
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Introduction

 What are embedded systems?
 Challenges in embedded computing

system design.
 Design methodologies.

Overheads for Computers as
Components

Definition

 Embedded system: any device that
includes a programmable computer but is
not itself a general-purpose computer.

 Take advantage of application
characteristics to optimize the design:
 don’t need all the general-purpose bells and

whistles.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Embedding a computer

CPU

mem

input

output analog

analog

embedded
computer

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Examples

 Personal digital assistant (PDA).
 Printer.
 Cell phone.
 Automobile: engine, brakes, dash, etc.
 Television.
 Household appliances.
 PC keyboard (scans keys).

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Early history

 Late 1940’s: MIT Whirlwind computer was
designed for real-time operations.
 Originally designed to control an aircraft

simulator.
 First microprocessor was Intel 4004 in

early 1970’s.
 HP-35 calculator used several chips to

implement a microprocessor in 1972.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Early history, cont’d.

 Automobiles used microprocessor-based
engine controllers starting in 1970’s.
 Control fuel/air mixture, engine timing, etc.
 Multiple modes of operation: warm-up, cruise,

hill climbing, etc.
 Provides lower emissions, better fuel

efficiency.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Microprocessor varieties

 Microcontroller: includes I/O devices, on-
board memory.

 Digital signal processor (DSP):
microprocessor optimized for digital signal
processing.

 Typical embedded word sizes: 8-bit, 16-
bit, 32-bit.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Application examples

 Simple control: front panel of microwave
oven, etc.

 Canon EOS 3 has three microprocessors.
 32-bit RISC CPU runs autofocus and eye

control systems.
 Analog TV: channel selection, etc.
 Digital TV: programmable CPUs +

hardwired logic.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Automotive embedded
systems

 Today’s high-end automobile may have
100 microprocessors:
 4-bit microcontroller checks seat belt;
 microcontrollers run dashboard devices;
 16/32-bit microprocessor controls engine.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

BMW 850i brake and
stability control system

 Anti-lock brake system (ABS): pumps
brakes to reduce skidding.

 Automatic stability control (ASC+T):
controls engine to improve stability.

 ABS and ASC+T communicate.
 ABS was introduced first---needed to interface

to existing ABS module.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

BMW 850i, cont’d.

brake

sensor

brake

sensor

brake

sensor

brake

sensor

ABS hydraulic
pump

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Characteristics of
embedded systems

 Sophisticated functionality.
 Real-time operation.
 Low manufacturing cost.
 Low power.
 Designed to tight deadlines by small

teams.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Functional complexity

 Often have to run sophisticated
algorithms or multiple algorithms.
 Cell phone, laser printer.

 Often provide sophisticated user
interfaces.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Real-time operation

 Must finish operations by deadlines.
 Hard real time: missing deadline causes

failure.
 Soft real time: missing deadline results in

degraded performance.
 Many systems are multi-rate: must handle

operations at widely varying rates.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Non-functional
requirements

 Many embedded systems are mass-
market items that must have low
manufacturing costs.
 Limited memory, microprocessor power, etc.

 Power consumption is critical in battery-
powered devices.
 Excessive power consumption increases

system cost even in wall-powered devices.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Design teams

 Often designed by a small team of
designers.

 Often must meet tight deadlines.
 6 month market window is common.
 Can’t miss back-to-school window for

calculator.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Why use microprocessors?

 Alternatives: field-programmable gate
arrays (FPGAs), custom logic, etc.

 Microprocessors are often very efficient:
can use same logic to perform many
different functions.

 Microprocessors simplify the design of
families of products.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

The performance paradox

 Microprocessors use much more logic to
implement a function than does custom
logic.

 But microprocessors are often at least as
fast:
 heavily pipelined;
 large design teams;
 aggressive VLSI technology.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Power

 Custom logic is a clear winner for low
power devices.

 Modern microprocessors offer features to
help control power consumption.

 Software design techniques can help
reduce power consumption.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Challenges in embedded
system design

 How much hardware do we need?
 How big is the CPU? Memory?

 How do we meet our deadlines?
 Faster hardware or cleverer software?

 How do we minimize power?
 Turn off unnecessary logic? Reduce memory

accesses?

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Challenges, etc.

 Does it really work?
 Is the specification correct?
 Does the implementation meet the spec?
 How do we test for real-time characteristics?
 How do we test on real data?

 How do we work on the system?
 Observability, controllability?
 What is our development platform?

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Design methodologies

 A procedure for designing a system.
 Understanding your methodology helps

you ensure you didn’t skip anything.
 Compilers, software engineering tools,

computer-aided design (CAD) tools, etc.,
can be used to:
 help automate methodology steps;
 keep track of the methodology itself.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Design goals

 Performance.
 Overall speed, deadlines.

 Functionality and user interface.
 Manufacturing cost.
 Power consumption.
 Other requirements (physical size, etc.)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Levels of abstraction

requirements

specification

architecture

component
design

system
integration

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Top-down vs. bottom-up

 Top-down design:
 start from most abstract description;
 work to most detailed.

 Bottom-up design:
 work from small components to big system.

 Real design uses both techniques.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Stepwise refinement

 At each level of abstraction, we must:
 analyze the design to determine

characteristics of the current state of the
design;

 refine the design to add detail.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Requirements

 Plain language description of what the
user wants and expects to get.

 May be developed in several ways:
 talking directly to customers;
 talking to marketing representatives;
 providing prototypes to users for comment.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Functional vs. non-
functional requirements

 Functional requirements:
 output as a function of input.

 Non-functional requirements:
 time required to compute output;
 size, weight, etc.;
 power consumption;
 reliability;
 etc.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Our requirements form

name
purpose
inputs
outputs
functions
performance
manufacturing cost
power
physical size/weight

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: GPS moving map
requirements

 Moving map
obtains position
from GPS, paints
map from local
database.

lat: 40 13 lon: 32 19

I-78

Sc
ot

ch
 R

oa
d

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

GPS moving map needs

 Functionality: For automotive use. Show
major roads and landmarks.

 User interface: At least 400 x 600 pixel
screen. Three buttons max. Pop-up menu.

 Performance: Map should scroll smoothly.
No more than 1 sec power-up. Lock onto
GPS within 15 seconds.

 Cost: $500 street price = approx. $100
cost of goods sold.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

GPS moving map needs,
cont’d.

 Physical size/weight: Should fit in
dashboard.

 Power consumption: Current draw
comparable to CD player.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

GPS moving map
requirements form

name GPS moving map
purpose consumer-grade

moving map for driving
inputs power button, two

control buttons
outputs back-lit LCD 400 X 600
functions 5-receiver GPS; three

resolutions; displays
current lat/lon

performance updates screen within
0.25 sec of movement

manufacturing cost $100 cost-of-goods-
sold

power 100 mW
physical size/weight no more than 2: X 6:,

12 oz.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Specification

 A more precise description of the system:
 should not imply a particular architecture;
 provides input to the architecture design

process.
 May include functional and non-functional

elements.
 May be executable or may be in

mathematical form for proofs.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

GPS specification

 Should include:
 What is received from GPS;
 map data;
 user interface;
 operations required to satisfy user requests;
 background operations needed to keep the

system running.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Architecture design

 What major components go satisfying the
specification?

 Hardware components:
 CPUs, peripherals, etc.

 Software components:
 major programs and their operations.

 Must take into account functional and
non-functional specifications.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

GPS moving map block
diagram

GPS
receiver

search
engine renderer

user
interfacedatabase

display

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

GPS moving map hardware
architecture

GPS
receiver

CPU

panel I/O

display frame
buffer

memory

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

GPS moving map software
architecture

position database
search renderer

timeruser
interface

pixels

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Designing hardware and
software components

 Must spend time architecting the system
before you start coding.

 Some components are ready-made, some
can be modified from existing designs,
others must be designed from scratch.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

System integration

 Put together the components.
 Many bugs appear only at this stage.

 Have a plan for integrating components to
uncover bugs quickly, test as much
functionality as early as possible.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Summary

 Embedded computers are all around us.
 Many systems have complex embedded

hardware and software.
 Embedded systems pose many design

challenges: design time, deadlines, power,
etc.

 Design methodologies help us manage the
design process.

