛 + 𝐴1 −

1

2

𝑛

+ 𝐴2 2 𝑛
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Example 5 (continued)

To calculate the constants 𝛢1and 𝛢2, we solve the LDECC for 𝑛 = 0 and 𝑛 = 1 and 
we have:

𝑦 0 =
3

2
𝑦 −1 − 𝑦 −2 + 𝑥 0 =

3

2
− 1 + 1֜𝑦 0 =

3

2

𝑦 1 =
3

2
𝑦 0 − 𝑦 −1 + 𝑥 1 =

9

4
− 1 + (−0.6)֜𝑦 1 =

13

20

We substitute the new initial conditions into the complete solution and we find:

𝑦 0 = 𝑦𝑝 0 + 𝑦ℎ 0 =
3

2
֜…֜ 𝐴1 + 𝐴2 =

3

26

𝑦 1 = 𝑦𝑝 1 + 𝑦ℎ 1 =
13

20
֜…֜−

1

2
𝐴1 + 2𝐴2 = −

47

260

We solve the system and find 𝐴1 = 0,1646 and 𝐴2 = −0.0492.

𝑦 𝑛 =
18

13
−0.6 𝑛𝑢 𝑛 + 0,1646 −

1

2

𝑛

− 0,0492 2 𝑛
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Example 6

To find the impulse response of the recursive system described by the LDECC
𝑦 𝑛 + 0.1𝑦 𝑛 − 1 − 0.72𝑦 𝑛 − 2 = 𝑥 𝑛 and which is initially relaxed.

Answer: We apply the same solution methodology. We also set zero initial 
conditions as input 𝑥[𝑛] = 𝛿[𝑛] because the system is initially relaxed.

• Characteristic polynomial: 𝜆2 + 0.1𝜆 − 0.72 = 𝜆 − 0.8 𝜆 + 0.9 (1)

• Natural frequencies: 𝜆1 = 0.8and 𝜆2 = −0.9(simple roots)

• Homogeneous solution 
/zero input: 𝑦ℎ[𝑛] = 𝐴1 0.8 𝑛 + 𝐴2 −0.9 𝑛, 𝑛 ≥ 0 (2)

• Partial 
/zero-state: 𝑦𝑝[𝑛] = 0, because𝑥[𝑛] = 𝛿[𝑛]

• Complete solution: 𝑦[𝑛] = 𝑦ℎ[𝑛] + 𝑦𝑝[𝑛] = 𝑦ℎ[𝑛] (3)
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Example 6 (continued)

Finding a homogeneous solution: Since the system is initially relaxed, the initial 
conditions are zero, that is: 𝑦[−1] = 𝑦[−2] = 0. Solving the LDECC for 𝑛 = 0 and 
𝑛 = 1, we have for the complete solution the new initial conditions due to the 
application of the impulse input:

𝑦 0 = −0.1𝑦 −1 + 0.72𝑦 −2 + 𝑥 0 = 1 ֜ 𝑦[0] = 1

𝑦 1 = −0.1𝑦 0 + 0.72𝑦 −1 + 𝑥 1 = −0.1֜ 𝑦 1 = −0.1

To calculate the constants 𝛢1 and 𝛢2, we solve the homogeneous solution (2) for 
𝑛 = 0 and 𝑛 = 1, consider equation (3) and find:

𝑦[0] = 𝑦ℎ[0] = 𝐴1 0.8 0 + 𝐴2 −0.9 0֜𝐴1 + 𝐴2 = 1(4)

𝑦[1] = 𝑦ℎ[1] = 𝐴1 0.8 1 + 𝐴2 −0.9 1 ֜0.8𝐴1 − 0.9𝐴2 = −0.1(5)

We solve the above system of equations (4) and (5) in terms of 𝐴1, 𝐴2 and find:

𝐴1 =
8

17
και 𝐴2 =

9

17
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Example 6 (continued)

Therefore, the complete solution of the LDECC is:

𝑦 𝑛 = 𝑦ℎ 𝑛 =
8

17
0.8 𝑛 +

9

17
−0.9 𝑛 𝑢[𝑛]

Based on the right-hand member of the LDECC, the impulse response is equal to 
the homogeneous solution and is:

ℎ 𝑛 = 𝑦ℎ 𝑛 =
8

17
0.8 𝑛 +

9

17
−0.9 𝑛 𝑢[𝑛]

Impulse response
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Example 7

Given a system described by the following LDECC:

𝑦 𝑛 =
1

𝛭


𝑚=0

𝑀−1

𝑥 𝑛 − 𝑚

To 𝛭 = 4 calculate the system output for the input:

𝑥 𝑛 = 𝑠[𝑛] + 𝑒[𝑛] = 2 cos
𝜋𝑛

4
+ 𝑛𝑜𝑖𝑠𝑒

Answer: From the LDECC we observe that the output of the system is the average 
of the 𝛭 previous values of the input. This system is called an moving average 
(MA) filter of class M and the coefficients 𝑏 𝑚 are equal to each other, i.e.:

𝑏 0 = 𝑏 1 = ⋯ = 𝑏 𝑚 − 1 = 1/𝛭

Moving Average filters are used to remove noise from signals, because computing 
the output from the average of some previous values of the input tends to 
compensate for the randomness of the noise values added to the useful signal.

Solving in Matlab we get the following results:
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Example 7 (continued)

(a)

(b)

(a) Clean signal 𝑠[𝑛], (b) Noise 𝑒[𝑛]
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Example 7 (continued)

(c)

(d)

(a) Signal with noise x [𝑛], (d) Processed signal 𝑦[𝑛]
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Example 7 (continued)

(e)

(f)

Signal smoothing for: (e) 𝛭 = 4, (f) 𝛭 = 8
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Example 7 (continued)

From figures (e) and (f) we observe that the output 𝑦[𝑛]of the mean value filter:

• It looks more like the original "clean" signal 𝑠[𝑛] than the noisy signal 𝑥[𝑛].

• This similarity improves as the coefficient increases 𝛭, because 
a larger number of prior values of the input better compensates for the 
randomness of the noise values. However, this improvement comes at the 
expense of output calculation speed, as a 𝛭/2 point delay is added relative to 
the input.

• The above filtering technique is done in the time-domain and is a linear 
technique (Linear Filtering). It is suitable for dealing with noise with a 
Gaussian distribution, but unsuitable for dealing with impact noises.

• The most sophisticated noise removal techniques are found in the frequency 
domain. We will study some of these in next lectures.
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Stability of a Discrete Time System

• In the case of asymptotic stability, we calculate the roots of the characteristic 
polynomial of the LDECC that describes the system and distinguish between the 
following cases:

– When all the roots of the characteristic polynomial (possibly some have 
multiplicity 𝑝 > 1) are inside the unit circle, i.e. are 𝜆𝑖 < 1, 𝑖 = 1,2, … 𝑁, 
then the system is asymptotically stable.

– When the characteristic polynomial has roots of multiplicity 𝑝 > 1, some of 
which lie on the unit circle, that is, is 𝜆𝑖 = 1, then the system is 
asymptotically unstable.

– If at least one root is found outside the unit circle, i.e. is 𝜆𝑖 > 1, then the 
system is asymptotically unstable.

– If a simple root is on the unit circle ie is 𝜆𝑖 = 1, 𝑖 = 1,2, … 𝑁, then the 
system is marginally stable.

– If a multiple root lies on the unit circle, then the system is unstable.

• We will complete the study of the stability of LSI systems in the next lecture 
using the Z-transform.
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Example 8

Study the asymptotic stability of the discrete-time system with LDECC:

9𝑦 𝑛 + 13𝑦 𝑛 − 1 + 5𝑦 𝑛 − 2 + 𝑦 𝑛 − 3 = 𝑥 𝑛 + 2𝑥[𝑛 − 1]

Answer: The expatriate LDECC is:

9𝑦 𝑛 + 13𝑦 𝑛 − 1 + 5𝑦 𝑛 − 2 + 𝑦 𝑛 − 3 = 0

from which it follows that the characteristic equation is:

𝜆3 + 4𝜆2 + 9𝜆 + 𝜆2 + 4𝜆 + 9 = 𝜆 + 1 𝜆2 + 4𝜆 + 9
= 𝜆 + 1 𝜆 + 2 − 3𝑗 𝜆 + 2 + 3𝑗 = 0

Therefore, the roots (natural frequencies - eigenvalues) are 𝜆1 = −1, 𝜆2 = −2 + 3𝑗,

𝜆3 = −2 − 3𝑗. The measures of the roots are: 𝜆1 = 1, 𝜆2 = 𝜆3 = 13.  Since 
there are roots outside the unit circle, we conclude that the system is asymptotically 
unstable.
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