
Digital Signal Processing

Dr. Michael Paraskevas

Professor

Unit 03: Discrete-Time Systems 
Convolutional Sum

1



Lecture Contents

• Introduction to Discrete Time Systems

• Categorization of Discrete Time Systems

o Causal Systems

o Static and Dynamic Systems

o Time Invariant Systems

o Homogeneous and Summative Systems

o Linear Systems

o Stable Systems

o Reversible Systems

2



Lecture Contents

• Ways of Describing Discrete-Time Systems

o With Stage Diagrams

o With Convolutional Sum and Impulse Response

o With Difference Equations (Recursive and Nonrecursive Systems)

• Study of Systems with Convolutional Sum (Convolution)

• Properties of Convolution

3



Introduction 
to Discrete Time Systems

4



Discrete Time Systems

A discrete-time system is considered as a mathematical operator 𝑇[.] with which an 

input signal [excitation] 𝑥[𝑛] is transformed into an output signal [response] 𝑦[𝑛].

The usual way of describing a system is through the input-output relationship 

𝑦[𝑛] = 𝑇[𝑥[𝑛] ].
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Advantages of Discrete-Time Systems

Discrete-time systems, or digital systems for short, have significant advantages over 
analog systems, such as:

• Greater resistance to noise and the ability to more easily remove noise from useful 
signals using sophisticated denoising techniques.

• Increased operational reliability due to zero effect from component temperature 
changes or material aging.

• Easier design, lower power consumption and a significant reduction in 
manufacturing costs, as digital systems are mainly implemented in the form of 
software, which runs on a general purpose computing system, such as PCs, DSPs, 
FPGAs, ASICs, thus low cost.

• Easily add features like data storage, data compression, and data encryption.

Analog systems excel in implementing very high frequency systems.
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Example 1

To calculate the impulse response of the system with input-output relationship:
𝑦 𝑛 = 𝑥 𝑛 + 𝑥 𝑛 − 1 + 3𝑥[𝑛 − 2].

Answer: We put input 𝑥[𝑛] = 𝛿[𝑛] in input – output relationship, so the impulse 
response is ℎ 𝑛 = 𝑦 𝑛 = 𝛿 𝑛 + 𝛿 𝑛 − 1 + 3𝛿 𝑛 − 2 . We set values to 𝑛 and find:

• 𝑛 = −1, ℎ −1 = 𝛿 −1 + 𝛿 −2 + 3𝛿 −3 = 1.0 + 1.0 + 3.0 = 0

• 𝑛 = 0, ℎ 0 = 𝛿 0 + 𝛿 −1 + 3𝛿 −2 = 1.1 + 1.0 + 3.0 = 1

• 𝑛 = 1, ℎ 1 = 𝛿 1 + 𝛿 0 + 3𝛿 −1 = 1.0 + 1.1 + 3.0 = 1

• 𝑛 = 2, ℎ 2 = 𝛿 2 + 𝛿 1 + 3𝛿 0 = 1.0 + 1.0 + 3.1 = 3

• 𝑛 = 3, ℎ 3 = 𝛿 3 + 𝛿 2 + 3𝛿 1 = 1.0 + 1.0 + 3.0 = 0

• 𝑛 ≥ 4, ℎ 𝑛 = 0

Therefore, the impulse response is ℎ 𝑛 = ෠1, 1, 1, 3, 0,0, … , 0 ≤ 𝑛 ≤ 2
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Example 2

The entry signal is given 𝑥 𝑛 = {1, −1, 2, −1, ෠0, 1, 2, −3}. Calculate the output signals 
𝑦1[𝑛] = 𝑥[𝑛 − 3] and 𝑦2 𝑛 = 2𝑥 𝑛 − 𝑥[𝑛 − 3].

Answer: From its input-output equation 𝑦1[𝑛] we observe that the current sample of 
the output 𝑦1[𝑛] is produced if in 𝑥 𝑛 we apply a delay of three units of time to the 
input signal. Therefore the output signal is given by:

𝑦1 𝑛 = 1,−෠1, 2, −1, 0, 1, 2, −3

For 𝑦2[𝑛] we will create the sequences 2𝑥 𝑛 and 𝑥[𝑛 − 3], then remove the 
corresponding samples. To "align" the two sequences in time we will add zero 
samples so that the element 𝑥[0] corresponds to the same position in both 
sequences, e.g. in 5th place. Is:

2𝑥 𝑛 = {2, −2, 4, −2, ෠0, 2, 4, −6, 0, 0, 0}

𝑥 𝑛 − 3 = 0, 0, 0,1, −෠1, 2, −1, 0, 1, 2, −3

Therefore after subtraction the sequence results:

𝑦2 𝑛 = 2𝑥 𝑛 − 𝑥 𝑛 − 3 = {2, −2, 4, −3, ෠1, 0, 5, −6, −1, −2, 3}
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Categorization of 
Discrete Time Systems

• Causal systems

• Static and Dynamic systems

• Shift Invariant systems

• Homogeneous and Cumulative 
systems

• Invertible systems

• Linear systems
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Causal Discrete-Time Systems

A system with zero initial output, can be:

• Causal or causal, when its output at each moment in time 𝑛 = 𝑛0 depends only 

on the input up to that moment 𝑛 = 𝑛0.

Mathematical formulation: 𝑥 𝑛 = 0, 𝑛 < 𝑛0then 𝑦 𝑛 = 0, 𝑛 < 𝑛0.

• Non-causal is the system in which the output at a time 𝑛 = 𝑛0 can also depend 

on future samples of the input.

Example: the system with an input-output relationship 𝑦[𝑛] = 𝑎𝑥[𝑛] + 𝑏𝑥[𝑛 −

1] is causal, while the system 𝑦[𝑛] = 𝑎𝑥[𝑛] + 𝑏𝑥[𝑛 + 1] is non-causal.

• A non-causal discrete-time system can be implemented by storing the output 
samples in a memory and delaying the reading of the input samples relative to 
the output.

• If real-time signal processing is desired then the system must be causal.
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Causal Discrete-Time Systems
• Non-causal discrete-time systems are the upper performance bound of causal 

discrete-time systems.

• If the system is in a state of initial rest, i.e. the initial conditions are zero and the 
system is linear and shift invariant, then the sufficient and necessary condition of 
causality is given by the equation:

ℎ 𝑛 = 0, 𝑛 < 0

where ℎ 𝑛 is the impulse response of the system.

• The exit 𝑦 𝑛 of Causal and Linear and Time-Invariant (LTI) systems for causative 
entry 𝑥 𝑛 is:

𝑦 𝑛 = ෍

𝑘=0

𝑛

𝑥 𝑛 ℎ 𝑛 − 𝑘 , 𝑛 ≥ 0

The lower limit of the sum depends on the causality of the input 𝑥 𝑘 = 0 για 𝑘 < 0, 
while the upper limit depends on the causality of the system 

ℎ 𝑛 − 𝑘 = 0 𝑓𝑜𝑟 𝑛 − 𝑘 < 0 or 𝑘 > 𝑛.
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Static and Dynamic Discrete-Time Systems

A system at rest (i.e. zero initial output), can be:

• Static or without memory (memory less), when its output at each time 𝑛 = 𝑛0

depends only on the input at the same time moment 𝑛 = 𝑛0. A static system 

does not include delay stages.

• In the opposite case, the system is called dynamic, and the number of previous 

samples that affect the current sample is referred to as the system's memory."

A static system is always also causal. The reverse is not always true.
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Example 3

Consider whether the following systems are: (a) with memory or without memory 
and (b) causal or non-causal.

(a)𝑦[𝑛] = 𝑥3[𝑛]

(b)𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛 − 2]

(c)𝑦[𝑛] = σ𝑛=𝑘
+∞ 𝑥[𝑛 − 𝑘]

Answer: (a) We observe that the current (𝑛) sample of the output 𝑦[𝑛] is affected 
only by the current (𝑛) sample of the input 𝑥[𝑛]. Therefore the system is 
memoryless and causal.

(b) Regarding causality, we observe that the current (𝑛) sample of the output 𝑦[𝑛] is 
not affected by future samples of the input 𝑥[𝑛]. Therefore the system is causal. In 
terms of memory, we observe that the current (𝑛) sample of the output 𝑦[𝑛] is 
affected by the current (𝑛) and previous samples of the input 𝑥[𝑛]. Therefore the 
system is with memory or potential.
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Example 3 (continued)

(c) The given input-output relationship can be written:

𝑦[𝑛] = ෍

𝑛=𝑘

+∞

𝑥[𝑛 − 𝑘] = ෍

𝑚=−∞

0

𝑥[𝑚]

from which we observe that to determine the output 𝑦[𝑛] at time 𝑛, the input must 
be known for all 𝑛 ≤ 0. E.g. to find the value 𝑦[−5] we need to know future values of 
the input, such as 𝑥 0 , 𝑥 −1 , 𝑥[−2],… .Therefore the system is not causal.

The system is not static either, because the present value of its output depends not 
only on the present value of the input but also on previous ones. System memory is 
𝑘.
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Shift-Invariant Discrete-Time Systems
A DT system is called shift-invariant when, for any amount of time 𝑛0, the output of 
the system for input 𝑥[𝑛 − 𝑛0] is equal to 𝑦[𝑛 − 𝑛0].

In other words, time shifts by 𝑛0 in the input 𝑥[𝑛] cause an identical shift by 𝑛0 in 
the output 𝑦[𝑛].

Verification of time invariance:

• We calculate the output 𝑦[𝑛, 𝑘] = 𝑇 𝑥 𝑛 − 𝑘 , i.e. the output that occurs for an 
input that is time-shifted by an amount of time 𝑘.

• We compute the time-shifted output 𝑦 𝑛 − 𝑘 over the same amount of time 𝑘.

• If we find that the equality holds 𝑦 𝑛, 𝑘 = 𝑦[𝑛 − 𝑘], ∀𝑘, then the system is time 
invariant.
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Example 4

To examine whether the following systems are time-invariant.

(a) 𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]

(b) 𝑦[𝑛] = 𝑛𝑥[𝑛]

Answer: (a) To test for time-invariance, we compare the shifted response 𝑦[𝑛 − 𝑛0],

with the response for a time-shifted input 𝑥[𝑛 − 𝑛0].

The shifted output (response) is:

𝑦[𝑛 − 𝑛0] = 𝑥[𝑛 − 𝑛0] + 𝑥[𝑛 − 𝑛0 − 1] + 𝑥[𝑛 − 𝑛0 − 2]

The response 𝑦′[𝑛] for shifted input 𝑥′[𝑛] = 𝑥[𝑛 − 𝑛0], is:

𝑦′ 𝑛 = 𝑥′ 𝑛 + 𝑥′ 𝑛 − 1 + 𝑥′ 𝑛 − 2 =

= 𝑥[𝑛 − 𝑛0] + 𝑥[𝑛 − 𝑛0 − 1] + 𝑥[𝑛 − 𝑛0 − 2]

Because 𝑦′[𝑛] = 𝑦[𝑛 − 𝑛0] the system is valid it is invariant when shifting.
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Example 4 (continued)

(b) The shifted response 𝑦[𝑛 − 𝑛0] is:

𝑦 𝑛 − 𝑛0 = 𝑛 − 𝑛0 𝑥[𝑛 − 𝑛0]

The response 𝑦′[𝑛] for shifted input 𝑥′[𝑛] = 𝑥[𝑛 − 𝑛0], is:

𝑦′ 𝑛 = 𝑛𝑥′ 𝑛 = 𝑛 𝑥[𝑛 − 𝑛0]

Since 𝑦′[𝑛] ≠ 𝑦[𝑛 − 𝑛0], the system is time-invariant.
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Homogeneous and Summative DTS

• A Discrete Time System is called homogeneous if multiplying the input by a 
constant leads to multiplying the output by exactly the same constant. The 
mathematical formulation of homogeneity is given by the equation:

𝑇 𝑐 𝑥 𝑛 = 𝑐 𝑇 𝑥 𝑛

for any complex constant 𝑐and for any discrete-time signal 𝑥[𝑛].

• A Discrete Time System is called summative if a sum of signals at the input 
leads to an output that is the sum of the outputs for each input signal 
separately. The mathematical formulation of additivity is given by the equation:

𝑇{𝑥1 𝑛 + 𝑥2 𝑛 } = 𝑇{𝑥1 𝑛 } + 𝑇{𝑥2 𝑛

for any discrete-time signals 𝑥1[𝑛] and 𝑥2 𝑛 .
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Invertible Discrete-Time Systems

• A Discrete Time System is called invertible if its input can be determined from 

its output in a unique way.

• For a system to be reversible, separate input signals must produce separate 

output signals, i.e. if:

𝑥1[𝑛] ≠ 𝑥2[𝑛] then and 𝑦1[𝑛] ≠ 𝑦2[𝑛]
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Linear Discrete-Time Systems

A discrete-time system is called linear when the input-output relationship that 
describes it satisfies the equality:

𝑇{𝛼1𝑥1 𝑛 + 𝛼2𝑥2 𝑛 } = 𝑎1𝑇{𝑥1 𝑛 } + 𝑎2𝑇{𝑥2 𝑛 }, ∀ 𝛼1, 𝛼2 ∈ 𝐶

• In a linear system the effect of each input on the output of the system is 
independent of the effect of the other inputs.

• The property of linearity in a discrete-time system is very important because 
it simplifies the calculation of the system's response to a given input.

Discrete-time system linearity representation
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Linear and Shift-Invariant Discrete-Time Systems

• A system is Linear and Shift Invariant (LSI) when it simultaneously satisfies 
Linearity and Shift Invariance.

• If ℎ[𝑛] it is the impulse response of a LSI system, [i.e. the output of the system for 
input equal to 𝛿[𝑛] ], then due to invariance the response to input 𝛿[𝑛 − 𝑘] will 
be ℎ[𝑛 − 𝑘], ie ℎ𝑘[𝑛] = ℎ[𝑛 − 𝑘]. From the sum of the superposition, we find 
that the output is:

𝑦[𝑛] = ෍

𝑘=−∞

+∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

• The above relationship is called Sum of Convolution and is briefly written:

𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛]

We will study convolution in more detail next.
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Example 5

To examine whether the system is linear or not with an input-output relationship:

𝑦[𝑛] = ෍

𝑘=−∞

𝑛

𝑥[𝑘]

Answer: For inputs 𝑥1[𝑛] and 𝑥2[𝑛] the corresponding outputs of the system are 

𝑦1[𝑛] = σ𝑘=−∞
𝑛 𝑥1[𝑘] and 𝑦2[𝑛] = σ𝑘=−∞

𝑛 𝑥2[𝑘].

For input equal to linear combination 𝑥[𝑛] = 𝛼1𝑥1 𝑛 + 𝛼2𝑥2[𝑛], the output is:

𝑦 𝑛 = ෍

𝑘=−∞

𝑛

𝑥 𝑘 = ෍

𝑘=−∞

𝑛

𝑎1𝑥1 𝑛 + 𝛼2𝑥2 𝑛 = ෍

𝑘=−∞

𝑛

𝑎1𝑥1 𝑛 + ෍

𝑘=−∞

𝑛

𝑎2𝑥2 𝑛

= 𝑎1 ෍

𝑘=−∞

𝑛

𝑥1 𝑛 + 𝑎2 ෍

𝑘=−∞

𝑛

𝑥2 𝑛 = 𝛼1𝑦1 [𝑛] + 𝛼2𝑦2[𝑛]

So the system is linear.
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Example 6

To examine whether the system with an input-output relationship 𝑦 𝑛 = 𝑥[−𝑛] is: 
(a) linear and (b) shift invariant.

Answer: (a) For inputs 𝑥1[𝑛] and 𝑥2[𝑛], the corresponding outputs of the system are 
𝑦1 𝑛 = 𝑥1[−𝑛] and 𝑦2 𝑛 = 𝑥2 −𝑛 . If we set input equal to the linear combination 
𝑥[𝑛] = 𝛼1𝑥1 𝑛 + 𝛼2𝑥2[𝑛], the output is:

𝑦 𝑛 = 𝑥 −𝑛 = 𝛼1𝑥1 [−𝑛] + 𝛼2𝑥2[−𝑛] = 𝛼1𝑦1[𝑛] + 𝛼2𝑦2[𝑛]

So the system is linear.

(b) For a time-shifted 𝑛0 input 𝑥′[𝑛] = 𝑥[𝑛 − 𝑛0], the output is:

𝑦[𝑛, 𝑛0] = 𝑥′[−𝑛] = 𝑥[−𝑛 − 𝑛0]

The time-shifted 𝑛0 output is:

𝑦[𝑛 − 𝑛0] = 𝑥[− 𝑛 − 𝑛0 ] = 𝑥[−𝑛 + 𝑛0]

Because 𝑦[𝑛, 𝑛0] ≠ 𝑦[𝑛 − 𝑛0] the system is time-varying.
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Stable Discrete-Time Systems

A discrete-time system is called stable or bounded input – bounded output 
(BIBO stable), when for every bounded input 𝑥[𝑛] ≤ 𝐴 < ∞, the output is 
also bounded, i.e. 𝑦[𝑛] ≤ 𝐵 < ∞. If for a bounded input the system produces 
an output that tends to infinity, then the system is called unstable.

Remarks:

• A LSI system is always stable when its impulse response ℎ[𝑛] is absolutely 
convergent, i.e. it satisfies the equation:

෍

𝑛=−∞

+∞

ℎ[𝑛] < ∞

• A finite impulse response (FIR) filter is always stable because its impulse 
response always satisfies the above equation.

• An infinite impulse response (IIR) filter is not a priori stable, but only if it 
proves to satisfy the above equation.
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Asymptotic Stability of Discrete-Time Systems

In the next lecture we will study the asymptotic stability of systems. According to 

her:

• A causal system is stable when all the roots of the characteristic polynomial lie 

inside the unit circle.

• If a root lies on the unit circle then the system is marginally stable.

• If more than one root lies on the unit circle or even one root lies outside the unit 

circle, then the system is unstable.

We will study in detail the stability of systems with the help of the Z-transform.
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Example 7
To determine whether the LSI system with impulse response ℎ 𝑛 = 𝑎𝑛 𝑢 𝑛 ,

𝑎 < 1 is it stable or not.

Answer: To study the stability of the system, we need to determine whether the 
impulse response ℎ[𝑛] is perfectly convergent. We have:

෍

𝑛=−∞

+∞

ℎ[𝑛] = ෍

𝑛=−∞

+∞

𝑎𝑛 𝑢[𝑛] = ෍

𝑛=0

+∞

𝑎𝑛 =
1

1 − 𝑎
< ∞

Therefore, ℎ 𝑛 is absolutely convergent, so the system is stable.
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Example 8
To examine whether the system described by the following difference equation is 
stable or not:

−0.08𝑦[𝑛] + 0.2𝑦[𝑛 − 1] + 𝑦[𝑛 − 2] = 𝑥[𝑛] + 2𝑥[𝑛 − 1]

Answer: The characteristic polynomial is −0.08 + 0.2𝜆 + 𝜆2, which is factored:

𝜆2 + 0.2𝜆 − 0.08 = 𝜆2 − 0.2𝜆 + 0.4𝜆 − 0.2 0.4 = 𝜆 − 0.2 𝜆 + 0.4

The roots of the polynomial are: 𝜆1 = 0.2 and 𝜆2= −0.4

Because all the roots lie inside the unit circle, the system is stable.
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Methods to Describe LSI Systems

• Stage Diagrams

• Difference Equations

• Convolutional Sum (Linear Convolution)
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System Description 
using Stage Diagrams
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System Description using Stage Diagrams

Delay step of one time unit: Satisfies the equation: 𝑦 𝑛 = 𝑥 𝑛 − 1 . For the 
advance 𝑦 𝑛 = 𝑥 𝑛 + 1 .

Delay stage of several units of time: produces an output signal 𝑦[𝑛] with a delay of 
several (𝑘) units of time with respect to the input signal 𝑥[𝑛], Satisfies the 
equation: 𝑦[𝑛] = 𝑥[𝑛 − 𝑘].

Multiplier stage with a constant: produces an output signal 𝑦[𝑛] that is the product 
of the input 𝑥[𝑛] with a constant 𝛼, that is: 𝑦 𝑛 = α 𝑥[𝑛].
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System Description using Stage Diagrams

Adder stage: accepts two or more input signals and produces an output 𝑦[𝑛] that is 
the sum of the input signals, i.e. it satisfies the equation: 𝑦 𝑛 = 𝑥1 𝑛 + 𝑥2[𝑛].

Multiplier stage: accepts two or more input signals and produces an output 
𝑦[𝑛] that is the product of the input signals, i.e. it satisfies the equation: 

𝑦 𝑛 = 𝑥1 𝑛 𝑥2[𝑛].
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Example 9

Render the system described by the difference equation in the form of a stage 
diagram 𝑦 𝑛 = 3𝑦 𝑛 − 2 − 4𝑦 𝑛 − 1 + 𝑥[𝑛].

Answer: Based on the available stages, we draw the figure:
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System Description 
using Convolution Sum
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System Description using Convolution Sum

For a LSI system the output 𝑦[𝑛] is given as 𝑦[𝑛] = 𝑇 𝑥[𝑛] . Because a signal e.g. 
can be written as the weighted sum of unit impulses:

𝑥[𝑛] = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]

the output is written:

𝑦[𝑛] = 𝑇 ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿 𝑛 − 𝑘

If the system is linear, then:

𝑦[𝑛] = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛵 𝛿 𝑛 − 𝑘

Therefore, the output 𝑇 𝛿 𝑛 − 𝑘 of a linear system can be thought of as the 
output of the system at time 𝑛due to a unit impulse 𝛿 𝑛 − 𝑘 applied to its input 
at time 𝑘. This is called the impulse response and is denoted ℎ(𝑛, 𝑘).

Impulse response LSI system: ℎ 𝑛 − 𝑘 = 𝑇[𝛿 𝑛 − 𝑘 ]
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Description of a Convolutional Sum System

Therefore, the output of the linear system is written:

𝑦[𝑛] = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛, 𝑘]

If the system is Linear and Shift Invariant (LSI), then the output at the impulse 
input is:

ℎ[𝑛, 𝑘] = ℎ[𝑛 − 𝑘]

Substituting the above equation into the previous one, we find that for input 𝑥[𝑛],
the output of a LSI system with impulse response ℎ[𝑛], is given by the sum:

𝑦 𝑛 = ෍

𝑘=−∞

+∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 = ෍

𝑘=−∞

+∞

𝑥 𝑛 − 𝑘 ℎ[𝑘] = 𝑥[𝑛] ∗ ℎ[𝑛]

• The * operator represents the convolution sum between 𝑥[𝑛] and ℎ[𝑛].

• Convolution offers a way to calculate for LSI systems through ℎ[𝑛], which 
describes the behavior of the system under impulse input. The ℎ[𝑛] does not 
carry information about the structure of the system.

• Convolution is a powerful tool for studying LSI systems.
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Description of a Convolutional Sum System

When the sequences 𝑥[𝑛] and ℎ[𝑛] are:

• of infinite duration, then the convolution is also of infinite duration.

• of finite duration, then the convolution is also of finite duration.

More specifically, if the non-zero values of the sequence 𝑥[𝑛] are contained in an 

interval 𝑀𝑥, 𝑁𝑥 of length 𝐿𝑥 = 𝑁𝑥 −𝑀𝑥 + 1 then:

• and the non-zero values of the sequence 𝑦[𝑛] are bounded by the interval:

𝑀𝑥 +𝑀ℎ, 𝑁𝑥 + 𝑁ℎ

• and the length of the sequence 𝑦[𝑛] is:

𝐿𝑦 = 𝐿𝑥 + 𝐿ℎ − 1

Proof:

𝐿𝑦 = 𝑁𝑥 + 𝑁ℎ − 𝑀𝑥 +𝑀ℎ + 1

= 𝑁𝑥 −𝑀𝑥 + 1 + 𝑁ℎ −𝑀ℎ + 1 − 1 =

= 𝐿𝑥 + 𝐿ℎ − 1
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System Description 
using Difference Equations
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System Description using Difference Equations

In discrete-time systems, the input-output relationship can take the form:

𝑦 𝑛 = ෍

𝑚=0

𝑀

𝑏𝑚𝑥 𝑛 − 𝑚 −෍

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 , 𝑛 ≥ 0

o 𝑎𝑘 𝑏𝑚 constants that define the system

o 𝑦 −𝑘 , 𝑘 = 1,… , 𝑁 initial state of the output

o 𝑥 −𝑚 ,𝑚 = 1,… ,𝑀 initial state of the input

• If the system is causal, that is 𝑥 −𝑚 = 0 για 𝑚 = 1,… ,𝑀, to calculate the output 
only the initial conditions of the output are required.

• If 𝑦 −𝑘 = 0, για 𝑘 = 1,… ,𝑁,then the system is in initially relaxed. 

Linear Difference Equation with Constant Coefficients (LCCDE): for LSI system, the D.E. 
is linear, with constant coefficients, with zero initial conditions and the system input is 
zero for 𝑛 < 0.

The difference equation provides the ability to describe a system with an infinite impulse 
response using a finite number of coefficients. This simplifies how to describe a system.
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Non-Recursive Systems

• Impulse Response with a finite number of samples: the causal LSI
system is called Finite Impulse Response (FIR) or non- recursive and its 
output is:

𝑦 𝑛 = ෍

𝑚=0

𝑀

𝑏𝑚𝑥 𝑛 −𝑚 = ෍

𝑘=0

𝑀

𝑥 𝑘 ℎ 𝑛 − 𝑘

• Therefore, in FIR systems the output can be calculated from the 
convolutional sum instead of the difference equation.

• Its impulse response is:

ℎ 𝑛 = ෍

𝑚=0

𝑀

𝑏𝑚𝛿 𝑛 −𝑚

• The impulse response of an FIR system is a finite-duration signal. But 
when the input to the system is of infinite duration, then the output of 
the filter is also of infinite duration.
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Recursive Systems

• Impulse response with an infinite number of samples: the causal LSI
system is called Infinite Impulse Response (IIR) or recursive and its 
output is given by:

𝑦 𝑛 = ෍

𝑘=0

+∞

𝑥 𝑘 ℎ 𝑛 − 𝑘

• In recursive systems the impulse response ℎ[𝑛] has an infinite duration
and is calculated by:

ℎ[𝑛] = ෍

𝑘=0

∞

𝑏𝑘𝛿[𝑛 − 𝑘]
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Study of Systems using the 
Method of (Linear) Convolution
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Properties of Linear Convolution

• Homogeneity

• Commutative

• Cooperative

• Distributive

• Identity

42



Homogeneity property

Convolution is a linear operator with the following properties

1. Homogeneity: Relationships apply:

𝛼𝑥 𝑛 ∗ 𝑦 𝑛 = 𝑥 𝑛 ∗ 𝑎𝑦 𝑛

𝑥 𝑛 ∗ (𝑎𝑦 𝑛 ) = 𝑎(𝑥[𝑛] ∗ 𝑦 𝑛 )
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Commutative Property

2. Commutative: 𝑥[𝑛] ∗ ℎ[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛]

The order in which the convolution is performed does not matter.

A system with impulse response ℎ[𝑛] and input 𝑥[𝑛] behaves the same as 
a system with impulse response 𝑥[𝑛] and input ℎ[𝑛].
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Cooperative Property

3. Cooperative: 𝑥[𝑛] ∗ ℎ1[𝑛] ∗ ℎ2[𝑛] = 𝑥[𝑛] ∗ {ℎ1[𝑛] ∗ ℎ2[𝑛] }

If two systems with impulse responses ℎ1[𝑛] and ℎ2[𝑛] are connected 
cascade, the resulting equivalent system has a impulse response equal to 
the convolution of ℎ1[𝑛] and ℎ2[𝑛].
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Distributive and Identity Properties

4. Distributive:𝑥 𝑛 ∗ ℎ1 𝑛 + ℎ2 𝑛 = 𝑥[𝑛] ∗ ℎ1[𝑛] + 𝑥[𝑛] ∗ ℎ2[𝑛]

If two systems with impulse responses ℎ1[𝑛] and ℎ2[𝑛] are connected in 
parallel, the resulting equivalent system has a impulse response equal to 
the sum of ℎ1[𝑛] and ℎ2[𝑛].

5. Identity: 𝑥[𝑛] ∗ 𝛿[𝑛] = 𝑥[𝑛]

The neutral element of the convolution operation is the unit impulse 
function 𝛿[𝑛].
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Convolution Properties

It is easily proved that convolution is a linear and shift invariant operation, 
i.e. it satisfies the relations:

ℎ[𝑛] ∗ {𝑎1 𝑥1[𝑛] + 𝑎2 𝑥2[𝑛] } = 𝑎1𝑦1[𝑛] + 𝑎2𝑦2[𝑛]

ℎ[𝑛] ∗ 𝑥[𝑛 − 𝑛0] = 𝑦[𝑛 − 𝑛0]
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Methods of Computing Linear Convolution

• Direct (analytical) calculation

• Graphical calculation

• Table method

• Calculation using Toeplitz matrix
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Convolution Calculation Methods

To calculate the linear convolution (in the time domain):

𝑦[𝑛] = ෍

𝑘=−∞

+∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

the following ways can be used:

1. Direct (analytical) calculation: when the signals to be convolved are described by 
simple closed-form mathematical expressions.

2. Graphical calculation: for signals that have an easy graphical representation and 
are preferably of finite length.

3. Table Method: when the signals to be convoluted are of finite length and short in 
duration (same process as before but without graphical representation).

4. Calculation using Toeplitz Table.
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Direct Convolution Calculation

It usually results in computing sums that converge or do not converge, and which 
contain terms of the form 𝛼𝑛 or 𝑛𝛼𝑛.

Below are some closed type expressions for the most commonly used series:

෍

𝑛=0

𝑁−1

𝛼𝑛 =
1 − 𝑎𝑁

1 − 𝑎
෍

𝑛=0

+∞

𝛼𝑛 =
1

1 − 𝑎
, 𝑎 < 1

෍

𝑛=0

𝑁−1

𝑛 𝛼𝑛 =
𝑁 − 1 𝑎𝑁+1 − 𝑁𝑎𝑁 + 𝑎

1 − 𝑎 2
෍

𝑛=0

+∞

𝑛 𝛼𝑛 =
𝛼

1 − 𝑎 2 , 𝑎 < 1

෍

𝑛=0

𝑁−1

𝑛 =
1

2
𝑁(𝑁 − 1) ෍

𝑛=𝑁1

𝑁2

𝛼𝑛 =
𝑎𝑁1 − 𝑎𝑁2+1

1 − 𝑎
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Example 10
Calculate the output of the system with impulse response ℎ[𝑛] = 𝑢[𝑛] and input 
signal:

𝑥 𝑛 = 𝑎𝑛 𝑢[𝑛] = ቊ
𝑎𝑛 𝑛 ≥ 0
0 𝑛 < 0

Answer: We substitute the given sequences into the definition of the convolutional 
sum and find:

𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] = ෍

𝑘=−∞

∞

𝑎𝑘 𝑢[𝑘] 𝑢[𝑛 − 𝑘]

to 𝑛 ≥ 0:

𝑦[𝑛] = ෍

𝑘=0

𝑛

𝑎𝑘 =
1 − 𝑎𝑛+1

1 − 𝑎

So the output is:

𝑦[𝑛] =
1 − 𝑎𝑛+1

1 − 𝑎
𝑢[𝑛]
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Example 11

Calculate the convolution between [𝑛] = 0.9 𝑛𝑢 𝑛 and ℎ[𝑛] = 𝑛 𝑢[𝑛].

Answer: Convolution is:

𝑦[𝑛] =෍
𝑘=−∞

+∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] =෍
𝑘=−∞

+∞

(0.9)𝑘 𝑢 𝑘 𝑛 − 𝑘 𝑢 𝑛 − 𝑘

Since 𝑢[𝑘] = 0 για 𝑘 < 0 and 𝑢[𝑛 − 𝑘] = 0 για 𝑘 > 𝑛, we have:

𝑦[𝑛] =෍
𝑘=0

𝑛

[𝑛 − 𝑘] (0.9)𝑘 = 𝑛෍
𝑘=0

𝑛

(0.9)𝑘 −෍
𝑘=0

𝑛

𝑘(0.9)𝑘 για 𝑛 ≥ 0

Using the series formulas, we have:

𝑦 𝑛 = 𝑛
1 − (0.9)𝑛+1

1 − 0.9
−
𝑛(0.9)𝑛+2− 𝑛 + 1 (0.9)𝑛+1+0.9

1 − 0.9 2

= 10𝑛 1 − (0.9)𝑛+1 − 100 𝑛(0.9)𝑛+2− 𝑛 + 1 (0.9)𝑛+1+0.9 𝑛 ≥ 0

= 10𝑛 − 90 + 90(0.9)𝑛 𝑢[𝑛]
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Graphical Convolution Calculation

To calculate the convolution graphically, we follow the following steps:

𝑦[𝑛] = ෍

𝑘=−∞

+∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

1. We draw the sequence 𝑥[𝑘].

2. We draw the reflection ℎ[−𝑘] in terms of 𝑘 = 0, of ℎ[𝑘].

3. We shift it ℎ[−𝑘] by 𝑛0 points and get the time shift ℎ[𝑛0 − 𝑘] which we are 
drawing.

4. We multiply the graphs of 𝑥[𝑘] and ℎ[𝑛0 − 𝑘] and calculate the partial product 
𝑢𝑛𝑜 𝑘 = 𝑥 𝑘 ℎ[𝑛0 − 𝑘].

5. For each value of 𝑘 we calculate the total sum of the individual partial products 
and find the value of 𝑦[𝑛0] = σ𝑘=−∞

+∞ 𝑥 𝑘 ℎ[𝑛0 − 𝑘].

We repeat steps 3, 4 and 5 for the next value of 𝑛0. We stop when the sum of the 
products in step 4 gives zero for all the remaining values of 𝑘.
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Example 12

Calculate the convolution between the signals ℎ[𝑛] = {…0, 1, ෠2, 1,1, 0… } and 

𝑥[𝑛] = …0, ෠1, 2, 0.5, −1, 0… with the graphical method.

Answer: We draw the signals 𝑥 𝑘 και ℎ[𝑘] in their original form, as well as the 
reflection ℎ[−𝑘] with respect to 𝑘 = 0.
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Example 12 (continued)

We plot the signals for time-shift 𝑛 = −1, i.e. ℎ[−1 − 𝑘] and the product 𝑢−1[𝑘] =
𝑥[𝑘] ℎ[−1 − 𝑘].

The value of the output 𝑦[𝑛] is calculated by summing the samples of the signal 
𝑢−1[𝑘] i.e.:

𝑦[−1] =෍
𝑘=−∞

+∞

𝑢−1[𝑘] = 1
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Example 12 (continued)

We draw the signals for time-shift 𝑛 = 0, i.e. ℎ[−𝑘] and the product 𝑢0[𝑘] =
𝑥[𝑘] ℎ[−𝑘].

The value of the output 𝑦[𝑛] is calculated by summing the samples of the signal 
𝑢0[𝑘] i.e.:

𝑦[0] =෍
𝑘=−∞

+∞

𝑢0[𝑘] = 4
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Example 12 (continued)

We plot the signals for time-shift 𝑛 = 1, i.e. ℎ[1 − 𝑘] and the product 𝑢1[𝑘] =
𝑥[𝑘] ℎ[1 − 𝑘].

The value of the output 𝑦[𝑛] is calculated by summing the samples of the signal 
𝑢1[𝑘] i.e.:

𝑦[1] =෍
𝑘=−∞

+∞

𝑢1 𝑘 = 5.5
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Example 12 (continued)

We plot the signals for time-shift 𝑛 = 2, i.e. ℎ[2 − 𝑘] and the product 𝑢2[𝑘] =
𝑥[𝑘] ℎ[2 − 𝑘].

The value of the output 𝑦[𝑛] is calculated by summing the samples of the signal 
𝑢2[𝑘] i.e.:

𝑦[2] =෍
𝑘=−∞

+∞

𝑢2[𝑘] = 3
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Example 12 (continued)

Similarly for different time-shifts the result is obtained:

𝑦 𝑛 = 𝑥[𝑛] ∗ ℎ[𝑛] = …0, 1, ෠4, 5.5, 3, 0.5, 0.5, −1, 0, …
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Example 13

To find the convolution between the signals ℎ 𝑛 = 𝑛 𝑢 𝑛 − 𝑢 𝑛 − 5 + 1 and 
𝑥[𝑛] = 𝑢 𝑛 + 2 − 𝑢 𝑛 − 2 using the table method.

Answer: We write the given signals in the form of sequences. Is: 
ℎ[𝑛] = {. . . 0, ෠1, 2, 3, 4, 5,0… }, 𝑥 𝑛 = {. . . 0, 1, 1, ෠1, 1, 1, 0… }.

We create the table of the next slide:

• In the first line we depict the time scale, let −7 ≤ 𝑘 ≤ 7.

• In the next two lines we place the given sequences 𝑥 𝑘 and ℎ[𝑘] in the next 
one the reflection ℎ[−𝑘] with respect to 𝑘 = 0.

• In the following lines we put time-shifts by 𝑛0 the sequence ℎ[−𝑘], that is, the 
sequences ℎ[𝑛0 − 𝑘], where 𝑛0 = ±1,±2, ±3,… .

• We repeat the process for as many values of 𝑛0 the sequences 𝑥[𝑘] and
ℎ[𝑛0 − 𝑘] overlap.
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Example 13 (continued)
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Example 13 (continued)

From the above table we observe that for values 𝑛0 ≤ −3 and 𝑛0 ≥ 7 the 
sequences 𝑥[𝑘] and ℎ[𝑛0 − 𝑘] do not overlap. Thus 𝑥 𝑘 ℎ 𝑛0 − 𝑘 = 0, because at 
least one of the two sequences is zero. Therefore, for the given example the values 
of 𝑛0 which produce a non-zero result are those which satisfy the inequality 
−2 ≤ 𝑛0 ≤ 6.

Then, for a value 𝑛0 of satisfying the inequality, we multiply point by point the 
sequences [𝑛0 − 𝑘] and 𝑥 𝑘 and obtain the product 𝑥 𝑘 ℎ 𝑛0 − 𝑘 . We add the 
products for −7 ≤ 𝑘 ≤ 7 and find the point 𝑦 𝑛0 = σ𝑘=−7

7 𝑥 𝑘 ℎ 𝑛0 − 𝑘 .

We repeat this process for a new value of 𝑛0 until we finish the values of 𝑛0 which 
produce a non-zero result 𝑦[𝑛0].

We depict them 𝑦[𝑛0] in the last column of the table and we have:

• 𝑦 −3 = 0, 𝑦 −2 = 1, 𝑦 −1 = 3, 𝑦 0 = 6, 𝑦 1 = 10, 𝑦 2 = 15

• 𝑦 3 = 14, 𝑦 4 = 12, 𝑦 5 = 9, 𝑦 6 = 5, 𝑦 7 = 0

Therefore: 𝑦[𝑛] = {…0, 1, 3, ෠6, 10, 15, 14, 12, 9, 5, 0, … . }
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Calculation using Toeplitz Table

The linear convolution of two sequences 𝑥[𝑛] of length 𝐿𝑥 and ℎ[𝑛] of length 𝐿ℎ is 
a sequence 𝑦 𝑛 of length 𝐿𝑦 = 𝐿𝑥 + 𝐿ℎ − 1, which can be expressed in matrix 

form:

𝒚𝑇 = 𝑯 𝒙𝑇

• the vector 𝒙𝑇is the inverse matrix of 𝑥[ n ], that is, it has the signal values 𝑥 𝑛
and is dimensional 𝐿𝑥, 1 ,

• the matrix 𝜢 has the signal values ℎ[𝑛] folded and shifted and is of dimensions 
[𝐿𝑦 , 𝐿𝑥], and 

• the vector 𝒚𝑇 has the values of the convolution 𝑦[𝑛] and is dimensional.



Example 14

Using a Toeplitz table calculate the convolution between the signals 
𝑥[𝑛] = {෠1, −2, 0, 3, −1} and ℎ[𝑛] = {2, ෠3, 0, 1}.

Answer: The signal 𝑥[𝑛] is of finite duration in space[−1, 2] with length 𝐿ℎ = 4.

Therefore, the convolution is of finite duration in the time interval
0 + −1 , 4 + 2 = [−1, 6] and has a length equal to:

𝐿𝑦 = 𝐿𝑥 + 𝐿ℎ − 1 = 5 + 4 − 1 = 8 samples

The vector 𝒙 has dimensions 𝐿𝑥, 1 = [5, 1] and are: 𝑥 =

1
−2
0
3
−1
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Example 14 (continued)

The table 𝑯 has dimensions 𝐿𝑦 , 𝐿𝑥 = 8, 5 and are: 𝐻 =

2
3
0
1
0
0
0
0

0
2
3
0
1
0
0
0

0
0
2
3
0
1
0
0

0
0
0
2
3
0
1
0

0
0
0
0
2
3
0
1

We calculate the vector 𝒚𝑇:

𝒚𝑇 = 𝑯 𝒙𝑇 =

2
3
1
2
0
0
0
0

0
2
3
1
2
0
0
0

0
0
2
3
1
2
0
0

0
0
0
2
3
1
2
0

0
0
0
0
2
3
1
2

1
−2
0
3
−1

= ⋯ =

2
−1
−6
7
5
−3
3
−1

Therefore the convolution is:

𝑦 𝑛 = {2, −෠1, −6, 7, 5, −3, 3, −1}
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