
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Introduction

 Example: model train controller.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Purposes of example

 Follow a design through several levels of
abstraction.

 Gain experience with UML.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Model train setup

console

power
supply

rcvr motor

ECCaddressheader command

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Requirements

 Console can control 8 trains on 1 track.
 Throttle has at least 63 levels.
 Inertia control adjusts responsiveness

with at least 8 levels.
 Emergency stop button.
 Error detection scheme on messages.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Requirements form

name model train controller
purpose control speed of <= 8 model trains
inputs throttle, inertia, emergency stop,

train #
outputs train control signals
functions set engine speed w. inertia;

emergency stop
performance can update train speed at least 10

times/sec
manufacturing cost $50
power wall powered
physical
size/weight

console comfortable for 2 hands; < 2
lbs.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Conceptual specification

 Before we create a detailed specification,
we will make an initial, simplified
specification.
 Gives us practice in specification and UML.
 Good idea in general to identify potential

problems before investing too much effort in
detail.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Basic system commands

command name parameters

set-speed speed
(positive/negative)

set-inertia inertia-value (non-
negative)

estop none

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Typical control sequence

:console :train_rcvrset-inertia
set-speed

set-speed

set-speed

estop

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Message classes

command

set-inertia
value: unsigned-

integer

set-speed

value: integer

estop

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Roles of message classes

 Implemented message classes derived
from message class.
 Attributes and operations will be filled in for

detailed specification.
 Implemented message classes specify

message type by their class.
 May have to add type as parameter to data

structure in implementation.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Subsystem collaboration
diagram

Shows relationship between console and
receiver (ignores role of track):

:console :receiver

1..n: command

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

System structure modeling

 Some classes define non-computer
components.
 Denote by *name.

 Choose important systems at this point to
show basic relationships.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Major subsystem roles

 Console:
 read state of front panel;
 format messages;
 transmit messages.

 Train:
 receive message;
 interpret message;
 control the train.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Console system classes

console

panel formatter transmitter

receiver* sender*

1

1

1

11 1

1 1 1 1

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Console class roles

 panel: describes analog knobs and
interface hardware.

 formatter: turns knob settings into bit
streams.

 transmitter: sends data on track.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Train system classes

train set

train
receiver

controller

motor
interface

detector* pulser*

1 1..t 1
1

1 1

1 1

1
1

1 1

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Train class roles

 receiver: digitizes signal from track.
 controller: interprets received commands

and makes control decisions.
 motor interface: generates signals

required by motor.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Detailed specification

 We can now fill in the details of the
conceptual specification:
 more classes;
 behaviors.

 Sketching out the spec first helps us
understand the basic relationships in the
system.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Train speed control

 Motor controlled by pulse width
modulation:

V
+

-

duty
cycle

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Console physical object
classes

knobs*
train-knob: integer
speed-knob: integer
inertia-knob: unsigned-

integer
emergency-stop: boolean
mouse_click()
draw_box

pulser*

pulse-width: unsigned-
integer

direction: boolean

sender*

send-bit()

detector*

read-bit() : integer

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Panel and motor interface
classes

panel

train-number() : integer
speed() : integer
inertia() : integer
estop() : boolean
new-settings()

motor-interface

speed: integer

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Class descriptions

 panel class defines the controls.
 new-settings() behavior reads the controls.

 motor-interface class defines the motor
speed held as state.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Transmitter and receiver
classes

transmitter

send-speed(adrs: integer,
speed: integer)

send-inertia(adrs: integer,
val: integer)

set-estop(adrs: integer)

receiver

current: command
new: boolean

read-cmd()
new-cmd() : boolean
rcv-type(msg-type:

command)
rcv-speed(val: integer)
rcv-inertia(val:integer)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Class descriptions

 transmitter class has one behavior for
each type of message sent.

 receiver function provides methods to:
 detect a new message;
 determine its type;
 read its parameters (estop has no

parameters).

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Formatter class

formatter

current-train: integer
current-speed[ntrains]: integer
current-inertia[ntrains]:

unsigned-integer
current-estop[ntrains]: boolean

send-command()
panel-active() : boolean
operate()

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Formatter class
description

 Formatter class holds state for each train,
setting for current train.

 The operate() operation performs the
basic formatting task.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Control input cases

 Use a soft panel to show current panel
settings for each train.

 Changing train number:
 must change soft panel settings to reflect

current train’s speed, etc.
 Controlling throttle/inertia/estop:
 read panel, check for changes, perform

command.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Control input sequence
diagram

:knobs :panel :formatter :transmitter

ch
an

ge
 in

 sp
ee

d/
in

er
tia

/e
st

op
ch

an
ge

 in
tra

in
 n

um
be

r

change in
control
settings

read panel

panel settings
panel-active
send-command

send-speed,
send-inertia.
send-estop

read panel

panel settings
read panel

panel settings
change in
train
number

set-knobs
new-settings

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Formatter operate
behavior

idle

update-panel()

send-command()

panel-active() new train number

other

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Panel-active behavior

panel*:read-train()
current-train = train-knob

update-screen
changed = true

T

panel*:read-speed() current-speed = throttle
changed = true

T

F

...
F

...

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Controller class

controller

current-train: integer
current-speed[ntrains]: integer
current-direction[ntrains]: boolean
current-inertia[ntrains]:

unsigned-integer

operate()
issue-command()

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Setting the speed

 Don’t want to change speed
instantaneously.

 Controller should change speed gradually
by sending several commands.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sequence diagram for set-
speed command

:receiver :controller :motor-interface :pulser*
new-cmd
cmd-type
rcv-speed set-speed set-pulse

set-pulse

set-pulse

set-pulse

set-pulse

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Controller operate
behavior

issue-command()

receive-command()

wait for a
command

from receiver

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Refined command classes
command

type: 3-bits
address: 3-bits
parity: 1-bit

set-inertia
type=001
value: 3-bits

set-speed
type=010
value: 7-bits

estop

type=000

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Summary

 Separate specification and programming.
 Small mistakes are easier to fix in the spec.
 Big mistakes in programming cost a lot of

time.
 You can’t completely separate

specification and architecture.
 Make a few tasteful assumptions.

