
System design techniques

 Design methodologies.
 Requirements and specification.

Design methodologies

 Process for creating a system.
 Many systems are complex:
 large specifications;
 multiple designers;
 interface to manufacturing.

 Proper processes improve:
 quality;
 cost of design and manufacture.

Product metrics

 Time-to-market:
 beat competitors to market;
 meet marketing window (back-to-school).

 Design cost.
 Manufacturing cost.
 Quality.

Mars Climate Observer

 Lost on Mars in September 1999.
 Requirements problem:
 Requirements did not specify units.
 Lockheed Martin used English; JPL wanted

metric.
 Not caught by manual inspections.

Design flow

 Design flow: sequence of steps in a
design methodology.

 May be partially or fully automated.
 Use tools to transform, verify design.

 Design flow is one component of
methodology. Methodology also includes
management organization, etc.

Waterfall model

 Early model for software development:

requirements

architecture

coding

testing

maintenance

Waterfall model steps

 Requirements: determine basic
characteristics.

 Architecture: decompose into basic
modules.

 Coding: implement and integrate.
 Testing: exercise and uncover bugs.
 Maintenance: deploy, fix bugs, upgrade.

Waterfall model critique

 Only local feedback---may need iterations
between coding and requirements, for
example.

 Doesn’t integrate top-down and bottom-
up design.

 Assumes hardware is given.

Spiral model

requirementsdesign
test

system feasibility

specification

prototype

initial system

enhanced system

Spiral model critique

 Successive refinement of system.
 Start with mock-ups, move through simple

systems to full-scale systems.
 Provides bottom-up feedback from

previous stages.
 Working through stages may take too

much time.

Successive refinement
model

specify

architect

design

build

test

initial system

specify

architect

design

build

test

refined system

Hardware/software design
flow

requirements and
specification

architecture

hardware design software design

integration

testing

Co-design methodology

 Must architect hardware and software
together:
 provide sufficient resources;
 avoid software bottlenecks.

 Can build pieces somewhat independently,
but integration is major step.

 Also requires bottom-up feedback.

Hierarchical design flow

 Embedded systems must be designed
across multiple levels of abstraction:
 system architecture;
 hardware and software systems;
 hardware and software components.

 Often need design flows within design
flows.

Hierarchical HW/SW flow

spec

architecture

HW SW

integrate

test

system

spec

HW architecture

detailed design

integration

test

hardware

spec

SW architecture

detailed design

integration

test

software

Concurrent engineering

 Large projects use many people from
multiple disciplines.

 Work on several tasks at once to reduce
design time.

 Feedback between tasks helps improve
quality, reduce number of later design
problems.

Concurrent engineering
techniques

 Cross-functional teams.
 Concurrent product realization.
 Incremental information sharing.
 Integrated product management.
 Supplier involvement.
 Customer focus.

AT&T PBX concurrent
engineering

 Benchmark against competitors.
 Identify breakthrough improvements.
 Characterize current process.
 Create new process.
 Verify new process.
 Implement.
 Measure and improve.

Requirements analysis

 Requirements: informal description of
what customer wants.

 Specification: precise description of what
design team should deliver.

 Requirements phase links customers with
designers.

Types of requirements

 Functional: input/output relationships.
 Non-functional:
 timing;
 power consumption;
 manufacturing cost;
 physical size;
 time-to-market;
 reliability.

Good requirements

 Correct.
 Unambiguous.
 Complete.
 Verifiable: is each requirement satisfied in

the final system?
 Consistent: requirements do not

contradict each other.

Good requirements, cont’d.

 Modifiable: can update requirements
easily.

 Traceable:
 know why each requirement exists;
 go from source documents to requirements;
 go from requirement to implementation;
 back from implementation to requirement.

Setting requirements

 Customer interviews.
 Comparison with competitors.
 Sales feedback.
 Mock-ups, prototypes.
 Next-bench syndrome (HP): design a

product for someone like you.

Specifications

 Capture functional and non-functional
properties:
 verify correctness of spec;
 compare spec to implementation.

 Many specification styles:
 control-oriented vs. data-oriented;
 textual vs. graphical.

 UML is one specification/design language.

SDL

 Used in
telecommunications
protocol design.

 Event-oriented state
machine model.

telephone
on-hook

dial tone

caller goes
off-hook

caller gets
dial tone

Statecharts

 Ancestor of UML state diagrams.
 Provided composite states:
 OR states;
 AND states.

 Composite states reduce the size of the
state transition graph.

Statechart OR state

S1

S2

S3

S4

i1

i1

i2

i2

i2

traditional

S1

S2

S3

S4

i1

i1 i2

OR state

s123

Statechart AND state

S1-3 S1-4

S2-3 S2-4

S5
traditional

c

d
b a

r

c

d

b a

S1 S3

S2 S4

S5AND state

c d

r

b a

sab

r

AND-OR tables

 Alternate way of specifying complex
conditions:

cond1 or (cond2 and !cond3)

cond1 T -
cond2 - T
cond3 - F

AND

OR

TCAS II specification

 TCAS II: aircraft collision avoidance
system.

 Monitors aircraft and air traffic info.
 Provides audio warnings and directives to

avoid collisions.
 Leveson et al used RMSL language to

capture the TCAS specification.

RMSL

 State description: Transition bus for
transitions between
many states:state1

inputs

state description

outputs

a

b

c

d

TCAS top-level description
CAS

power-offpower-on
Inputs:
TCAS-operational-status {operational,not-operational}

fully-operational
C

standby

own-aircraft

other-aircraft i:[1..30]

mode-s-ground-station i:[1..15]

Own-Aircraft AND state
CAS

Inputs:
own-alt-radio: integer standby-discrete-input: {true,false}
own-alt-barometric:integer, etc.

Effective-SL Alt-SL Alt-layer Climb-inibit Descend-inibit

Increase-climb-inibit

Increase-Descend-inibit

Advisory-Status

...

... ...
...
...

...
...

1

2

7

...

1

2

7

Outputs:
sound-aural-alarm: {true,false} aural-alarm-inhibit: {true, false}
combined-control-out: enumerated, etc.

CRC cards

 Well-known method for analyzing a
system and developing an architecture.

 CRC:
 classes;
 responsibilities of each class;
 collaborators are other classes that work with

a class.
 Team-oriented methodology.

CRC card format

Class name:
Superclasses:
Subclasses:
Responsibilities: Collaborators:

Class name:
Class’s function:
Attributes:

front back

CRC methodology

 Develop an initial list of classes.
 Simple description is OK.
 Team members should discuss their choices.

 Write initial responsibilities/collaborators.
 Helps to define the classes.

 Create some usage scenarios.
 Major uses of system and classes.

CRC methodology, cont’d.

 Walk through scenarios.
 See what works and doesn’t work.

 Refine the classes, responsibilities, and
collaborators.

 Add class relatoinships:
 superclass, subclass.

CRC cards for elevator

 Real-world classes:
 elevator car, passenger, floor control, car

control, car sensor.
 Architectural classes: car state, floor

control reader, car control reader, car
control sender, scheduler.

Elevator responsibilities
and collaborators

class responsibilities collaborators

Elevator car* Move up and down Car control, car
sensor, car control
sender

Car control* Transmits car
requests

Passenger, floor
control reader

Car state Reads current
position of car

Scheduler, car
sensor

