
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM instruction set

 ARM versions.
 ARM assembly language.
 ARM programming model.
 ARM memory organization.
 ARM data operations.
 ARM flow of control.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM versions

 ARM architecture has been extended over
several versions.

 We will concentrate on ARM7.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM assembly language

 Fairly standard assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM programming model

r0
r1
r2
r3
r4
r5
r6
r7

r8
r9
r10
r11
r12
r13
r14

r15 (PC)

CPSR

31 0

N Z C V

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Endianness

 Relationship between bit and byte/word
ordering defines endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0 bit 31

little-endian big-endian

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM data types

 Word is 32 bits long.
 Word can be divided into four 8-bit bytes.
 ARM addresses can be 32 bits long.
 Address refers to byte.
 Address 4 starts at byte 4.

 Can be configured at power-up as either
little- or bit-endian mode.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM status bits

 Every arithmetic, logical, or shifting
operation sets CPSR bits:
 N (negative), Z (zero), C (carry), V

(overflow).
 Examples:
 -1 + 1 = 0: NZCV = 0110.
 231-1+1 = -231: NZCV = 1001.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM data instructions

 Basic format:
ADD r0,r1,r2

 Computes r1+r2, stores in r0.
 Immediate operand:

ADD r0,r1,#2

 Computes r1+2, stores in r0.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM data instructions

 ADD, ADC : add (w.
carry)

 SUB, SBC : subtract
(w. carry)

 RSB, RSC : reverse
subtract (w. carry)

 MUL, MLA : multiply
(and accumulate)

 AND, ORR, EOR
 BIC : bit clear
 LSL, LSR : logical shift

left/right
 ASL, ASR : arithmetic

shift left/right
 ROR : rotate right
 RRX : rotate right

extended with C

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Data operation varieties

 Logical shift:
 fills with zeroes.

 Arithmetic shift:
 fills with ones.

 RRX performs 33-bit rotate, including C bit
from CPSR above sign bit.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM comparison
instructions

 CMP : compare
 CMN : negated compare
 TST : bit-wise AND
 TEQ : bit-wise XOR
 These instructions set only the NZCV bits

of CPSR.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM move instructions

 MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM load/store
instructions

 LDR, LDRH, LDRB : load (half-word, byte)
 STR, STRH, STRB : store (half-word, byte)
 Addressing modes:
 register indirect : LDR r0,[r1]
 with second register : LDR r0,[r1,-r2]
 with constant : LDR r0,[r1,#4]

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM ADR pseudo-op

 Cannot refer to an address directly in an
instruction.

 Generate value by performing arithmetic
on PC.

 ADR pseudo-op generates instruction
required to calculate address:
ADR r1,FOO

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: C assignments

 C:
x = (a + b) - c;

 Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a
ADR r4,b ; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C assignment, cont’d.

SUB r3,r3,r2 ; complete computation of x
ADR r4,x ; get address for x

STR r3,[r4] ; store value of x

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: C assignment

 C:
y = a*(b+c);

 Assembler:
ADR r4,b ; get address for b

LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c

LDR r1,[r4] ; get value of c

ADD r2,r0,r1 ; compute partial result

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C assignment, cont’d.

MUL r2,r2,r0 ; compute final value for y
ADR r4,y ; get address for y

STR r2,[r4] ; store y

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: C assignment

 C:
z = (a << 2) | (b & 15);

 Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a
MOV r0,r0,LSL 2 ; perform shift

ADR r4,b ; get address for b

LDR r1,[r4] ; get value of b

AND r1,r1,#15 ; perform AND

ORR r1,r0,r1 ; perform OR

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C assignment, cont’d.

ADR r4,z ; get address for z
STR r1,[r4] ; store value for z

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Additional addressing
modes

 Base-plus-offset addressing:
LDR r0,[r1,#16]

 Loads from location r1+16
 Auto-indexing increments base register:

LDR r0,[r1,#16]!

 Post-indexing fetches, then does offset:
LDR r0,[r1],#16
 Loads r0 from r1, then adds 16 to r1.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM flow of control

 All operations can be performed
conditionally, testing CPSR:
 EQ, NE, CS, CC, MI, PL, VS, VC,
HI, LS, GE, LT, GT, LE

 Branch operation:
B #100

 Can be performed conditionally.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: if statement

 C:
if (a > b) { x = 5; y = c + d; } else x = c - d;

 Assembler:
; compute and test condition

ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b

LDR r1,[r4] ; get value for b

CMP r0,r1 ; compare a < b

BLE fblock ; if a ><= b, branch to false block

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

If statement, cont’d.

; true block
MOV r0,#5 ; generate value for x
ADR r4,x ; get address for x
STR r0,[r4] ; store x
ADR r4,c ; get address for c
LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value of d
ADD r0,r0,r1 ; compute y
ADR r4,y ; get address for y
STR r0,[r4] ; store y
B after ; branch around false block

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

If statement, cont’d.

; false block
fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value for d

SUB r0,r0,r1 ; compute a-b
ADR r4,x ; get address for x

STR r0,[r4] ; store value of x

after ...

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: Conditional
instruction implementation

; true block
MOVLT r0,#5 ; generate value for x

ADRLT r4,x ; get address for x

STRLT r0,[r4] ; store x

ADRLT r4,c ; get address for c

LDRLT r0,[r4] ; get value of c
ADRLT r4,d ; get address for d

LDRLT r1,[r4] ; get value of d

ADDLT r0,r0,r1 ; compute y

ADRLT r4,y ; get address for y

STRLT r0,[r4] ; store y

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Conditional instruction
implementation, cont’d.

; false block
ADRGE r4,c ; get address for c

LDRGE r0,[r4] ; get value of c

ADRGE r4,d ; get address for d

LDRGE r1,[r4] ; get value for d

SUBGE r0,r0,r1 ; compute a-b
ADRGE r4,x ; get address for x

STRGE r0,[r4] ; store value of x

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: switch statement

 C:
switch (test) { case 0: … break; case 1: … }

 Assembler:
ADR r2,test ; get address for test

LDR r0,[r2] ; load value for test
ADR r1,switchtab ; load address for switch table

LDR r1,[r1,r0,LSL #2] ; index switch table

switchtab DCD case0

DCD case1

...

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: FIR filter

 C:
for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

 Assembler
; loop initiation code

MOV r0,#0 ; use r0 for I

MOV r8,#0 ; use separate index for arrays

ADR r2,N ; get address for N

LDR r1,[r2] ; get value of N

MOV r2,#0 ; use r2 for f

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

FIR filter, cont’.d

ADR r3,c ; load r3 with base of c
ADR r5,x ; load r5 with base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]

LDR r6,[r5,r8] ; get x[i]

MUL r4,r4,r6 ; compute c[i]*x[i]
ADD r2,r2,r4 ; add into running sum

ADD r8,r8,#4 ; add one word offset to array index

ADD r0,r0,#1 ; add 1 to i

CMP r0,r1 ; exit?

BLT loop ; if i < N, continue

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM subroutine linkage

 Branch and link instruction:
BL foo

 Copies current PC to r14.
 To return from subroutine:

MOV r15,r14

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Nested subroutine calls

 Nesting/recursion requires coding
convention:

f1 LDR r0,[r13] ; load arg into r0 from stack

; call f2()

STR r14,[r13]! ; store f1’s return adrs

STR r0,[r13]! ; store arg to f2 on stack
BL f2 ; branch and link to f2

; return from f1()

SUB r13,#4 ; pop f2’s arg off stack

LDR r13!,r15 ; restore register and return

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Summary

 Load/store architecture
 Most instructions are RISCy, operate in

single cycle.
 Some multi-register operations take longer.

 All instructions can be executed
conditionally.

