
© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

CPUs

 Example: data compressor.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Goals

 Compress data transmitted over serial 
line.
 Receives byte-size input symbols.
 Produces output symbols packed into bytes.

 Will build software module only here.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Collaboration diagram for 
compressor

:input :data compressor :output

1..n: input
symbols

1..m: packed
output
symbols



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Huffman coding

 Early statistical text compression algorithm.
 Select non-uniform size codes.
 Use shorter codes for more common symbols.
 Use longer codes for less common symbols.

 To allow decoding, codes must have unique 
prefixes.
 No code can be a prefix of a longer valid code.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Huffman example

character P
a .45
b .24
c .11
d .08
e .07
f .05

P=1
P=.55

P=.31
P=.19

P=.12



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Example Huffman code

 Read code from root to leaves:
a 1
b 01
c 0000
d 0001
e 0010
f 0011



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Huffman coder 
requirements table

name data compression module
purpose code module for Huffman

compression
inputs encoding table, uncoded

byte-size inputs
outputs packed compression output

symbols
functions Huffman coding
performance fast
manufacturing cost N/A
power N/A
physical size/weight N/A



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Building a specification

 Collaboration diagram shows only steady-
state input/output.

 A real system must:
 Accept an encoding table.
 Allow a system reset that flushes the 

compression buffer.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

data-compressor class

data-compressor

buffer: data-buffer
table: symbol-table
current-bit: integer

encode(): boolean,
data-buffer

flush()
new-symbol-table()



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

data-compressor behaviors

 encode: Takes one-byte input, generates 
packed encoded symbols and a Boolean 
indicating whether the buffer is full.

 new-symbol-table: installs new symbol 
table in object, throws away old table.

 flush: returns current state of buffer, 
including number of valid bits in buffer.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Auxiliary classes

data-buffer

databuf[databuflen] :
character

len : integer

insert()
length() : integer

symbol-table

symbols[nsymbols] :
data-buffer

len : integer

value() : symbol
load()



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Auxiliary class roles

 data-buffer holds both packed and 
unpacked symbols.
 Longest Huffman code for 8-bit inputs is 256 

bits.
 symbol-table indexes encoded verison of 

each symbol.
 load() puts data in a new symbol table.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Class relationships

symbol-table

data-compressor

data-buffer

1

1

1
1



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Encode behavior

encode

create new buffer
add to buffers

add to buffer

return true

return false

input symbol

buffer filled?

T

F



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Insert behavior

pack into
this buffer

pack bottom bits
into this buffer,

top bits into
overflow buffer

update
length

input
symbol

fills buffer?

T

F



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Program design

 In an object-oriented language, we can 
reflect the UML specification in the code 
more directly.

 In a non-object-oriented language, we 
must either:
 add code to provide object-oriented features;
 diverge from the specification structure.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

C++ classes

Class data_buffer {
char databuf[databuflen];
int len;
int length_in_chars() { return len/bitsperbyte; }

public:
void insert(data_buffer,data_buffer&);
int length() { return len; }
int length_in_bytes() { return (int)ceil(len/8.0); }
int initialize(); 
...



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

C++ classes, cont’d.

class data_compressor {
data_buffer buffer;
int current_bit;
symbol_table table;

public:
boolean encode(char,data_buffer&);
void new_symbol_table(symbol_table);
int flush(data_buffer&);
data_compressor();
~data_compressor();
}



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

C code

struct data_compressor_struct {
data_buffer buffer;
int current_bit;
sym_table table;

}
typedef struct data_compressor_struct data_compressor,

*data_compressor_ptr;
boolean data_compressor_encode(data_compressor_ptr 

mycmptrs, char isymbol, data_buffer *fullbuf) ...



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Testing

 Test by encoding, then decoding:

input symbols

symbol table

encoder decoder

compare

result



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Code inspection tests

 Look at the code for potential problems:
 Can we run past end of symbol table?
 What happens when the next symbol does 

not fill the buffer? Does fill it?
 Do very long encoded symbols work properly? 

Very short symbols?
 Does flush() work properly?


