
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Introduction

 Example: model train controller.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Purposes of example

 Follow a design through several levels of
abstraction.

 Gain experience with UML.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Model train setup

console

power
supply

rcvr motor

ECCaddressheader command

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Requirements

 Console can control 8 trains on 1 track.
 Throttle has at least 63 levels.
 Inertia control adjusts responsiveness

with at least 8 levels.
 Emergency stop button.
 Error detection scheme on messages.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Requirements form

name model train controller
purpose control speed of <= 8 model trains
inputs throttle, inertia, emergency stop,

train #
outputs train control signals
functions set engine speed w. inertia;

emergency stop
performance can update train speed at least 10

times/sec
manufacturing cost $50
power wall powered
physical
size/weight

console comfortable for 2 hands; < 2
lbs.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Conceptual specification

 Before we create a detailed specification,
we will make an initial, simplified
specification.
 Gives us practice in specification and UML.
 Good idea in general to identify potential

problems before investing too much effort in
detail.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Basic system commands

command name parameters

set-speed speed
(positive/negative)

set-inertia inertia-value (non-
negative)

estop none

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Typical control sequence

:console :train_rcvrset-inertia
set-speed

set-speed

set-speed

estop

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Message classes

command

set-inertia
value: unsigned-

integer

set-speed

value: integer

estop

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Roles of message classes

 Implemented message classes derived
from message class.
 Attributes and operations will be filled in for

detailed specification.
 Implemented message classes specify

message type by their class.
 May have to add type as parameter to data

structure in implementation.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Subsystem collaboration
diagram

Shows relationship between console and
receiver (ignores role of track):

:console :receiver

1..n: command

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

System structure modeling

 Some classes define non-computer
components.
 Denote by *name.

 Choose important systems at this point to
show basic relationships.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Major subsystem roles

 Console:
 read state of front panel;
 format messages;
 transmit messages.

 Train:
 receive message;
 interpret message;
 control the train.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Console system classes

console

panel formatter transmitter

receiver* sender*

1

1

1

11 1

1 1 1 1

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Console class roles

 panel: describes analog knobs and
interface hardware.

 formatter: turns knob settings into bit
streams.

 transmitter: sends data on track.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Train system classes

train set

train
receiver

controller

motor
interface

detector* pulser*

1 1..t 1
1

1 1

1 1

1
1

1 1

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Train class roles

 receiver: digitizes signal from track.
 controller: interprets received commands

and makes control decisions.
 motor interface: generates signals

required by motor.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Detailed specification

 We can now fill in the details of the
conceptual specification:
 more classes;
 behaviors.

 Sketching out the spec first helps us
understand the basic relationships in the
system.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Train speed control

 Motor controlled by pulse width
modulation:

V
+

-

duty
cycle

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Console physical object
classes

knobs*
train-knob: integer
speed-knob: integer
inertia-knob: unsigned-

integer
emergency-stop: boolean
mouse_click()
draw_box

pulser*

pulse-width: unsigned-
integer

direction: boolean

sender*

send-bit()

detector*

read-bit() : integer

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Panel and motor interface
classes

panel

train-number() : integer
speed() : integer
inertia() : integer
estop() : boolean
new-settings()

motor-interface

speed: integer

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Class descriptions

 panel class defines the controls.
 new-settings() behavior reads the controls.

 motor-interface class defines the motor
speed held as state.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Transmitter and receiver
classes

transmitter

send-speed(adrs: integer,
speed: integer)

send-inertia(adrs: integer,
val: integer)

set-estop(adrs: integer)

receiver

current: command
new: boolean

read-cmd()
new-cmd() : boolean
rcv-type(msg-type:

command)
rcv-speed(val: integer)
rcv-inertia(val:integer)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Class descriptions

 transmitter class has one behavior for
each type of message sent.

 receiver function provides methods to:
 detect a new message;
 determine its type;
 read its parameters (estop has no

parameters).

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Formatter class

formatter

current-train: integer
current-speed[ntrains]: integer
current-inertia[ntrains]:

unsigned-integer
current-estop[ntrains]: boolean

send-command()
panel-active() : boolean
operate()

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Formatter class
description

 Formatter class holds state for each train,
setting for current train.

 The operate() operation performs the
basic formatting task.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Control input cases

 Use a soft panel to show current panel
settings for each train.

 Changing train number:
 must change soft panel settings to reflect

current train’s speed, etc.
 Controlling throttle/inertia/estop:
 read panel, check for changes, perform

command.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Control input sequence
diagram

:knobs :panel :formatter :transmitter

ch
an

ge
 in

 sp
ee

d/
in

er
tia

/e
st

op
ch

an
ge

 in
tra

in
 n

um
be

r

change in
control
settings

read panel

panel settings
panel-active
send-command

send-speed,
send-inertia.
send-estop

read panel

panel settings
read panel

panel settings
change in
train
number

set-knobs
new-settings

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Formatter operate
behavior

idle

update-panel()

send-command()

panel-active() new train number

other

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Panel-active behavior

panel*:read-train()
current-train = train-knob

update-screen
changed = true

T

panel*:read-speed() current-speed = throttle
changed = true

T

F

...
F

...

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Controller class

controller

current-train: integer
current-speed[ntrains]: integer
current-direction[ntrains]: boolean
current-inertia[ntrains]:

unsigned-integer

operate()
issue-command()

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Setting the speed

 Don’t want to change speed
instantaneously.

 Controller should change speed gradually
by sending several commands.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sequence diagram for set-
speed command

:receiver :controller :motor-interface :pulser*
new-cmd
cmd-type
rcv-speed set-speed set-pulse

set-pulse

set-pulse

set-pulse

set-pulse

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Controller operate
behavior

issue-command()

receive-command()

wait for a
command

from receiver

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Refined command classes
command

type: 3-bits
address: 3-bits
parity: 1-bit

set-inertia
type=001
value: 3-bits

set-speed
type=010
value: 7-bits

estop

type=000

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Summary

 Separate specification and programming.
 Small mistakes are easier to fix in the spec.
 Big mistakes in programming cost a lot of

time.
 You can’t completely separate

specification and architecture.
 Make a few tasteful assumptions.

