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Lecture Contents

• Introduction in Discrete Time Signals (discrete-time
systems)

• Analog vs Digital Processing Differences

• Generation of Discrete Time Signals
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Lecture Contents
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o Complex Exponential Discrete-Time Sequence
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Signals and Systems

Signal:

Any physical quantity that varies with time, space and any other independent 

variable, e.g.

𝑥1 𝑡 = 5𝑡, 𝑥2 𝑡 = ෍

𝑖=1

𝑁

𝐴𝑖 𝑡 sin[2𝜋𝐹𝑖 𝑡 + 𝜃𝑖 𝑡 ]

System:

An entity that performs an operation (transformation) on an input signal and 

produces one (or more) output signals.
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Analog vs Digital Processing Differences

Digital signal processing:

• Flexibility in design

• Predicted accuracy

• Homogeneity in the performance of products of the same type

• Reduced implementation costs, reliability

• Implementation of complex algorithms

• Ability to store on magnetic media

Analog signal processing:

• Communication of digital systems with the analog environment

• High frequency applications
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Discrete Time Signals

A discrete time signal (discrete-time systems)𝑥[𝑛] is expressed mathematically by 
the equation:

𝑥 . : 𝐼 → 𝑅 𝐶

𝑛 𝑥[𝑛]

The discrete time signal𝑥[𝑛] is a sequence of real or complex numbers. The 
independent variable 𝑛 represents (usually) time and takes only integer values. 
For non-integer values of 𝑛the sign is undefined.

Graphical representation of a discrete-time signal

discrete-time systems notation in vector form 𝒙 = [𝑥 0 , 𝑥 1 , … . , 𝑥 𝑁 − 1 ]𝑇
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Digital Signal Production

(a) Analog Signal to Digital Conversion

The discrete-time systems 𝑥 𝑛 usually produced with the help of a Digital-to-

Analog-Converter. In this process, a continuous time signal (CTS) 𝑥 𝑡 is sampled at a 

rate of 𝑓𝑠 = 1/𝑇𝑠 samples/ sec and the discrete-time systems is produced 𝑥[𝑛]. The 

process is described by the equation:

𝑥 𝑛 ≜ 𝑥 𝑛𝑇𝑠 = 𝑥 ቚ𝑡
𝑡=𝑛𝑇𝑠

(b) Signal production in primary digital form:

In some cases, the discrete-time systems are primarily created in a discrete form, e.g. 

the alphanumeric symbols produced while typing, the price of a stock on consecutive 

days, population statistics of a city, etc.
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Discrete Time Signal Classification

• Periodic and Non-Periodic Discrete-Time Signals

• Even and Odd Discrete Time Signals

• Causal and Anticausal Signals

• Energy Signals and Power Signals
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Periodic and Non-Periodic Discrete-Time Signals

discrete-time systems 𝑥[𝑛] is called periodic when

• It is defined for all values of 𝑛, where −∞ < 𝑛 < ∞, that is, has infinity duration,

• There exists a positive integer Ν, such that for every integer 𝑘 satisfy the 
equation:

𝑥 𝑛 + 𝑘𝑁 = 𝑥[𝑛]

Otherwise, the discrete-time systems is called non-periodic or aperiodic.

The smallest positive integer 𝛮 is called the fundamental period.

Periodic sequence 𝑥[𝑛] with period 𝛮repeats itself each time 𝛮samples will appear.

A periodic discrete-time systems with period 𝛮, is periodic with period 2𝛮, 3𝛮 and 
in general with every integer multiple of𝛮.

From any sequence 𝑥 𝑛 we can always create a periodic signal 𝑦[𝑛] with period N, 
repeating it 𝑥[𝑛] as follows:

𝑦[𝑛] = ෍

𝑘=−∞

+∞

𝑥[𝑛 − 𝑘𝑁]
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Periodic and Non-Periodic Discrete-Time Signals

Periodic discrete-time sinusoids with fundamental period 𝛮, defined by the 
equation:

𝑥 𝑛 = 𝐴 𝑐𝑜𝑠
2𝜋𝑚

𝑁
𝑛 + 𝜃 = 𝐴𝑐𝑜𝑠 2𝜋𝑓0𝑛 + 𝜃 , − ∞ < 𝑛 < ∞

where:

• 𝜔0 = 2𝜋𝑚/𝑁(rad) is the discrete circular frequency,

• 𝜃 is the phase and positive integers 𝑚 and 𝑁 are not divisible by each other.

The quotient 𝑚/𝑁 can be set as a variable 𝑓0 = 𝑚/𝑁, which is called the discrete 
frequency.

10



Observations on Periodic Discrete-Time Signals

• The definition of periodic discrete-time signals is the same as the definition of 
periodic continuous-time signals except for the fundamental period, which in 
discrete-time systems is an integer.

• Shifting a sinusoidal sequence by an integer multiple of the fundamental period 
does not change the sequence, since:

𝑥 𝑛 + 𝑘𝑁 = 𝐴 𝑐𝑜𝑠
2𝜋𝑚

𝑁
(𝑛 + 𝑘𝑁) + 𝜃 = 𝐴𝑐𝑜𝑠

2𝜋𝑚

𝑁
𝑛 + 2𝜋 𝑚𝑘 + 𝜃 = 𝑥[𝑛]

• If the discrete frequency is not in the form 2𝜋𝑚/𝛮 then the sine is not periodic. 
Continuous-time sinusoidal signals, are always periodic.

• Therefore, even if a discrete-time sine has resulted from sampling a continuous-
time sine it is not guaranteed to be periodic.
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Observations on Periodic Discrete-Time Signals

• The discrete frequencies repeat every 2𝜋, that is, it applies 𝜔 = 𝜔 + 2𝑘𝜋 to every integer 𝑘. 
So, we only need to define the digital frequencies in the range −𝜋 < 𝜔 < 𝜋, unlike the 
analog ones we define them for −∞ < 𝛺 < ∞.

• Unit of measurement of discrete frequency 𝜔 is radians (rad), while unit of measurement of 
analog frequency 𝛺 is rad / sec.

• When we sample a continuous-time sinusoidal signal 𝑥 𝑡 = 𝐴 𝑐𝑜𝑠 𝛺0𝑡 + 𝜃 , − ∞ < 𝑛 < ∞
we get a discrete-time periodic sinusoidal signal:

𝑥 𝑛 = 𝐴 𝑐𝑜𝑠 𝛺0𝑛𝑇𝑠 + 𝜃 = 𝐴𝑐𝑜𝑠
2𝜋𝑇𝑠

𝑇0
𝑛 + 𝜃

only if:
𝑇𝑠

𝑇0
=

𝑚

𝑁

where 𝑚 and 𝑁are positive integers that are not divisible by each other.

• In order for the phenomenon of frequency folding not to appear, the sampling period must 
also satisfy the Nyquist criterion:

𝑇𝑠 ≤
𝜋

𝛺0
=

𝛵0

2
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Sum and Product of Periodic Signals DT

If 𝑥1[𝑛] και 𝑥2[𝑛] are periodical discrete-time systems with periods 𝛮1 and 𝛮2, 
respectively, then the discrete-time systems 𝑦[𝑛] = 𝑥1[𝑛] + 𝑥2[𝑛] is periodic if for 
the reason of the periods:

𝑁2

𝑁1
=

𝑝

𝑞

where 𝑝 and 𝑞 are integers that have no common divisor.

If this is true, then its fundamental period 𝑦[𝑛] is given by the equation:

𝑁 =
𝑁1𝑁2

highest common factor N1, N2

Also, the product 𝑧 𝑛 = 𝑥1 𝑛 𝑥2[𝑛] is periodic with period 𝑁.
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Example 1  
Investigate whether the following sequences are periodic. If positive, calculate 
their fundamental period and draw the sequences:

(a) 𝑥1 𝑛 = 𝑐𝑜𝑠 0.25𝜋𝑛 (b) 𝑥2 𝑛 = 𝑠𝑖𝑛 𝜋 + 0.5𝑛

(c)𝑥3[𝑛] = 𝑒𝑗𝜋𝑛/8 𝑐𝑜𝑠 𝜋𝑛/11

Answer: (a) Since 0.25 𝜋 = 𝜋/4 and holds 𝑐𝑜𝑠 𝜋𝑛/4 = 𝑐𝑜𝑠 𝜋 𝑛 + 8 /4 , it 
follows that 𝑥1[𝑛]is a period with fundamental period 𝛮1 = 8.

(b) For be periodic 𝑥2[𝑛], a value 𝛮 must be found such that the equation is
satisfied 𝑠𝑖𝑛 𝜋 + 0.5𝑛 = 𝑠𝑖𝑛 𝜋 + 0.5(𝑛 + 𝑁) . The function sin() is periodic with
period 2π. The quantity 0.5𝛮 must be an integer multiple of 2π. Since π is an
irrational number, there is no integer value 𝛮 for it to verify the equality. So, it
𝑥2[𝑛] is non-periodic.

(c) The signal 𝑥3[𝑛] is the product of the sequences 𝑒𝑗𝜋𝑛/8 και 𝑐𝑜𝑠 𝜋𝑛/11 . Both
sequences are periodic, with periods 𝑁1 = 16 and 𝑁2 = 22, respectively. So the
product 𝑥3 𝑛 is also periodic with period 𝛮3:

𝑁3 =
16.22

highest common factor(16, 22)
=

352

2
= 176
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Example 1 (continued)

(a)

(b)

(c)

Signals: (a) 𝑥1 𝑛 = 𝑐𝑜𝑠 0.25𝜋𝑛 , 
(b) 𝑥2 𝑛 = 𝑠𝑖𝑛 𝜋 + 0.5𝑛 , (c)𝑥3[𝑛] = 𝑒𝑗𝜋𝑛/8 𝑐𝑜𝑠 𝜋𝑛/11
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Example 2
Investigate whether the following sequence is periodic and, if so, determine its 
fundamental period.

𝑥[𝑛] = 𝑅𝑒 𝑒
𝑗𝑛𝜋
12 + 𝐼𝑚 𝑒

𝑗𝑛𝜋
18

Answer: 𝑥[𝑛] is the sum of two periodic signals:

𝑥[𝑛] = cos
𝑛𝜋

12
+ sin

𝑛𝜋

18

Periods are 𝑁1 = 24 and 𝑁2= 36.

Therefore, the period of the sum, i.e. of 𝑥𝑛 is:

𝑁 =
𝑁1𝑁2

ΜΚΔ 𝑁1, 𝑁2
=

24. 36

ΜΚΔ 24,36
=

864

12
= 72
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Even and Odd Discrete Time Signals

Perfect symmetry: 𝑥[𝑛] = 𝑥[−𝑛], ∀𝑛

Unnecessary symmetry: 𝑥 𝑛 = −𝑥[−𝑛], ∀𝑛

• Even signals have a plot symmetrical about the vertical axis.

• Odd signals have a diagram symmetrical about the point of intersection 

(center) of the axes.
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Even and Odd Discrete Time Signals

Each signal 𝑥[𝑛] can be written as the sum of an even 𝑥𝑒[𝑛] and an odd component 

𝑥𝑜[𝑛], according to the equation:

𝑥[𝑛] = 𝑥𝑒[𝑛] + 𝑥𝑜[𝑛]

The even 𝑥𝑒 𝑛 and odd 𝑥𝑜[𝑛]components of the signal 𝑥[𝑛]are given by the 

relations:

𝑥𝑒 𝑛 =
1

2
𝑥 𝑛 + 𝑥 −𝑛 and 𝑥𝜊 𝑛 =

1

2
𝑥 𝑛 − 𝑥 −𝑛

If the signal 𝑥[𝑛] is complex the symmetries are defined similarly. In particular, a 

complex sequence exhibits even symmetry if it satisfies the equation:

𝑥[𝑛] = 𝑥∗[−𝑛], ∀𝑛

A complex sequence displays redundant symmetry if it satisfies the equation:

𝑥 𝑛 = −𝑥∗ −𝑛 , ∀𝑛
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Example 3

Find the even and the odd part of the discrete-time systems: 𝑥[𝑛] = 𝑢[𝑛].

Answer: The even part is given by the equation:

𝑥𝑒 𝑛 =
1

2
𝑥 𝑛 + 𝑥 −𝑛 =

1

2
𝑢[𝑛] + 𝑢[−𝑛] =

= ൜
1, 𝑛 = 0
1/2, 𝑛 ≠ 0

=
1

2
+ 𝛿[𝑛]

The odd part is given by the equation:

𝑥𝑜 𝑛 =
1

2
𝑥 𝑛 − 𝑥 −𝑛 =

1

2
𝑢 𝑛 − 𝑢 −𝑛 =

= ቐ
1/2, 𝑛 > 0
0, 𝑛 = 0
−1/2, 𝑛 < 0

=
1

2
𝑠𝑔𝑛(𝑛)

where sgn(𝑛) is the sign function, which returns: +1 when 𝑛 > 0, 0 when 𝑛 = 0, 

and -1 when 𝑛 < 0.
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Example 3 (continued)

(a)

(b)

(c)

(a) Unit step sequence 𝑢[𝑛], (b) Even part 𝑢𝑒[𝑛], (c) Odd part 𝑢𝑜[𝑛]
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Example 4

Find the even and the odd part of the discrete-time systems:𝑥[𝑛] = 𝛼𝑛𝑢[𝑛].

Answer: The even part is given by the equation:

𝑥𝑒 𝑛 =
1

2
𝑥 𝑛 + 𝑥 −𝑛 =

1

2
𝑎𝑛𝑢[𝑛] + 𝑎−𝑛𝑢[−𝑛] =

=

1

2
𝑎𝑛, 𝑛 > 0

1, 𝑛 = 0
1

2
𝑎−𝑛, 𝑛 < 0

=
1

2
𝑎 𝑛 + 𝛿(𝑛)

The odd part is given by the equation:

𝑥𝑜 𝑛 =
1

2
𝑥 𝑛 − 𝑥 −𝑛 =

1

2
𝑎𝑛𝑢 𝑛 − 𝑎−𝑛𝑢 −𝑛 =

=
1

2
𝑎 𝑛 𝑠𝑔𝑛(𝑛)
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Example 4 (continued)

(a)

(b)

(c)

(a) Unit step sequence 𝑢[𝑛], (b) Even part 𝑢𝑒[𝑛], (c) Odd part 𝑢𝑜[𝑛]
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Example 5
If 𝑥1[𝑛] even sign and 𝑥2[𝑛] odd, what follows for 𝑦[𝑛] = 𝑥1[𝑛] 𝑥2[𝑛] ?

Answer:

Since 𝑥1[𝑛] is an even sign, the following applies:           𝑥1[𝑛] = 𝑥1[−𝑛]

Since the 𝑥2[𝑛] signal is odd, it holds:     𝑥2[𝑛] = −𝑥2[−𝑛]

Therefore:

𝑦[𝑛] = 𝑥1[𝑛] 𝑥2[𝑛] = −𝑥1[−𝑛] 𝑥2[−𝑛] = −𝑦[−𝑛]

So the signal 𝑦[𝑛]is odd.
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Characteristics Sizes 
of Discrete Time Signals

• Average value

• Active value

• Energy

• Instant Power

• Average Power
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Characteristic Values of Discrete-Time Signals

Average Value of a discrete-time signal 𝑥[𝑛] in the range [0, 𝛮]:

ҧ𝑥[𝑛] =
1

𝑁 + 1
෍

𝑛=0

𝑁

𝑥[𝑛]

• 𝛮 + 1 is the number of points (samples) of the signal.

• For a sinusoidal signal the mean value is zero ( ҧ𝑥[𝑛] = 0), when as 
the calculation period is considered to be one period.

• For a stationary signal 𝑥[𝑛] = 𝛢, its average value is ҧ𝑥[𝑛] = 𝛢.

Active value of a discrete-time signal 𝑥[𝑛] in the range of values [0, 𝛮]:

ҧҧ𝑥[𝑛] =
1

𝑁 + 1
෍

𝑛=0

𝑁

𝑥2[𝑛]

1/2

25



Characteristic Values of Discrete-Time Signals

Energy of a discrete-time signal 𝑥[𝑛] on the value interval [0, 𝛮]:

𝐸𝑥 = ෍

𝑛=0

𝑁

𝑥2 𝑛

For discrete-time signals of infinite duration derived from sampling with period 𝑇𝑠 , 
the following applies:

𝐸𝑥 = ෍

𝑛=−∞

∞

𝑥[𝑛] 2 = 𝑙𝑖𝑚
𝑁→∞

𝑇𝑠 ෍

𝑛=−𝑁

𝑁

𝑥 𝑛 𝑇𝑠
2

• 𝑇𝑠 is the sampling period.

• Energy can be infinite or finite.

• A signal 𝑥[𝑛]is called an energy signal if it contains finite energy, i.e. when 
applicable 0 < 𝐸𝑥< ∞.
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Characteristic Values of Discrete-Time Signals

Instant Power: 𝑃[𝑛] = 𝑥2[𝑛]

Average Power of an discrete-time systems 𝑥[𝑛] in the range of values [0, 𝛮]:

𝑃𝑥 = 𝑃[𝑛] =
1

𝑁 + 1
෍

𝑛=0

𝑁

𝑥2[𝑛]

If the signal spans the time interval (−∞, +∞), the following applies:

𝑃𝑥 = 𝑃[𝑛] = 𝑙𝑖𝑚
𝑁→∞

1

2𝑁 + 1
෍

𝑛=−𝑁

𝑁

𝑥[𝑛] 2 = 𝑙𝑖𝑚
𝑁→∞

1

2𝑁 + 1
𝐸𝑥

• It 𝑥[𝑛]is called a power signal if it is valid 0 < 𝑃 < ∞.

• The average power of a periodic signal is finite and equal to the average power 
over one period N:

𝑃𝑥 =
1

𝑁
෍

𝑛=0

𝑁−1

𝑥[𝑛] 2
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Energy Signals and Power Signals

The signal 𝑥[𝑛] is called a power signal if it is valid 0 < 𝑃𝑥 < ∞.

The signal 𝑥[𝑛] is called a power signal if it is valid 0 < 𝐸𝑥< ∞.

Remarks:

• A signal can be an energy signal or a power signal or neither. 
It cannot be an energy signal and a power signal at the same time.

• A signal with finite magnitude and duration is an energy signal. If the magnitude
is finite but the duration is infinite then a necessary (but not sufficient) condition 
is that the signal magnitude decays to zero for 𝑛→ ± ∞.

• An energy signal has zero power because finite energy is divided by infinite time.

• A power signal has infinite energy because its finite power is multiplied by 
infinite time.

• A signal that exhibits no periodicity but has infinite duration and its magnitude is 
absolutely blocked is a power signal.

• Signals with infinite energy can have finite average power.
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Energy Signals and Power Signals

Notes on Periodic Signals:

• Periodic signals are power signals.

• If a periodic signal takes finite values, then its energy in one period is finite.

• The energy of the signal over time is infinite because it is the sum of the energy 
of infinite periods. Therefore a periodic signal is not energy.
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Example 6
Determine the energy and average power of the unit step 𝑢 𝑛 .

Answer: The signal energy 𝑢[𝑛] is calculated from the equation:

𝐸𝑢 = ෍

𝑛=−∞

∞

𝑢[𝑛]2 = ෍

𝑛=0

∞

1 = ∞

Because the energy is infinite, the signal is not an energy signal.

The average signal strength 𝑢[𝑛] is calculated from the relationship:

𝑃 = 𝑙𝑖𝑚
𝑁→∞

1

2𝑁 + 1
෍

𝑛=0

∞

𝑢[𝑛]2 = 𝑙𝑖𝑚
𝑁→∞

𝑁 + 1

2𝑁 + 1
= 𝑙𝑖𝑚

𝑁→∞

1 +
1
𝑁

2 +
1
𝑁

=
1

2

Because the average power is finite, the unit step 𝑢 𝑛 is a power signal.
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Causal and Anti -causal Signals

A discrete-time signal is called causal or right-sided if it satisfies the equation:

𝑥 𝑛 = 0, για 𝑛 < 0

and anti -causal or left-sided if it satisfies the equation:

𝑥 𝑛 = 0, για 𝑛 > 0

Causal and anti-causal discrete-time signal
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Operations on Discrete Time Signals

• Summation

• Multiplication

• magnitude Scaling
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Operations on Discrete Time Signals

1. Summation: 𝑦 𝑛 = 𝑥1 𝑛 + 𝑥2 𝑛 − ∞ < 𝑛 < ∞

2. Multiplication: 𝑦[𝑛] = 𝑥1[𝑛] 𝑥2[𝑛] − ∞ < 𝑛 < ∞

3. magnitude Scaling: 𝑦[𝑛] = 𝑎 𝑥[𝑛] − ∞ < 𝑛 < ∞, 𝑎 ∈ R

All of the above operations affect the width of the samples.
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Transformations 
of the Independent Variable

• Time Shift

• Reflection

• Scaling in Time
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Time Shift – Time Reversal

1. Time shift or sliding of an discrete-time systems 𝑥[𝑛] occurs when we replace the 
independent variable 𝑛with the quantity 𝑛 − 𝑛0, that is:

𝑦[𝑛] = 𝑥 𝑛 − 𝑛0

• If 𝑛𝑜 > 0 then it is 𝑥[𝑛] shifted to the right and the sequence 𝑦[𝑛] is delayed 
relative to the sequence 𝑥[𝑛].

• If 𝑛𝑜 < 0 then it 𝑥[𝑛]is shifted to the left and the 𝑦[𝑛] shows progress (preview)
relative to the sequence 𝑥[𝑛].

2. An inversion or reflection of a discrete-time systems 𝑥[𝑛] occurs when we replace 
the independent variable 𝑛 with the quantity −𝑛, i.e.:

𝑦[𝑛] = 𝑥 −𝑛
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Example of Time Shift and Reversal

(a) Original signal 𝑥[𝑛], (b) Reflection 𝑦 𝑛 = 𝑥[−𝑛]
(c) Delay 𝑛0 = 5 , 𝑦 𝑛 = 𝑥[𝑛 − 5], (d) Advance (𝑛0 = −5), 𝑦 𝑛 = 𝑥[𝑛 + 5],
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Time Scaling

3. Time Scaling: Changing the time scale in discrete-time systems is more 

complicated than continuous-time signals, because in discrete-time systems the time 

contraction and expansion is related to the change in the sampling period 𝑇𝑠 .

• If we change the sampling period from 𝑇𝑠 to 𝑀𝑇𝑠, where 𝛭 integer with 𝛭 > 1, 

then the number of samples will decrease. The process is called frequency 

division or down-sampling and is defined by the equation:

𝑦 𝑛 = 𝑥 𝑀𝑛 , όπου 𝑀 ∈ 𝑁, 𝛭 > 1

The 𝑦[𝑛] is formed by taking each time the M-order sample of 𝑥[𝑛].

• If we change the sampling period from 𝑇𝑠to 𝑇𝑠/𝑁,where 𝑁integer with 𝑁 > 1, 

then the number of samples will increase. The process is called frequency 

multiplication or up-sampling and is defined by the equation:

𝑦 𝑛 = 𝑥
𝑛

𝑁
, where 𝑁 ∈ 𝑁, 𝛮 > 1

The𝑦[𝑛] is formed by interposing N-1 zeros between each sample of 𝑥[𝑛].
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Time Scaling

If the quotient 𝑛/𝑁 is a non-integer, then the discrete-time systems is not defined. 
When 𝑛/𝑁 is an integer, i.e. is 𝑛 a multiple of 𝑁() 𝑛 = 0, ±𝑁, ±2𝑁, … ), we should 
determine its values 𝑦[𝑛] for the intermediate values of 𝑛. In this case it is 𝑦[𝑛] formed 
by interposing a number 𝛮 − 1 of zero values between two consecutive samples of 
𝑥[𝑛]:

𝑦[𝑛] = ቊ
𝑥[𝑛/𝑁], 𝑛 = 0, ±𝐿, ±2𝑁, …

0, elsewhere

Remarks:

• Time shifting and time scaling are not commutative, so they depend on the order in 
which they are performed.

• If the signal 𝑥 𝑛 is requested to generate 𝑦[𝑛] = 𝑥(𝑎𝑛 − 𝑏), one must first time-
shift, generate the signal 𝑧[𝑛] = 𝑥(𝑛 − 𝑏), and then scale in time to 𝑛 = 𝑎𝑛 generate 
the requested signal 𝑦[𝑛] = 𝑥(𝑎𝑛 − 𝑏).

• Between time scaling and inversion (reflection) the commutative property holds, so 
the order in which they are performed does not matter.
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(a)

(b)

(c)

Example of (b) Down-sampling and (c) Up-sampling of a discrete-time signal

Example of Down-sampling and Up-sampling
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Example 7

The signal is given 𝑥 𝑛 = 4 − 𝑛 𝑢 𝑛 − 𝑢 𝑛 − 4 . Draw the signals:

(a) 𝑦1[𝑛] = 𝑥[2 − 𝑛] (b) 𝑦2 𝑛 = 𝑥 2𝑛 − 1 (c)𝑦3[𝑛] = 𝑥[6 − 2𝑛]

Answer: (a) The signal 𝑥[𝑛] [figure (a)], is a linearly decreasing sequence, starting at 
𝑛 = 0 and ending at 𝑛 = 4. The signal 𝑦1[𝑛] = 𝑥[2 − 𝑛] [figure (b)] is obtained by 
shifting it 𝑥[𝑛] by two points and reversing it in time. For 𝑛 = 2n 𝑦1[𝑛] is equal to 
𝑥[0]. Therefore, a 𝑦1[𝑛] takes the value 4 for 𝑛 = 2 and decreases linearly to the left 
up to the point 𝑛 = −1, beyond which a 𝑦1[𝑛] equals zero.

Signals: (a) 𝑥[𝑛],       (b) 𝑥[2 − 𝑛]
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Example 7 (continued)

(b) The signal 𝑦2[𝑛] = [2𝑛 − 1] [figure (c)] results from the combination of time 
shift and frequency division. Therefore, it 𝑦2[𝑛] is drawn by first shifting it 𝑥[𝑛] to 
the right by one point (delay). Then, 𝑦2[𝑛] frequency division by a factor of 2 is 
applied to the signal. Keeping only the even terms in figure (c) results in the graph of 
𝑦2[𝑛] [figure (d)].

Signals: (c) 𝑥[𝑛 − 1],       (d) 𝑥[2𝑛 − 1]
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Example 7 (continued)

(c) The signal 𝑦3 𝑛 = 𝑥[6 − 2𝑛] [figure (e)] results from a combination of time-
shifting, frequency division, and time-reversal. To represent it graphically 𝑦3[𝑛] we 
start by drawing 𝑥[6 − 2𝑛], which is formed by shifting it 𝑥[𝑛]to the left by six 
points (advance) and with reversal in time. Finally 𝑦3[𝑛] [figure (f)] is found by 
computing every second sample of it 𝑥 6 − 2𝑛 .

Signals: (e) 𝑥 6 − 𝑛 (f) 𝑥[6 − 2𝑛]
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Fundamental Discrete Time Signals

• Unit step sequence

• Unit impulse sequence

• Unit ramp sequence

• Real exponential sequence

• Complex exponential sequence

• Sine sequence
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Unit Step Sequence

Unit step sequence:

𝑢[𝑛] = ቊ
1, 𝑛 ≥ 0
0, 𝑛 < 0

Relative to the corresponding continuous-time step function 𝑢(𝑡), the discrete-
time unit step 𝑢[𝑛] does not exhibit any mathematical discontinuity.

Unit step sequence𝑢[𝑛]
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Unit Impulse Sequence

Unit impulse sequence:

𝛿 𝑛 = ቊ
1, 𝑛 = 0
0, 𝑛 ≠ 0

With respect to 𝛿(𝑡) η 𝛿[𝑛] is defined in a very simple way and does not show a
discontinuity at 𝑡 = 0, nor does it take an infinite value of magnitude.

Signals 𝛿 𝑛 και 𝑢[𝑛] are connected through relationships:

𝛿[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 1]

𝑢 𝑛 = ෍

𝑘=0

∞

𝛿 𝑛 − 𝑘 = ෍

𝑚=−∞

𝑛

𝛿 𝑚 , όπου 𝑚 = 𝑛 − 𝑘

Unit impulse sequence 𝛿 𝑛
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Discrete Time vs Continuous Time Signals

Signals 𝛿 𝑛 και 𝑢[𝑛] are connected through relationships:

𝛿[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 1]

𝑢 𝑛 = ෍

𝑘=0

∞

𝛿 𝑛 − 𝑘 = ෍

𝑚=−∞

𝑛

𝛿 𝑚 , όπου 𝑚 = 𝑛 − 𝑘

The corresponding relations for the continuous-time signals 𝛿(𝑡)and 𝑢 𝑡 , are:

𝛿(𝑡) =
𝑑𝑢 𝑡

𝑑𝑡

𝑢 𝑡 = න
0

∞

𝛿 𝑡 − 𝜏 𝑑𝜏 = න
−∞

𝑡

𝛿 𝜏 𝑑𝜏

The above relations are similar to each other but the first ones are simpler 
mathematically as instead of the derivative and the integral we use differences 
and sums.

Moreover, there are no discontinuities in the definitions of 𝛿 𝑛 και 𝑢 𝑛 . 

The 𝛿 𝑛 and 𝑢 𝑛 are not sampled versions of 𝛿 𝑡 και 𝑢 𝑡 but are defined 
independently.
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Unit Ramp Sequence

Unit ramp sequence:

𝑟[𝑛] = ቊ
𝑛, 𝑛 ≥ 0
0, 𝑛 < 0

Sequence of unit ramp r 𝑛
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Analysis of discrete-time systems in Unit Impulses

Each discrete-time systems 𝑥[𝑛] can be represented as a sum of suitably shifted 

unit impulses 𝛿 𝑛 multiplied by a weight factor corresponding to the respective 

value of the signal 𝑥[𝑛].

𝑥[𝑛] = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]

• Each term 𝑥 𝑘 𝛿[𝑛 − 𝑘]is assumed to be a signal with magnitude 𝑥[𝑘] at time 

𝑛 = 𝑘, and is set to zero for any other value of 𝑛.

• The discrete-time signal notation above follows from the shift property of the 

function 𝛿[𝑛], namely:

𝑥 𝑛 𝛿 𝑛 − 𝑛0 = 𝑥[𝑛0]𝛿[𝑛 − 𝑛0]

and is used to calculate the output of a linear and time invariant (LTI) system.
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Example 8

Express the signal 𝑥[𝑛] = {. . , 0, ෠1, 2,3,0, … }: (a) as a sum of shifted unit impulses 

and (b) as a sum of unit step sequences.

Answer: (a) As the sum of unit impulses it is:

𝑥[𝑛] = 𝛿[𝑛] + 2𝛿[𝑛 − 1] + 3𝛿[𝑛 − 2]

(b) In the above solution we set 𝛿 𝑛 = 𝑢[𝑛] − 𝑢[𝑛 − 1] and we get:

𝑥 𝑛 = 𝛿 𝑛 + 2𝛿 𝑛 − 1 + 3𝛿 𝑛 − 2 =

= 𝑢 𝑛 − 𝑢 𝑛 − 1 + 2𝑢 𝑛 − 1 − 2𝑢 𝑛 − 2 + 3𝑢 𝑛 − 2 − 3𝑢 𝑛 − 3

= 𝑢 𝑛 + 𝑢 𝑛 − 1 + 𝑢 𝑛 − 2 − 3𝑢[𝑛 − 3]
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Real Exponential Sequence

Real exponential sequence: 𝑥[𝑛] = 𝐴 𝛼𝑛, where A, 𝛼 ∈ R

𝛢:expresses the width of the sequence

𝛼: expresses the slope rate of the plot of the sequence

Forms of the sequence 𝑥[𝑛] = 𝛼𝑛 for various values of 𝛼.
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Summary of Complex Analysis

A complex sequence 𝑥[𝑛] can be expressed either in cartesian form, i.e. in real and 
imaginary part:

𝑎 𝑛 + 𝑗𝑏 𝑛 = 𝑅𝑒{𝑥 𝑛 } + 𝑗 𝐼𝑚{𝑥 𝑛 }

either in polar form, i.e. in magnitude and phase:

𝑥 𝑛 = 𝑥 𝑛 𝑒𝑗 𝜑𝑥[𝑛]

where the width 𝑥 𝑛 and the phase arg 𝑥 𝑛 are given by the relations:

𝑥 𝑛 = 𝑅𝑒2{𝑥 𝑛 } + 𝐼𝑚2{𝑥 𝑛 }abs()

𝜑𝑥[𝑛] = tan−1 𝐼𝑚 𝑥 𝑛

𝑅𝑒 𝑥 𝑛
angle()

The polar form is preferred because it simplifies the calculations and produces the 
magnitude and phase spectral representations.

The conjugate sequence 𝑥∗[𝑛] is given by the equation:

𝑥∗ 𝑛 = 𝑅𝑒 𝑥 𝑛 − 𝑗 𝐼𝑚 𝑥 𝑛 = 𝑥 𝑛 𝑒−𝑗𝜑𝑥[𝑛]

The magnitude remains the same but there is a phase reversal.
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Complex Exponential Sequence

Complex Exponential Sequence:   𝑥[𝑛] = 𝑎𝑛, όπου 𝛼 ∈ C. 

Setting 𝛼 = |𝛼|𝑒𝑗𝜔0 we have:

𝑥 𝑛 = 𝛼𝑛 = 𝛼 𝑛𝑒𝑗 𝑛𝜔0 = |𝛼|𝑛{cos(𝑛𝜔0) + 𝑗 sin(𝑛𝜔0)}

Cartesian Form:

• Real part: 𝑥𝑅[𝑛] = |𝛼|𝑛 𝑐𝑜𝑠 𝑛𝜔0

• Fantastic part: 𝑥𝐼[𝑛] = |𝛼|𝑛 𝑠𝑖𝑛 𝑛𝜔0

Polar Form:

• Magnitude: 𝑥[𝑛] = 𝛼𝑛

• Phase: 𝜑(𝑛) = 𝑛𝜔0
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Comments on the Complex Exponential Sequence

• The discrete-time complex exponential sequence is different from the 
continuous-time complex function:

𝑥 𝑡 = 𝑒−𝑠𝑡 = 𝑒(−𝜎+𝑗𝛺0)𝑡

where 𝛺0 is the continuous frequency.

• By sampling the complex function 𝑥 𝑡 with sampling period 𝑇𝑠 , yields the 
sampled complex sequence:

𝑥 𝑛 = 𝑥 𝑛𝑇𝑠 = 𝑒 −𝜎𝑛𝑇𝑠+𝑗𝛺0𝑛𝑇𝑠 = 𝑒−𝜎𝑇𝑠 𝑛𝑒𝑗(𝛺0𝑇𝑠)𝑛 = 𝛼𝑛𝑒𝑗𝜔0𝑛

where 𝛼 = 𝑒−𝜎𝑇𝑠 and 𝜔0 = 𝛺0 𝛵𝑠.

• The discrete-time complex exponential sequence, unlike the continuous-time 
complex function, is always periodic with period 2𝜋, since it 𝑒𝑗2𝜋𝑛 = 1, ∀𝑛 ∈ 𝛧,
satisfies the equation:

𝑒𝑗(𝜔0+2𝜋)𝑛 = 𝑒𝑗𝜔0𝑛𝑒𝑗2𝜋𝑛 = 𝑒𝑗𝜔0𝑛

• The negative frequency indicates the clockwise direction of rotation of the 
vector 𝑒−𝑗𝑛𝜔0 with velocity 𝑛𝜔0.

• The term 𝑒𝑗𝑛𝜔0 describes a vector that rotates counterclockwise with speed 
𝑛𝜔0 and expresses the positive frequencies.
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Example 9

To calculate the complex signal 𝑥[𝑛] = 𝑎𝑛𝑒𝑗𝜔0𝑛, with 𝜔0 = 𝜋/8 in the time interval 
0 ≤ 𝑛 ≤ 40 and to draw the diagrams of real-imaginary part and magnitude-phase 
for values of 𝛼 = 0.9, −0.9, 1.2, −1.2.

Complex exponential sequence graph for 𝛼 = 0.9, 
(Up: Real-part, magnitude, Down: Imaginary-part, Phase)  
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Example 9 (continued)

Complex exponential sequence graph for 𝛼 = −0.9

(Up: Real−part, magnitude, Down: Imaginary−part, Phase)
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Example 9 (continued)

Complex exponential sequence graph for 𝛼 = 1.2

(Up: Real-part, magnitude, Down: Imaginary-part, Phase) 
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Example 9 (continued)

Complex exponential sequence graph for 𝛼 = −1.2

(Up: Real−part, magnitude, Down: Imaginary−part, Phase)
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Sine Sequence

Sine and cosine sequences can be considered as special cases of complex 
exponential sequences.

The cosine sequence is the real part of the complex exponential sequence, while 
the sine is the imaginary part.

𝑥 𝑛 = 𝛢𝛼𝑛 = |𝛢|𝑒𝑗 𝑛𝜔0+𝜃 = |𝛢|{cos(𝑛𝜔0 + 𝜃) + 𝑗 sin(𝑛𝜔0 + 𝜃)}

There is a phase difference of π/2 between the two sequences, according to:

Αcos(𝑛𝜔0 + 𝜃) = 𝐴 sin(𝑛𝜔0 + 𝜃 + 𝜋/2) , −∞ < 𝑛 < ∞

where 𝜔0 = 2𝜋(𝑚/𝑁)(rad) is the discrete frequency.

The variable 𝑓0 = 𝑚/𝑁 is called frequency (Hz) and is valid 𝜔0 = 2𝜋𝑓0.

Important: If the numbers 𝑚 and 𝑁 have no common divisor, then the sinusoidal 
signal is not periodic. Therefore, discrete-time sinusoidal sequences are not always 
periodic functions, as are continuous-time sinusoidal functions.
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Sine Sequence

Because the variable 𝜔 is expressed in rad, it follows that the discrete frequency 
repeats with period 2𝜋, i.e. satisfies the equation 𝜔0 + 2𝜋𝑘 = 𝜔0, where 𝑘 is a 
positive or negative integer.

To avoid the ambiguity of reference to a specific period we assume that the discrete 
frequency 𝜔 satisfies the equation −𝜋 < 𝜔 ≤ 𝜋and transform every other 
frequency 𝜔1outside this region, with the equation:

𝜔1 = 𝜔 + 2𝜋𝑘 ή 𝜔1 ≡ 𝜔 (𝑚𝑜𝑑 2𝜋)

The frequency 𝜔 is called the equivalent or apparent frequency. For example:

• If the frequency takes value 𝜔0 = 2𝜋, then it can be written as 
𝜔0 = 0 + 2𝜋, so the equivalent frequency is 0 (rad).

• If the frequency is 𝜔0 = 7𝜋/2, then it can be written as 
𝜔0 = 8 − 1 𝜋/2 = 2𝑥2𝜋 − 𝜋/2, so the equivalent frequency is −𝜋/2.
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Example 10

Consider the sinusoidal sequences: 𝑥1[𝑛] = 𝑠𝑖𝑛(0.1𝜋𝑛), 𝑥2[𝑛] = 𝑠𝑖𝑛(0.2𝜋𝑛), 
𝑥3[𝑛] = 𝑠𝑖𝑛(0.6𝜋𝑛) and 𝑥4[𝑛] = 𝑠𝑖𝑛(0.7𝜋𝑛) for −∞ < 𝑛 < ∞.

(a) To find whether they are periodic or not.

(b) Plot the sequences in the time domain 𝑛 = 0, … 40.

(c) Can these sequences be sampled versions of the corresponding continuous -
time functions?

Answer: (a) The given sequences are written:

𝑥1 𝑛 = 𝑠𝑖𝑛 0.1𝜋𝑛 = sin
2𝜋

20
𝑛

𝑥2[𝑛] = 𝑠𝑖𝑛(0.2𝜋𝑛) = sin
2𝜋

20
2𝑛

𝑥3 𝑛 = 𝑠𝑖𝑛 0.6𝜋𝑛 = sin
2𝜋

20
6𝑛

𝑥4 𝑛 = 𝑠𝑖𝑛 0.7𝜋𝑛 = sin
2𝜋

20
7𝑛

Therefore, the sequences are periodic and harmonically connected to each other.
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Example 10 (continued)

Sine sequence for different frequency values 𝑓0:

It follows from the figure that the sequences and 𝑥1[𝑛] are 𝑥2[𝑛] the sampled 
versions of the corresponding continuous-time functions.

However, the same is not true for the sequences 𝑥3[𝑛] and 𝑥4[𝑛].
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Example 10 (continued)

It would be wrong to assume that this occurs due to a violation of the Nyquist rule, 
i.e., because of incorrect sampling frequency.

Let's explain why this happens: To obtain the discrete sequence sin(𝜔0𝑛), we need 
to sample the continuous-time function sin(𝛺0𝑡) with a sampling period 𝑇𝑠=1 
according to the Nyquist condition.:

𝑇𝑠 = 1 ≤
𝜋

𝛺0

where 𝜋/𝛺0 is the maximum allowed value of the sampling period for which the 
aliasing phenomenon does not occur.

For the sequence 𝑥3 𝑛 = 𝑠𝑖𝑛 0.6𝜋𝑛 = 𝑠𝑖𝑛 0.6𝜋𝑡 |𝑡=𝑛𝑇𝑠=𝑛 when 𝑇𝑠 = 1, it holds:

𝑇𝑠 = 1 ≤
𝜋

0.6 𝜋
≈ 1,66

Conversely, in the case of the sequence 𝑥2 𝑛 we have: 𝑥2 𝑛 = 𝑠𝑖𝑛 0.2𝜋𝑛 =
𝑠𝑖𝑛 0.2𝜋𝑡 |𝑡=𝑛𝑇𝑠=𝑛 when 𝑇𝑠 = 1, then we have:

𝑇𝑠 = 1 ≤
𝜋

0.2 𝜋
= 5
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Example 10 (continued)

Therefore, generating the sequence 𝑥2 𝑛 is done by taking a larger number of 
samples from the function 𝑠𝑖𝑛(0.2𝜋𝑡), than generating the sequence 𝑥3 𝑛 from the 
function 𝑠𝑖𝑛(0.6𝜋𝑡), using in both cases the same sampling period.

This results in the sequence 𝑥2 𝑛 being more like an analog sinusoid than 𝑥3 𝑛 , 
however in both cases no distortion effect occurs.

Important note: The analog frequency 𝛺 of analog sinusoid waves varies in the 
range [0, ∞), while the discrete (digital) frequencies 𝜔 are radial and vary in the 
range [0, 𝜋].

Negative frequencies are needed in the analysis of real-valued signals and thus we 
end up with frequency ranges:

(a) for the continuous-time signals: −∞ < 𝛺 < ∞, and

(b) for discrete-time signals: – 𝜋 < 𝜔 ≤ 𝜋.
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