Architectures and
instruction sets

Computer architecture taxonomy.
Assembly language.

© 2000 Morgan Overheads for Computers as
Kaufman Components



von Neumann architecture

Memory holds data, instructions.

Central processing unit (CPU) fetches
instructions from memory.

Separate CPU and memory distinguishes
programmable computer.
CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.

© 2000 Morgan Overheads for Computers as
Kaufman Components



CPU + memory

address
memory ~ data
200 ADD r5,r1,r3
© 2000 Morgan Overheads for Computers as

Kaufman Components



Harvard architecture

address
address

program memory | 4atq

© 2000 Morgan Overheads for Computers as
Kaufman Components



von Neumann vs. Harvard

Harvard can’t use self-modifying code.
Harvard allows two simultaneous memory
fetches.

Most DSPs use Harvard architecture for
streaming data:

greater memory bandwidth;

more predictable bandwidth.

© 2000 Morgan Overheads for Computers as
Kaufman Components



RISC vs. CISC

Complex instruction set computer (CISC):
many addressing modes;
many operations.

Reduced instruction set computer (RISC):

load/store;
pipelinable instructions.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Instruction set
characteristics

Fixed vs. variable length.
Addressing modes.
Number of operands.
Types of operands.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Programming model

Programming model: registers visible to
the programmer.

Some registers are not visible (IR).

© 2000 Morgan Overheads for Computers as
Kaufman Components



Multiple implementations

Successful architectures have several
implementations:

varying clock speeds;
different bus widths;
different cache sizes;
etc.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Assembly language

One-to-one with instructions (more or
less).
Basic features:

One instruction per line.

Labels provide names for addresses (usually
in first column).

Instructions often start in later columns.
Columns run to end of line.

© 2000 Morgan Overheads for Computers as
Kaufman Components



ARM assembly language
example

label1 ADR r4.c
LDR rO,[r4] ; a comment
ADR r4,d
LDR r1,[r4]
SUB r0,r0,r1 ; comment

/

destination

© 2000 Morgan Overheads for Computers as
Kaufman Components



Pseudo-ops

Some assembler directives don't
correspond directly to instructions:

Define current address.
Reserve storage.
Constants.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Execute several instructions
simultaneously but at different stages.

Simple three-stage pipe:

memory

© 2000 Morgan Overheads for Computers as
Kaufman Components



Pipeline complications

May not always be able to predict the next
instruction:

Conditional branch.
Causes bubble in the pipeline:

Execute
fetch | decode
INZ
fetch execute
fetch execute

© 2000 Morgan Overheads for Computers as
Kaufman Components



Superscalar

RISC pipeline executes one instruction per
clock cycle (usually).

Superscalar machines execute multiple
instructions per clock cycle.

Faster execution.
More variability in execution times.

More expensive CPU.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Simple superscalar

Execute floating point and integer
instruction at the same time.

Jse different registers.

-loating point operations use their own
nardware unit.

Must wait for completion when floating
point, integer units communicate.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Costs

Good news---can find parallelism at run
time.

Bad news---causes variations in execution
time.

Requires a lot of hardware.

nZ instruction unit hardware for n-instruction
parallelism.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Finding parallelism

Independent operations can be performed

in parallel: o0 1l 3
ADD r0, r0, r1 /
ADD r2, r2, r3

4 r3

ADD ro6, r4, rO r0 Gj
r6

© 2000 Morgan Overheads for Computers as
Kaufman Components



Pipeline hazards

e Two operations that require the same resource cannot
be executed in parallel:

X=a+b;
a=d+e;
y=a-f

© 2000 Morgan Overheads for Computers as
Kaufman Components



Scoreboarding

Scoreboard keeps track of what
instructions use what resources:

Reg file

ALU

FP

Instrl

X

X

Instr2

© 2000 Morgan
Kaufman

Overheads for Computers as

Components




Order of execution

In-order:

Machine stops issuing instructions when the
next instruction can’t be dispatched.

Out-of-order:

Machine will change order of instructions to
keep dispatching.
Substantially faster but also more complex.

© 2000 Morgan Overheads for Computers as
Kaufman Components



VLIW architectures

Very long instruction word (VLIW)
processing provides significant parallelism.

Rely on compilers to identify parallelism.

© 2000 Morgan Overheads for Computers as
Kaufman Components



What is VLIW?

Parallel function units with shared register
file:

register file

© 2000 m

Kaufman Components




VLIW cluster

R

Organized into clusters to accommodate
available register bandwidth:

© 2000 Morgan Overheads for Computers as
Kaufman Components



VLIW and compilers

VLIW requires considerably more
sophisticated compiler technology than
traditional architectures---must be able to

extract parallelism to keep the instructions
full.

Many VLIWSs have good compiler support.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Static scheduling -

',:/ .9 E

expressions instructions

© 2000 Morgan Overheads for Computers as
Kaufman Components




Trace scheduling -

Rank paths in
order of frequency.

Schedule paths in
order of frequency.

by

© 2000 Morgan Overheads for Computers as
Kaufman Components



EPIC

EPIC = Explicitly parallel instruction
computing.
Used in Intel/HP Merced (IA-64) machine.

Incorporates several features to allow
machine to find, exploit increased
parallelism.

© 2000 Morgan Overheads for Computers as
Kaufman Components



1A-64 instruction format

Instructions are bundled with tag to
indicate which instructions can be
executed in parallel:

< 128 bits >

instruction 1 instruction 2 instruction 3

© 2000 Morgan Overheads for Computers as
Kaufman Components



Memory system

CPU fetches data, instructions from a
memory hierarchy:

Main L2 L1
memory cache cache
© 2000 Morgan Overheads for Computers as

Kaufman Components



Memory hierarchy
complications

Program behavior is much more state-
dependent.

Depends on how earlier execution left the
cache.

Execution time is less predictable.
Memory access times can vary by 100X.

© 2000 Morgan Overheads for Computers as
Kaufman Components



