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Analog to Digital Conversion

Most discrete-time signals (DTS) are generated from continuous-time signals 
(CTS) through the processing of the following three stages:

Analog-to-Digital Converter (ADC)

• Sampling: Continuous to Discrete Conversion. Generates 𝑥[𝑛] = 𝑥𝑎 𝑛𝑇𝑠 , where 
𝑇𝑠  is the sampling period.

• Quantization: Maps the continuous amplitude 𝑥𝑎 𝑛𝑇𝑠 to a discrete set of 
values ො𝑥[𝑛]. Characteristics include: Δ, the quantization step, and word length 
(bits).

• Coding: Produces a sequence 𝑐[𝑛] of binary code words transmitted over the 
communication channel.



Sampling



Sampling
Sampling is the process of converting a continuous-time and continuous-

amplitude signal (analog signal) into a discrete-time signal. An analog signal 

𝑥𝑎(𝑡) with a finite bandwidth 𝑋𝑎 Ω and a maximum frequency Ω𝑚𝑎𝑥 , 

undergoes sampling at a rate 𝑓𝑠 = 1/𝑇𝑠 (samples per second). As a result, the 

discrete-time signal 𝑥𝑎[𝑛]: is produced:

𝑥𝑎 𝑛 ≜ 𝑥𝛼 𝑛𝑇𝑠 = 𝑥𝛼 𝑡 |𝑡=𝑛𝑇𝑠

The value of the sampling period 𝑇𝑠 is determined by the Nyquist criterion or 

Sampling Theorem. According to this, if the analog signal 𝑥𝛼 𝑡 has a strictly 

limited bandwidth [i.e., 𝑋𝑎(Ω) = 0 for ∣ Ω > Ω𝑚𝑎𝑥], then 𝑥𝑎 𝑡 can be fully 

recovered from the samples 𝑥𝑎(𝑛𝑇𝑠), if the sampling frequency 𝑓𝑠 satisfies the 

relationship:

𝑓𝑠 ≥ 2𝑓𝑚𝑎𝑥 or equivalent 𝛺𝑠 ≥ 2𝛺𝑚𝑎𝑥

where 𝑓𝑚𝑎𝑥 is the maximum frequency of the continuous-time signal 𝑥𝛼 𝑡 . 

The Nyquist rate is defined by the equation: 𝑓𝑛 = 2 𝑓𝑚𝑎𝑥



Sampling
In practice, sampling can be implemented by successively opening and closing an 
ideal switch at regular intervals of time 𝑇𝑠 . The samples of the signal are taken 
when the switch is closed, while no samples are obtained when the switch is open.

(a) Analog Signal 𝑥𝑎 𝑡 (b) Discrete-Time Signal 𝑥𝑎[𝑛]



Relationship between 
Analog and Digital frequency

The correspondence between the continuous 𝜴 (𝑟𝑎𝑑/𝑠𝑒𝑐) of the 
continuous-time signal 𝑥𝑎(𝑡) and the discrete frequency 𝝎 (𝑟𝑎𝑑) of the 
discrete-time signal 𝑥𝑎 𝑛 = 𝑥𝑎(𝑛𝑇𝑠), is given by the relationship:

𝜔 = 𝛺𝑇𝑠, (𝑟𝑎𝑑/𝑠𝑒𝑐) 𝑥 (𝑠𝑒𝑐) = (𝑟𝑎𝑑)

Note that the values of the discrete frequency ω result as samples of the 
continuous frequency 𝜴, taken at intervals equal to the sampling period 
Ts .



Ideal Sampling



Ideal Sampling

Ideal sampling is the process of generating samples 𝑥𝑠 𝑛𝑇𝑠 of continuous-time 
signals 𝑥𝛼 𝑡 , instantaneously and uniformly, meaning one sample every 𝑇𝑠, by 
multiplying 𝑥𝛼(𝑡) with a sampling function 𝛿𝑇𝑠

𝑡 :

𝛿𝑇𝑠
(𝑡) = 

𝑛=−∞

+∞

𝛿(𝑡 − 𝑛𝑇𝑠)

The ideally sampled signal 𝑥𝑠 𝑡 is given by the equation:

𝑥𝑠 𝑡 = 𝑥𝑎 𝑡 𝛿𝑇𝑠
𝑡 = 

𝑛=−∞

+∞

𝑥𝑎 𝑛𝑇𝑠 𝛿 𝑡 − 𝑛𝑇𝑠

The process is termed ideal because it relies on the Dirac delta function 𝛿(𝑡), 
which has significant theoretical value but cannot be practically implemented. The 
Fourier transform 𝑋𝑠 𝛺 of the ideally sampled signal is given by:

𝑋𝑠 𝛺 =
1

𝑇𝑠


𝑘=−∞

∞

𝑋𝑎 𝛺 − 𝑘𝛺𝑠

where 𝑋𝑎 𝛺 is the Fourier transform of the continuous-time signal 𝑥𝑎 𝑡 .



Ideal Sampling (Time Domain)

(a) Continuous-time signal 𝑥𝛼 t

(b) Sampling function:

𝛿𝑇𝑠
(𝑡) = 

𝑛=−∞

+∞

𝛿 𝑡 − 𝑛𝑇𝑠

(c) Ideally sampled signal:

𝑥𝑠 𝑡 = 

𝑛=−∞

+∞

𝑥𝑎 𝑛𝑇𝑠 𝛿 𝑡 − 𝑛𝑇𝑠

The sampling frequency is given by: 𝛺𝑠 = 2𝜋/𝑇𝑠



Ideal Sampling (Frequency Domain)

(a) Spectrum of the analog signal 
𝑥𝛼 𝑡 with 𝑋𝑎 𝑓 = 0 for 𝑓 > 𝑓𝑥

(b) Spectrum 𝑋 𝑓 of the sampled signal 
when 𝑓𝑠 ≥ 2𝑓𝑥

(c) Spectrum 𝑋 𝑓 of the sampled signal 
when 𝑓𝑠 < 2𝑓𝑥 ⇒(aliasing effect)

We observe that the spectrum 𝑋𝑠 𝛺 of the ideally sampled signal 𝑥𝑠 𝑡 , arises as 
the sum of repetitions of the spectrum 𝑋𝑎 𝛺 of the original continuous-time signal 
𝑥𝑎(𝑡), at positions that are integer multiples of the sampling frequency 𝛺𝑠.

https://en.wikipedia.org/wiki/Aliasing


Ideal Sampling (Frequency Domain)

Case (a): 𝜴𝒔 ≥ 𝟐 𝜴𝒎𝒂𝒙 or 𝑓𝑠 ≥ 2𝑓𝑚𝑎𝑥

The spectrum 𝑋𝑠 𝛺 [Figure (b)] is formed by successive repetitions of 
𝑋𝑎 𝛺 , located at integer multiples of the sampling frequency 𝛺𝑠. There is no 
overlap between the spectral repetitions.

• Protection Interval: The distance 𝛺𝑠 − 𝛺𝑚𝑎𝑥 between two successive spectral 
repetitions of 𝑋𝑎 𝛺 .

• The absence of overlap between the repetitions of the spectrum 𝑋𝑎 𝛺
ensures the recovery of 𝑋𝑎 𝛺 from 𝑋𝑠 𝛺 and, consequently, the recovery of 
the original signal 𝑥𝑎(𝑡) from the ideally sampled signal 𝑥𝑠(𝑡). 

• Recovery is achieved using a low-pass filter with cutoff frequency 𝛺𝑐 , where:

𝛺𝑚𝑎𝑥 < 𝛺𝑐 < 𝛺𝑠 ή    𝑓𝑚𝑎𝑥 < 𝑓𝑐 < 𝑓𝑠

• Nyquist Frequency: 𝛺𝛮 = 2𝛺𝑚𝑎𝑥 Nyquist Criterion: 𝛺𝑠 ≥ 𝛺𝛮  or 𝛺𝑠 ≥ 2 𝛺𝑚𝑎𝑥

or 𝑇𝑠 ≤
𝜋

𝛺𝑚𝑎𝑥
=

1

2𝑓𝑚𝑎𝑥

• The Nyquist criterion ensures that the signal 𝑥𝑠(𝑡) contains all the information 
of the original signal 𝑥𝑎(𝑡), and the original signal can be fully recovered from 
the ideally sampled signal.



Ideal Sampling (Frequency Domain)

Case (b): 𝜴𝒔 < 𝟐 𝜴𝒎𝒂𝒙 or 𝑓𝑠 < 2𝑓𝑚𝑎𝑥

• In this case, there is overlap between successive spectral repetitions of 
the spectrum 𝑋𝛼 𝛺 [Figure (c)].

• Recovery of the original signal 𝑥𝛼(𝑡) from the signal 𝑥𝑠 𝑡 is impossible.

• Aliasing Effect: The overlap of successive spectral repetitions. It causes 
permanent and irreversible distortion of the signal.

• If an attempt is made to filter with a low-pass filter to recover 𝑥𝛼(𝑡), 
frequencies that did not exist in the original signal, aliasing 
frequencies, will be introduced.



Ideal Sampling (Frequency Domain)
• The above study was conducted under the assumption that the signal 

𝑥𝛼 𝑡 is a low-frequency signal, meaning it satisfies the relationship 
𝑋𝛼 𝛺 = 0, for 𝛺 > 𝛺𝑚𝑎𝑥 . 

• If the signal 𝑥𝛼(𝑡) is spectrally unlimited, i.e., it contains frequencies of 
any high value, then the phenomenon of frequency aliasing will occur 
for any (sufficiently large) sampling frequency. 

• In practical terms, for such signals, we first filter the signal with a low-
pass filter and then proceed with sampling. 

• This, however, results in the permanent loss of high frequencies in the 
signal.

• Another issue that makes ideal sampling impractical in practice is that 
the reconstruction low-pass filter was considered ideal, which is 
naturally not the case, as an ideal low-pass filter has a non-causal and 
infinite impulse response. In reality, the ideal low-pass filter is 
approximated by a practical low-pass filter.



Example 1

If the Nyquist rate for the signal 𝑥 𝑡 is 𝛺𝑠, find the Nyquist rates for the 
signals: 

(a) 𝑦 𝑡 = 𝑑𝑥 𝑡 /𝑑𝑡       (b) 𝑦 𝑡 = 𝑥 𝑡 cos(𝛺0𝑡)

Answer: (a) To calculate the DTFT of 𝑦 𝑡 we use the differentiation property 
of the DTFT, which yields: 

𝑌 𝛺 = 𝑗Ω 𝑋(𝛺)

It can be observed that there is no change in the frequency domain; therefore, 
the Nyquist frequency remains unchanged.

(b) The given operation implies amplitude modulation, specifically amplitude 

modulation by a cosine term. It is known that during the modulation of a 

signal 𝑥 𝑡 by a term cos Ω0𝑡 , there is a frequency shift in the spectrum of 

𝑥 𝑡 by ±Ω0. Therefore, the Nyquist frequency of 𝑦 𝑡 = 𝑥 𝑡 cos(Ω0𝑡) will be 

𝛺𝑠 + 2𝛺0.



Example 2
Find the Nyquist rate of the signal 𝑥𝑎 𝑡 = 5 𝑐𝑜𝑠 1000𝜋𝑡 𝑐𝑜𝑠 4000𝜋𝑡

Answer: From the trigonometric property:

𝑐𝑜𝑠 𝐴 . 𝑐𝑜𝑠𝐵 =
1

2
𝑐𝑜𝑠 𝐴 + 𝐵 + 𝑐𝑜𝑠 𝐴 − 𝐵 , we have:

𝑥𝑎 𝑡 =
5

2
𝑐𝑜𝑠(1000𝜋𝑡 + 4 000𝜋𝑡) + 𝑐𝑜𝑠(1000𝜋𝑡 − 4 000𝜋𝑡 )

= 2,5 𝑐𝑜𝑠 5000𝜋𝑡 + 𝑐𝑜𝑠 3000𝜋𝑡

Thus, 𝑥𝑎 𝑡 is a signal with maximum frequency 𝑓𝑚𝑎𝑥 = 2,500 𝐻𝑧.

Consequently, the Nyquist rate is 2 𝑥 2,500 = 5,000 𝐻𝑧

The Nyquist interval ( period) is 1/5,000 sec = 0.2 𝑚𝑠

16



Example 3
Find the Nyquist rate for the analog signal:

𝑥𝑎 𝑡 =
sin 200𝜋𝑡

𝜋𝑡

Answer: From Fourier analysis we know that:

sin 𝑎𝑡

𝜋𝑡

F
𝑃𝑎 𝜔 = ቊ

1
0

𝜔 < 𝛼

𝜔 > 𝛼

The 𝑥𝑎 𝑡 is a signal with maximum frequency 𝑓𝑚𝑎𝑥 = 100 𝐻𝑧.

So the Nyquist rate is 200 𝐻𝑧, and the Nyquist interval is 1/200 sec.

17



Example 4
Find the Nyquist rate for the analog signal:

𝑥𝑎 𝑡 =
sin 200𝜋𝑡

𝜋𝑡

2

Answer: From the convolution theorem of the Fourier transform, we have:

𝑥1 𝑡 𝑥2 𝑡
𝐹 1

2𝜋
𝑋1 Ω 𝑋2(Ω)

and combined with the previous paradigm, we find that the signal 𝑥𝑎 𝑡 is 
also band-limited and that its bandwidth is twice that of the signal from 
the previous paradigm, i.e. it is 200 Hz .

So, the Nyquist rate is 400 Hz and the Nyquist interval is 1/400 sec.

18



Example 5
The analog signal 𝑥𝑎 𝑡 = 2𝑐𝑜𝑠 20𝜋𝑡 cos 30𝜋𝑡 + sin 40𝜋𝑡 is sampled at a rate of 20 
samples per second. Determine the resulting discrete time signal.

Answer: We will write the given signal as a sum of sinusoidal functions. The product 
𝑐𝑜𝑠 20𝜋𝑡 cos 30πt is written:

2𝑐𝑜𝑠 20𝜋𝑡 𝑐os 30πt = cos 50𝜋𝑡 + cos 10𝜋𝑡

So the analog signal is 𝑥𝑎 𝑡 = cos 50𝜋𝑡 + cos 10𝜋𝑡 + sin 40𝜋𝑡 and contains the 
frequencies 𝑓1 = 25 𝐻𝑧, 𝑓2 = 5 𝐻𝑧 και 𝑓3 = 20 𝐻𝑧.

The Nyquist frequency is 𝑓𝑁 = 2𝑥25 𝐻𝑧 = 50 𝐻𝑧. 

The discrete-time signal resulting from sampling with frequency 𝑓𝑠 = 20 𝐻𝑧 (𝑇𝑠 =
1/20 𝑠𝑒𝑐), is:

𝑥 𝑛 = 𝑥𝑎 𝑡 ቚ
𝑡=𝑛𝑇𝑠

= cos
50𝜋

20
𝑛 + cos

10𝜋

20
𝑛 + sin

40𝜋

20
𝑛

= cos
5𝜋

2
𝑛 + cos

𝜋

2
𝑛 + sin 2𝜋𝑛 = ⋯ = 0

The sampling frequency chosen does not satisfy the Nyquist criterion and the 
frequencies produced resulted in a zero signal value.

We used the well-known relation:𝑐𝑜𝑠𝐴 𝑐os𝐵 = (1/2) cos 𝐴 + 𝐵 + cos 𝐴 − 𝐵 .

19



Example 6
Repeat the previous paradigm for a sampling frequency (rate) of 50 samples per second.

Answer: The discrete time signal resulting from sampling with frequency 𝑓𝑠 = 50 𝐻𝑧 (𝑇𝑠 =
1/50 𝑠𝑒𝑐), is:

𝑥 𝑛 = 𝑥𝑎 𝑡 ቚ
𝑡=𝑛𝑇𝑠

= cos
50𝜋

50
𝑛 + cos

10𝜋

50
𝑛 + sin

40𝜋

50
𝑛

= cos 𝜋𝑛 + cos
𝜋

5
𝑛 + sin

4𝜋

5
𝑛

The frequency of the component cos 𝜋𝑛 is:

𝜔1 = 𝜋 𝛺1𝛵𝑠 = 𝜋 2𝜋𝑓1

1

𝑓𝑠
= 𝜋 𝑓1 =

𝑓𝑠

2
𝑓1 =

50

2
= 25 𝐻𝑧

The frequency of the component cos 𝜋𝑛/5 is:

𝜔2 =
𝜋

5
𝛺2𝛵𝑠 =

𝜋

5
2𝜋𝑓2

1

𝑓𝑠
=

𝜋

5
𝑓2 =

𝑓𝑠

10
𝑓2 =

50

10
= 5 𝐻𝑧

The frequency of the component cos 4𝜋𝑛/5 is:

𝜔3 =
4𝜋

5
𝛺3𝛵𝑠 =

4𝜋

5
2𝜋𝑓3

1

𝑓𝑠
=

4𝜋

5
𝑓3 =

2𝑓𝑠

5
𝑓3 =

100

5
= 20 𝐻𝑧

We notice that the frequencies of the discrete-time signal are the same as the frequencies of the 
analog signal, which is because the sampling frequency chosen satisfies the Nyquist criterion .

20



Example 7

A sinusoidal signal 𝑚(𝑡)with frequency𝑓𝑚

sampled with frequency:

(a) 𝑓𝑠 = 12𝑓𝑚

(b) 𝑓𝑠 = 2𝑓𝑚

(c) 𝑓𝑠 =
3

2
𝑓𝑚

Comment on the cases where the Nyquist 
condition is satisfied or not.

21



Sampling without aliasing

(a) Analog signal 𝑥𝑎 𝑡 ,

(b) Sampled signal 𝑥𝑠(𝑡)
with𝑇𝑠 = 0.02 𝑠𝑒𝑐/𝑠𝑎𝑚𝑝𝑙𝑒

(c) FT 𝑋𝑎(𝛺)of the analog signal 𝑥𝑎 𝑡 ,
(d) FT 𝑋𝑠(𝑒𝑗𝜔)of the sampled signal 𝑥𝑠(𝑡)

22



Sampling with aliasing

(a) Analog signal 𝑥𝑎 𝑡 ,

(b) Sampled signal𝑥𝑠(𝑡)
with𝑇𝑠 = 0.1 𝑠𝑒𝑐/𝑠𝑎𝑚𝑝𝑙𝑒

(a) FT 𝑋𝑎(𝛺)of the analog signal𝑥𝑎 𝑡 ,
(b) FT 𝑋𝑠(𝑒𝑗𝜔)of the sampled signal𝑥𝑠(𝑡)

23



Quantization
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Quantization
Quantization is a non-linear and irreversible process, which transforms a 𝑥𝛼(𝑛)

continuous-amplitude input sequence for which 𝑥(𝑛) ∈ (−𝑚𝑝, 𝑚𝑝), into a 

discrete-amplitude sequence 𝑚(𝑛) = 𝑄[𝑥𝛼 𝑛 ].

• L levels of decision (zones) 𝑥1, 𝑥2 …,𝑥𝐿 divide its range of width values 

𝑥[𝑛]into 𝐿intervals 𝐼𝑘 = 𝑥𝑘 , 𝑥𝑘+1 , 𝑘 = 1,2, … , 𝐿.

• For an input 𝑥𝑎 𝑛 that lies within 𝐼𝑘 , a level is assigned 𝑚(𝑘) ∈ 𝐼𝑘 .

• The amplitude of the signal (dynamic range) is given by the relation: 

𝑥𝑚𝑎𝑥(𝑛) = 2 𝑚𝑝

25
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Uniform Quantization



Quantization Parameters (1/2)

• Number of levels :𝐿 = 2𝐵 where B is the length (in bits) of each level 𝑚[𝑛]. The 

relation holds:

𝐵 = log2(𝐿)

• Quantization step :

Δ = 𝑥𝑘+1 − 𝑥𝑘

For equidistant levels (uniform quantization), it holds:

Δ =
𝑥𝑚𝑎𝑥 𝑛

2𝐵

• error ( noise) :

𝑒[𝑛] = 𝑚[𝑛] − 𝑥𝑎[𝑛] and −
Δ

2
< 𝑒 𝑛 <

Δ

2

27



Quantization Parameters (2/2)

• Quantization root mean square error or quantization noise power :

E (𝑥[𝑛] − 𝑚[𝑛])2 = 𝜎𝑒
2 =

Δ2

12

Also applies:

𝜎𝑒
2 = 𝑚𝑝

2/3𝐿2

• Signal to Noise Ratio (in dB) Signal to Noise Ratio (SNR) :

𝑆𝑁𝑅 = 10𝑙𝑜𝑔
𝜎𝑥

2

𝜎𝑒
2 = 6,02 𝐵 + 10,81 − 20 𝑙𝑜𝑔

𝑥𝑚𝑎𝑥[𝑛]

𝜎𝑥

• Therefore the SNR increases (improves) by ~6 dB for each additional bit which 

is added to the description of each quantized sample 𝑚[𝑛].

28



Coding
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Coding

• Each quantized level 𝑚[𝑛]is represented by a code word.

• If L is the number of quantization stations, then each sample is described 

by 𝒍𝒐𝒈𝟐 𝑳 = 𝑩 bits , where 𝛣 is an integer.

• Information transmission rate at encoder output:

𝑅 = 𝑓𝑠 𝑙𝑜𝑔2 𝐿 = 𝑓𝑠 𝐵 ( bits/s) , where 𝑓𝑠the sampling frequency

• Minimum bandwidth for the signal resulting at the encoder output to be 

transmitted in PCM modulation:

𝑊𝑃𝐶𝑀 =
1

2
𝑓𝑠𝐵

30



Most DSP systems use two 's complement representation of numbers.

In this system, with a code word 𝑐 = [𝑏0, 𝑏1,… 𝑏𝐵] of length B+1 bits:

• The most significant digit is the sign digit.

• The remaining digits correspond to the numerical value of binary integers 

or fractions.

• Considering binary fractions, the code word 𝑏0, 𝑏1, 𝑏2, ... 𝑏𝐵has the value: 

𝑥 = −1 𝑏0 + 𝑏12−1 + 𝑏22−2+...+𝑏𝐵2−𝐵

Coding

http://en.wikipedia.org/wiki/Two's_complement


Example 8  
The analog signal is given:

𝑥𝑎 𝑡 = −
3

2
+ 𝑐𝑜𝑠 100𝜋𝑡 cos 200πt +

1

2
sin 200𝜋𝑡 −

𝜋

2
+ cos(300𝜋𝑡)

(a) Determine the Nyquist frequency and the minimum acceptable value of the sampling 
frequency.

(b) What frequencies will result if the analog signal is sampled with a sampling frequency of 
150 Hz .

(c) What is the discrete-time signal that will result from question (b)?

(d) If the signal amplitude is expressed in volts and each sample of the discrete signal is 
quantized to 8 bits , how many volts does the quantization step correspond to?

Answer : (a) To determine the Nyquist frequency the maximum frequency of the signal must 
be found. For this reason we will express the given signal as a sum of sinusoidal functions. 
The product 𝑐𝑜𝑠 100𝜋𝑡 cos 200πt is written:

𝑐𝑜𝑠 100𝜋𝑡 𝑐os 200πt =
1

2
cos 300𝜋𝑡 + cos 100𝜋𝑡

So the analog signal is written:

𝑥𝑎 𝑡 = −
3

2
+

1

2
cos 300𝜋𝑡 +

1

2
cos 100𝜋𝑡 +

1

2
sin 200𝜋𝑡 −

𝜋

2
+ cos 300𝜋𝑡

= −
3

2
+

1

2
cos 100𝜋𝑡 +

1

2
sin 200𝜋𝑡 +

𝜋

2
+

3

2
cos 300𝜋𝑡 (1)
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Example 8 (continued)  
Therefore the frequencies of the signal are:

𝑓1 = 0 𝐻𝑧, 𝑓2 = 50 𝐻𝑧, 𝑓3 = 100 𝐻𝑧 και 𝑓4 = 150 𝐻𝑧. So the Nyquist frequency and minimum 
acceptable value of the sampling frequency is:

𝑓𝑠 𝑚𝑖𝑛 = 𝑓𝑁 = 2𝑓4 = 300 𝐻𝑧.

(b) For sampling frequency 𝑓𝑠 = 150 𝐻𝑧, only frequencies 𝑓1 = 0 𝐻𝑧 και 𝑓2 = 50 𝐻𝑧, that lie 
within the range will be correctly represented [−𝑓𝑠/2, 𝑓𝑠/2] = [−75𝐻𝑧 , 75 𝐻𝑧]. The 
frequencies 𝑓3 = 100 𝐻𝑧 και 𝑓4 = 150 𝐻𝑧will be convoluted and appear to correspond to the 
pseudo-labeled frequencies:

𝑓3
′ = 𝑓3 − 𝑘𝑓𝑠 = 100 − 150 = −50𝐻𝑧
𝑓4

′ = 𝑓4 − 𝑘𝑓𝑠 = 150 − 150 = 0𝐻𝑧

Based on the above, it follows that the sampled signal will contain a continuous component ( 
0 𝐻𝑧)and a sinusoidal frequency component 50 𝐻𝑧, i.e. the frequencies 100 𝐻𝑧 and 150 𝐻𝑧
will no longer appear in the sampled signal.

(c) For a sampling frequency 𝑓𝑠 = 150 𝐻𝑧 (i.e., sampling period 𝑇𝑠 = 1/150 𝑠𝑒𝑐), the 
discrete-time signal is:

𝑥 𝑛 = 𝑥𝑎 𝑡 ቚ
𝑡=𝑛𝑇𝑠

= −
3

2
+

1

2
cos

100𝜋

150
𝑛 +

1

2
sin

200𝜋

150
𝑛 −

𝜋

2
+

3

2
cos

300𝜋

150
𝑛

= −
3

2
+

1

2
cos

2𝜋

3
𝑛 +

1

2
cos

4𝜋

3
𝑛 +

3

2
cos 2𝜋𝑛 = −

3

2
+

1

2
cos

2𝜋

3
𝑛 +

1

2
cos 2𝜋 −

2𝜋

3
𝑛 +

3

2

=
1

2
cos

2𝜋

3
𝑛 +

1

2
cos

2𝜋

3
𝑛 = cos

2𝜋

3
𝑛

33



Example 8 (continued)  
The frequency of this signal can be calculated as follows:

𝜔 =
2𝜋

3
𝛺𝛵𝑠 =

2𝜋

3
2𝜋𝑓

1

𝑓𝑠
=

2𝜋

3
𝑓 =

𝑓𝑠

3
𝑓 =

150

3
= 50 𝐻𝑧

(d) From relation (1) it follows that the analog signal takes a maximum value of +1 Volt 
(when each trigonometric term takes a value of +1) and a minimum value of -4 Volts (when 
each trigonometric term takes a value of -1). Therefore, the dynamic range of the analog 
signal is 5 Volts and the quantization step Δ is calculated as:

𝛥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

2𝐿 − 1
=

1 − (−4)

28 − 1
=

5

255
= 19,61 𝑚𝑉

Usually quantizers work assuming that the amplitude values of the signal are symmetrical, 
i.e. ±5 𝑉, ±10𝑉, κλπ.In the case of the above signal where the amplitude of the signal ranges 
from +1 Volt to -4 Volts we must use a quantizer. So the quantization step for 8 ±5 𝑉𝑜𝑙𝑡𝑠.
Quantization step of converter is:

𝛥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

2𝐿 − 1
=

10

28 − 1
=

10

255
= 39,22 𝑚𝑉
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Analog to Digital Signal Conversion

Up: Analog signal 𝑥𝑎(𝑡), Sampled signal 𝑥𝑠(𝑡), 
Down: Quantized signal 𝑥𝑞(𝑡)at 4 levels,  Quantization error 𝑒𝑞(𝑡) = 𝑥𝑎(𝑡) − 𝑥𝑞(𝑡)
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Analog Signal Reconstruction 
from Digital

36



Analog Signal Reconstruction from Digital

An analog signal sampled according to the Nyquist criterion ( i.e. 𝑓𝑠 ≥ 2𝑓𝑥), can be 
recovered from its samples, by the steps:

(1) The samples 𝑥 𝑛 are transformed into a function 𝑥𝑟 𝑡 through the relation:

𝑥𝑟 𝑡 = 

𝑛=−∞

∞

𝑥 𝑛 𝛿 𝑡 − 𝑛 𝑇𝑠

(2) The function 𝑥𝑟 𝑡 passes through an ideal LPF with shock response:

ℎ𝐿𝑃𝐹 𝑡 =
sin 𝜋𝑡𝑇𝑠

𝜋𝑡𝑇𝑠
= sinc(𝑡𝑇𝑠)

Fourier transform :

𝐻𝐿𝑃𝐹 𝛺 = ቊ
𝑇𝑠, −𝛺𝑠/2 < 𝛺 < 𝛺𝑠/2
0,

The reconstructed analog signal at the filter output is given by:

ො𝑥𝛼 𝑡 = 

𝑛=−∞

∞

𝑥𝑟 𝑛𝑇𝑠 ℎ𝐿𝑃𝐹 𝑡 − 𝑛𝑇𝑠 = 

𝑛=−∞

∞

𝑥𝑟 𝑛𝑇𝑠 sinc (𝑡 − 𝑛𝑇𝑠)/𝑇𝑠

and the Fourier transform of the reconstructed signal is:
𝑋𝛼 𝛺 = 𝑋𝑟 𝛺 𝐻𝐿𝑃𝐹 𝛺 37



Analog Signal Reconstruction from Digital

In real conditions, accurate reconstruction of the original signal is possible 
because:

• The original signal was not of finite bandwidth, so it was not possible to 
determine the Nyquist frequency and therefore the minimum value of the 
sampling frequency, so as not to cause the distortion effect.

• The sampling rate was not constant throughout the sampling period and some 
variation in the time interval between successive samples may have occurred.

• The reconstruction filter used is a real filter and not an ideal one as required by 
the theoretical analysis.

However, the most important reason for the non-accurate reconstruction of the 
original signal is due to the quantization of the signal samples.

Quantization process always introduces quantization noise, which cannot be 
removed.
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Analog Signal Reconstruction from Digital

(a) Analog signal 𝑥𝑎 𝑡

(b ) Sampled signal 𝑥𝑠(𝑡)

(c) Reconstructed signal 
ො𝑥𝛼(𝑡)with zero-order 
interpolation
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