
© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Architectures and 
instruction sets

 Computer architecture taxonomy.
 Assembly language.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

von Neumann architecture

 Memory holds data, instructions.
 Central processing unit (CPU) fetches 

instructions from memory.
 Separate CPU and memory distinguishes 

programmable computer.
 CPU registers help out: program counter 

(PC), instruction register (IR), general-
purpose registers, etc.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

CPU + memory

memory
CPU

PC

address

data

IRADD r5,r1,r3200

200

ADD r5,r1,r3



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Harvard architecture

CPU

PCdata memory

program memory

address

data

address

data



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

von Neumann vs. Harvard

 Harvard can’t use self-modifying code.
 Harvard allows two simultaneous memory 

fetches.
 Most DSPs use Harvard architecture for 

streaming data:
 greater memory bandwidth;
 more predictable bandwidth.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

RISC vs. CISC

 Complex instruction set computer (CISC):
 many addressing modes;
 many operations.

 Reduced instruction set computer (RISC):
 load/store;
 pipelinable instructions.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Instruction set 
characteristics

 Fixed vs. variable length.
 Addressing modes.
 Number of operands.
 Types of operands.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Programming model

 Programming model: registers visible to 
the programmer.

 Some registers are not visible (IR).



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Multiple implementations

 Successful architectures have several 
implementations:
 varying clock speeds;
 different bus widths;
 different cache sizes;
 etc.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Assembly language

 One-to-one with instructions (more or 
less).

 Basic features:
 One instruction per line.
 Labels provide names for addresses (usually 

in first column).
 Instructions often start in later columns.
 Columns run to end of line.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

ARM assembly language 
example

label1 ADR r4,c
LDR r0,[r4] ; a comment
ADR r4,d
LDR r1,[r4]
SUB r0,r0,r1 ; comment

destination



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Pseudo-ops

 Some assembler directives don’t 
correspond directly to instructions:
 Define current address.
 Reserve storage.
 Constants.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Pipelining

 Execute several instructions 
simultaneously but at different stages.

 Simple three-stage pipe:
fe

tc
h

de
co

de

ex
ec

ut
e

m
em

or
y



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Pipeline complications

 May not always be able to predict the next 
instruction:
 Conditional branch.

 Causes bubble in the pipeline:
fetch decode Execute

JNZ
fetch decode execute

fetch decode execute



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Superscalar

 RISC pipeline executes one instruction per 
clock cycle (usually).

 Superscalar machines execute multiple 
instructions per clock cycle.
 Faster execution.
 More variability in execution times.
 More expensive CPU.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Simple superscalar

 Execute floating point and integer 
instruction at the same time.
 Use different registers.
 Floating point operations use their own 

hardware unit.
 Must wait for completion when floating 

point, integer units communicate.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Costs

 Good news---can find parallelism at run 
time.
 Bad news---causes variations in execution 

time.
 Requires a lot of hardware.
 n2 instruction unit hardware for n-instruction 

parallelism.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Finding parallelism

 Independent operations can be performed 
in parallel:
ADD r0, r0, r1
ADD r2, r2, r3
ADD r6, r4, r0

+ +

+

r0 r1 r2 r3

r0 r4

r6

r3



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Pipeline hazards

• Two operations that require the same resource cannot
be executed in parallel:

x = a + b;
a = d + e;
y = a - f;

-

+

+

x
a

b

d

e

a

y

f



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Scoreboarding

 Scoreboard keeps track of what 
instructions use what resources:

Reg file ALU FP

instr1 X X

instr2 X



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Order of execution

 In-order:
 Machine stops issuing instructions when the 

next instruction can’t be dispatched.
 Out-of-order:
 Machine will change order of instructions to 

keep dispatching.
 Substantially faster but also more complex.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

VLIW architectures

 Very long instruction word (VLIW) 
processing provides significant parallelism.

 Rely on compilers to identify parallelism.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

What is VLIW?

 Parallel function units with shared register 
file:

register file

function
unit

function
unit

function
unit

function
unit

...

instruction decode and memory



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

VLIW cluster

 Organized into clusters to accommodate 
available register bandwidth:

cluster cluster cluster...



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

VLIW and compilers

 VLIW requires considerably more 
sophisticated compiler technology than 
traditional architectures---must be able to 
extract parallelism to keep the instructions 
full.

 Many VLIWs have good compiler support.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Static scheduling

a b

c

d

e f

g

a b e

f c

d g

nop

nop

expressions instructions



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Trace scheduling

conditional 1

block 2 block 3

loop head 4

loop body 5

Rank paths in
order of frequency.

Schedule paths in
order of frequency.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

EPIC

 EPIC = Explicitly parallel instruction 
computing.

 Used in Intel/HP Merced (IA-64) machine.
 Incorporates several features to allow 

machine to find, exploit increased 
parallelism.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

IA-64 instruction format

 Instructions are bundled with tag to 
indicate which instructions can be 
executed in parallel:

tag instruction 1 instruction 2 instruction 3

128 bits



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Memory system

 CPU fetches data, instructions from a 
memory hierarchy:

Main
memory

L2
cache

L1
cache CPU



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Memory hierarchy 
complications

 Program behavior is much more state-
dependent.
 Depends on how earlier execution left the 

cache.
 Execution time is less predictable.
 Memory access times can vary by 100X.


