Architectures and
instruction sets

Computer architecture taxonomy.
Assembly language.
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von Neumann architecture

Memory holds data, instructions.

Central processing unit (CPU) fetches
instructions from memory.

Separate CPU and memory distinguishes
programmable computer.
CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.
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CPU + memory

address
memory ~ data
200 ADD r5,r1,r3
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Harvard architecture

address
address

program memory | 4atq
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von Neumann vs. Harvard

Harvard can’t use self-modifying code.
Harvard allows two simultaneous memory
fetches.

Most DSPs use Harvard architecture for
streaming data:

greater memory bandwidth;

more predictable bandwidth.
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RISC vs. CISC

Complex instruction set computer (CISC):
many addressing modes;
many operations.

Reduced instruction set computer (RISC):

load/store;
pipelinable instructions.
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Instruction set
characteristics

Fixed vs. variable length.
Addressing modes.
Number of operands.
Types of operands.
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Programming model

Programming model: registers visible to
the programmer.

Some registers are not visible (IR).
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Multiple implementations

Successful architectures have several
implementations:

varying clock speeds;
different bus widths;
different cache sizes;
etc.
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Assembly language

One-to-one with instructions (more or
less).
Basic features:

One instruction per line.

Labels provide names for addresses (usually
in first column).

Instructions often start in later columns.
Columns run to end of line.
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ARM assembly language
example

label1 ADR r4.c
LDR rO,[r4] ; a comment
ADR r4,d
LDR r1,[r4]
SUB r0,r0,r1 ; comment

/

destination

© 2000 Morgan Overheads for Computers as
Kaufman Components



Pseudo-ops

Some assembler directives don't
correspond directly to instructions:

Define current address.
Reserve storage.
Constants.

© 2000 Morgan Overheads for Computers as
Kaufman Components



Execute several instructions
simultaneously but at different stages.

Simple three-stage pipe:

memory
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Pipeline complications

May not always be able to predict the next
instruction:

Conditional branch.
Causes bubble in the pipeline:

Execute
fetch | decode
INZ
fetch execute
fetch execute
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Superscalar

RISC pipeline executes one instruction per
clock cycle (usually).

Superscalar machines execute multiple
instructions per clock cycle.

Faster execution.
More variability in execution times.

More expensive CPU.
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Simple superscalar

Execute floating point and integer
instruction at the same time.

Jse different registers.

-loating point operations use their own
nardware unit.

Must wait for completion when floating
point, integer units communicate.
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Costs

Good news---can find parallelism at run
time.

Bad news---causes variations in execution
time.

Requires a lot of hardware.

nZ instruction unit hardware for n-instruction
parallelism.
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Finding parallelism

Independent operations can be performed

in parallel: o0 1l 3
ADD r0, r0, r1 /
ADD r2, r2, r3

4 r3

ADD ro6, r4, rO r0 Gj
r6
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Pipeline hazards

e Two operations that require the same resource cannot
be executed in parallel:

X=a+b;
a=d+e;
y=a-f
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Scoreboarding

Scoreboard keeps track of what
instructions use what resources:

Reg file

ALU

FP

Instrl

X

X

Instr2
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Order of execution

In-order:

Machine stops issuing instructions when the
next instruction can’t be dispatched.

Out-of-order:

Machine will change order of instructions to
keep dispatching.
Substantially faster but also more complex.

© 2000 Morgan Overheads for Computers as
Kaufman Components



VLIW architectures

Very long instruction word (VLIW)
processing provides significant parallelism.

Rely on compilers to identify parallelism.
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What is VLIW?

Parallel function units with shared register
file:

register file

© 2000 m

Kaufman Components




VLIW cluster

R

Organized into clusters to accommodate
available register bandwidth:
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VLIW and compilers

VLIW requires considerably more
sophisticated compiler technology than
traditional architectures---must be able to

extract parallelism to keep the instructions
full.

Many VLIWSs have good compiler support.
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Static scheduling -

',:/ .9 E

expressions instructions
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Trace scheduling -

Rank paths in
order of frequency.

Schedule paths in
order of frequency.

by
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EPIC

EPIC = Explicitly parallel instruction
computing.
Used in Intel/HP Merced (IA-64) machine.

Incorporates several features to allow
machine to find, exploit increased
parallelism.
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1A-64 instruction format

Instructions are bundled with tag to
indicate which instructions can be
executed in parallel:

< 128 bits >

instruction 1 instruction 2 instruction 3
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Memory system

CPU fetches data, instructions from a
memory hierarchy:

Main L2 L1
memory cache cache
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Memory hierarchy
complications

Program behavior is much more state-
dependent.

Depends on how earlier execution left the
cache.

Execution time is less predictable.
Memory access times can vary by 100X.
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