

SYSTEM LEVEL DESIGN MODEL WITH RE-
USE OF SYSTEM IP

Kluwer Academic Publishers
Boston/Dordrecht/London

SYSTEM LEVEL DESIGN MODEL WITH RE-
USE OF SYSTEM IP

Edited by

Patrizia Cavalloro
Italtel SpA, Milan, Italy

and

Christophe Gendarme
Alcatel Bell, Antwerp, Belgium

and

Klaus Kronlöf
Nokia Research Center, Helsinki, Finland

and

Jean Mermet
ECSI, Grenoble, France

and

Jos van Sas
Alcatel Bell, Antwerp, Belgium

and

Kari Tiensyrjä
VTT Electronics, Oulu, Finland

and

Nikolaos S. Voros
Technological Educational Institute of Western Greece, Computer and Informatics
Engineering Department, Greece

iv System Level Design Model with re-Use of System IP

Contents

Preface vii

Acknowledgements ix

1 Introduction 1
Klaus Kronlöf 1

2 System Design Practices in Industry Today 5
Klaus Kronlöf, Nikolaos S. Voros 5

3 System Design - Informal Walk-Through 13
Kari Tiensyrjä 13

4 System Design Conceptual Model 21
Kari Tiensyrjä, Jean Mermet 21

5 Concepts for System Design Languages 43
Patrizia Cavalloro 43

6 System Performance Analysis 57
Christophe Gendarme, Jos van Sas 57

7 System Design Reuse 79
Nikolaos S. Voros 79

vi System Level Design Model with re-Use of System IP

8 Example of Using the System Design Conceptual Model 101
Nikolaos S. Voros 101

A1 Glossary 115
Klaus Kronlöf 115

A2 Action Semantics 147
Jean Mermet 147

A3 Language Analysis Framework 159
Patrizia Cavalloro 159

A4 Guidelines for System-Level Performance Analysis 173
Christophe Gendarme, Jos van Sas 173

A5 Bluestone: A Case Example 189
Kari Tiensyrjä 189

Preface

This book presents the perspective of the SYDIC-Telecom project on
system design and reuse as perceived in the course of the research during
1999 - 2003.

The initial problem statement of the research was formulated as follows:
"The current situation regarding system design in general is, that the

methods are insufficient, informally practiced, and weakly supported by
formal techniques and tools. Regarding system reuse the methods and tools
for exchanging system design data and know-how within companies are ad
hoc and insufficient. The means available inside companies being already
insufficient, there are actually no ways of exchanging between companies.
Therefore, there hardly exists any system IP (Intellectual Property) industry.
Although system design know-how is one of companies' main assets, it
cannot be reused and capitalised effectively enough today. There is a lack of
rational design flows supporting a design methodology based on reuse of IP,
and few design tools to support it. Even guidelines on how to use existing
tools in the design flow for this purpose often do not exist."

The problem was known to be hard and the scope broad. The plan of
attack was first to analyse the state-of-the-art and the state-of-the-practice,
then to identify potential improvements, and finally to synthesise a
formalised proposal for implementation. The approach was applied to
different system-level issues, e.g. design flows, terminology, languages,
reuse, design process and object of design.

The eight chapters and five annexes describing the main results obtained
in the research are ahead of you, for learning and taking benefit of.

Acknowledgements

The research work that provided the material for this book was carried
out during 1999 - 2003 mainly in the SYDIC-Telecom project supported
partially by the European Commission under the contract IST-1999-11376.
Guidance and comments of Marc Engels, Michael Hohenbichler, Uros
Janko, and Serge Vernalde on research direction are highly appreciated.

In addition to the editors, the contributions of the following project
members and partners' personnel are gratefully acknowledged: Konstantina
Barkoula, Spyros Batistatos, Gabriela Bilinkova, Alex Birbas, Franca Brivio,
Rene du Cloux, Lars-Olov Eriksson, Giulio Gorla, Bruno Gualdi, Gjalt de
Jong, Brian Lashley, Roel Marichal, Adam Morawiec, Jean-Pierre Moreau,
Steffen Müller, Alex Niemegeers, Jonas Plantin, Florence Pourchelle,
Annette Reutter, Sophia Tsatsakou, Patrick Valdenaire, and Dyson Wilkes.

Of them, the editors express their special thanks to Gjalt de Jong, Giulio
Gorla, Brian Lashley, Konstantina Barkoula, and Dyson Wilkes for their
substantial contributions to Chapter 2, Chapter 3, Chapter 4, Chapter 7, and
Annex A5, respectively.

Valuable feedback to working documents was received from: Brian
Bailey, Markus Brenner, Eliane Fourgeau, Philippe Launay, Grant Martin,
Roberto Passerone, and Ian Phillips. The consortium designer review of the
System Design Conceptual Model was performed by: Anselmo Biffi, Bruno
Gualdi, Richard O'Connor, Miika Rummukainen, and Maurizio Vitale.
External experts in the language analysis were: Axel Braun, Eike Grimpe,
Nicolas Halbwachs, Stefan Hallerstade, Odo Knut, Antti Pelkonen, Alain
Vachoux, and Avi Ziv.

Chapter 1

INTRODUCTION

Klaus Kronlöf
Nokia Research Center, Helsinki, Finland

Abstract: This chapter explains the motivations behind the work that provided the
material for the book. The chapter includes a guide that suggests focus areas
and reading flows for different types of readers.

Key words: System design, system architecting, intellectual property, reuse.

1. MOTIVATION

This book is an outcome of a joint European project, SYDIC-Telecom
(SYstem Design Industry Council of European Telecom Industries). The
motivation of the participating companies to join their efforts was the agreed
observation that system design know-how, being one of their main assets,
cannot be reused and capitalized effectively enough today.

Challenges and problems are caused by the following development in the
industry:

1. Fast evolution of product properties, e. g. more functionality and
diversity, requiring managing of product families, more effort needed
to design the new, complex functionality, more designers involved in
design projects, etc.

2. Fast evolution of technologies, requiring frequent adaptations of the
methodology.

3. New application domains appearing, requiring novel use of designer
expertise.

4. Decreasing time-to-market (TTM) despite increased functionality,
diversity and complexity.

2 Chapter 1

5. Demand for decreasing cost in the market encountering price erosion.

Adding the fact that it today is very difficult to reuse existing knowledge,

the industry is faced with an increasing and serious problem: lack of
experienced system designers.

The results of the project presented in this book are meant to provide the
foundation to improve the product development capabilities of companies to
cope with the above challenges. For this we need a system level design
methodology with reuse of know-how. This can also open new business
opportunities for providers of such know-how, i.e. a market for system
design Intellectual Property (in the following called ‘IP’).

2. GUIDE FOR THE READER

The authors of this book are well aware that there is quite a lot of
material in this book and that different types of readers are likely to be
interested in specific sections of the book. Consequently we recognize need
to give some practical advise where to put the focus based on the
background of the reader. In the following we identify typical classes of
readers and suggest them a reading flow.

The first type is a reader who wants to get an overall picture of the topics
of the book and who is not necessarily very familiar with the domain. Such a
reader is advised to follow the course of presentation. When reading Chapter
4, it is useful to frequently refer to Annex A5.

The second type is an industrial product development practitioner, such
as a system engineer or a system architect. In this case Chapters 2 and 3 do
not probably bring much new information and can be skipped or browsed
lightly. Reading Chapter 4 is necessary for understanding the rest of the
book, so it should not be skipped although it appears rather theoretical.
Annex A5 helps digesting Chapter 4. Chapter 5 may or may not be of
interest, depending on how much the reader is using design languages.
However, we believe that Chapters 6, 7 and 8 are the most interesting ones
for an industrial system developer.

The third type is a person responsible of methodology development
and/or product development process improvement in a company. Similarly
as above, Chapters 2 and 3 can be browsed lightly. Chapter 4 is the most
important for a methodology developer. We believe that the System Design
Process Model (SDPM) can be directly applied as a metamodel for process
definition purposes. Likewise, the model of System Under Design (SUDM)
can be used as a metamodel for methodology development, e.g. for the
definition of UML profiles. Chapter 5 and especially Annex A3 give a useful

Introduction 3

framework for design language selection. Finally, Chapter 7 contains
practical advice for the development of reuse methodology.

The fourth type is a tool developer, for example in an EDA company. In
our opinion the System Design Conceptual Model (SDCM) of Chapter 4
forms the basis of any tool that is supposed to support system design as we
see it. The action semantics of Annex A2 provides the core concepts for
behavior-oriented tools, such as simulators and formal verifiers. Since any
tool needs some kind of representation of the design, Chapter 5 is of interest
to tool developers. Annex A3 can be of practical use for language selection.
Depending on the nature of the tool, Chapter 6 may or may not be of
interest.

IntroductionIntroduction

System Design Practices
in Industry Today

System Design Practices
in Industry Today

System Design - Informal
Walk-Through

System Design - Informal
Walk-Through

System Design Conceptual
Model

System Design Conceptual
Model

Concepts for System
Design Languages

Concepts for System
Design Languages

System Performance
Analysis

System Performance
Analysis

System Design ReuseSystem Design Reuse

Example of Using the System
Design Conceptual Model

Example of Using the System
Design Conceptual Model

GlossaryGlossary

Action SemanticsAction Semantics

Language Analysis FrameworkLanguage Analysis Framework

Guidelines for System-Level
Performance Analysis

Guidelines for System-Level
Performance Analysis

BlueStone: A Case ExampleBlueStone: A Case Example

General

Designer/
Architect

Methodology
Developer

Researcher/
Scientist

Language
Specialist

Tool
Developer

IntroductionIntroduction

System Design Practices
in Industry Today

System Design Practices
in Industry Today

System Design - Informal
Walk-Through

System Design - Informal
Walk-Through

System Design Conceptual
Model

System Design Conceptual
Model

Concepts for System
Design Languages

Concepts for System Specifi-
cation and Design Languages

System Performance
Analysis

System Performance
Analysis

System Design ReuseSystem Design Reuse

Example of Using the System
Design Conceptual Model

Example of Using the System
Design Conceptual Model

GlossaryGlossary

Action SemanticsAction Semantics

Language Analysis FrameworkLanguage Analysis Framework

Guidelines for System-Level
Performance Analysis

Guidelines for System-Level
Performance Analysis

BlueStone: A Case ExampleBlueStone: A Case Example

General

Designer/
Architect

Methodology
Developer

Researcher/
Scientist

Language
Specialist

Tool
Developer

Figure 1-1. Focus areas and reading flows for different types of readers.

The fifth type is a language specialist in industry, academia or
standardization bodies. Obviously Chapter 5 and Annex A3 are most
interesting sections for such a reader. However, the SDCM of Chapter 4
should not be skipped, since Chapter 5 is written with the assumption that
the reader is familiar with the SDCM.

The sixth type is a researcher or scientist. From the scientific point of
view, the SDCM of Chapter 4 is the key contribution of this book. However,

4 Chapter 1

all the chapters of the book provide ideas for further research. Especially
Chapter 7 is of interest in this respect.

Figure 1-1 presents the suggested focus areas and reading flows in a
graphical form. The chapters are on the left side of the picture and the
annexes are on the right side. The arrows show how the annexes are related
to the chapters. Notice that the Glossary of Annex A1 is used in all the
chapters, although this is not shown explicitly in the picture.

Chapter 2

SYSTEM DESIGN PRACTICES IN INDUSTRY
TODAY

Klaus Kronlöf1,
Nikolaos S. Voros2
1 Nokia Research Center, Helsinki, Finland
2 INTRACOM S.A., Patra, Greece

Abstract: This chapter introduces the domain of the book and describes the basic steps
of current industrial design process. The results of the analysis of real-life
design flows in the participating companies are presented.

Key words: System design, system architecting, design flow, design process, design reuse,
intellectual property reuse, tacit know-how.

1. BASIC STEPS OF AN INDUSTRIAL DESIGN
FLOW

The companies involved in embedded system design have usually
in-house design methods and practices and use specific languages for system
design. In most cases, industrial design practices usually involve design
flows reflecting the background experience of each company. In the next
paragraphs, we present the basic design steps currently used for the design of
real world applications.

1.1 Informal System Specification

An embedded system design that encompasses both hardware and
software, starts with an informal system specification which is usually
written as a document that describes high-level aspects of the system. These

6 Chapter 2

informal system descriptions are formalized during the next steps of the
design process.

1.2 Formal System Specification

The formal system specification is carried out using appropriate formal
specification languages based on the requirements posed by the informal
specification. It is also a common practice to employ multiple formalisms for
describing different parts of the same application. This is either due to the
suitability of a specific formalism to accommodate the efficient description
of certain parts, or due to the necessity to reuse existing components. The
use of more than one formalisms is a bottleneck in the design process since
there is usually no direct connection among the different formalisms used.

1.3 Architecture Exploration and System Partitioning

The architecture exploration and system partitioning phases are mainly
based on the engineering experience of the designer, and employ informal
system specification (e.g. block diagrams) of the system as input. The final
system architecture emerges as the result of several successive trial and error
iterations of this step. The use of informal specifications usually implies
either lack of formal specifications, or bad abstraction level for the latter (not
purely functional but implementation specific). The problem remains even in
the case of having formal specifications available; if more than one
independent specification language is involved for describing system
models, they are usually independent among each other.

1.4 Concurrent Hardware and Software Development

Concurrent (and almost independent) hardware and software
development is the next design-step. The interaction required between the
hardware and software design teams is achieved through informal system
specifications. Nothing ensures the lack of inconsistencies and
misunderstandings between the hardware and software engineers, as there is
not a unified functional system representation and a systematic way for
solving concurrent engineering problems. The development of hardware
modules takes place involving simulation using HDLs (Hardware
Description Languages) and synthesis using commercial tools. Regarding
the software components, they are described in a formal description
language and then translated to C (or other implementation) language. The
next step is software development using algorithmic simulation of the

System Design Practices in Industry Today 7

software parts using compilers, assemblers etc. Driver development and
verification of their functionality takes also place through the use of
instruction set simulators, extended with the required dummy hardware
models [1].

The ultimate goal of this hardware-software co-development stage is to
produce a design where both software running on a specific microprocessor,
and system's dedicated hardware are offered as a system on a chip. CoWare
[2] and Seamless [3] are typical co-design tools used in industry for
hardware/software co-simulation and co-verification. The system description
is given in VHDL or Verilog languages for hardware and C language for
software. Both of them allow co-simulation between hardware and software
at the same abstraction level.

2. OBSERVATIONS FROM DESIGN FLOW
ANALYSIS

In order to set the baseline and to concretize the objectives, the project
started by conducting an analysis of selected real-life design flows of the
participating companies. The aim was also to derive generic characteristics
of system design and to find areas for improvement. The method used for
design flow analysis explicitly identified activities, actors, roles, formal and
informal information flows as well as the reuse of artifacts and other
Intellectual Property. In addition, we tried to analyze where the innovation
really occurs and what kind of explicit and tacit know-how is involved. This
chapter summarizes the main observations and conclusions.

2.1 System Architect Is the Key Actor in System Design

The system architect has the global system know-how, functionally as
well as architecturally. The system architect also is well aware of the non-
functional properties (performance, cost, etc.) and their impact on design
decisions.

A lot of previous design-know and other experiences are also typically
present. As the owner of the system architecture process, the system
architect maintains the integrity of the system development activities, while
taking care of the consistency and balance of requirements, design,
implementation and verification.

Architecture design is a multi-level and multi-faceted activity. Besides
architecture definition, it also consists of feasibility analyses and
assessments. The architect addresses the system (under design) as well as the

8 Chapter 2

product development (process). Besides the technical content, a good system
architect also takes into account: the organizational constraints (which type
of skills available and needed); product cost issues; and trade-offs between
short term needs and long term interests.

There is no systematic method and tool support available for this multi-
level and multifaceted activity, but an architect should be capable to do it all
in parallel.

2.2 Design Know-How Capture

The know-how to produce (good quality) designs is consolidated in the
design flows, design processes and organizations. Examples of consolidated
know-how are scripts, tools, design activities, checklists and guidelines, and
involvement of same people (with different roles) in different activities.

2.3 Reuse of Intellectual Property

Intellectual property (IP) reuse happens but it is not guaranteed. Reuse
awareness exists by designers but reuse is typically not institutionalized and
consequently the opportunities for reuse cannot be qualitatively and
quantitatively determined and assessed. The same applies to the creation of
IP in the process of system design and development.

Among the partners of the project Philips was an exception in this area
(which may be more typical for a semi-conductor company). A corporate IP
repository had been installed and associated policies and procedures had
been defined. The repository contains pre-defined IP (microcontrollers,
DSPs, interfaces, etc.), and own application-specific IP. Dedicated support
and maintenance groups for this IP have been set-up.

However, also in this case, IP in the repository are the (end-) results from
normal business development projects, i.e. without explicit design-for-reuse
intentions. Policies to determine whether offered IP should be
added/included to the repository, and/or to solicit specific IP are missing.
The lack of such IP characterizations and criteria means that the quality of
the repository cannot be assessed. It requires business incentives to move up
the reuse process maturity hierarchy. Separate development activities for
identified IP and reusable components have to be recognized as having
business value, and need to be established.

Typical examples of Intellectual Property (IP) are:
1. DSP algorithms, or more general, specifications of functional system

modules

System Design Practices in Industry Today 9

2. Subsystems with well-defined "interfaces" (i.e. in OSI (Open Systems
Interconnect) protocol stack terms, e.g. physical layer). These
subsystems can be used in later product derivatives.

3. Microcontrollers, DSPs, memories etc. These are typically external
IP. And although high-valuable components, not considered to be of
the system companies core business; they are a necessary need/use
and can be "easily" exchanged in a design (at least: does not
constitute and affect our own system IP).

2.4 Interfaces

By the nature of telecom systems, and by the nature of structured-
analysis of system and architecture design, interfaces are key objects.
Typically, many interface errors are caught during system integration. The
introduction of hardware/software co-verification partially remedies this, and
reduces the cost of these errors. But interfaces deserve to be a first-class
citizen in the design flow.

2.5 System Validation

It is advantageous to validate systems early in the design and
development flow. Errors found during system integration should be
minimized. Conceptual errors should also be detected early. High-level
executable models may enable earlier system validation. Issues to be
considered are the consistency between models used in the different design
stages, and the level of abstraction at which the models have to be written.
These models should be easy and fast to develop. Executable models are not
necessarily full-functional models. Possible alternatives include abstract
token models, interface and bus-functional models and architectural models.

2.6 Concurrent Engineering

In a sense, the design flow and process is top-down, but with a large
degree of concurrent engineering. The typical example is the concurrent
development of hardware and software design. However, also the system
and architecture phases run concurrently with the hardware and software
design phases. Hardware design can even run fully ahead, for example in the
case of a platform development.

A process is therefore a particular ordered view that not necessarily
reflects the actual time ordering of a set of activities. Promoted new design
flows and tool-supported design flows should take such concurrent

10 Chapter 2

engineering into account. In our view, component-based design and
concurrent engineering are non-conflicting design approaches.

2.7 Hardware/Software Partitioning

In the design flow analysis, hardware and software design are separate
design and development activities. These activities are performed in
different organizational units. The applied processes fit a generic scheme.
However, during the first stages of system and architecture design,
hardware/software partitioning is not a clearly identified activity. This is
counterintuitive from many top-down design flow descriptions as presented
and promoted by research communities.

Defining the functional and physical architecture are both key (but
separate) activities. Hardware/software partitioning is therefore a more
informal and intuitive process and activity that are maybe more culture and
application domain based. In that sense, hardware/software partitioning is
more apparent in the design as defining the hardware platform onto which
the application will be run. The partitioning itself is not performed and
detailed, only its characteristics are considered to define the
processing/processor platform. The definition of the exact hardware/software
interface can be identified as a design step, which can be considered as a
limited hardware/software partitioning.

2.8 Test and Debug

Design-for-test and design-for-debug should be considered during all
phases of system design and its implementation. Test and debug are
orthogonal to the design views. These views may currently be
underestimated, but will become more important. Awareness may be
sufficient, and with the appropriate measures and strategies defined, as it
probably does not deserve to be the main paradigm of the design process.

3. AREAS FOR IMPROVEMENT

Architecture in all its facets is the main area for improvement. An
architect has to compare and trade-off alternative solutions and
implementations. Better means are needed to assess and support design
decision taking, mainly at the architectural level. The system architect’s
activities and roles have to be more formalized in order to achieve better
reuse of design models, components, IP and know-how. We also need a

System Design Practices in Industry Today 11

paradigm shift from function-oriented design to component/
communication/interface-oriented design.

Systems should be validated for their correctness and their performances
earlier than it happens today. Executable specifications are marketed as the
solution. The caveat is that such an early modeling activity should not
consume the same amount of resources as the current formal and simulatable
specifications that are later in the design process. The reuse of testbenches
and the ability to run mixed-level simulations are probably a pre-requisite
for the success of such an approach.

Reuse should be made a well-defined and institutionalized activity. This
typically requires changes in the organizational structure of companies as
well as infrastructure investments. It is also necessary to be able to express
and assess the quality of the designs to be reused.

The range of reusable artifacts should be expanded. Currently only
implementation-oriented components can be reused. A big productivity gain
is possible if also the design information of the earlier system design phases
could be reused. This requires a more formal design approach that produces
unambiguous models that leave no room for misinterpretations. It is also
crucial to guarantee consistency of different models. Currently system
design information too often becomes obsolete or at least inaccurate due to
late bug fixes.

Current state-of-the art system design languages are quite expressive,
imposing few restrictions of what can be described. Guidelines, style
conventions, language subsets should be defined for the different
stages/phases of the design flow, and which support a particular (system and
architecture) design activity.

The languages are also geared towards representation of the end-result of
the design activity. They do not lend themselves well to the description of
the design intent, i.e. what it means and/or why it is being developed
(semantics, basic concept, etc.). Having this information available allows for
a higher level of reasoning. Other realizations, e.g. in another context or
setting, can then be derived more easily.

REFERENCES

[1] Tsasakou S., Voros N., Birbas A., Koziotis M., Papadopoulos G., High-level co-
simulation based on the extension of processor simulators. Journal of Systems
Architecture 2001; 47:1-13.

[2] CoWare Inc, CoWare N2C Methodology Manual. 2001.
[3] Klein R. A hardware-software co-simulation environment. Proceedings of 7th IEE

International Workshop on Rapid System Prototyping; 1996 June; Thessaloniki,
Greece.

12 Chapter 2

Chapter 3

SYSTEM DESIGN - INFORMAL WALK-
THROUGH

Kari Tiensyrjä
VTT Electronics, Oulu, Finland

Abstract: This chapter introduces the reader to main system design concepts and gives a
generic outline of phases and steps performed in system design. First, the
scope of system design is discussed. Next, the phases called System Design -
Refinement and System Design - Partitioning are addressed. Finally,
considerations about reuse of system design know-how are expressed.

Key words: System design, functionality, System Design - Refinement, functional
architecture, System Design - Partitioning, architecture template, specification,
system design process, system under design, pattern, idiom, reuse, platform,
system design know-how.

1. SCOPE OF SYSTEM DESIGN

A number of needs and inputs usually generate the idea for a new system.
These could be market opportunities, brilliant intuitions, realisation of
existing needs, technological progress, etc. These inputs construct the initial
specification of the system, as a set of user and domain requirements,
usually built upon, and prejudiced by, the pre-existing professional
knowledge and habits of the originators. The first insight generates some
brainstorming as the very beginning of the design of a new system.

From this stage, a sequence of progressive refinements will result in a set
of technical requirements specification of the system to be designed as
depicted in Figure 3-1. We call 'System Design' this Refinement activity –
labelled briefly SD-R - as well as the succeeding one – 'System Design' to
Partitioning, briefly SD-P - going from that specification of system
functionality to the specification of the building blocks functions. These

14 Chapter 3

shall then be synthesised into real working parts in the activity labelled as
SD-S, which however is not specifically addressed in this work.

In general, system design and the role of system designer can be
considered from the gathering of customer needs until the volume
reproduction. The perspective taken here is more limited, the SD-R and SD-
P could together be also called system architecture creation.

System Design
 -Synthesis

System Design

SD-S

SD-R SD-P

Figure 3-1. Scope of system design.

2. SYSTEM DESIGN - REFINEMENT

The SD-R elaborates the functionality requirements of the system until
the functional architecture as outlined in Figure 3-2.

At SD-R, the background knowledge is entered by means of some pre-
conception:

• The semantic concepts familiar to the participating designers, firstly
reshuffled to fit a common understanding, are taken as building
blocks of a specification.

• The experience on known system organisations and their working is
the layer of architectural ideas that set a “frame” to the progressive
identification of the functionality. This knowledge contributes to
give consistency to the ideas by assigning some functional task to
'transformation' activities, and some other task to 'communication'
between them.

• The refinement based on common language generates constructs that
are often understood as underpinning to the corresponding roles
between parts: fixed versus programmable, hardware versus
software, control versus processing. This identification is the seed for
the definition of system architecture.

System Design - Informal Walk-Through 15

Figure 3-2. System Design - Refinement.

• Some of the constraints of the initial specification become satisfied,
while refinement introduces new derived constraints due to e.g.
communication, power, cost etc. concerns. The personal sensibility
of every designer assigns some 'variables' either to system
parameters or to system constraints, depending on whether they are
considered to be presented as delivered characteristics of the system
or to be managed as adverse inputs to be accepted or design ranges to
be restrained.

Incompleteness, inconsistencies and ambiguities are the richness of

design in this refinement stage; their removal by specification and choice
will define the particular architecture and performance of the final
specification.

The study of the way of proceeding concerning this phase of system
design is related to the way of making refinements. This study is what is
properly referred to as 'methodology', as the study of the methods that could
be adopted. We see here that the common language used to share the ideas
between engineers is simply dictated by the need to adopt shared semantic
classes, and the issue is "understanding each other applying the minimum
possible bias from one discipline to another".

16 Chapter 3

The specific methods to select what task, or part of it, is to be treated as a
transformation on data; what other is considered as communication between
stages; how their connection is organised, as well as their access and share of
a set of information repositories, represent methodologically a "what-if"
procedure. After these choices, successive refinements result in a set of
system/architecture specification consisting of design artefacts produced in
the course of the SD-R.

The amount of variables - constraints or parameters - and the amount of
inconsistencies - ambiguities and incompleteness - assigned and solved or
left in the specification, depends on the degree of freedom that is planned for
the subsequent stage of generation of synthesisable parts, somewhat
approximately called 'partitioning'.

3. SYSTEM DESIGN - PARTITIONING

As the conclusion of the SD-R phase, a specification is available as a
description of a functional system, made of transformation and of
communication functions.

While formal refinements can continue to be applied to the specification,
they must now be associated with another method to transform the
description into one that can enter a deterministic synthesis process. At the
SD-P phase, depicted in Figure 3-3, the toolkit to play with is no more just a
basket of semantic primitives, but is based on modelled or descriptive
portraits of reference instances.

According to models of computation, the specification is mapped on
different architectural templates, or architectures. Concurrently, the
architectural functions, concerning computing and communication, can be
built using "objects", or functional blocks, that can in turn be mapped to
their software or hardware implementations resulting in a set of
system/architecture description, which contains design artefacts produced
at SD-P.

At present there is more heuristics than theory about the optimal choice
of the methods for the design phase from functionality to functions. Very
often the procedures follow specific flows according to the chosen design
tools and design quality standards - we designate these flows as idioms - but
every one choice can be traced to belong to a family of patterns. And in
turn these can be traced to a couple of fundamental archetypes: one in which
the designers impose the adoption of functional blocks and arrange the
architecture around them, and the opposite, in which the most performing
architectural template is chosen and is then implemented by means of
existing building block objects. Both ways then describe the function by

System Design - Informal Walk-Through 17

means of synthesis languages with associated tools, which offer both
verification and synthesis support.

Figure 3-3. System Design - Partitioning.

This second set of steps is largely based on the reuse of instances of
knowledge more detailed than just semantic concepts, as it was
predominantly in the first phase. This reuse, often demanded within a design
strategy of design-for-reuse, can apply bottom-up (a design is forced to build
up on specific pre-existing subsystems, inheriting parts, this is often called
design-to-reuse), or top-down (a design is oriented to take advantage of pre-
existing parts within a set to choose from, made of hard or flexible items.
This can be quoted as design-with-reuse).

Despite the simplification given by the reuse of known functions, as IP
instances, the process of moving from the functionality to the specified
function generates a large amount of detail information, and its verification
becomes cumbersome. That is why often instances of architectures, or
platforms are adopted, to build different systems by simple variations of the
sort of functions they make – like with different software procedures.

A platform is a generic architecture and a reference design where to store
know-how that is important both for the different instances of system under
design within the problem domain, and for the organisation of the
development work, i.e. the design process. A platform is also a means of
know-how and technology transfer.

18 Chapter 3

The role of a platform is also that of “concentrating” a class of systems
under design to collapse on it, thus reducing the multiplicity of alternatives
and the design complexity. It must also, as much as possible, be able to
target as many implementation alternatives as possible. A platform is thus a
sort of compromise between the aim of a legacy IPI and that of a widely
applicable IP.

A coarse discrimination can be made between two types of platforms
based on degrees of flexibility versus performance and cost:

• Product platforms, which aim at sharing parts of systems in order to
capitalise on the commonality between them. It can be considered as
a layered architectural environment for a system that facilitates the
development of an architectural instance.

• Integration platforms, that are defined as an underlying enabling
technology on which the object of reference is rendered functional. It
can be considered as a set of interoperable subsystems with a set of
rules, which enable third party subsystems to be included. Integration
platforms are often identified with their technological soul, of being
respectively either portable between technologies or user
programmable.

The whole set of steps and procedures that we have mentioned is called

design process, and can be methodologically studied by means of meta-
models of both design items and design procedures. The system design
process (SDP) describes how the development of system under design
(SUD) in a specific organisation is arranged, i.e. it determines the type and
order of stages that are involved in system development and establishes the
transition criteria between adjacent phases.

4. REUSE OF SYSTEM DESIGN KNOW-HOW

The development and deployment of electronic systems have for decades
relied on reusable components that are based on standards, and have been
put forth in catalogues, libraries and design rules of how to assemble
electronic systems out of these components. Starting from transistors and
primitive logic circuits in the sixties the principles have evolved so that one
can now buy sophisticated processors, memories, I/O sub-systems etc. as
commercial off-the-self components. In software engineering similar
historical threads, although in much more diversified ways, can be
recognised.

Design reuse became a commonly accepted panacea in nineties. Two
main threads are related to the virtual component paradigm represented by

System Design - Informal Walk-Through 19

the VSIA [1] and the object modelling paradigm represented by the OMG
[2]. Further proposals based on these are e.g. the platform-based design [3]
and the model-driven architecture [4], respectively. Although building
foundations, none of the above has been able to address explicitly how to
reuse design expertise. That is why, the software engineering community
welcomed in the nineties the technique called patterns that originated from
the work of building architect Christopher Alexander:

"Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution. As an element in the world, each
pattern is a relationship between a certain context, a certain system of
forces, which occurs repeatedly in that context, and a certain spatial
configuration which allows these forces to resolve themselves. As an element
of language, a pattern is an instruction, which shows how this spatial
configuration can be used, over and over again, to resolve the given system
of forces, wherever the context makes it relevant. The pattern is, in short, at
the same time a thing, which happens in the world, and the rule which tells
us how to create that thing, and when we must create it. It is both a process
and a thing; both a description of a thing which is alive, and a description of
the process which will generate that thing ".

In the software engineering, motivations are expressed as follows [5]:
"One of the first things that any science or engineering discipline must

have is a vocabulary for expressing its concepts and a language for relating
them together. Patterns help create a shared language for communicating
insight and experience about common problems and their solutions.
Formally codifying these solutions and their relationships lets us
successfully capture the body of knowledge, which comprises our
understanding of good architectures that meet the needs of their users.
Forming a common pattern language for conveying the structures and
mechanisms of our architectures allows us to intelligibly reason about them.
The primary focus is not so much on technology as it is on creating a culture
to document and support sound engineering architecture and design".

The identified needs of the SYDIC-Telecom are in principle similar [6],
but the domain is now system design and the patterns should be found and
adapted accordingly. Previously, patterns have been applied to e.g.
organisation structures, analysis of business applications, micro-
architectures of object-oriented software design and software engineering
processes. The hypothesis of the SYDIC-Telecom project is that patterns are
a viable mechanism for obtaining reuse of system design expertise.

20 Chapter 3

5. SUMMARY

This chapter has given a short introduction to the system design and
elaborated related key concepts. The scope of system design was defined to
consist of refinement and partitioning phases. Methodology and means of
making system design expertise sharable and reusable were also outlined in
order to facilitate dealing with rapidly increasing complexity in all aspects of
system design.

REFERENCES

[1] On-Chip Bus (OCB) Attributes Specification Version 2.0, VSI Alliance (VSIA), 2001.
[2] Unified Modeling Language Specification Version 1.3. Object Management Group Inc.,

1999.
[3] Chang, H., Cooke, L., Hunt, M., Martin, G., McNelly, A., Todd, L. Surviving the SOC

Revolution. Kluwer Academic Publishers, 1999.
[4] Model Driven Architecture. Object Management Group Inc., 2001.
[5] Appleton, B. (2000). Patterns and Software: Essential Concepts and Terminology.

Retrieved January 2003 from: www.enteract.com/~bradapp/
[6] De Jong, G. (ed.). SYDIC-Telecom Perspective on IP & Reuse, Proceedings of the

Forum on Design Languages, FDL'2000, 4 - 8 September 2000.

Chapter 4

SYSTEM DESIGN CONCEPTUAL MODEL

Kari Tiensyrjä1,
Jean Mermet2
1 VTT Electronics, Oulu, Finland
2 ECSI, Grenoble, France

Abstract: This chapter presents the foundations of the System Design Conceptual Model
(SDCM). The SDCM is a meta-model that serves as a reference model of, and
gives a global view and perspective on system design. The SDCM is used to
describe system design from the viewpoints of the System Design Process
(SDP) and the System Under Design (SUD). The SDP and the SUD are related
to each other via design artefacts produced and consumed during the design
process. The SDCM can be used in various ways in enhancing system design:
understanding system design; analysing and assessing existing design flows;
instantiating design flows for new design paradigms; eliciting requirements for
methods and tools; organising teams; educating employees, partners and
customers.

Key words: System design, System Design Conceptual Model, meta-model, reference
model, System Design Process, System Under Design.

1. OVERALL CONTEXT OF SDCM

The overall context of the SDCM is depicted in Figure 4-1. The SDCM
considers system design phases of system development that constitute the
core technical part of the product creation process of an enterprise [1].

As to system design reuse, the SDCM considers both the design process
know-how and the design artefacts.

System IP related to design processes can be:
• Components of the process
• Know-how of methods (analysis, synthesis, etc.) encapsulated in

rules and guidelines (possibly implemented by tools and design
patterns)

22 Chapter 4

• Know-how of design styles (modelling, verification, etc.)
encapsulated in checkers

• Know-how of use of tools encapsulated in scripts.

SDCM Scope

People & Technology

Product Creation

Policy &
Planning

Customer
Oriented

Customer

Enterprise Environment

Product Environment

External Environment

System Under Design Artefacts
System IP Repository

System
Design
Phases

System
Implementation

Phases

Figure 4-1. Overall context of SDCM.

System IP related to design artefacts, can be:
• Algorithmic knowledge
• Application components
• System (HW and/or SW) architecture
• System components that are in the stable core area of the domain, i.e.

probability for reuse is high
• Out-source IPs that are developed and maintained by 3rd party on

behalf of system house
• Pre-defined star IP.

In general, it is assumed that design-for-reuse methodologies are applied

to system IP. System IP shall be documented, packaged and stored in a kind
of repository. In addition to repositories, design patterns and process patterns
are concepts that are promoted to encapsulate design and process know-how.

System Design Conceptual Model 23

2. SYSTEM CONCEPTUALISING AND
MODELLING

This section introduces basic concepts related to conceptual modelling
and ontology. The main constructs of a conceptual model are first described,
and then the role of ontology in meta-modelling is outlined.

2.1 Conceptual Model Constructs

The conceptual model captures the meaning of an application domain as
perceived by someone [2], i.e. knowledge about a real-world domain. Real-
world is perceived as things, often referred to as entities, and associations,
often referred to as relationships.

The world is made of things that possess properties. The properties of a
thing exist, whether or not we are aware of them, and properties are always
attached to things. The notion of concrete thing applies to anything
perceived as a specific object by someone. We conceive of things, however,
in terms of models of things. Such models are conceptual things. The
properties of conceptual things are termed attributes. Attributes are
characteristics assigned to models of things according to our perceptions.

A class is a representation of a set of things having common properties in
a conceptual model. An attribute in a conceptual model is a representation of
an intrinsic (i.e. dependent only on the thing itself) property of a thing in the
real world. A relationship in a conceptual model is a representation of a
mutual (i.e. dependent on two or more things) property of a thing in the real
world. Depending upon circumstances, we may use different models of the
same thing, and therefore assign different sets of attributes to the same thing.
An attribute, however, may or may not reflect a substantial property (i.e. a
property of a concrete thing). Moreover, in a given model, not every
property will be represented as an attribute.

The UML-like notation is used in this document to visualise graphically
the conceptual model [3]. For those who are not familiar with the UML, an
introductory book [4] is recommended.

2.2 Ontology

An ontology is a description of concepts and relations that exists in a
particular domain such as an application area [5]. The advantage of an
ontology is getting rid of several problems usually linked to natural language
vocabularies. There are several levels and kinds of ontologies [6]. Usually
there are three kinds of information (or levels) inside a given ontology [5]:

24 Chapter 4

1. Terminology level. This is the basic set of concepts and relations
constituting the ontology. It is sometimes called the definition layer
of the ontology.

2. Assertion level. This is a set of assertions applying to the basic
concepts and relations. It is sometimes called the axioms layer of the
ontology.

3. Pragmatic level. This is the so-called toolbox layer. It contains a lot
of pragmatic information that could not fit in the terminology or
assertion levels.

The main properties of an ontology are sharing and filtering. Sharing

means that an agreement may exist, based on the acceptance of common
ontology, about the same understanding of a given concept. Filtering is
linked to abstraction of models that take into account only a part of the
reality. Usefulness of models is based on the ability to filter out undesirable
characteristics. Ontology defines what should be extracted from a system in
order to build a given model of this system.

The basic use of ontology is that it facilitates the separation of concerns.
When dealing with a given system, we can observe and work with different
models of this same system, each one characterised by a given ontology.

Let us call the notion of context as space, i.e. a model is a space, a meta-
model is a space, and a meta-meta-model is a space. Most recent meta-meta-
model proposals consist of the three basic notions: {concept, relation,
space}. In Figure 4-2 there are two spaces presented, a model X and a meta-
model MX.

P R Q

p q

based on

r

meta meta meta

Space MX

Space X

PP RR Q

pp qq

based on

r

meta meta meta

Space MX

Space X

Figure 4-2. Nature of meta-model.

System Design Conceptual Model 25

For each entity present in X, there is a corresponding meta-entity present
in MX. The relation r(p, q) is defined in X, but the concepts P and Q and the
relation R are defined in MX. The relations meta(p, P) and meta(q, Q) hold.
MX is the ontology of X and this corresponds to the relation BasedOn(X,
MX).

A model is always built for a given purpose, usually of understanding
some aspects of the system. This purpose should be clearly defined and
associated to the ontology. Ontology considers the triad {system, ontology,
model} as depicted in Figure 4-3, but the ontology-based extraction task will
have to be performed by an actor. Ontology corresponds to the classical
definition of a meta-model as it is used e.g. in the UML. Ontology contains
the concepts and the relations that are relevant to a given modelling task.

Image Of

System

Model

Ontology

Based on

View of

Image Of

SystemSystem

ModelModel

OntologyOntology

Based on

View of

Figure 4-3. Triad {system, ontology, model}.

3. MODEL OF DESIGN PROCESS

This section presents the foundations of the System Design Process
Model (SDPM). Firstly, the context of the SDPM is outlined, and then the
basic concepts and their relationships are described using four main views.

3.1 Context of System Design Process Model

The context of system design and implementation is a partially ordered
set of facets from an idea to an implementation. In this work the capture of
user and domain requirements is not specifically addressed, neither the
synthesis to implementation. Figure 4-4 depicts facets of a generic design
process, output artefacts of the facets, various languages, and global views to
the subject of design.

26 Chapter 4

Design
Databases

Design
Command
Language

Architecture
Language

System
Specification
and Modelling
Language

Project Support & Management Infrastructure

System Design System Implementation

Functionality

Estimation

Validation

System IP
and VC reuse

Architecture

Properties and
Constraints

System/
Architecture
Descriptiona

System/
Component
Description

System/
Architecture
Specification

System
Design

Artefacts
Set

User/Domain
Requirements
Specification

Technical
Requirements
Specification

System
IP

Repository

Technical
Requirements
and

Conceptual
Design

Specification
Refinement,
Architecture
and IP/VC
Requirements

Subsystem
Design
Architecture
and
IP/VC
Acquisition/
Design

Component
Design
Architecture
and
IP/VC
Qualification

System
Integration
and
Test

Figure 4-4. Overall design process.

The generic facets of system design and respective artefacts considered
in the SDPM are:

• Technical requirements and conceptual design resulting in the
technical requirements specification. This corresponds to the layer
L1 of the concepts for the System Under Design (SUD), which will
be described in more detail later in this chapter.

• Specification refinement and architecture and IP/VC (Intellectual
Property/Virtual Component) requirements resulting in
system/architecture specification. This corresponds to the layers L2
and L3 of the concepts for the SUD.

• Sub-system design and architecture and IP/VC acquisition and/or
design resulting in system/architecture description. This corresponds
to the layer L4 of the concepts for the SUD.

The following global views to the system under design (SUD) are

considered:
• Functionality, which is refined and relates later to the behaviour of

the system.
• Properties and constraints that are either invariant or later refined and

relate to the system and its environment.
• Architecture, which encompasses different kinds of architectures

during refinement.
• System IP and VC reuse, which denote using of pre-existing know-

how or reusable components during refinement and design.

System Design Conceptual Model 27

• Estimation is a technique that aims at providing estimates of the
consequences of design decision, and traverses all the facets of
system design.

• Validation is a technique that aims at proving that what is designed is
the right thing and that the result of design is correct. Also validation
traverses all the facets of system design.

As presented in the next chapters of the book, appropriate means to

represent the views considered are:
• System specification and modelling language that describes the

functionality and properties of the SUD all along the design process.
• Architecture language that describes the different structures of the

facets of the system and relations between them.
• Design command language, which allows exercising the model in the

frame of different applications.
• Design databases that store in retrievable way the design artefacts

produced and consumed.

A lot of concurrency is involved between and within design facets.

Especially, validation of results and estimation of outcome are globally
applied to qualify the design contents of facets and to predict impacts of
decisions made.

3.2 System Design Process Model

This section formalises the constituents of a System Design Process by
presenting a System Design Process Model (SDPM). The model is
represented using UML [3, 4]. The SDPM uses as a background the
Software Process Engineering Metamodel (SPEM) [7].

As the Software Process Engineering Metamodel (SPEM) is on the way
to becoming a standard, it is beneficial if it is also applied to system design.
This is however not a one to one mapping, given the differences in scope of
Software Engineering and System Design Processes. The SPEM was studied
as a prerequisite to defining the SDPM and the SDPM tries to reuse SPEM
definitions and concepts where possible. Of course, this was not always
possible and some concepts are redefined in the SDPM.

In order to achieve manageability, the presentation of the SDPM is
divided into four views:

• The Core View depicts the conceptual model and relates the key
concepts: Artefact, Activity, Role and Actor

28 Chapter 4

• The ProcessDefinitionElement View identifies the major components
of the SDPM: Resource, WorkDefinition, Actor, Role, Artefact and
Tool

• The WorkDefinition View relates work elements: ProcessLifeCycle,
Phase, Iteration, WorkFlow and Activity

• The ProcessComposition View shows how to compose Process from
ProcessComponents and ProcessDefinition Elements.

3.2.1 Core View

Activity is at the centre of the Core View of the SDPM as shown in
Figure 4-5.

AssistingRole

PersonTeam
1..n1..n

HasMembers

Actor Artefact
0..n1 0..n1

ResponsibleFor

PerformingRole

WorkDescription

Activity

0..n0..n

Consumes

0..n0..n

Produces

1 0..11 0..1
ResponsibleFor

Role

11DescribedBy

1

1..n

1

1..n

ParticipatesIn

Resource

Tool

0..n

0..n

0..n

0..n

Uses

Actor

0..n

1

0..n

1

Performs

0..n0..n

PlaysPart

0..n

1..n

0..n

1..n
Mentors

An activity is described by a set of
WorkDescriptions. Each
WorkDescription in the set describes
the job of one of the roles
participating in the activity.

1..n

Figure 4-5. Core View.

Activity denotes work performed by Roles on Artefacts. Activity has a
number of Roles, each of which is filled by exactly one Actor who performs
the Role. The same Actor may perform Roles in different Activities. This
makes visible what would normally be considered as an informal
dependency between Activities. Our experience is that this type of

System Design Conceptual Model 29

dependency is crucial for the process to work. It therefore deserves to be a
formal part of the process description, which is how we have treated it.

There are two basic types of Roles to be played in an Activity. They are
AssisitingRole and PerformingRole. Exactly one of an Activity's
PerformingRoles should be designated ResponsibleFor the Activity. A Role
optionally uses one or more Tools to perform its task.

Each Tool should have at least one Actor specified as Mentor to provide
support in its use. The Tool Mentor is someone with specific competence in
the Tool. This applies even outside of the design process and is applicable to
a Person. Mentor could be seen as a Role but it is separated out to show that
this special Role is not part of the process of design itself but it is obligatory
with respect to Tools.

The work to be done and responsibilities of each Role in an Activity is
captured in the Role’s WorkDescription. The set of all Role
WorkDescriptions completes the Activity description.

An Activity consumes and produces Artefacts. For each Artefact, a single
Actor must be assigned as ResponsibleFor.

Actor is a logical entity and does not represent a physical Person.
Resource planning is a specialisation of Activity whereby Resources are
allocated to be Actor’s within the Process. A Resource can be a physical
Person or a Team.

3.2.2 ProcessDefinitionElement View

ProcessDefinitionElement, shown in Figure 4-6, is the superclass for all
major components in the SDPM. Actor, Role, Artefact, Tool, Resource and
all WorkDefinition classes are ProcessDefinitionElements.

ArtefactWorkDefinition Role ToolActorResource

ProcessDefinitionElement

Figure 4-6. ProcessDefinitionElement View.

Activity is the main subclass of WorkDefinition. Other subclasses are
ProcessLifeCycle, Phase, Iteration and WorkFlow.

30 Chapter 4

3.2.3 Work Definition View

The following are definitions of the SDPM work elements as shown in
Figure 4-7. WorkDefinition is the superclass of all work elements. A
WorkDefinition HasEntryCriteria and MeetsExitCriteria. Entry criteria are
captured as WorkPrecondition’s, while exit criteria are captured as
WorkGoal’s. A WorkGoal can be a Milestone, in which case it represents a
crucial goal that serves as a Go-No Go decision point.

Figure 4-7. WorkDefinition View.

A WorkDefinition can specify lists of Artefacts, as shown in Figure 4-8,
that are Prerequisites and Deliverable (in given states if relevant).

This association represents
different revisions of the
same artifact

ArtifactStateSet ArtifactState
1..n1 1..n1 {ordered}

ArtifactLifeCycle Artefact
0..11..n 0..11..n

HasStates
11

CurrentState

1..n1..n{ordered}

MajorID

MinorID

Revison
11

11

11

Figure 4-8. Artefacts.

System Design Conceptual Model 31

A Phase is a specialisation of WorkDefinition bounded by two
conditions: a precondition that defines the entry criteria and a goal,
Milestone in this case, that defines the exit criteria. Phases are defined with
the added constraint of sequentiality; that is they are executed with a series
of Milestone related dates spread over time and often assume minimal (or no
overlap) of their activities in time.

A Process Lifecycle is defined as a sequence of Phases that achieve a
specific goal. It defines the complete process to be enacted in a given project
or program. It is a Process.

An Iteration represents the activation of a set of Workflow’s. This set
being a subset of the Workflow’s making up a Phase.

A Workflow represents a collection of interdependent Activity’s (as per
InterWorkDependency) with their corresponding Actor’s, Artefact’s and
Tool’s. The definition of InterWorkDependency does not restrict
interdependency between Workflow’s. Such interdependencies, as depicted
in Figure 4-9, however should be restricted to the Prerequisites and
Deliverables associations to Artefacts that are inherited from the superclass
to Workflow.

InterWorkDependency

WorkDefinition

WorkDefinitionDependencies

{ForAll x,y : WorkDefinitions exists a : Artefact where
a->Revision = r AND x produces a AND y consumes a

OR y produces a AND x consumes a.}

Artefact

0..n0..n

Produces

0..n0..n

Consumes

Revision
11

Figure 4-9. Interdependencies.

3.2.4 Process Composition View

A Process is composed of one or more ProcessComponent’s as shown in
Figure 4-10. A Process is in itself a ProcessComponent thus allowing
ProcessComponents to be hierarchically combined. A ProcessComponent
consists of a self-contained set of ProcessDefinitionElement’s. This set can
include specialisations of ProcessLifeCycle, Phase, Iteration, Workflow and
their constituents.

ProcessComponents are the building blocks that can be composed to
create a complete process. ProcessLibrary represents a repository for
ProcessComponent’s.

32 Chapter 4

Process

ProcessDefinitionElement

ProcessComponent

1..n1..n

0..n0..n

Includes
{Self-contained}

ProcessLibrary

0..n0..n

The constraint Self-contained
means that the set of elements
may not include any elements
that hold references to other
elements outside of the set.

Figure 4-10. Process Composition View.

4. MODEL OF SYSTEM

This section presents the foundations of the System Under Design Model
(SUDM). The purpose of the SUDM is to define the concepts, and
relationships between them that are needed for representing a subject of
design, i.e. design contents, during the various phases of system design and
according to various views of stakeholders.

In this document, the set of models representing the conceptual entity of
system that is being designed is called as System Under Design (SUD), and
the corresponding set of meta-models is called as System Under Design
Model (SUDM).

4.1 External and Internal Viewpoints to SUD

The SUD can be observed either from external, i.e. environment-centric
or internal, i.e. system-centric viewpoints.

Use or design of any artefact is triggered by a need or a desire by some
human in some context. The ontology of needs and goals is the same as that
of functional descriptions, both are represented as desired behavioural
constraints in some universe. Needs often undergo a sequence of
transformations before they become the specifications for an artefact.
Need has to be recognised as something to be satisfied, and some human has

System Design Conceptual Model 33

to set up a goal or have a purpose to satisfy the need. Problem solving
produces a sequence of transformations of the need such that objects or
object configurations, and means of interacting with them, can be identified
so that the need can be satisfied.

Design exists in order to deliver artefacts that have desired
functionalities. The designer’s job is to design artefacts that are intended to
have certain functions (as services). When designing, designers look for
components that can achieve certain functions (as services). In
compositional design, the designer uses components from a component
library to specify a set of components and relations between the
components as a design. As the designer creates candidate designs by
composing components, he needs to verify that the system in fact has the
properties or the behaviours that can satisfy the functionality
requirements. When choosing components from a component library, a
designer might come up with a design in which only the function (as service)
of a certain component is identified, but not yet the component itself.

4.2 Concepts for SUD

System is a thing that exists in its environment, together they are called
as the universe of discourse. System is something of interest as a whole or
as comprised of parts. Therefore a system may be referred to as an entity. A
component of a system may itself be a system, in which case it may be
called a subsystem.

The systems we consider are technological entities, i.e. they are artefacts
with properties that agents in the environment, e.g. users and other objects,
interact with and expect to cause desired effects.

In the context of system design, we are interested in design artefacts,
which can be anything produced and/or consumed in the course of system
design. For a system designer, artefacts are views to the SUD according to
viewpoints that define various concerns (interests) of the system designer.

Abstraction is the main categorisation of design artefacts. In general,
there are various ways and criteria of how to organise abstraction layers so
that they are useful in our understanding of system design. The SUD layers
and related concepts are depicted in Figure 4-11. The correspondence of
layers and the main sets of design artefacts is roughly as follows:

• Above Layer 1: User and domain requirements specification
• Layer 1 (L1): Technical requirements specification
• Layer 2 (L2) and Layer 3 (L3): System/architecture specification
• Layer 4 (L4): System/architecture description.

34 Chapter 4

The subsequent discussion is structured according to the abstraction
layers.

•L4

•L3

More
concepts

•L2

Core
concepts

•L1 Environment Interface

Constraint Interaction

Stimuli

System

Sub-system
Architecture

ComponentConnector

StructureCommu-
nication

Functionality

Functional
Architecture

Behavior

Dynamic
model

Operation

Relation Property Set

TypeInvariant

Variable

Conti-
nuous

Discrete
event

ModuleChannel

Shared
 variable
Protocol
Buffer,
Queue

Control
graph,
Process,
FSM,
Loop,
Thread

Data
flow

graph,
Algorithm

Sequential,
Concurrent

Function

Package
Entity

Figure 4-11. SUD layers and concepts.

4.2.1 User and domain requirements

The system under design (SUD) appears first in the form of user and
domain requirements, because we consider technological systems that have
users or other agents in the environment. The interface of the system to its
environment is another source of requirements. The environment can
conceptually be considered as another system.

The use model typically concentrates on functionality and usability
issues, but may also contain non-functional requirements. Functionality
requirements are expressed as a set of services users or other external agents
expect from the system.

Other important set of requirements are those of other stakeholders that
have interests in or work on the SUD. These requirements often are more
oriented towards non-functional issues, like those related to development
and performance, but may provide additional functional requirements.

4.2.2 Layer L1 abstraction

At the highest level of model abstraction of the SUD we find the notions
of system itself, defined by functionality. We identify main states of the
SUD, either by the sets they belong to or by variables. There exist relations
between variables. We also discover properties. Some constants of the

System Design Conceptual Model 35

informal specification appear like parameters of the system in the technical
requirement specification.

4.2.3 Layer L2 abstraction

Refinement of the technical requirement specification will introduce new
concepts and new derived requirements. Functionality is translated into
mathematical functions, or functions as services, which are the first form
of behaviour.

The characteristic feature is the appearance of components (abstract
machines) and connectors that the functionality and communication of
system components is mapped onto. This first partition of the SUD results in
a system architecture decision.

The properties are refined into static (logic) properties, which constitute
the invariant of the SUD, dynamic properties, which will be integrated into
the behavioural description through the refinement process, and constraints,
which create new boundaries of the design space. Dependencies appear
among refined variables through functions. The model of computation is
based on causality. Timing requirements may apply as constraints.

4.2.4 Layer L3 abstraction

At the layer L3 components are refined into modules. The
communication links are refined from connectors to channels. The model
becomes structured as a hierarchy. The upper level of the hierarchy is a
bipartite graph with two kinds of nodes: modules and channels. A module is
only connected through interfaces to channels, and vice-versa.

Variables, functions and operations can be refined into new abstract
data types. Constraints are derived to apply to new variables and data types.
Logical (static) properties are refined and proven to maintain the invariant of
the SUD.

4.2.5 Layer L4 abstraction

At the layer L4 and downwards from it, there are an arbitrary number of
levels of refinement. In the case of channels, while applying the VSIA
standard process we meet the notions of protocol, shared variable, buffer
and queue. Entities encapsulate modules, and may be organised into
packages as appropriate in the domain.

As far as behaviour is concerned, operations can be structured as data-
flow graphs and algorithms. The overall model control is of the kind of a
control graph. The control can further be refined into a hierarchy of FSMs.

36 Chapter 4

It can also take the form of a network of processes. The notions of loop and
sequencing may appear related to algorithms. The model of control can be
refined into threads, and a mix of asynchronous FSMs and instruction cycle.

4.2.6 Architecture

The architecture includes the structuring concepts. These are visualised
in Figure 4-12 using UML-like notation.

Interface

+remoteinterface 1

SUD

0..* +subsystem

+interfaces

1..*

Component Connector

Architecture

1..*

Architecture Kind Configuration

1 1..*

-Concepts
-Language
-Laws

Domain

*

+Mapping rules

*

Architecture Style

1..*

Style Rules

1..*

{All of the configurations
comply with at least one
of the SUD Style Rules}

A set of relationships
between types of things
belonging to a domain

{Connector has two
or more interfaces.
Remote interface is
of type component.}

{Component has one
or more interfaces.
Remote interface is
of type connector.}

Figure 4-12. Architecture.

The concept of System Under Design (SUD) is related to architecture
by virtue of the fact that every designed system has an architecture whether
expressed explicitly or not. As soon as one conceives of a system one starts
to think about its architecture. The SUD concept implies the existence of the
concept of architecture in an explicit form.

The SUD has one or more interfaces to its environment. The interfaces
designate the points and types of interaction between the SUD and the
environment. The SUD is composed of zero or more subsystems, i.e. it is
hierarchical. A system can be a subsystem of another system, and a
subsystem can itself be a system.

There are different kinds of architecture each of which exist in a
domain. The concept of domain embodies the concepts, language and laws
used to conceive a given kind of architecture. Examples of architecture kind
are software, hardware, structural etc.

System Design Conceptual Model 37

According to the ontology, any domain can be described in terms of
things and linkages that exist among them. In the SUD architecture schema,
component is the concept used to represent a thing, and connector is the
concept used to represent a relationship. As the SUD is a model, both
component and connector are conceptual constructs.

The concept of architectural style is such that an architecture will
follow a style which is embodied in a set of style rules. Architecture can be
described as a configuration of types of conceptual things. A configuration
is a set of relationships between types of conceptual things.

The conceptual things in a given architecture will be taken from the set of
concepts belonging to the domain for the given architecture kind. The
architecture will be described using the language of the domain. The things
and configuration will also obey the laws of the domain.

4.2.7 Behaviour

The behaviour includes the concepts for representing functionality. Some
of them are visualised in Figure 4-13 using UML-like notation. See Annex
A2 for more detailed and formal definitions of the related concepts.

The concept of System Under Design (SUD) is related to behaviour by
virtue of the fact that every technical system interacts with its environment
through its interfaces. Behaviour represents the evolution (operation) of the
system and its responses to external stimuli.

The behaviour is characterised by its collection of events and by its state.
The behaviour of a system can also be defined as the set of its operations.
Still another way is to define it as the set of threads grouped in a behaviour
process.

An event is defined as the occurrence of the change of the value of a
variable. Sometimes events are represented as sets of pairs {tag, value}.
Then an event can be associated to more than one value or tag, respectively.

A behaviour interface is an abstraction of the behaviour that consists of a
subset of the external events. Each external event of the behaviour belongs
to a unique behaviour interface. Every external event is an instance of
communication. Internal events occur inside the behaviour and have
impacts on the internal evolution of the system, but do not imply
communication outside.

A maplet is an ordered couple of 2 different variables belonging to the
specification of the system. It denotes the influence exercised by the first
variable on the other variable. A causal chain is a set of maplets connecting
a totally ordered subset of variables. In a causal chain all variables but 2
appear exactly twice, once as fist element and once as second element of a
maplet.

38 Chapter 4

An operation is defined as the association of a set of tags to the
variables involved in a function. A set of totally ordered operations linked
by at least one causal chain forms a sequence. A thread is a set of
sequences with common events. State is the set of all values of variables
after a transition has occurred, i.e. a transition is associated to two states,
one before and one after the transition.

BehaviourInterface

1..*

External Event

Internal Event

Event

1..*

1..*

Value

1..*

Maplet

2

Causal Chain

2..*

Variable

1..*

Sequence

1..*

Operation

2..*

Function

2..*

Tag

1..*

2..*

Thread
2..*

State

1..*

Transition

2

1

*

{ Tags obey
 partial order}

{ Totally ordered
 operations}

{ All values but 2 appear
 in exactly 2 maplets}

{ Sequences have
 common events}

Transition is
associated to

two states, one
before and one
after transition.

*

Behaviour Process

*

1

Behaviour can be
described as a process
consisting of threads.

Behaviour can be
described as the set

of its operations.

State is the
set of values

of all variables.

Figure 4-13. Behaviour.

System Design Conceptual Model 39

4.2.8 Domain Mapping

The concept of a design task is something that uses information about the
SUD. Tasks that are useful also produce information about the SUD. This
information exists in the domains mentioned above.

If a given task will use information from more than one domain, it will
need to relate concepts from different domains. The architecture conceptual
model therefore includes a relationship between domains called mapping
rules. These provide ways to map between concepts in different domains.

For example a software concept is a function (as in C language) that is
implemented as a sequence of instructions coded as instruction words. The
instructions execute on a processor and code resides in a read-only memory.
These last two sentences are domain mapping rules. As they relate the
software concepts of instructions and code to the hardware concepts of
processor and read-only memory.

5. LINKAGE OF SUDM AND SDP

The SDP cannot exist in isolation from the SUDM. The SDP creates and
uses the SUDM, which is the principal purpose of the SUDM. Other
purposes are e.g. documentation and archive.

From the viewpoint of the SUD, the SUDM consists of a set of
overlapping models of the SUD. Each model covers a subset of the concepts
of concern to the stakeholders, and we can identify sets of types of model,
for example a performance model. We have a list of concepts that are of
possible concern to the stakeholders.

5.1 Users/Usage of Models

The link between the SUDM and the SDP is the set of usage (uses) by
designers. A model may have more than one use, for example model
checking and synthesis. The concept of usage/use requires the concept of a
user. This is a concept that lives in the SDP. Let us call this a role which is
played by at least one actor. A usage/use of the SUDM defines a view of the
model. A view is a mapping between a model set in the SUDM and a role in
the SDP. This is visualised in Figure 4-14, where the SDP can be seen as
consisting of a set of activities (shown as boxes, marked as Ax) connected
by dependencies (shown as arrows).

Activities are carried out by actors playing roles. The actors are not
shown to simplify the diagram. The endpoint of a dependency is the role that
the actor(s) of that activity play in the dependency.

40 Chapter 4

A4

A2

SUDM

SDP

A1

V1.1(3)
V2(1) V2(2) V0(2)V1(5)

Views

Model subsets

A3

1 2

Figure 4-14. Views between SDP and model subsets of SUDM.

5.2 Views

The views in Figure 4-14 are labelled to identify the role in the SDP that
uses it. The view is related to an activity. An activity uses and produces
subsets of the SUDM. A view is defined by the subset and the use it is put
to. To illustrate this the views are labelled according to the activity number
and the dependency endpoint (role) in brackets ().

A branch in a dependency arrow indicates that a subset of the original
SUDM model set is used by the role at the far end. A joining of arrows
shows that the using role needs the union of the model sets represented by
the incoming arrows.

5.3 Uses/Purpose/Kind of Model Subset

The kinds of use of model subsets is as follows:
• Description (descriptive model) consisting of structure, configuration

and relations.
• Prediction used for predicting something about the SUD.
• Prescription used to make, use and install usually presented as a list

of instructions to a machine or human.

System Design Conceptual Model 41

6. SUMMARY

The SDCM is a meta-model that differentiates the models of system
design process (SDP) and system under design (SUD), which however are
related in practice. The SDP creates and uses the SUDM. The SDPM and the
SUDM as meta-models define the concepts and their relationships that are
needed in the creation of corresponding instances of models for specific
purposes. The models are generic enough so that they can be applied in
various organisations and for various kinds of systems.

The system design process model (SDPM) is an adaptation of the
Software Process Engineering Metamodel (SPEM) that is in the process of
the OMG to become a standard. The SDPM consists of four views: core,
process definition element, work definition and process composition.

The system under design model (SUDM) presents concepts and their
relationships for describing the system under design (SUD). The concepts
are structured according to abstraction layers. Architecture and behaviour as
main views to the SUD are described and visualised using UML-like
diagrams. Concepts for representing behaviour are defined in more detail in
Annex A2: Action Semantics.

The user is expected to instantiate both the design process, modelling
methods, languages and the specific artefacts according to the needs of
her/his organisation. This requires effort from the user, but the payback will
come from improved reuse capability of the organisation.

REFERENCES

[1] G. Muller (2002). System Architecting. Philips Research. Retrieved January 2003 from:
http://www.extra.research.philips.com/natlab/sysarch/SystemArchitecting.html

[2] Wand, Y., Storey, V. C., Weber, R., An Ontological Analysis of the Relationship
Construct in Conceptual Modeling. ACM Transactions on Database Systems. 1999;
24:494-528.

[3] Unified Modeling Language Specification Version 1.3. Object Management Group
Inc., 1999.

[4] Fowler, M., Scott, K., UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 2nd Edition. Addison Wesley, 1999.

[5] Bezevin, J., Who's Afraid of Ontologies, OOPSLA98 - CDIF Workshop. 1998.
[6] Vanwelkenhuysen, J., Mizoguchi, R., Ontologies and Guidelines for Modeling Digital

Systems, Proceedings of the Ninth Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Canada, March 1995.

[7] Software Process Engineering Metamodel Specification (SPEM), Object Management
Group Inc., 2001.

Chapter 5

CONCEPTS FOR SYSTEM SPECIFICATION
AND DESIGN LANGUAGES

Patrizia Cavalloro
Italtel SpA, Milan, Italy

Abstract: This chapter concerns the definition of System Specification and Design
Languages characteristics in order to allow the description of a System under
Design. First, a general introduction to languages is presented. Then, a
classification of languages is proposed. Finally, concepts related to languages
are identified and classified.

Key words: System-Level Design, System Specification and Design Languages (SSDL),
SSDL classification, SSDL concepts.

1. INTRODUCTION TO SYSTEM SPECIFICATION
AND DESIGN LANGUAGES

1.1 General

The System Design Conceptual Model (SDCM) described in Chapter 4
addresses the early phases of system development, but no technology-
specific design. It considers as “meta-models” the System Under Design
(SUD) and the System Design Process (SDP).

A System Specification and Design Language is a language to describe a
SUD at required levels of abstraction providing required views to the SUD
in order to allow actors to perform transformation, validation and analysis
tasks that are specific to the level of abstraction and to the design process
applied. Specifically, the System Specification and Design Language should
allow the description of system in terms of external and internal views to the
modelling domains of structure, connectivity and behaviour.

44 Chapter 5

The choice of the appropriate System Specification and Design Language
(SSDL) for the design of a system is based on a set of criteria, such as the
expressiveness of the language, the automation implied by the computational
model it is based on, as well as the tool support and the associated
development methodologies. Even though there are various SSDLs, the
computational models upon they are based are either data oriented or
control oriented. In both cases they can be synchronous or asynchronous.

1.1.1 Basic Terms for System Description

Apart from the conventional programming aspects, system description
with the use of SSDLs is based on four basic terms [1]:

Parallelism and concurrency: although both refer to the distribution of
operations among resources, concurrency is a way of implementing
parallelism and can be achieved by interleaving or simultaneously executing
two or more threads. Both parallelism and concurrency can be at the bit level
(i.e. n-bits adder), operational level (i.e. multiple operational units),
procedure level (i.e. multi-process specification) or processor level (i.e.
distributed systems).

As far as parallelism is concerned, it can be expressed using either
control flow or data flow. In the first case we deal with models where,
during the design of the system, the execution sequence of the system parts
is determined. CSPs (Communicating Sequential Processes) and FSMs
(Finite State Machines) are classical approaches of control oriented
parallelism. In the second case of data flow the command execution flow is
determined by the data dependency, which is expressed in Data flow graphs.

Hierarchical development: it allows the hierarchical development of
complex systems according to which the designers partition the system
functionality into subsystems, which are easier to be designed. There exist
two categories of hierarchical development: the behavioural hierarchy and
the structural hierarchy.

Communication: this allows the subsystems to exchange data and control
information. There are two basic models: message passing and shared
memory.

Synchronisation: it defines the primitives governing the communication
among the various subsystems. There exist two techniques: message queues
and rendezvous.

1.1.2 A Taxonomy of SSDLs Based on the Computational Model

The expressiveness of an SSDL is drawn from the computation model it
uses. The differences between the SSDLs concern the ways they allow for

Concepts for System Specification and Design Languages 45

the design of the particular sub-systems, the interconnection techniques, the
communication between them as well how the various subsystems compose
the final system. According to D.Gajski [1] there are five categories of
SSDLs: a) State oriented b) Activity oriented c) Structure oriented d) Data-
oriented, and e) Heterogeneous. SSDLs, which belong to categories a) and
b) allow system description through state machines and transformations,
Systems which are described by SSDLs which belong to category c) give
emphasis to the system structure while those in d) give emphasis to system
description which process information.

An objective taxonomy of SSDLs would be based on the computation
model, which each SSDL supports. The system description used by every
language reflects the syntax structure of the language and not the
computation model used by the language. The computation model is related
to the theoretical background on which the execution model of the language
is based. The computation model can be considered as an orthogonal
combination of the communication model and the control model. An SSDL
can support one of the following communication models: synchronous (or
single threaded) and distributed where the communication model between
threads is well defined. The control models, which an SSDL supports, could
be either control flow oriented or data flow oriented.

Most co-design tools are also using internal language representations,
which ease the model refinement. Usually they are taking input expressed in
an SSDL (SDL (Specification and Description Language), C, VHDL, JAVA
etc.). There are two categories of intermediate representations one language
oriented and one architectural oriented. Both can be used for system
representation and in the necessary transformations during system
refinement. The representations oriented to languages are based on graphs
use (Data flow graphs - DFG or Control Flow Graphs - CFG) while the
representations oriented to architecture are based on FSMs. The
representations oriented to architecture refer more to the system architecture
and not to the initial system description. Those are FSM for Data (FSMD) or
FSM with Coprocessors (FSMC). Co-design tools of the latter category,
found in bibliography, include COSYMA, VULCAN, and LYCOS, which
use FSMCs for system description.

1.2 Classification of Languages from Literature

SSDLs are originally drawn from software engineering where the ever-
increasing development and maintenance cost for software led people to put
emphasis at the specification and requirement analysis. This is followed
now in the system design in order to handle the ever-increasing system
functionality and complexity. Result of this is the higher quality of the final

46 Chapter 5

system development through the "gradual refinement" and verification at the
early stages of the design flow.

Existing languages have been classified in several different ways,
depending on language characteristics. One possible classification is the
following:

Architecture Description Languages: Architecture Description
Languages (ADLs) are formal languages for representing the architecture of
a system [2]. Architecture means the components that comprise a system, the
behavioural specifications for those components, and the patterns and
mechanisms for interactions among them. An ADL must explicitly model
components, connectors, and configurations. PMS (Processor, Memory,
Switch from Bell & Newell) can be considered as the first architecture
description language. More recently ACME, Aesop, C2, Darwin, MetaH,
Rapide, SADL, UniCon, Weaves, and Wright, are some of the languages
addressing Architecture specification.

Hardware Description languages: Software engineering specification
languages were followed by the hardware specification languages such as
CASSANDRE, DDL and CONLAN of the '60s and '70s up to the most
updated ones such as HardwareC, SpecCharts, SpecC and the Hardware
Description Languages, such as VHDL and Verilog. Languages focusing in
more specialised tools (as it is DSP) also appeared, like SPW and COSSAP.

Protocol Design languages: In the telecom domain many languages have
appeared which are specialised for the requirements capturing and
description of telecom protocols. Those are based in the so-called formal
system description and include the FDT (Formal Description Technique), the
LOTOS (Logical Temporal Ordering Specification- an OSI standard), SDL
and ESTELLE. LOTOS consists of two parts: in the description of the
behavioural part of the system based in process algebra and the data
description based on abstract data types. Specification and Description
Language (SDL - ITU standard Z.100) uses Finite State Machines (FSMs)
for system and operations description. System description includes apart the
dynamic behaviour of the individual parts, the structure definition of the
whole system, as well as, the communication between the various parts. SDL
supports both graphical and textual representation. ESTELLE is an ISO
(International Standardization Organization) standard with procedural
features like PASCAL, and it is more a programming language than a
specification one.

Reactive Design Languages: A big category of SSDLs called reactive is
the one, which describes systems interacting with their environment in real
time. It includes ESTEREL, LUSTRE, SIGNAL, Statecharts and even Petri
Nets. ESTEREL supports parallelism and has the ability to describe systems
in a formal way from the initial design stages up to the final implementation.

Concepts for System Specification and Design Languages 47

Its basic concept is the synchronous "event". LUSTRE is a development and
programming language for automata. SIGNAL is differentiated from
LUSTRE in the fact that it uses multiple clocks in the same program, which
can be combined through temporal operators. Statecharts is a visual
formalism for the description of reactive systems, based on the concept of
state. This formalism extends the traditional FSMs by adding hierarchy,
parallelism and communication. Communication is based on broadcasting
and the execution model is synchronous. Petri Nets allow the representation
of systems, which support discrete events.

Programming Languages: The majority of the programming languages
have been used for system description and design. C, C++ and Java are
included. Their basic drawback is the lack of ability for the description of
time and parallelism. Extensions of the above-mentioned languages in that
direction include HardwareC, SystemC and SpecC. SystemC is oriented in
using C++ in all stages of the development of a system. The fundamental
building blocks in a SystemC description are processes. A process is similar
to a C or C++ function that implements behaviour. A complete system
description consists of multiple concurrent processes. Due to the extension
of C++ for parallel processing and hardware description, SystemC is not
usually explicitly included in one category.

Parallel Programming Languages: They have been used for hardware
description due to the same requirements imposed by hardware and parallel
programming. Their major problem is the lack of timing concept. Between
them, languages such as OCCAM and Unity have been used for system
specification and design.

Languages for Functional Programming: Languages based on functional
programming and algebraic notations have been used for system hardware
design. Paradigms of such languages include Haskell, VDM, Z and B. B is a
language, which is formal and models globally the system and its
environment. It supports proven system refinement down to implementation
as a mix of hardware and software.

Structural Languages: They have been drawn from the software
development domain. They are systematic languages based on the
fragmentation of the system in smaller subsystems easier to develop and
manage. Most of them are object oriented. Between them we mention the
HOOD, OMT and lately UML (Unified Modeling Language). The last one
has emerged as a system analysis and development language. Their
disadvantage is the fact that they are based on non-executable models so
they cannot be used for simulation and synthesis.

Languages for Continuous Systems: They are based on the usage of
differential equations in order to describe continuous systems. Most popular
ones are: VHDL-AMS, Matlab, MatrixX, and Mathematica. They have great

48 Chapter 5

expressional power and employ floating point calculations, which makes
problematic their usage for synthesis.

1.3 Requirements for System Specification and Design
Languages

Experience shows that there is not just a globally accepted language for
system design. The choice is based usually on the application and the
designer's experience. The system design requirements impose complex
criteria leading thus to new language concepts, which include multi-
formalism and feature combination taken from various existing languages.
Therefore, the definition of an effective Specification and Design Language
should be based on the ultimate criteria of a language. Those are the
expressiveness, the analytical power (ability for simulation and verification
at various design stages) and the usage cost (something related to vendors,
standards, and simplicity of the models developed).

The SYDIC-Telecom project has identified a set of terms relevant for
System Design aspects, providing a definition for all of them, in order to
overcome wording misunderstanding. The terms and their definitions are
collected in the SYDIC-Telecom Glossary, described in Annex A1.

For the term “Specification and Design Language” the following
definition has been provided:

"A System Specification and Design Language (SSDL) is a language to
describe a system under design (SUD) at required levels of abstraction
providing required views to the SUD in order to allow actors to perform
transformation, validation and analysis tasks that are specific to the level of
abstraction and to the design process applied. Specifically, the SSDL should
allow the description of system in terms of external and internal views to the
modelling domains of structure, connectivity and behaviour".

When considering languages that should be able to support design at
system level, some more needs have to be satisfied:

• A well-defined set of concepts: terms related to system design should
be identified and defined, and a system design language should be
able to support them

• Unambiguous, clear, precise, and concise specifications: ambiguous,
unclear and imprecise specifications do not allow to describe a system
in a unique way, and this lead to the impossibility to proceed in the
design process A basis for determining the consistency of
specifications: the same comment as in the previous point is valid
here: inconsistent specifications don’t allow to proceed in the design
process

Concepts for System Specification and Design Languages 49

• A thorough and accurate basis for analysing specifications: the
possibility of analysing specification allows a better understanding of
the system and a better quality of the design process

• A basis for determining whether or not an implementation conforms
to the specifications: verification must be possible at all design steps

• Computer support for generating applications: a language without a
computer support cannot be used in real-life applications.

The activities performed in the SYDIC-Telecom project concentrated on
the first of the above-mentioned points, that is the identification, definition
and classification of System Level Design concepts applied to System
Specification and Design Languages. Next chapter will describe the
proposed classification.

2. CLASSES OF LANGUAGES

The basic idea of the proposed work consists in the identification of
concepts which are relevant at system level in relation with the SUD and that
any System Specification and Design Language must be able to express.

The approach proposed by the SYDIC-Telecom project consists in the
classification of concepts in three classes that have been related to languages
able to specify systems from different views. It should be noted that the
concept "classes of languages" does not in this context necessarily mean
separate sets of languages for every class, but rather the needs of various
stakeholders in system design, and how their concerns should be supported.
An optimum would be one simple and understandable language that could
provide all the support. Unfortunately, this seems not possible, and our
current baseline assumption is accordingly that several languages would be
needed.

The three identified classes of languages are defined as follows:
System Specification and Modelling Languages: It describes the

functionality and properties of the System under Design all along the design
process.

Architecture Language: It describes the different structures of the facets
of the system and relations between them. It should allow architects to use
necessary operations to change the design to establish a good mapping
between the different facets. It should allow this work to be controlled by a
set of architectural rules.

Design Command Languages: It allows exercising the model in the
frame of different applications; it verifies fulfilling of rules and handle of
criteria.

50 Chapter 5

Figure 5-1 shows the context of the System Design Process (SDP) in the
chain from system idea to implemented system.

SUDSUD
Manufacturing

Synthesis

Design<=>Manufacturing
Interface Information
about how to make,
test,use and dispose of SUD

Design Process
Interfaces

Specification

Architecture

Design
command

Description Specification

Control of process => artifacts other than model of SUD

SDP<=>Synthesis Interface
Information about SUD
that isinput to synthesis process

System Design Process

Design Process

Figure 5-1. Context of System Design Process (SDP).

It is the first step in the overall Design Process and precedes the
Synthesis step. The synthesis or manufacturing phases are not considered in
this context. So we will mainly consider the classes of languages listed
above. Figure 5-1 also shows a relationship between the System Under
Design (SUD), the design process and model(s) of SUD. The box under the
SDP arrow shows a view of the process in terms of Design Process
Interfaces (DPIs). Language classes that have been identified are listed in the
leftmost box: Specification, Architecture, Property/Constraint and
Validation/Evaluation/Verification. There are two major DPIs that help us
define the context of the SDP: Design<=>Manufacturing Interface and
SDP<=>Synthesis Interface.
The figure is biased to data flow in the SDP so the “control process arrow”
has been included to show the control aspect. Artifacts such as test reports
are produced, and they are not part of the Model of the SUD. These are part
of the control flow of the process.
The SDP consists of a set of sub-processes connected by internal DPIs. A
generic picture is shown as an icon in the dotted box in Figure 5-1 and in full
in Figure 5-2. The interface is defined as two viewpoints [3] of the Model of
the SUD, here shown as a 3D structure with holes.

Concepts for System Specification and Design Languages 51

Description Specification
Hole in thespec!

A spec. can only be
perceived by something
capable of cognition, i.e.
not a machine (currently!)

Viewpoint
(implicit in
language used?)

Viewpoint
(implicit in

Differentusesof
informatio
n

Differentusesof
informatio
n

Figure 5-2. Different views to the same System under Design (SuD) model.

In general the supplier to the interface has a viewpoint that characterizes
the model as a description whereas the receiver has a viewpoint, which sees
the model as a specification. It is to be highlighted that only a human is
capable of adding something new to a design so only a human can perceive
the model as a specification.

What we see from this simple picture is that both sides of the interface
have different uses of the model. The implications on any SSDL are wide
reaching as it implies the need for support for viewpoints in SSDLs.

3. CONCEPTS TO BE SUPPORTED

One need that must be satisfied when considering languages that should
be able to support design at system level is that terms related to system
design should be identified and defined and a system design language should
be able to support them.

In the proposed approach, approximately one hundred and twenty
specific language concepts have been identified. These terms have been
defined precisely, so to prevent misunderstanding in meanings. A System
Specification and Design Language must be able to express those concepts.

Once identified the final list of concepts, each concept has been assigned
to at least one class of language. Some concepts, for instance interface,
appear in more than one class.

52 Chapter 5

3.1 Architecture Language

In literature, Architecture Description Languages (ADLs) are formal
languages for representing the architecture of a system. Architecture means
the components that comprise a system, the behavioural specifications for
those components, and the patterns and mechanisms for interactions among
them. A formal architecture representation is done with an ADL. An ADL
must explicitly model:

• Components
• Connectors
• Configurations

Furthermore, to be truly usable and useful, it must provide tool support for
architecture-based development. Having realised the importance of an
architecture language, the dedicated class Architecture language has been
identified and further subdivided in five sub-classes. Table 5-1 gives the list
of concepts belonging to each sub-group of the class Architecture Language.

Table 5-1. Architecture Language concepts in sub-groups.
Architect discipline

Design space
Specification of Requirements
Refinement
Architecture Rule
Architecture Pattern
Constraints
Non-functional Property

Architect primitive operations
Compose
Encapsulate
Decompose
Bind
Projection
Instantiate
Connect
Viewpoint

Primitive architecture elements
Component
Connector
Interface
Function (service)

Complex architecture elements
Configuration
View
Facet

Modelling capabilities

Compositionality Heterogeneity
Scalability Evolvability
Dynamic restructuring

The role of each sub-group is briefly outlined in the sequel:
• Architect discipline: it groups concepts related to the activities of the

design architect.
• Architect primitive operation: it indicates possible operation on SuD.
• Primitive architecture elements: it groups basic architecture

(description) concepts.

Concepts for System Specification and Design Languages 53

• Complex architecture elements: it groups more complex architecture
(description) concepts.

• Modelling capabilities: it groups properties of the architecture model.

3.2 System Specification and Modelling Languages

Six sub-classes have been identified in this class. For each sub-group of
the class System Specification and Modelling Languages the list of concepts
belonging to it is given in Table 5-2.

Table 5-2. System Specification and Modelling Language concepts in sub-groups.
Scope

Requirement (user, domain, e.g.
technology)
Use case
Specification
Functionality

Communication-related concepts
Channel
Interface
Protocol
Synchronous
Asynchronous
Queue
Buffer
Message
Shared variable

Basic constructs
Abstract Data Type
Abstract Machine
User Defined Data Type
Generics
Parameter
Assertion
Predicate/formal property
Invariant
Module
Object
Component/entity
Operation/service

Order- and Time-related concepts
Causality
Finite State Machine
Control Graph
Event
Concurrency
Sequence
Parallelism
Data Flow
Algorithm
Clock
Process
Cycle-based
Instruction
Thread
Continuous

Modelling capabilities
Reasoning about the design
Abstraction process
Refinement process
Decomposition/partitioning
Composition process
Indeterminism
Incompleteness
Encapsulation
Hierarchy
Inheritance

Qualifiers
Semantics (formal, operational,
informal)
Applications (simulation) independent
Automatically translatable to application
formalism (performance evaluation,
synthesis, model checking)
Declarative/imperative

54 Chapter 5

The role of each sub-group is briefly outlined in the sequel:
• Scope: general concepts related to the class.
• Basic constructs: basic concepts for language aspect.
• Communication-related concepts: concepts related to

communication aspects.
• Order- and Time-related concepts: concepts related to order and

time.
• Modelling capabilities: Languages capabilities on modelling.
• Qualifiers: Attributes of the languages.

3.3 Design Command Languages

The idea behind the basic notation presented in this class is that a design
process is a co-operation of skilled individuals and/or tools, or teams thereof,
in specified roles to perform specified activities on artifacts.

In this class, five sub-classes have been identified. For each sub-group of
the class Design Command Languages the list of concepts belonging to it is
given in Table 5-3.

Table 5-3. Design Command Languages concepts in sub-groups.
Design elaboration

Objective function
Pragma
Tool interface
Assessment of tool result
Design Constraint
Implementation generation

Design verification
Check
Collecting
Coverage
Response analysis
Simulation
Simulation scenario
Stimuli generation
Model/equivalence checking

Design validation
Requirement
Evaluation (performance, power, etc.)
Proof
Analysis

Design management
Design pattern
Design history
Traceability
Documentation

IP Reuse and retrieve
IP repository management
Intelligent access to SIP
Formal/informal set of reusability properties
Reuse rules
Design data generality

The role of each sub-group is briefly outlined in the sequel:

• Design elaboration: concepts related to use of tools which
elaborate the design.

Concepts for System Specification and Design Languages 55

• Design management: concepts related to the management of
designs.

• Design validation: concepts related to validation of the design.
• Verification: concepts related with verification of the design.
• IP Reuse and retrieve: concepts related to reuse and IP (Intellectual

Property).

3.4 IP Reuse and Retrieve

One important aspect related to system level languages concerns IP and
reuse. It has been noticed that concept of reuse (and related concepts) is not
peculiar of a single class of languages, but it is related to all of them.

Therefore the proposed classification of languages and concepts does not
identify a specific class for IP aspects, but introduces a subcategory in
Design Command Languages class: “IP reuse and retrieve”, that collects
some concepts that are mainly related to IP management.

It has to be noticed that two different groups of terms for reuse have been
identified: those facilitators of the reuse, and those that can be really reused.

Examples of concepts for facilitators of reuse are:

• Refinement, Abstract data type, Abstract Machine, Interface
belonging to the System Specification and Modelling language class.

• Interface, Compositionality, Architecture pattern, Process belonging
to the Architecture language class.

Examples of concepts really reused are:
• Algorithm, Applications (simulation) independent, Component

belonging to the System Specification and Modelling language class.
• Component, Connector belonging to the Architecture language class.

4. SUMMARY

In this chapter, after a general introduction to System Specification and
Design Languages, a new approach of classification of System Specification
and Design Languages has been proposed. Concepts related to languages
have been identified and classified accordingly.

5. REFERENCES

[1] Gajski D., Vahid F., Narayan S. and Gong J. "Specification and Design of Embedded
Systems”, Prentice Hall, 1994.

56 Chapter 5

[2] Medvidovic, N., Taylor, R.N., A Classification and Comparison Framework for
Software Architecture Description Languages, IEEE Transactions on Software
Engineering, Vol. 26, No. 1, January 2000, pp. 70 - 92.

[3] Introducing P1471 Recommended Practice for Architectural Description, IEEE
Computer Society Architecture Working Group, 30 March 1999.

Chapter 6

SYSTEM PERFORMANCE ANALYSIS

Christophe Gendarme,
Jos van Sas
Alcatel Bell, Antwerp, Belgium

Abstract: This chapter gives a general overview of the performance analysis techniques,

used during architecture exploration on different levels of abstraction, of a
networking environment. The basic techniques for constructing, validating and
verifying models are discussed. A set of generic guidelines and warnings for
interpretation of simulation results and for architecture exploration is given.
We state that performance analysis can significantly support architecture
validation and exploration for complex systems through learning about the
system, detect unforeseen bottlenecks or shortcomings early in design flow,
quantitative assessment of impact of design decisions, algorithm exploration,
tuning functional algorithm to practical design, aid in determining optimum
dimensions, settings (thresholds, ...) and sensitivity. We will focus on a
methodology enabling the assessment of system level modelling from a
performance modelling in the context of system-level IP Reuse.

Key words: System design, Performance Analysis, Property, Abstraction, Switch Core,
Flow Control.

1. INTRODUCTION

This chapter gives a general overview of the performance analysis
techniques, used during architecture exploration on different levels of
abstraction, of a networking environment. The basic techniques for
constructing, validating and verifying models are discussed. A set of generic
guidelines and warnings for interpretation of simulation results and for
architecture exploration is given.

System design encompasses the definition of a functional architecture
(behaviour) and the selection of appropriate resources (logical architecture)

58 Chapter 6

given a number of specified requirements and constraints, as depicted in
Figure 6-1. Often, the constraints impose the use of a given functional
algorithm and the use of specific hardware resources. Performance analysis
provides feedback between the logical and the functional architecture
decisions: it answers the question whether a given functional behaviour can
be realized with the selected resources in terms of throughput, latency and
the required resources. Vice versa, it helps in designing appropriate
functional algorithms for achieving the required performance with the
selected resources (optimum resource utilization). Hence performance
analysis and architecture/algorithm design and exploration are closely
related.

Resource Selection &
Architectural Design

Resource Selection &
Architectural DesignFunctional ArchitectureFunctional Architecture Performance Analysis

(latency, throughput,
utilization, etc.)

Requirements Specification
(functions, accuracy, power, area, speed, cost, …)

Requirements Specification
(functions, accuracy, power, area, speed, cost, …)

Figure 6-1. System design space.

In order to be successful, the methodology and environment used for
performance analysis must satisfy at least the following prerequisites:

• High simulation speed: high simulation speed is mainly achieved by
making the right abstractions.

• Scalability: the modeling environment used must provide the right
modelling constructs and objects to enable the design of scalable
models.

• Small effort: the modelling effort is determined by the abstractions
made, and the primitives offered by the environment.

In this document we present two modelling frameworks satisfying these

requirements. We will illustrate them by a number of examples at different
levels of abstraction. The eventual goal is to demonstrate the system-level IP
reusability (assessment criteria) from a performance point of view.

System Performance Analysis 59

2. PROPERTY FORMALIZATION

2.1 Modelling Paradigm

We will use three levels of hierarchy to define a system and its
environment:

• At the network level, the system and its environment is described as
a set of interconnected nodes. The nodes are interconnected with
links, which are mainly characterized by their bandwidth and
(transmission) delay.

• At the node level, an individual node is described as a set of
communicating processors, exchanging messages. The node
interfaces with the environment are specified using standard library
blocks (transmitters and receivers).

• Finally, the processor level defines a queueing system and the
process of serving the queues (see section 2.2 standard template for a
detailed description)

The model hierarchy is depicted in Figure 6-2.

Receiver Processor1 Processor N Transmitter

Messages

Shared
variables

queue 1

queue 2

queue N

...

thread 1

thread M

... Server

Node 1 Node N

➨ NW level

➨ Node level

➨ Processor level
ð N queues + server
ð absolute time + event based

● M concurrent threads

ð shared variables
● accessible by all threads
● communication between threads

Self interrupt

Figure 6-2. Hierarchy of the model.

60 Chapter 6

The simulator is event-based: interrupts are scheduled at an absolute
moment in time. Interrupts originate from other processors of the same node
(messages), or originate from the same processor (self-interrupt). In either
case, the interrupt causes the execution of behaviour (execution of functions
and/or scheduling of new interrupts) but involves no progress of real time.
Progress of time is managed by a central event-scheduling mechanism. A
processor is specified by means of states and functions. The mechanism of
self-interrupts enables the modelling of concurrent threads (see section 2.2).
All threads of one processor have access to the shared state variables.

2.2 Standard Template

By means of the standard processor model of Figure 6-3, we will
demonstrate how the environment supports modelling parallelism and the
construction of scalable models.

Figure 6-3. Standard processor model.

The simulator uses the concept of stable and temporary states. Between
successive events, the system is in a stable state (the idle state or the end of
simulation (EOS) state of Figure 6-3 - white circles). The temporary states

System Performance Analysis 61

represent execution of functions (black circles). Upon reception of an
interrupt, the system leaves the stable state and enters a temporary state. The
temporary state is selected on the basis of the interrupt type.

The model depicted above is the standard template used for modelling a
queueing system consisting of an arbitrary number of subqueues, served by
an arbitrary number of concurrent servers. The template works as follows:
the arrival of an information entity (data packet) causes an interrupt (type
packet arrival). The processor goes from the ‘idle’-state into the ‘arrival’-
state. In this state, the packet is conditionally (e.g. buffer acceptance
mechanism) stored in the appropriate subqueue (say subqueue L). The
simulator offers the required primitives for queue - management (packet
insertion, removal etc…). Depending on a condition, the processor will
either enter a second temporary state or return to the stable idle state. If the
packet was accepted, and if the server of the respective subqueue L is idle,
the service of the packet is started (system enters service start state). In this
state, the completion of the packet processing is scheduled at a time,
depending on the service rate (which is a state variable) of this particular
subqueue and the packet length (and/or other packet attributes). From this
state the system returns to the idle state. The self-interrupt, scheduled in the
‘service-start’ state will bring the system in the service completion-state
where the packet will be removed from the respective subqueue. The self-
interrupt has an argument, identifying the queue it was stored in. The service
of the next packet is started if any packets are waiting in the same subqueue.
As the thread ID can be passed as an argument with the self-interrupt, an
arbitrary number of concurrent (parallel) threads can be modelled in a
scalable way (number of subqueues and concurrent servers are simulation
parameters).

3. EVALUATION OF PERFORMANCE
MODELLING THROUGH EXAMPLES

We will focus on a methodology enabling the assessment of system level
modelling from a performance point of view. As this study is part of an
example, it will allow at least a qualitative benchmarking of the
methodology, and perform an in depth analysis of the design and decision
process for one type of system requirement (performance).

The decision to design a model in a new product allowing IP Reuse,
imposes some extra constraints on the other components that make up the
system. One aspect covered in this case study is the overall system
performance. Given the performance limitation of the existing IP, the overall
system performance requirements must be translated to the performance

62 Chapter 6

requirements for the components to be designed. The final decision to
effectively reuse the existing IP will depend on the feasibility of the entire
system in terms of extra resources in the new components required to meet
the overall system's performance. A founded IP reuse decision requires a
high level optimization for the resource management algorithms for the new
components in order to create a thorough understanding of the minimal
amount of resources needed to meet the overall performance requirements.
Hence it is inevitable to do a minimal design of algorithms and architecture
in this stage of the design.

The following process applies:
1. System requirements.
2. Selection of existing IP (= SubSystem A, where SubSystem A +

SubSystem B = Entire System under design).
3. Impact of existing IP performance limitations on the performance

requirements for the rest of the system (SubSystem B).
4. Resource selection for SubSystem B.
5. Resource management algorithm design for optimal resource

utilization.
6. System modeling and performance evaluation of entire system:

achievable performance = f(resources).
7. Final assessment: minimum required resources vs. technological

limitations and other system requirements (maximum total area,
power etc…).

The main difficulties in the system level modeling used for performance

analysis are addressed in this chapter:
• System level IP representation: performance evaluation at the system

level implies a description of the behavior of the IP at the correct
abstraction level. More specifically, a formal or semi-formal
description of the interface behavior is required, covering all aspects
relevant to the performance characteristics of the IP.

• Abstraction level definition of the system under design model: the
efficiency of the methodology resides in the omission of the
irrelevant design aspects.

Below follows a brief technical description of the system under design

and an explanation of the modeling methodology applied.
The system under design is an Internet Protocol router, terminating N bi-

directional OC-48 links (2.488 Gbps). Internet Protocol traffic from N input
termination modules (ingress line cards) needs to be routed and switched to
N output termination modules (egress line cards). For the switching, an
existing proprietary scalable switch will be reused. The system under design

System Performance Analysis 63

is depicted in Figure 6-4. Each of the N ingress line cards may send traffic to
each of the N egress line cards. The bandwidth from each line card towards
the switch is limited, as well as the bandwidth from the switch towards each
egress line card.

N Ingress line cards N Egress line cards

Datapath

Bandwidth on interfaces must be limited

Bandwidth negotiation
& allocation

Control
plane

switch

Figure 6-4. Internet Protocol core router overview.

The switch (system A, = system level IP (Intellectual Property)) has the
following performance characteristics:

• If the input traffic is constant bit rate (CBR), the output traffic has
a known delay vs load distribution.

• The switch can be assumed to be lossless if the total load stays
below a given upper bound.

The required system performance is expressed in terms of e.g.:

• Average and minimum latency.
• Minimum throughput.
• Maximum drop probability.

In order to achieve the required performance, a bandwidth negotiation

and allocation mechanism must be optimized. This mechanism is required in
order to:

64 Chapter 6

• Limit the total input traffic towards the switch (to ensure lossless
behavior).

• Limit the traffic between the switch and each individual line card.

The resources available on the line cards (which make up SubSystem B)

are:
• Bandwidth towards the switch.
• The available buffer space on each line card.

Because of the limitation of the total load on the switch, the bandwidth of

the line cards to and from the switch is resource shared between all line
cards. In order to evaluate the maximum achievable performance as a
function of available buffer space and bandwidth, the buffer and bandwidth
management algorithms need to be incorporated in the model, and the
algorithms must be explored and optimized.

3.1 Example 1: Buffer Dimensioning for TCP Traffic

This example illustrates the highest abstraction level considered during
network elements system design. This level of abstraction can be considered
the intermediate level between the research phase (where network
architectures are investigated) and the hardware implementation. From
research on TCP congestion control, the advantages of the RED mechanism
(Random Early Discard - buffer management algorithm for TCP traffic) are
well known. However, it is assumed that the buffer management is done on a
per flow basis. A flow is defined as the traffic between a given source and
destination. In this example it is defined as all the traffic towards a given
output queue (one per output port per service class). The Internet Protocol
Core router will handle thousands of flows. Because of the limited hardware
resources, it will not be possible to apply RED on a per flow basis (the RED
mechanism has to keep state information for each flow). In stead, RED will
be applied on an aggregate of flows (RED on the aggregate shared buffer of
a linecard). The example below investigates the impact of this reduced RED
on the capability of the system to provide QoS (quality of service), and the
required buffer space. Effects of the network topology as well as the impact
of the hardware resources is considered at this level of abstraction.

Short description of investigated system

The routing elements use the RED buffer management mechanism to

control queueing delay and to minimize synchronization of TCP sources due
to tail drop [1]. A DiffServ class is an aggregate of TCP-connections,

System Performance Analysis 65

receiving an aggregate guaranteed bandwidth, maximum delay etc. With
each DiffServ class corresponds a flow queue in the Internet Protocol Core
router. In this example we assume there can be up to 2000 flow queues.
Ideally, RED is applied on individual subqueues. However, due to limited
resources, RED will be applied on the aggregate queue. With such a system,
a number of questions arise:

• If RED is applied on the aggregate queue, is service differentiation
still possible and how?

• If so, what are the optimum RED parameters and buffer dimensions
with respect to throughput, delay and buffer utilization?

Abstractions made

Very simple models have been used to gain insight in the issues related to

RED, TCP-congestion control and service differentiation. An example is
given below. Figure 6-5 represents a queueing system of 10 subqueues, each
receiving a fixed service rate. RED is applied on the aggregate queue. For
each subqueue, an equal number of connections is active. The model has
also been used to investigate the behaviour of asymmetric systems, where
different number of connections per subqueue and different service rates
apply.

Ni = 50, i = 0- 9 Si = 5 Mbps , i = 0- 9

Figure 6-5. Queuing system example for RED.

Scaling of simulation results

Important problems arise here with respect to:

• Simulation duration (i.e. model execution time): as TCP responds
on a time-scale of the round trip time (typically 20 to 100 ms), the
simulated real time must be a multiple of the round trip time: about
20 seconds real time. Given line speeds of 10 Gbps, a huge number

66 Chapter 6

of events (Internet Protocol packets) corresponds to this real time.
Simulating the complete system would take ages.

• Number of TCP-connections: the model for the TCP sources can
handle up to a maximum number of 500 active connections. The
number of active TCP connections in the real system with 2000
flow queues will by far exceed this limitation of the model.

The solution is to find an appropriate way to scale the simulation results

and to find appropriate invariants to do so. Our analysis of TCP-behaviour
revealed such an invariant: the flow pressure (number of connections divided
by service rate of subqueue). The minimum number of subqueues, required
for obtaining scalable results is determined by simulations.

The relevant simulation results are shown in Figure 6-6. They show the
average queue filling level per subqueue and the standard deviation of the
queue filling level per subqueue becomes independent on the number of
subqueues (horizontal axis) for more than 10 subqueues.

Q_avg/Q_max(N)

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

0 10 20 30 40 50 60

Number of subqueues

R
el

at
iv

e
qu

eu
e

fil
lin

g
le

ve
l

SD(Q)/Qmax

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

Number of subqueues

St
an

da
rd

 d
ev

ia
tio

n
of

 Q
 fi

lli
ng

le

ve
l

Figure 6-6. RED simulation results (Q = queue filling level, average or maximum).

Scaling of simulation results now works as follows:
1. The system simulated contains N subqueues, where N is the

minimum required to account for the effect of statistical
multiplexing.

2. The real system consists of S.N subqueues, where S is the scaling
factor.

3. The average queue occupation of the real system equals S times the
average queue occupation of the simulated system (same for standard
deviation), provided that the flow pressure (i.e. the invariant)
distribution of the subqueues is the same in both the real and the
simulated system.

System Performance Analysis 67

The performance characteristics (such as queueing delay, link utilization,
TCP-throughput) of a queueing system with 2000 flow queues and with a
total buffer size of 200, will be identical to the results for a queueing system
with 10 flow queues and a total buffer size of 1, if for both systems the same
flow pressures apply.

Typical outcome

• An estimate on the required total buffer size to provide service

differentiation for 2000 flow queues. Figure 6-7 shows the TCP-
throughput as a function of the total buffer size (scaled to a system
with 10 subqueues). An optimum buffer size can be deduced from
Figure 6-7: from a given total buffer size, the gain in throughput is
only marginal.

• Optimum RED parameters and sensitivity analysis
• Better insight in impact of TCP-dynamics on this kind of queueing

systems (introducing the concept of flow pressure)

Throughput vs Qmax (10 sub-queues of 5 Mbps each)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

Qmax (upper RED TH - cells)

Re
la

tiv
e

th
ro

ug
hp

ut

max TP per connection = 100 kbps

max TP per connection = 500 kbps

max TP per connection = 1 Mbps

Figure 6-7. Throughput versus Qmax (TP = throughput).

3.2 Example 2: Exploration of Flow Control
Mechanisms

At a lower abstraction level, a flow control mechanism at the level of the
complete Internet Protocol Core router is investigated. Network aspects such
as network topology are not considered here. Also TCP-traffic is not

68 Chapter 6

considered here as the relevant timescale for this flow control mechanism is
one or two orders of magnitude shorter than the TCP-round trip time. In
stead, more implementation aspects are taken into account on this level. The
modelling paradigm is inspired on earlier work, described in [2] and is only
briefly explained here.

Short description of investigated system

The environment consists of N source blades (linecards), the Switch Core

and N target blades (linecards), as depicted in Figure 6-8. With each (source
blade, target blade)-pair corresponds a VIEP (Virtual Ingress Egress Pipe).
In total there are NxN VIEPS. In each source blade, we have a subqueue for
each of the N VIEPS (virtual output queueing). Only the total occupation of
the source blade is limited: in principle, one VIEP can occupy the total
available buffer space. The Flow Control Mechanism allocates the available
bandwidth to the VIEPS according to their need for bandwidth and the
available bandwidth.

Purpose of performance analysis

The purpose of the performance analysis was an assessment of the

system performance (drop rate, queue filling level), given the limited buffer
sizes and bandwidth expansion factors (resources). Modifications and
enhancements to Flow Control Mechanism have been investigated, as well
as the optimum configuration and sensitivity of the system.

Choice of abstraction level

The traffic was modelled at the level of individual packets. In the model,

abstraction was made of the Switch Core. Flow Control Mechanism is
assumed to limit the load of the switch core to 0.85 Erlang (Flow Control
Mechanism protects the switch). With this load, the Switch Core can be
considered loss-less.

Figure 6-8 gives an overview of the modelled system, and the mapping
on the node level.

System Performance Analysis 69

Switch	
 C ore lossless

SB TB

VIEP1,1

VIEP1,N

VIEPN ,1

VIEPN ,N

1 1

N N

q1

qN

q1

qN

...

...

q	
 (1,1)

Se
rv
er

q	
 (1,N)

...

...

q	
 (N ,1)

q	
 (N ,N)

...

Se
rv
er

q	
 1

q	
 N

...

Flow	
 C ontrol	
 grants	
 (delay:
125	
 us)

Flow	
 C ontrol	
 requests	
 (delay:
125	
 us)

Data	
 flow

L	
 ports

L	
 ports

L	
 x	
 N 	
 sources To	
 sinks

Figure 6-8. Model of the switch core used.

Typical outcome

A number of enhancements to Flow Control Mechanism algorithms has
been investigated and introduced:

• Alternative need for bandwidth calculation: the calculation method of
the bandwidth needed by a single VIEP affects the buffer filling level
and the drop rate. An optimal calculation method (depending on the
configuration) resulted. The final need for bandwidth formula takes
the delay between need for bandwidth request and application of the
new bandwidth into account.

• Another enhancement to Flow Control Mechanism was the
introduction of a prioritization mechanism for the bandwidth requests
(VIEPs originating from source blades on the verge of overflow have
a higher priority). An overflow notification is given if a threshold is
exceeded (so-called bypass threshold). An optimum value for the
threshold was selected by means of simulations.

• A final enhancement was to limit the total amount of buffer space
occupied by a single VIEP in the Traffic Manager. This limitation is
called the per-VIEP threshold. The optimum per-VIEP threshold was
determined by simulations.

70 Chapter 6

Simulations showed that combining the latter two flow control
mechanisms resulted in other values for the optimum thresholds. The
simulations were used to determine the sensitivity of the performance
characteristics to these settings.

Introducing bias

To quantify the performance of the system under the unfavourable

condition where more traffic targets the same destination, intentional bias
can be introduced in the (otherwise uniform) distribution of the destination
addresses.

The result is presented in Figure 6-9.

Time of first drop, Nt=1, Ns=4

1

1.5

2

2.5

3

0 25 50 75 100

Polarization time (ms)

To
ta

l r
at

e
to

 ta
rg

et
 (x

 L
in

k
ra

te
)

Ideally, Nt = 1

Bypass mechanism

No Bypass
mechanism

Figure 6-9. Effect of bias introduction.

The ordinate quantifies the polarization (or bias). Under normal
conditions, the average rate towards one target blade is the link rate. Under
polarized conditions, the distribution of the destination addresses is altered
such that the total traffic rate towards a given destination (or a number of
destinations) exceeds the average rate. The abscise represents the duration of
the bias. The simulation scenario is such that normal traffic is applied during
long enough time to let the system reach its average queue occupation
(‘equilibrium’ condition). After this, polarization of the destination addresses
holds on for a given time, and afterwards the polarization is switched off
again. The simulation is not immediately stopped because even after the

System Performance Analysis 71

switch off, drop can occur. Figure 6-9 shows the time when the first packet
is dropped. It shows the effect of the flow control enhancements (No Bypass
mechanism, i.e. Flow Control Mechanism without enhancements vs. bypass
mechanism active: Flow Control Mechanism combined with optimum
bypass threshold) on the ability of the system to sustain bursts of traffic
towards the same destination.

Potential problems and lessons learned

• Special attention should be paid to situations where different threads

access the same state. In general, the combination of shared variables
and event-based simulation can result in inconsistent state
information. The methodology does not provide any built in check.

• An alternative, more detailed model could be used (cell-based in
stead of packet based) for more accurate results. However, with such
a model, the simulation duration would increase with an order of
magnitude for the same simulated real time. A packet-based model
was used for all simulations. Special care must be taken to avoid
possible round-off errors. In some specific cases, such round-off
errors may accumulate instead of averaging out.

To avoid problems of either kind, extensive validation is mandatory and
is done by tracing as much information as possible, such as queue filling
levels, arrival rates, allocated bandwidth and bandwidth utilization.

3.3 Model Validation, Verification and Reliability of
Results

3.3.1 Validation

Validation concerns checking whether a model shows the intended
behaviour. This is the most difficult and crucial step in building a model,
because at this point in time, there exists no formal model to compare with
and because it requires a thorough understanding of the system. Below is
given a non-exhaustive checklist, which may assist the validation process.

3.3.1.1 Component Level
Component level validation encompasses:
• Visualizing all context variables and stepping through execution of

member functions (all branches of the execution tree)

72 Chapter 6

• Generation and check of all corner cases, such as wrap around of
counters, overflow of buffers etc…

3.3.1.2 System Level
The complexity of the total system may be too large to allow a detailed

validation like for the individual components. Therefore it is easier to
gradually add functionality and validate.

Below follows a list of guidelines for validating a given system model.

Consistency of context information

Special attention must be paid to the situations where more than one

thread accesses the same context variable of an object.

Output sequence of system

For a number of deterministic simulation scenarios the output can be

exactly predicted and checked. It is important to do this for a maximum
number of different relevant cases. A maximum number of aspects can be
verified in this step by an appropriate selection of the token annotation, such
as the origin of the token, the token identity/sequence number, the control
information used to process the token, etc.

Note: in our model we abstract from real data. A frame is represented by
a data structure, containing information such as origin, sequence number,
length etc. We make abstraction of the frame content.

Walk through system

A walk through the system traces the path of an individual data-token.

Conservation of data-tokens

Conservation of data-tokens involves accounting the number of tokens

passing every interface and the number of tokens stored in queues and
discarded.

Symmetry

If a number of identical or equivalent resources are operating in parallel,

and the system is well designed, the utilization of every resource should be
the same. Any asymmetry should be well understood.

System Performance Analysis 73

Analytical approach

For most systems, a number of corner cases can be defined for which the

performance characteristics (average bandwidth, average queue occupation,
average latency) can be analytically calculated, mostly using the assumption
of steady state conditions.

Build in specific checks for validation and debugging

Building in some well-chosen model specific checks can facilitate the

validation and debugging process to a large extent. If for example a model is
built to check whether a (shared) resource constitutes a bottleneck, it is
crucial to prevent over-usage of the resource by construction of the model
itself, and not to rely on the correct behaviour of the model for the resource
allocation process.

Unexpected behaviour

Any counter-intuitive behaviour of the model should be well understood.

3.3.2 Verification

Verification compares an implementation of behaviour to a higher level
description/model of the same behaviour. Verification is easier than
validation as now we can compare two executable models. In some cases the
implementation behaves differently than the higher level model because
limited resources are modelled: mostly the implementation can be
configured such that it behaves identically e.g. by taking large buffer sizes. If
the same seed is used, equivalent models should produce exactly the same
output. Note that this will not work if extra random numbers are generated in
the implementation, as this modifies the random sequence.

3.3.3 Reliability of simulation results

The simulation results mainly concern the metrics of throughput (drop
rate), queue occupation and latency. Simulations provide an average, a
maximum and a histogram (frequency of a given value – distribution
function). Reliable results show the following characteristics:

• They do not depend on the seed of the random number generator.
• For long enough simulated time, the simulated distribution function

should not change with simulated time.

74 Chapter 6

If these conditions are not met, the following may be the cause:
• A bad random number generator is used (in the model we use

random number generators when non-deterministic behaviour is
represented). If simulations depend on the seed of the random
number generator, either a bad random number generator is used, or
the simulations are not reliable. We refer to [3] for a discussion on
random number generators.

• Simulated time is too short. The simulation time needed to produce
stable results depends on the system under investigation. At least, the
simulation results should converge as simulated time increases. Also
the seed dependence should decrease with simulation time.

• Under certain conditions, simulation results do not converge for
reasonable simulation times. An example is a steadily increasing
queue occupation (in the initial stage of the flow, mostly semi-
infinite queues are used). In most cases, unstable simulation results
occur if the system is fully loaded so that any inefficiency cannot be
worked away. Another possibility is that one deals with rare events.
A very unlikely sequence of events (e.g. all traffic temporarily going
to one destination) may cause the system to discard data, even if it is
not fully loaded. This may result in non-zero drop for one seed, and
zero drop for another seed. A profound analysis is required to
determine whether a given instability is inherent to the system. If so,
it must be possible to define a simulation experiment that confirms
this (decreasing load, increasing resources, introducing more
randomization, introducing bias). The performance impact of rare
events can be assessed by intentionally introducing bias.

• If the instability can not be explained, there is probably an error in
the model, and one should repeat a number of validation checks (e.g.
check symmetry of the simulation results to detect unintentionally
introduced bias etc…).

The result of the analysis is a reliable assessment of the performance

limitations of the system, serving as the input for the architecture validation.
Note that an incorrect model can produce stable results.

4. SUMMARY

Architecture validation confronts the simulated performance
characteristics to the requirements and hence relies on the validation and
verification steps of the previous section.

System Performance Analysis 75

Abstraction level

The choice of abstraction level determines what can be validated, and is

imposed by the characteristics of the system one wants to investigate.
Abstraction level is a multi-dimensional concept where the most important
axes are the timing precision, the data-abstraction, functional abstraction and
structural abstraction. The level of abstraction modelled can be different for
different aspects of the system. In the example given, design aspects related
to the control flow are modelled with a high level of detail, while other
aspects, such as the exact content of the data are abstracted from (token
based performance model). The abstraction level is the key factor in the
simulation speed.

Pitfalls

A potential pitfall here is that a model shows correct behaviour and

produces stable results, but does not represent reality because of the
abstractions/simplifications made or the assumed initial conditions. Consider
for example a shared resource. With a badly constructed model, a situation
may arise where all competitors for the resource never come in conflict (we
call this effect synchronization). In a performance model, abstraction is
made of parts of the system. Part of the system may be represented by e.g. a
simple FIFO. With such abstractions one must take care that the aspects,
relevant for the performance, are not abstracted out. In the example given,
the fact that the latency of frames is not fixed but randomly distributed, is
crucial for the performance and hence the abstract representation of the
behaviour must also mimic this random latency. Otherwise, performance
might be over-estimated. Unintended synchronization effects can be avoided
by introducing enough randomization in the model.

Design decisions

If, on the basis of the simulation results, it is concluded that the

requirements are not met and the architecture needs to be changed, we
recommend to find an analytical approximation for the simulation results on
which the change will be based, in order to maximize the confidence in the
model. Also, the alternative architecture should be evaluated for all possible
configurations and simulation scenarios (regression test).

Table 6-1 briefly summarizes the abstractions made (system &
environment representation, data granularity and indication of relevant time

76 Chapter 6

unit) and the respective shared resource where the performance analysis is
all about.

Table 6-1. Abstractions made.
Modelling
example

Limited
resources

System
represen-
tation

System
environ-
ment

Data
granula-
rity

Relevant
time unit

Simulated
real time

1: RED Shared
total
buffer,
RED on
total
buffer

Queuing
system
with L
sub-
queues

Network,
TCP-
connections
(responsive)

Internet
Protocol
packets

TCP round
trip time 20
– 100 ms

20 – 50 s

2: Flow
Control
Mechanism

Limited
total buffer
size,
limited
bandwidth
expansion

Input-
output
buffered
switch
with NxN
virtual
ingress
egress
pipes

Ethernet
sources
(non
responsive)

Frames Flow
Control
Mechanism
refresh time
250 us

2 s

Simulation speed

For the simulation times mentioned in the above table, the simulation

duration was about a few minutes. For checking the long run stability of the
simulated distribution functions, much longer simulations were performed
for a number of critical cases (sometimes taking several hours). The
simulation speed is mainly determined by the abstractions made
(determining the number of events to be simulated).

Simulation of large systems requires a huge number of events to be
simulated. In some specific cases, the number of events can be reduced, by
applying scaling of simulation results. This scaling must be justified by
simulations and requires the identification of appropriate invariants.

Another possible reason for performing long simulations has to do with
rare events, such as low drop rates. Consider for instance a system with a
drop rate of 10-8. Checking whether an algorithm can reduce this drop rate
requires the simulation of at least 108 events. The solution here is to
introduce bias to intentionally create the rare conditions where drop occurs.
Evaluation of the performance for a range of polarization rates (different
strengths of bias) allows a good estimation of the performance impact of the
algorithm.

System Performance Analysis 77

General Conclusion

As a general conclusion, we state that performance analysis can

significantly support architecture validation and exploration for complex
systems through:

• Learning about the system.
• Detect unforeseen bottlenecks or shortcomings early in design flow.
• Quantitative assessment of impact of design decisions, algorithm

exploration.
• Tuning functional algorithm to practical design.
• Aid in determining optimum dimensions, settings (thresholds, ...) and

sensitivity.
• Quick answers to questions about entire system, little effort.

REFERENCES

[1] Floyd S., Fall K. Promoting the Use of End-to-End Congestion Control in the Internet.
IEEE/ACM Transactions on Networking, August 1999.

[2] Niemegeers A., De Jong, G. An Incremental Specification Flow for Real Time
Embedded Systems’, Proceedings of the first IEEE/HLDVT workshop, 1999.

[3] Park S. K., Miller, K. W. Random Number Generators: good ones are hard to find.
Communications of the ACM, Volume 31, Number 31, October 1998.

Chapter 7

SYSTEM DESIGN REUSE

Nikolaos S. Voros
INTRACOM S.A., Patra, Greece

Abstract: System Intellectual Property reusability is becoming a subject of great
emergence for research aiming to extend the concept of reuse much further
from ad-hoc reuse, to out-of-the engineering group bounds, including know-
how reuse. Such a reuse practice should be founded on unambiguous
definitions of System Intellectual Property and Reuse, on a systematic reuse
methodology and on consensus and standardization of the form of Intellectual
Property exchange. In this chapter, we explore the definition of System
Intellectual Property and Reuse, focus on the current practices of reuse in
organizations, industry, standardization bodies and academia and present a set
of reuse criteria that can form the basis for effective system IP reuse.

Key words: System Intellectual Property, System IP, System level IP, IP Reuse, criteria for
IP reuse, reuse automation

1. INTRODUCTION

System Intellectual Property (IP) reuse is a newly introduced research
area, inspired by the more and more increasing productivity gap in current
industrial processes. Current trends of research and industrial practices on
System Intellectual Property and Reuse range from the conceptual
identification of the relevant elements in the system design field to the
formalization of practices of reuse, not to mention the legal and business
issues.

In this chapter, we present the advancements on System IP Reuse, in
order to provide a common basis of reference and stimulus for all the
ongoing work on this area. Initially, in section 2, the basic definitions of the
terms and concepts concerning system IP reuse are presented, while in

80 Chapter 7

section 3, the most representative organizations and the main work in
industry and standardization bodies are described. Section 4 presents the
relevant work regarding system IP identification, and in section 5 the current
system IP reuse practices are explored. In sections 6 and 7, criteria for IP
selection and reuse automation are described respectively. Finally, section 8
provides a summary of the main concepts introduced in this chapter.

2. SYSTEM IP REUSE: BASIC TERMS AND
CONCEPTS

The definition of “System”, on which the identification of System IP is
based, is as follows:

A System is any composition of parts that performs a function or set of
functions. The boundaries of a system usually follow the structural
implementation, but may also cross physical boundaries. For instance,
“The memory system xyz shares boards p, q, r, and s with other
systems”. Systems are typically hierarchical in that a system may be
composed of sub-system components. A system is characterized by the
interrelations and behaviors of its components [1].
Intellectual property is any product of the human intellect that is unique,

novel and non obvious or any intangible asset that consists of human
knowledge and ideas. System IP refers to system IP instances, such as
algorithmic models, predefined IPs, components and to system and design
know-how; the latter is the know-how of designers, architects and
integrators and is mainly captured in the design process by checklists,
guidelines, tool scripts and in proven architectures. In this context, the
definition of System Intellectual Property Reuse as proposed by [2] is as
follows:

System Intellectual Property Reuse is a methodology associated with
discipline and means to facilitate use again of design artifacts and
design knowledge at system-level, i.e. during early phases of product
development (e.g. requirements definition, specification, architecture
design, mapping). The reuse methodology requires establishing design-
for-reuse and design-with-reuse processes.

3. IP RELATED WORK

One of the major representatives, aiming to provide means to IP reuse
standardization is Virtual Socket Interface Alliance [3] that specifies open

System Design Reuse 81

interface standards, which would allow Virtual Components (VCs) to fit
quickly into virtual sockets, both at the functional level and the physical
level. Object Management Group [4] promotes also reuse, having as primary
goals the reusability, portability, and interoperability of object-based
software in distributed, heterogeneous environments. The fundamental
mission of the Gigascale Silicon Research Center [5] is to empower
designers to realize the potential of gigascale silicon by enabling scalable,
heterogeneous, component-based design with a single-pass route to efficient
implementation from a microarchitecture. While the previously mentioned
organizations are dealing mainly with the technical aspects of system design
and reuse, Reusable Application Specific Intellectual Property Developer
Initiative [6] and International Council On Systems Engineering [7] are
focusing on the creation of the appropriate culture and means to accelerate
reuse practices. In the same context, in Europe, an analogous consortium,
known as System Design Industrial Council-Telecom (SYDIC-Telecom) [8],
focuses on the analysis of system level design flows, the definition of a
system level conceptual model, system IP reusability assessment, and
specification languages and formalisms analysis.

Main research results on system IP reuse can be found in the guidelines
of design-for-reuse and design-to-reuse proposed by Motorola’s
Semiconductor Reuse Standards (SRS) [9] and Mentor Graphics Reuse
Methodology Manual for System-On-a-Chip Design (RMM) [10]. These
guidelines can also be used in methods for evaluating and qualifying IP for
project use. OpenMORE [11] is a reference-scoring program for assessing
the reusability of hard and soft IP cores for SoC design, based on the RMM
and VSIA deliverables. Finally, several companies provide global
collaboration networks for sharing design resources in the electronic SoC
industry.

4. SYSTEM INTELLECTUAL PROPERTY
IDENTIFICATION

There is lack of a consensus on a complete, systematic and
comprehensive interpretation of system IP in current practices. In many
cases System-level IP, System IP and IP Instances (IPIs) are usually used
interchangeably in a confusing way. The following paragraphs attempt to
clarify the aforementioned terms by providing details of their exact meaning
and the context in which they can be used.

82 Chapter 7

4.1 System-level IP, System IP and IP Instances

System-level IP, System IP and IPIs are usually used as identical,
ignoring the IP conceptual aspects as being hard to be formally captured.

System-level design refers mainly to the initial phase of the design of a
complex system, where the functional specification and requirements of the
components of the system are determined, while the attainment of the
objectives of the system based on the properties of the system components is
explored. System-level IP components encapsulate design knowledge,
experience etc.

System IP (also known as IP), as defined in the section 2, includes the
knowledge and experience obtained during the design process, the
implementation and integration of the system, the feedback derived from the
usage of the system as a product, the maintenance, updates, upgrades,
compliance to standards and even the knowledge obtained during the
withdrawal of the system from the market and its replacement by more
advanced systems. Design know-how is captured by means of actors: the
system architects, designers and integrators, having their own concerns e.g.
functionality, performance etc. Thus, system IP is the knowledge captured as
experience in the designers' minds. The know-how is also captured in the
design process and includes the methodologies, techniques, tools, styles and
the reasoning about the selected solutions. Means of capturing know-how in
the design process and reusing it are scripts, guidelines, patterns and
documentation especially in the case of reasoning.

Each implementation of an IP, in the context of the design of a system, is
an instance of that IP (IPI). IP instances, also referred as IP components or
macros, can be defined through algorithmic models, microprocessors,
custom components etc. IP instances are the design artifacts e.g. the design
descriptions or the system architecture, as well as the artifacts related to
validation and verification, like parameterized testbenches and scripts e.g.
scripts for mapping to different design flows, and documentation.

Since system-level IP is used for the stage of specification capturing,
system IP refers to system design knowledge as a whole and IP instances are
the artifacts that realize the concepts related to System IP, the terms system-
level IP, system IP and IP instance refer to different phases of the product
development cycle, and should not be used interchangeably.

4.2 Classification of IPIs

The organization of an IP infrastructure, including an IP repository and
automation in IP selection has provided systematic means to IPI
classification. Taxonomy can be defined in order to classify IPIs in families

System Design Reuse 83

and subfamilies with respect to functionality [12]; it may also be based on
the design space explored [13]. A mechanism that claims to allow
transparent design reuse is the classification of IPIs by keywords, properties,
levels of reuse, taxonomy, dependency and similarity [14].

5. SYSTEM IP REUSE PRACTICES

5.1 Reuse Strategies and Practices

Design reuse during system design can take place through alternative
reuse strategies [15]. For example, in design knowledge encapsulation reuse
startegy, the key idea is to encapsulate design data, specification and
implementation in a standard and secured manner; in design exchange
strategy, design teams exchange designs through standard formats, while in
design evolution strategy changes are made to previous designs to achieve
new functionality to a reused module; finally, the field programmable design
reuse strategy is a software-like reuse where parameterization and
programming are used to differentiate products based on standard structures
and reused implementations.

This classification of reuse strategies has been proven as theoretical,
since none of these approaches is applied in a stand-alone manner. Rather,
combinations of them are used to exploit the reusability in system-design,
leading to vague borders among them. The main practices currently used to
apply the aforementioned reuse strategies in practice include: core based
design, interface based design, platform based design, parameterization and
derivative design. The relationship/classification schema of the strategies
and practices for reuse is depicted in Figure 7-1, where the strategies for
reuse are illustrated in orthogons and the reuse practices in oval. The
covering of the relative areas reveals the relationship among the various
strategies and practices.

Design knowledge encapsulation comprises the automatic
implementation of the design knowledge captured in specifications and is
based on the tool technology supporting system design. Moving to system IP
reuse, the design exchange strategy and the design evolution strategy require
the design knowledge encapsulation reuse.

84 Chapter 7

Figure 7-1. Relationship/Classification schema of strategies and practices for reuse

In design exchange strategy, fixed design exchange could be instantiated
in core-based design and platform-based design, and need as prerequisite the
interface-based design to efficiently apply in design reuse. For example,
platform creation requires the designer to concentrate on the interfaces
between architectural components and the functional blocks.

In design evolution strategy, the separation of behavior/functionality and
communication in design is required in order to have the ability for the
evolution of the functionality of the design. From a coarser-grained
viewpoint, system design with derivative design could be also a practice
classified in this category.

Parameterized system design accompanies always the design exchange
strategy, since cores and platforms are parameterized or programmable, in
order to provide the required flexibility. Platforms must be programmable at
a variety of levels of granularity. Moreover, parameterized components must
obey in standard interface implementation rules in order to be mixed and
matched in systems.

In the following paragraphs, the most important practices of reuse are
detailed, while the use of object oriented techniques for reuse and design
patterns, as a newly introduced way for recording know-how, are presented
as well.

5.2 Core Based Design

As defined in [16] a core is a pre-designed and pre-verified block that
can be used in building a larger or more complex application on a

System Design Reuse 85

semiconductor chip. Cores are often called macros and blocks. A core, apart
from the delivered design, implies the know-how to use it. Cores are
classified in soft, firm, and hard cores. Hard IP components are those fully
implemented in a specific process technology. Soft IP components are in the
form of synthesizable RTL/HDL code. They can be parameterized and they
are user-configurable. Firm IPIs are an intermediate class of hard and soft
IPIs. They have been optimized in structure and in topology for performance
and area through floor planning/placement. The advantage of soft cores is
the flexibility they provide compared to hard and firm cores. In contrast, soft
cores suffer from performance evaluation inability, while firm and hard
cores provide the required performance characteristics e.g. timing
information (usually static). A core's reusability mainly depends on the
design process, the technological process details and the data format used to
deliver the core design.

The complete description of a core is comprised of a great number of
models for design, verification, evaluation, timing characterization, testing,
physical implementation etc. These are executable models, design
descriptions at many levels of abstraction, datasheets and timing diagrams.
The high-level models include architectural, instruction set and bus-
functional models. The RTL, gate and transistor models provide increasingly
more timing and functionality details. A hierarchy of models would provide
functional information with increasingly more specific timing details.
Moreover, a basic delay model and a peripheral interconnect models should
additionally be considered [17].

One of the main technical challenges in core-based design is the
verification and validation of cores. Test issues in core designs are described
in detail in [16]. Generally, tests cannot be created by the user of the core,
due to his/her lack of awareness of the internal implementation details. On
the other hand, the core provider determines the test requirements of the core
without knowing the target process and application. Thus, the core builder
will not know which test method to adopt, the type of faults (static, dynamic,
parametric), or the desired fault coverage. The core builder should prepare
an internal test that is adequately described, ported, ready for plug and play
and in a standard format. The IEEE P1500 working group [18] has as scope
the development of a standard test method for integrated circuits containing
embedded cores. Finally, it would be considered as optional that the test
requirements could be entered at the system level and evolve through the
design hierarchy, with a large degree of automation.

86 Chapter 7

5.3 Interface Based Design

Reusing IPs developed in different design flows, using different
computational models for their description, requires their interfacing in a
unified model. Interface-based design is the design flow that moves design
from an interconnected set of communicating processes with clearly defined
and separately captured interface protocols (usually intended to test
conceptual behaviour) to interconnected realized components in the final
subsystem. A virtual component interface is defined as the information-
transfer boundary between a VC internal behaviour and any communication
channel connecting VC implementations or VC models.

Interface based design is the prerequisite technique to orthogonalize
behaviour and communication, thus allowing the deployment of all the
practices for reuse. Core-based design, platform-based design and
parameterization could efficiently be realized through standardized interface
design. VSIA is the major representative in the domain of interface-based
design and the released standards seem to be commonly adopted. VSIA's
System-Level Interface Behavioral Documentation Standard (SLIF) [19]
describes a systematic documentation technique for system-level virtual
component interfaces. At the higher levels of abstraction, the set of
operations or tasks required to perform an application are initially linked by
“ideal” channels; the information is sent and received as needed, without
concern for conflicting resource requests or synchronization. At this stage,
the architectural design may be concerned only with functionality or with
communication protocols. As this design is refined, common communication
resources are specified, control protocols are administered, and sharing of
functional units is identified. The common issues associated with system
design become visible, and the design moves from ideal to real. The separate
specification of the interfaces allows the design process to proceed fully and
concurrently with the minimum of design interference between teams
working on separate components.

The current trend in design reuse is the usage of standard interfaces to
connect third party IP to systems, while interface synthesis is the alternative
solution. Standardized buses and protocols would allow for fast integration
of compliant IP components [20]. During refinement, these buses could be
still optimized according to the actual communication specifications.
Interface synthesis is the automated synthesis of interfaces based on high-
level communication and synchronization description [21]. Relevant
research on interface synthesis can be found in the Chinook framework [22],
Coware [23], Polaris [24] and [25, 26]. In the context of interface-based
design several approaches have been proposed. In [27], a mechanism is
proposed that adopts the token passing methodology from dataflow and

System Design Reuse 87

discrete event system level while providing a method to refine
communication mechanisms incrementally and hierarchically.

In the COSY model [28] higher abstraction level interfaces for VCs,
similar to VSIA’s interfaces, are proposed as depicted in Figure 7-2.
Application-level transactions are used for programming a network of
functions that specifies what the system is supposed to do. They are refined
into system transactions when choosing implementation of functions to
software and hardware components. Finally, system transactions that operate
on abstract data-types and high-level I/O semantics are unraveled into more
detailed interfaces. For hardware, VC Interface is used as a generic interface
to “any” physical bus specific protocol.

Figure 7-2. COSY interface levels

In the SpecC model [29], the computation is encapsulated in behaviours
and the communication is contained in channels. The communication part
can be clearly identified and a different channel, which provides the same
interfaces, can easily replace the channel. The SpecC model allows the
hierarchical composition of both behaviours and channels providing
interface adaptation and protocol conversion.

In [30], a formal verification approach around interface-based design
with a component based system-level design methodology is provided. This
approach is based on a timed-Petri Net notation. Once the model
corresponding to the interface logic has been produced, the correctness of
the system is formally verified based on the interface properties of the
interconnected components and on abstract models of their functionality,
without assuming any knowledge regarding their implementation.

88 Chapter 7

Language requirements that would support interface-based design are
addressed in [31]. The basic functionality that an interface language
construct could provide is the visibility of the interface code to the IP
consumer, while the interface construct is instantiated within the IP.

5.4 Parameterized System Design

Parameterization as a key strategy of reuse is presented in [32]. It can be
applied in various aspects and granularities of system design, such as
architectural or component design. The availability of parametric
architectures widens the application domain where they can be reused.
Parameterization of modules allows the exploration of different algorithms
and architectures from which the most efficient solution can be chosen.

As far as parameterization is concerned, there are several kinds of
parameters that can be used in practice [32]. A static parameter is a
parameter whose value must be set before the fabrication of an instance of
the System-on-Chip (SoC) and typically appears in the HDL source used to
eventually create an instance of the SoC. A dynamic parameter, in contrast,
is one whose value may be set in an already fabricated SoC that will contain
extra on-chip structure to support various parameter settings. Parameters are
also classified according to their level of abstraction: circuit level,
architecture level and application level. Circuit-level parameters make small
modifications to the way bits are stored or transferred e.g. parity, buffer sizes
etc. Architecture-level parameters can reconfigure the system to very
different logical architectures, changing for example the system's bus
hierarchy, memory hierarchy or physical communication link. Finally,
application-level parameters change the system's functionality.

Parameters are not usually orthogonal to each other. In fact, they are
highly correlated lowering the parameter set alternatives. Parameter
interdependencies either affect the overall reuse effort, or can even lead to
invalid configurations. For this purpose, all the IP deliverables should be
parameterized for the same parameter spaces and for synthesis, not only
basic elements or complete synthesizable circuit specifications are
necessary, but also archived design flows, according to the parameters of the
IP.

The verification of parametric modules is a complex task and comprises a
bottleneck in parameterization strategy. The complexity of verification
grows as the number of parameters increases, because the number of
parameters is the number of dimensions of the verification space. The
interdependencies between parameters might reduce the complexity of the
verification task. Parameterization is usually suitable for systems of low
complexity, because the exclusive use of the parameter concept for

System Design Reuse 89

designing complex systems implies large and hardly manageable parameter
lists and unreadable component descriptions.

5.5 Platform Based System Design

Platform based design is based on constraining the design space through
the use of families of architectures targeting a specific class of problems, by
modifying or extending them [33, 34]. Integration platforms include both an
architectural platform and the appropriate prequalified IPIs to assemble it.
Thus, system design is based on selection of the appropriate platform
conforming to the functional specification by probably iteratively refining or
modifying it, and on selection or design of the relevant IP blocks, rather than
making partitioning decisions or assembling/designing independent blocks.
In [36], the key elements of an integration platform are defined, including
IP, ranging from pre-verified blocks to knowledge, guidelines etc. A typical
integration platform includes a specification for fitting the IP, prequalified
relevant IPs, documented methods for IP development and integration, and a
verification strategy.

In [36], the concepts of hardware platform, software platform and system
platform are defined. A hardware platform is a family of micro-architectures
that allows substantial reuse of software, while a software platform is the
layer that performs the abstraction of the hardware platform at a level where
the application software sees a high-level interface to the hardware. The
combination of the hardware and software platforms constitutes the system
platform. Hardware platform constraints are usually expressed in terms of
performance and area. They emerge as a result of a trade-off between the
size of the application domain, that reflects the space of support, and the size
of the micro-architecture space, that reflects the degree of accepted over-
design. The software platform wraps the essential parts of the hardware
platform: the programmable cores and the memory subsystem via a RTOS,
the I/O subsystem via the device drivers and the network connection via the
network communication subsystem.

A system designer maps its application into the abstract representation
that includes a family of micro-architectures that can be chosen to optimize
cost, efficiency, energy consumption and flexibility. The mapping of the
application into the actual architecture can be carried out, at least in part,
automatically if a set of appropriate software tools (e.g., software synthesis,
RTOS synthesis, device-driver synthesis) is available. In [34] four types of
platforms are distinguished: full application platforms, processor-centric
platforms, communication-centric platforms and fully programmable
platforms. Full-application platforms let derivative-product designers create
complete applications on top of hardware-software architectures and include

90 Chapter 7

a library of hardware modules in a variety of configurations. Processor-
centric platforms focus on software access to a processor and allow also
addition of specific hardware elements and selection of the appropriate
operating system. Communication-centric platforms give consumers a
communication fabric optimized from a specific application domain. Finally,
fully programmable platforms allow customers to customize them by adding
programmable logic.

5.6 Object Oriented System Design

Object-oriented methodologies focus on the organization of discrete
objects, characterized by their structure and behaviour and the way they
interact [37]. Object-oriented techniques were mainly used for software
development, but nowadays there is an increasing trend to apply object-
orientation to integrated systems and generally for the design of complex
systems, especially at the stage of specification capturing and conceptual
design. The object oriented aspects that are most relevant to system design
are object/instance, class, attributes and aggregation. The object-oriented
methodology allows intellectual property reuse through object libraries,
design patterns, and automatic documentation generation/

Object-oriented design has main attributes that support complex system
design.

• Abstraction provides means to focus on the essential aspects of a
system for a given design goal, avoiding details, enabling an abstract
and compact specification, but in the same time preserving the
freedom to make decisions from the most powerful early abstraction
levels.

• Encapsulation supports compact specification and promotes reuse. In
the general sense, object-oriented technology utilizes objects and
classes to define a system.

In [38], an object-oriented system engineering methodology is presented
where class interfaces are used to provide structural representation through
all abstraction levels. In [39] an approach for incorporating cores into a
system-level specification is described, where an object-oriented language is
used for specification, representing each core as an object. Three
specification levels are defined and the appropriateness of existing inter-
object communication methods for cores is evaluated. Another object-
oriented language, called HDLC++, is presented in [40]. It is based on an
object-oriented hierarchy of classes that describe the structure of the
components. AMICAL behavioral synthesis tools [41] and OCAPI C++
Class Library [42], use object oriented behavioral descriptions for behavioral
component-level reuse.

System Design Reuse 91

Object-oriented methods are also used to group IPIs into libraries,
databases or clusters and to form the appropriate infrastructure for IP reuse
[12, 43, 44].

5.7 Pattern Based Design

The concept of pattern has its origin on the work of Christopher
Alexander [45]. According to Alexander:

Each pattern describes a problem that occurs over and over again in
our environment and then describes the core of the solution to that
problem in such a way that you can use this solution a million times
over without ever doing it the same way twice.
Patterns have been extensively used in object-oriented software

development, and help the designers to create a way of communicating and
exchanging experience about problems and their solutions, forming a
powerful way of recording know-how [46]. The main types of patterns
encountered in software systems consist of architectural patterns, design
patterns and idioms (idioms are sometimes called coding patterns), referring
to structural, refinement and programming strategies respectively [47].

In system design world, the design issues encountered are far more
complicated compared to these of software world. Although the use of
patterns is not adequately mature yet, there are several concepts that can be
adopted from software patterns and can be used to describe system design
concepts. For example, the singleton pattern described in [46] which is used
in object oriented system design to ensure that only one instance of a class is
created; other objects need not know that they are accessing a singleton or
one of multiple instances of the class; this pattern serves as a useful access
point to physical resources. An example of possible use of the singleton
pattern in SoC design is access control to a shared resource. Within the
singleton class, a semaphore can be used to guard against multiple
consecutive attempts to access the resource.

Patterns can also be used in component-based design. Figure 7-3
describes the structure of a pattern named CompositeComponent [48], which
can be used to describe the constituent components of the system under
design. Grouping of related components to represent part-whole hierarchies
decreases complexity, while allowing composites to be treated similarly
since individual components hide details. A CompositeComponent consists
of leaf components (that do not have hierarchy) and other composite
components. Components in a composite interact through connectors that
connect components, which are components as well.

92 Chapter 7

Component

Connector CompositeComponentLeafComponent

Interface

2..*1..*

Figure 7-3. The CompositeComponent pattern

6. CRITERIA FOR IP SELECTION

In most companies, IP reusability is a challenging issue which has not
been fully exploited yet. Reusability usually takes place through reuse of IP
components. The two main categories of IP components are:

• Internally developed components which represent the know how of
a specific company and encapsulate the experience of the design
teams. They represent knowledge that is available among different
design teams within the same company. The component development
and on going support all over components’ life cycle is maintained
within the company.

• Components acquired by third party suppliers, also known as
external components, are components implemented by a third party
company. They are usually available in a form that does not reveal
the internal details of the component e.g. net lists. They are black
boxes for the design teams and they are maintained by the company
producing them.

In the next paragraphs a set of criteria for evaluating IP components in

practice is described. Not all criteria are always applicable, and this is
mainly due to restrictions imposed by the nature of the component. For
example, for external components the actual component description is not
available to the end users. Table 7-1 presents an overview of the criteria that
will be analyzed in the sequel, and the cases in which they are applicable.

System Design Reuse 93

Table 7-1. An overview of the criteria for IP evaluation/selection
Criterion Type of IP component
Compliance with existing know how External
Adequate documentation Internal/external
Support of different technologies Internal/external
Availability at different levels of abstraction Internal (this is difficult for external

components due to confidentiality
restrictions)

Parameterization Internal/external
Verification and testing Internal/external
Compliance with existing standards Internal/external
Availability of support tools Internal/external
Component on going support Internal/external

6.1 Compliance with Existing Know-How

Most companies have at their disposal repositories of internally
developed IPs that reflect the company’s know-how and imply a reuse plan
through which future products will rely on existing IP components. As a
result, before adopting a third party component the designers must make sure
that it complies with company’s know-how and reuse strategy. For example
it is important for the component to support interfaces compliant with the
ones of the IPs in the repository.

One additional parameter that is also important for the selection of an IP
is whether it supports various technologies or not and in particular if the
technology used for its implementation is compliant with the one used for
the system in which it will participate.

6.2 Adequate Documentation

IP documentation is another important issue that must also be taken into
account. No matter how efficient an IP component is, it is useless if the
designer is not aware of its actual functionality, the operations supported, its
configuration parameters etc. What is usually expected is a user manual and
a designer’s manual accompanying the IP. The user manual focuses on the
functionality of the IP and how it can be used as part of a more complex
design. Apart from the documentation of the core specification of the IP,
documentation on its optimum integration is required as well. The designer’s
manual on the other hand, provides an in depth description of the IP focusing
on implementation issues and is usually available for internally developed
IPs. Its actual goal is to provide any details necessary for the designers that
will produce the next updates of the component and thus facilitate the design
know-how transfer among the designers.

94 Chapter 7

Additionally, the IP documentation should allow the designer to
communicate critical constraints from one team to another. Natural language
specifications coming from long source documents are often incompatible,
and make it difficult for the design teams to communicate on important
design aspects e.g. constraints. The same problem appears in the
communication between vendors and customers.

6.3 Availability at Different Levels of Abstraction

The design of complex systems usually relies on design process models
like spiral or V-model [49], where the final product is produced through
successive refinements of system models. Thus, it is necessary to have the IP
component available at different levels of abstraction so as to make it part of
the system as early as possible. What is usually available is either C models
of the IP component, to experiment with the actual behavior of the IP early
enough in the development cycle, or dummy models of the IP with well-
defined interfaces to test the I/O timing of the IP at the level of integration.
As soon as the IP integration is achieved, the dummy models can be
gradually replaced by fully functional models of the IP component.

6.4 Parameterization

The use of parameters is not always indicative of the IP flexibility, since
the increase in the number of parameters makes it difficult to use.
Additionally, IP parameterization is cumbersome at the level of synthesis
where parameters that are not fixed lead both to degradation of the
performance/speed of the final implementation and increase of the number
of gates used. For that purpose, some IPs require the definition of a critical
performance factor, and how much RAM or how many I/O ports will be
needed. In this way, the system designer adjusts the IP according to the
performance requirements of the system under design.

6.5 Verification and Testing

IP verification must also be taken into account before selecting an IP.
What the IP user has usually at his disposal is a “black box”, with well-
defined interfaces, that fulfils the functionality required. It is significant, in
terms of quality, whether the IP is pre-verified or not. Additionally, means
for verifying the IP as part of a larger system are necessary.

As far as IP testing is concerned, the ideal approach is the construction of
a test bench that is offered along with the IP component. In this way, the

System Design Reuse 95

potential user is able to instantiate the IP as part of the test bench provided
and test if its actual behavior is in accordance with the IP documentation.
Alternatively, models for testing the IP behavior through co-simulation
could be provided. In both cases, the IP testing must be irrelevant of the
environment in which the IP is used.

In terms of quality, silicon proven IPs are usually the most preferable
ones; the existence of the test bench is definitely an advantage, while in
some cases success stories of the specific IP are indicative of its quality. In
cases where testbenches are not available, guidelines on testbench
construction could be valuable.

6.6 Compliance with Existing Standards

During the last years, standardization bodies like the ones mentioned in
section 3 promote the standardization of the IP interfaces. IPs compliant with
existing standards make their integration in the system under design easier.

6.7 Availability of Support Tools

Tools for supporting the IP integration facilitate the use of IPIs, and make
it easier for the designers to become familiar with the IP functionality. Such
tools allow the designers to tailor the IP and integrate and verify it within the
system under design. This means that the designers need a way to access the
IP and to understand how it is implemented and how it will work in their
design. Flexible, transparent tools that don't require the engineers to become
an IP expert are needed.

6.8 Component On-Going Support

On going component support is a crucial parameter from the designer’s
perspective. In the case of IP components supplied by third party companies,
it is important to have on going support in order to handle the various
problems arising during system design, since the components are used as
black boxes by the design teams and the designers have no control over the
component’s behaviour. The same holds for internally developed
components, even though in this case component support is easier since the
component intrinsic details are at the disposal of system engineers.

96 Chapter 7

7. REUSE AUTOMATION

In [50] the work in the field of reuse automation is presented, and it is
classified into four categories: (a) The description oriented systems, (b) the
content oriented systems, (c) the interface oriented systems and (d) the
wrapper oriented systems. The description oriented systems, such as
READEE [51], RMS [52] and Bosch [53], are libraries of components
together with a supporting searching mechanism. Content oriented systems,
such as Polynomial Description systems [54] and Synopsys DesignWare
[55] system, attempt to characterize the components functionally, in a formal
way, setting the basis for automating the search in a component library.
Interface oriented systems e.g. PIG [56], MODIS (Module Interface
Synthesizer) [57], SpecC [29], Polaris [24] and Polis [58], automatically
generate the communication logic between IPs. Finally, wrapper oriented
systems, main representatives of which are OOCL [39] and SpecC, create a
wrapper around the IP in order to be able to include the IPs into the
specification, and emphasize on an executable system specification and on
the refinement methodology that will lead to the final implementation.

8. SUMMARY

System IP reuse is becoming an emerging research field in the area of
modern embedded system design. In the previous sections we presented an
overview of the main reuse issues encountered in system design and
attempted to clarify the concepts related to system IP reuse. The research
activity in this area reveals that although system IP reuse is not an easy task
to accomplish, it is considered as a promising alternative to handle the ever
increasing complexity of the systems. The diversity of the approaches
presented is not always an advantage for the potential designers; thus, the
path to effective system IP reuse must pass through the stabilization of the
proposed techniques and their integration in a common framework under
globally accepted standards.

REFERENCES

[1] VSIA SYSTEM LEVEL DESIGN DWG (2001). VSIA: System Level Design Model
Taxonomy Document Version 2. Retrieved May 2003 from:
http://www.vsi.org/library/datasheets/ sld220ds.pdf

System Design Reuse 97

[2] SYDIC-Telecom WG1 (2002). SYDIC-Telecom: Glossary and Taxonomy Deliverable
ND1.2 Release 2 version 1.0, Retrieved May 2003 from:
http://www3.cti.ac.at/ecsi/ecsi/projects/sydic/store/welcome.asp?dir=WP1%20Glossary

[3] VSI, Virtual Socket Interface Alliance, 1996- . At http://www.vsi.org
[4] OMG, Object Management Group, 1998- .At: http://www.omg.org
[5] GSRC, Gigascale Silicon Research Center, 1998- . At: http://gigascale.org
[6] RAPID, Reusable Application Specific Intellectual Property Developer Initiative, At:

http://www.rapid.org
[7] INCOSE, International Council On Systems Engineering, 1990-. At:

http://www.incose.org
[8] SYDIC-Telecom, System Design Industrial Council of European Telecom Industries,

2000- . At: http://sydic.vitamib.com
[9] SRS,Semiconductor Reuse Standards, At:http://www.motorola.com/webapp/sps/site/prod

summary.jsp?code=SRSSTANDARDS&nodeId=01Bfq62638Kcmw
[10] Keating, M., and Bricaud, P, Reuse Methodology Manual for System-on-a-Chip

Design, Kluwer Academic Publishers, Boston, 2002.
[11] OpenMORE program, At: http://www.openmore.com/ openmore/about.html
[12] Behnam B, Babba K, Saucier G. IP Taxonomy, IP Searching in a Catalog. Proceedings

of Conference on Design, Automation and Test in Europe; 1998 February; Paris.
France.

[13] Peixoto H, Jacome M, Royo A, Lopez J. The Design Space Layer: Supporting Early
Design Space Exploration for Core-Based. Proceedings of Conference on Design,
Automation and Test in Europe; 1999 March; Munich. Germany.

[14] Reutter A, Rosentiel W. An Efficient Reuse System for Digital Circuit Design.
Proceedings of Conference on Design, Automation and Test in Europe; 1999 March;
Munich. Germany.

[15] Girczyc E, Carlson S. Increasing design quality and engineering productivity through
design reuse. Proceedings of 30th Design Automation Conference; 1993 June; Dallas.
USA.

[16] Gupta R.K., Zorian Y. Introduction to Core-based System Design. IEEE Design & Test
of Computers 1997; 14(4):15-25.

[17] Hunt M., Rowson J. Blocking in a system on a chip. IEEE Spectrum 1996; 33(11): 35-
41.

[18] IEEE P1500 Working Group, 1995- . At: http://grouper.ieee.org/groups/1500/
[19] VSIA SYSTEM LEVEL DESIGN DWG (2000). System-Level Interface Behavioral

Documentation Standard Version 1. Retrieved May 2003 from:
http://www.vsi.org/library/ specs/summary.htm

[20] Flynn D. AMBA: Enabling Reusable On-Chip Designs. IEEE Micro 1997; 17(4):20-
27.

[21] Vermeulen F, Reuse of System-Level Design Components in Data-Dominated Digital
Systems. Katholike Universiteit Leuven: PhD Dissertation, 2002.

[22] Chou P, Ortega P, Hines R, Partidge K, Borriello G. IPChinook: An Integrated IP-
based Design Framework for Distributed Embedded Systems. Proceedings of
Proceedings of the 36th ACM/IEEE Design Automation Conference; 1999 June; LA.
USA.

[23] Bolsens I., De Man H., Lin B., Van Rompaey K., Vercauteren S., Verkest D.
Hardware/Software Co-Design of Digital Telecommunication Systems. IEEE Special
issue on HW-SW Co-Design 1997; 85(3): 391-418.

98 Chapter 7

[24] Smith J, De Micheli G. Automated Composition of Hardware Components.
Proceedings of the 35th ACM/IEEE Design Automation Conference; 1998 June; San
Francisco. USA.

[25] Madsen J, Hald B. An Approach to Interface Synthesis. Proceedings of the 8th
International Symposium on System Synthesis; 1995 September; Cannes. France.

[26] Madisetti V., Shen L. Interface Design for Core Based Systems. IEEE Design and Test
of Computers 1997; 14(4):42-51.

[27] Rowson J, Sangiovanni-Vincentelli A. Interface-based design. Proceedings of
Proceedings of 34th ACM/IEEE Design Automation Conference; 1998 June;
California. USA.

[28] Brunel J, Kruijtzer W, Kneter H, Petrot F, Pasquier L, De Kock E, Smits W. COSY
Communication IPs. Proceedings of Proceedings of 37th ACM/IEEE Design
Automation Conference; 2000 June; California. USA.

[29] Domer R, Gajski D. Reuse and Protection of Intellectual Property in the SpecC
System. Proceedings of the 2000 conference on Asia and South Pacific design
automation; 2000 January; Yokohama. Japan.

[30] Karlsoon D, Eles P, Peng Z. Formal Verification in a Component-based Reuse
Methodology. Proceedings of the 15th international Symposium on System Synthesis;
2002 October. Kyoto. Japan. New York: ACM Press, 2002.

[31] Flake P, Davidmann S, Kelf D, Burish C. The IP Reuse Requirements for System
Level Design Languages. Proceedings of International Property Conference; 2000
April; California. USA.

[32] Givargis T, Vahid F, Henkel J. System-level Exploration for Pareto-optimal
Configurations in Parameterized Systems-on-a-chip, Proceedings of IEEE/ACM
International Conference on Computer Aided Design; 2001 November; San Jose. USA.

[33] Chang, H, Cooke, L, Hunt, M, Martin, G, McNelly, A, Todd, L, Surviving the SoC
Revolution: A Guide to Platform-Based Design, Boston: Kluwer Academic Publishers,
1999.

[34] Martin G., Schirrmeister F. A Design Chain for Embedded Systems. IEEE Computer
2003; 35(3):100-103.

[35] Filippi E, Licciardi L, Montanaro A, Paolini M, Turolla M, Taliercio M. The Virtual
chip set: a parametric IP library for system in a chip design; Proceedings of IEEE
Custom Integrated Circuits Conference; 1998 June; California. United States.

[36] Kreutser K., Mlik S., Newton R., Rabaey J., Sangiovanni-Vincentelli A. System Level
Design: Orthogonalization of Concerns and Platform-Based Design. IEEE
Transactions on Computer-Aided Design of Circuits and Systems 2002, 19(12):1523-
1543.

[37] Lidsky, D, The Conceptual-Level Design Approach to Complex Systems, University Of
California Berkeley: PhD Dissertation, 1998.

[38] F. Doucet and R. Gupta (2000). Microelectronic System-on-Chip Modeling using
Objects and their Relationships. 1st Online Symposium for Electrical Engineers,
Retrieved may 2003 from: http://www.ics.uci.edu/~iesag/yaml/docs/osee.doc

[39] Givargis T, Vahid F. Incorporating Cores into System-Level Specification.
Proceedings of 11th International Symposium on System Synthesis; 1998 December;
Hsinchu. Taiwan.

[40] Heuser O, Fiedler H. New Method for Reuse-Driven Design of Digital
Cirtuits. Proceedings of IEEE Custom Integrated Circuits Conference; 1999 May; San
Diego. USA.

System Design Reuse 99

[41] Kission P., Jerraya A., Behavioral design allowing modularity and component reuse.
Journal of Microelectronic Systems Integration 1997; 5(2): 67-83.

[42] Schaumont P, Cmar R, Vernalde S, Engels M, Bolsens I. Hardware Reuse at the
Behavioral Level. Proceedings of 36th ACM/IEEE Design Automation Conference;
1999 June; New Orleans. USA.

[43] Bottger J, Agsteiner K, Monjau D, Schulze S. An Object-Oriented Model for
Specification, Prototyping, Implementation and Reuse. Proceedings of Conference on
Design, Automation and Test in Europe; 1998 February; Paris. France.

[44] Oberg J, Kumar A, Jantsch A. An Object-Oriented Concept for Intelligent Library
Functions. Proceedings of 11th International Conference on VLSI Design; 1998
January; Chenai. India.

[45] Alexander, C, The Timeless Way of Building. New York: Oxford University Press,
1979.

[46] Gamma, E, Helm, R, Johnson, R, Vlissides, J, Design Patterns: elements of reusable
Object-oriented Software. Addison-Wesley, 1995.

[47] Buschmann, F, Meunier, R, Rohnert, H, Sommerlad, P, Stal, M Pattern-Oriented
Software Architecture - A System of Pattern, Wiley and Sons Ltd., 1996.

[48] SYDIC-Telecom WG2 (2003). SYDIC-Telecom: System Design Conceptual Model
SDCM, ND2 Release 2 version 2.0, Retrieved May 2003 from:
http://www3.cti.ac.at/ecsi/ecsi/projects/sydic/store/welcome.asp?dir=WP2%20SDCM

[49] Voros N., Sanchez L., Alonso A., Birbas A., Jerraya A. Hardware/Software Co-design
of Complex Embedded Systems: An approach using efficient process models, multiple
formalism specification and validation via co-simulation. Journal of Design
Automation for Embedded Systems 2003; 8:5-49.

[50] Barna, C, Reuse Automation. FZI Forschungsbericht, 1999.
[51] Oehler P, Vollarath I, Conradi P, Bergmann R. Are you READEE for IPs? Proceedings

of 2nd GI/ITG/GMM Workshop of Reuse Techniques for VLSI Design; 1998
September; Karlsruhe. Germany.

[52] Seepold, R, A Hardware Design Methodology with Special Emphasis on Reuse and
Synthesis, University of Tubingen: PhD Thesis, 1997.

[53] Reutter, A, Rechnergestutzte Wiederwendung Digitaler Schltungsmodule, University of
Tubingen: PhD Thesis, 1999.

[54] Smith J, De Michelli G. Polynomial Methods for Component Matching and
Verification; Proceedings of International Conference on Computer Aided Design;
1998 November; San Jose. USA.

[55] SYNOPSIS DESIGNWARE (2003), Retrieved May 2003 from:
http://europe.synopsys.com/dialog/ euro_compiler/issue 17/synopsys1.html

[56] Passerone R, Rowson J, Sangiovanni-Vincentelli A. Automatic Synthesis of Interfaces
between Incompatible Protocols. Proceedings of the 35th ACM/IEEE Design
Automation Conference; 1998 June; San Francisco. USA.

[57] Siegmund R, Mueller D. An Approach to Specification and Synthesis of adaptive
Interfaces of reusable Hardware Modules. Proceedings of Forum on Design
Languages; 1999 August; Lyon. France.

[58] POLIS Berkeley Co-design Environment (2003), Retrieved May 2003 from:
http://www-cad.eecs.berkeley.edu/Respep /Research/hsc/abstract.html

Chapter 8

EXAMPLE OF USING THE SYSTEM DESIGN
CONCEPTUAL MODEL

Nikolaos S. Voros
INTRACOM S.A., Patra, Greece

Abstract: The main goal of this chapter is to demonstrate how System Design
Conceptual Model (SDCM) metamodel can be instantiated in the context of
real world applications. For that purpose, a case study borrowed from the
telecommunication domain is used in order to exhibit the relationship between
SDCM concepts and the design phases followed for the design of complex
systems. The application employed is part of a MAC layer protocol for
wireless ATM networks.

Key words: Telecom system design, System Design Conceptual Model instantiation,
System Design Process instantiation

1. INTRODUCTION

This chapter presents how the use of SDCM metamodel introduced in
Chapter 4 can be instantiated in practice. As already explained, the main
purpose of the SDCM is to provide concepts for the description of the
models of the design process and the system under design. During the
various design steps, the system under design is described through different
views: functionality, architecture and estimation/validation.

The system under design is part of a MAC layer protocol, called
MASCARA (Access Scheme based on Contention And Reservation for
ATM), that offers the quality of a standard ATM network connection over
wireless links [1, 2].

In the context of MASCARA, the System Under Design (SUD) is a set of
models that evolve through successive refinements. The formalisms used for
describing it at different levels of abstraction vary from natural language at

102 Chapter 8

early design stages to formal languages during the latest development stages.
The SUD design artefacts pertaining to the first three layers of abstraction
(L1, L2 and L3) are described using Specification and Description Language
SDL [3], while for the artefacts of the last abstraction layer (L4) SOLAR [4]
is employed; each layer encompasses several refinement cycles of the design
artifacts [5].

The development process starts with an initial set of user requirements.
Based on these, design artefacts of the MASCARA protocol are being
developed at different layers of abstraction (L1 – L4). The aspects that are
gradually refined at the four abstraction layers are the constituent parts of the
SUD architecture and their behaviour respectively. More specifically:

• At layers L1 and L2 the components, the connectors and the external
interfaces of the SUD are defined. The outcome is an incomplete
functional architecture of the SUD.

• At L3 the complete functional architecture along with its
configuration is available; both are described in SDL.

• At L4 the functional architecture is mapped on hardware and
software architectures, while the appropriate configurations are
defined as well. The outcome of L4 is a virtual prototype of the SUD
physical architecture.

The design phases of the MASCARA protocol are detailed in section 2,

while section 3 outlines how System Under Design Model (SUDM) and
System Design Process Model (SDPM) are interrelated; finally, section 4
summarizes the main concepts presented in this chapter.

2. INSTANTIATION OF SDCM FOR THE DESIGN
OF MASCARA PROTOCOL

2.1 User Requirements

MASCARA is a MAC layer protocol that allows mobile terminals
moving indoors to connect to a core ATM network through standard QoS
over wireless connections. MASCARA takes advantage of the wireless
technology at the physical layer, and extends the traditional ATM protocol
stack so as to be able to offer ATM QoS over air.

As presented in Figure 8-1, from the mobile user point of view what is
required is to be able to:

• Connect to the ATM network.

Example of Using the System Design Conceptual Model 103

• Negotiate the QoS for the required service e.g. video on demand.
• Participate in the network while allocated the required bandwidth.
• Move around without restrictions.

Mobile Terminal

ATM layer

MASCARA MAC layer

extends

Mobile Terminal

Mobile TerminalMobile Terminal

connect to
ATM network

negotiate
QoS

send/receive
data

find Access Point in
charge

Figure 8-1. User requirements for a wireless ATM network.

The aforementioned set of end user requirements generates requirements
that pertain to the physical infrastructure of an ATM network that supports
ATM services over wireless connections. Figure 8-2 outlines the physical
architecture of such networks.

Mobile Terminal
Access Point

ATM
switch

Control
Station

ATM
Network

UNI

Mobile Terminal

Mobile Terminal

Access Point

ATM
terminal

Figure 8-2. Overview of a wireless ATM system.

104 Chapter 8

2.2 MASCARA at L1 Layer of Abstraction

The network architecture presented in Figure 8-2 reveals the real world
entities that must be modeled:

• ATM switch is a standard customer premises access node, containing
also mobility specific software and minimum hardware
modifications.

• Access Point (AP) is the network element connected to the ATM
switches with standard ATM connections.

• Mobile Terminal (MT) is the end-user equipment that contains the
wireless ATM radio adapter card, interfacing the air-interface.

The MASCARA protocol as part of the ATM protocol stack is

implemented both at MT and AP. At the MT side, MASCARA extends the
MAC layer of the protocol stack by adding services through which the MT:

• Identifies the AP that is responsible for the area in which the mobile
user is moving

• Issues requests for joining to the ATM network
• Negotiates the QoS of the connection
• Transmits data through the air interface during the uplink period (the

period during which MTs send data to the AP)
• Maintains the QoS when the user moves in the area of another AP;

the latter involves negotiation with the AP that is in charge of the
new area.

The MASCARA implementation at the AP side is significantly different

since the Access Point must:
• Inform the MTs in its area that it is alive
• Guarantee that the QoS required by the MTs moving around in its

area is consistent with the one initially negotiated
• Schedule data transmission to the MTs during the downlink period

(the period during which AP transmit data to the MTs).

Figure 8-3 depicts the role of the MASCARA protocol as part of the

wireless ATM protocol stack. The environment of the system modeling the
MASCARA MAC layer is the ATM layer and the Physical RF layer.

At this level of abstraction, the SUD artefacts are described in SDL. They
are mainly focusing on initial system decomposition and textual descriptions
of the MASCARA subsystems. The design artefacts at L1 are described
using the basic SDL constructs like SDL blocks and channels in order to
identify the main functional units of the SUD.

Example of Using the System Design Conceptual Model 105

ATM LAYER

PHYSICAL RF LAYER

MASCARA
LAYER

MPDU HANDLER

WDLC SUB-LAYER

SCHEDULER

ATM cells

DLC-ed cells

MPDU

Figure 8-3. Data path for the MASCARA protocol.

2.3 MASCARA at L2 Layer of Abstraction

Based on the SUD artefacts developed in L1, the next step is to refine
them and produce the artefacts of L2 layer of abstraction. The language used
for artefact description at L2 is SDL and the SDL constructs used are the
same as the language constructs used in L1.

Through successive refinements, the subsystems constituting the SUD at
L1 are refined; the textual description of their functionality is replaced with
components that communicate with ideal channels. If there are reusable
components already available as IPs, they are included at this level of
abstraction. In the case of MASCARA, the components implementing
segmentation and reassembly in the MPDU subsystem are dummy models of
IPs already available though a company internal IP library.

The functionality of the processes constituting the components is not
available yet. The same holds for the communication among components,
which is abstract as well. The outcome of L2 level of abstraction is an initial
functional architecture of the SUD. Figure 8-4 presents the initial system
decomposition in functional blocks that communicate among each other with
ideal communication channels. The communication with the environment is
achieved through channels as well (channels C6, C7 and C8).

106 Chapter 8

Figure 8-4. Functional architecture of the MASCARA protocol in SDL.

The exact role of the MASCARA protocol subsystems depicted in Figure
8-4 is described as follows:

• Wireless DLC (WDLC) is decomposed into the processes depicted in
Figure 8-5, and is responsible for recovering from the low quality of
the air-interface. WDLC_Xmit_Data process is in charge of building
the cell trains, and WDLC_Rcv_Data is in charge of sending to the
MASCARA-ATM interface the cells.

• MAC Data Pump Unit (MPDU) manages the slot map according to
the connection profile (AAL) and the Quality of Service (QoS)
parameters. Furthermore, it sends and receives MPDU to/from the
physical layer.

• Scheduler (SCH) block includes the Scheduler and differs between
the AP (master side) and the MT (slave side).

Figure 8-5 outlines the part of the functional architecture that pertains to

the WDLC block of Figure 8-4. The leaf nodes refer to functions/procedures
used by the processes implementing the WDLC block behaviour.

Example of Using the System Design Conceptual Model 107

Figure 8-5. Functional decomposition of the WDLC block of the MASCARA protocol.

2.4 MASCARA at L3 Layer of Abstraction

Having described the functional structure of the MASCARA protocol,
the next step is to complete the functional architecture by adding functions
and procedures that implement the actual behaviour of each process. The
detailed definitions of SDL states, SDL transitions and SDL signals that
activate the transitions between the states of each SDL process are defined at
this level of abstraction as well.

Since each process has a well defined behaviour, the SDL signal lists
(e.g. [WDLC2Env] in Figure 8-4) of the signals exchanged between the
MASCARA system blocks become more detailed too. The signal exchange
between each process and its environment is achieved through zero delay
channels called signal routes in SDL, which connect the process to a specific
called gate. Gates act either as interfaces between the process and its
surrounding block, or as interfaces between the blocks constituting the SUD.
The exact signals exchanged between the process, and between the blocks, if
we consider the system at L1, are defined at this level of abstraction.

With respect to the constituent parts of the SUDM, at this level of
abstraction the SUD subsystems are defined through components (SDL
blocks and SDL processes) and connectors (SDL ports and SDL gates).

108 Chapter 8

Figure 8-6. C function for WDLC_Cell_ptr.

One of the main problems encountered during the design of MASCARA
protocol was the inefficiency of the existing SDL data types. As illustrated
in Figure 8-3, MASCARA accepts ATM cells, transforms them
appropriately (DLC-ed cells) and sends them to the physical layer. An initial
approach for the MASCARA functionality would be to simply copy cell
trains from ATM layer, enrich them with the information required by the
MASCARA sub-layer, and copy them to the physical layer for transmission.
The simulation revealed that this copy of ATM cells is computationally
intensive and reduces the performance of the overall system. The approach
adopted was, instead of copying cell trains, to simply pass between the
adjacent layers a pointer to the cell train. The inefficiency of SDL lies in the
fact that the language does not have structures to describe the concept of
pointer. Consequently, the designers had to define new abstract types for
describing pointers and operations related to them. The approach followed
was to define the abstract data types (ADT) as external C functions that

Example of Using the System Design Conceptual Model 109

implement the required functionality. The C function depicted on Figure 8-6
is an example of the operations defined; it updates the header field of a
WDLC cell through the WDLC_Cell_ptr pointer.

As a result of the detailed behaviour definition of the various SUD parts
either through FSMs describing the behaviour of SDL processes, or through
external C functions, the complete functional architecture of the SUD is
available at this point.

The transition from L3 to L4 level of abstraction relies on the mapping of
the functional architecture to the hardware and to the software architectures.
The use of SDL abstract channels at L1 and L2 layers of abstraction is an
advantage since it enables the designer to focus on the functional
decomposition and behavioural description of the sub-systems. At levels L3
and L4, the designer has to focus on communication among subsystems and
decide for the used protocols, shared variables, buffers, queues etc. For that
purpose, the SDL description of the MASCARA protocol was transformed
to an intermediate formalism called SOLAR [4] that supports refinement of
subsystem communication and mapping to hardware and software
architectures through hardware/software partitioning of the functional
architecture. Figure 8-7 outlines the functional architecture of MASCARA
described in SOLAR.

mpdu_b_I
(mpdu_b)

wdlc_b_I
(wdlc_b)

tb_b_I
(tb_b)

sch_b_I
(sch_b)

c5_channel

mpdu_channel

N_sch_memory_mngt

c8_channel

N_wdlc_memory_mngt

tb_channel

Figure 8-7. Functional architecture of MASCARA protocol described in SOLAR.

During the conversion of SDL specification to SOLAR, SDL processes
are converted to design units, SDL processes’ behaviour is converted to state
stables (the equivalent SOLAR concept for FSMs used in SDL processes)
and SDL abstract channels are converted to SOLAR abstract channels. The
latter enable communication refinement from abstract communication to
communication through specific protocols or shared variables.

110 Chapter 8

2.5 MASCARA at L4 Layer of Abstraction

At this level of abstraction the behaviour of the MASCARA subsystem is
described directly through state tables, and the next step is to refine the
abstract communication between the subsystems. The refinement of the
abstract communication is achieved through the selection of the exact
communication mechanisms through a library that contains alternative
communication protocols like FIFO, rendezvous and shared variables.

As soon as the designer has decided in favor of a specific protocol the
next step is to replace the abstract channels depicted in Figure 8-7 with well
defined signal interfaces. In contrast to the functional architecture described
in SDL where the connectors (SDL ports) between the SUD components
support FIFO queues with no practical limit on the number of signals
waiting for transmission, the refined communication must commit to finite
queue lengths before mapping the functional architecture on hardware and
software. Figure 8-8 outlines the refined MASCARA functional architecture
in SOLAR.

The mapping from abstract to concrete communication implies the
insertion of extra logic for controlling the communication though the refined
channels e.g. N_wdlc_memory_mngt_FIFO. The state table at the lower part
of the Figure 8-8 describes in SOLAR part of the behaviour of the WDLC
block presented in Figure 8-4; at the upper part of the state table the
communication ports and the signals, through which the specific state table
communicates with the rest of the system, are defined.

Hardware/software assignment is the next step in the design of the
MASCARA protocol. By exploring different hardware/software allocations,
the designer is able to experiment with alternative mapping relations of the
MASCARA functional architecture to hardware and software architectures,
and decide in favor of the most appropriate i.e. the one that meets the
constraints defined by the architecture rules of the SUD. In the case of
MASCARA, the architectural rules were mostly related to performance
constraints that had to be fulfilled in the final product. Consequently, the
mapping of the functional architecture on hardware and software
architectures had to take into account whether the architectural rules of the
SUD were fulfilled or not.

In Figure 8-8, every block is characterized either as hardware block ([H])
or as software block ([S]). More specifically, the state tables describing
WDLC, SCH and the N_WDLC_memory_mngt_FIFO controller are set to be
implemented as software; TB, MPDU and the other FIFO controllers were
set to be implemented as hardware.

The generation of a virtual prototype of the physical architecture relied
on the translation of the SOLAR description of Figure 8-8 into executable

Example of Using the System Design Conceptual Model 111

code (C and VHDL). It is composed of a set of distributed modules,
represented in VHDL for hardware elements and in C for software elements,
communicating through communication modules from a library of
components.

N_tb_memory_mngt_FIFO [H]
(FIFO)

N_wdlc_memory_mngt_FIFO [S]
(FIFO)

N_c8_memory_mngt_FIFO [H]
(FIFO)

N_c5_memory_mngt_FIFO [H]
(FIFO)

State table

N_wdlc_memory_mngt_port_1

N_wdlc_memory_mngt_port_2

N_wdlc_memory_mngt_data_real

N_wdlc_memory_mngt_data_int

wdlc_rpcchannel

Statetable_wdlc

start

grst4

idle

wdlc_I [S]
(wdlc)

tb_I [H]
(tb)

sch_I [S]
(sch)

mpdu_I [H]
(mpdu)

Figure 8-8. Refined MASCARA functional architecture in SOLAR.

As a result of the virtual prototype generation, extra blocks for
communication between hardware and software, e.g. the SCH block in the
VHDL simulator box in Figure 8-9, were required. The latter are produced
automatically from SOLAR during the mapping on the physical architecture.

The virtual prototype presented in Figure 8-9 is a simulatable model of
the SUD. It is the result of the mapping of the hardware and the software

112 Chapter 8

architectures on a physical architecture that represents the physical
implementation of the SUD.

WDLC
MPDU

TB

SCH

WDLC_FIFO

TB_FIFO

C8_FIFO C5_FIFO

SCH_Rendez_vousMPDU_Rendez_vous

VHDL simulator

C
 d

eb
ug

ge
r SCH

I/O primitives

Communication
protocol

C
 d

eb
ug

ge
r WDLC

I/O primitives

Communication
protocol

C
 d

eb
ug

ge
r WDLC_FIFO

I/O primitives

Communication
protocol

UNIX IPC bus

Figure 8-9. Refined virtual prototype of MASCARA protocol Physical architecture.

3. LINKAGE OF SUDM AND SDPM FOR
MASCARA

There is an inherent relation between SDPM and SUDM. In the case of
the MASCARA protocol, SUDM consists of set of models that describe the
SUD at different levels of abstraction. SDP for MASCARA on the other
hand, consists of set of steps that lead to a virtual prototype of the system.
More specifically, SDP for MASCARA consists of the following stages:

• System specification,
• Functional decomposition,
• Functional description of subsystems,
• Communication refinement,
• Hardware/software partitioning and
• Virtual prototype of the final system.
As already explained, during each step of SDP the SUDM is represented

through appropriate models of the SUD. Figure 8-10 describes the set of

Example of Using the System Design Conceptual Model 113

models composing the SUDM for MASCARA protocol and their
correspondence to the SDP employed, while Table 8-1 outlines the
relationship between SDP stages and SUD models for the MASCARA case
study.

SUDM for
MASCARA

Structural
SDL models

Functional
SDL models

Functional
SOLAR models

SOLAR models
with communication

specification

C models

VHDL
models

Model subsets

System
specification

Functional
decomposition

Functional description
of subsystems

Communication
refinement

H/W-S/W
partitioning

Virtual
prototype

SDP

Figure 8-10. Linkage of SUD and SDP for MASCARA protocol.

Table 8-1. Correspondence between SDP stages, abstraction layers and SUD models for the
development of the MASCARA protocol.

SDP stages Abstraction layer SUD models involved
Functional specification L1 Functional model
Functional decomposition L1, L2 Functional model
Functional description of
subsystems

L3 Functional model

Communication refinement L4 Functional model
HW/SW partitioning L4 Functional model

Hardware model
Software model

Virtual prototype L4 Physical model

4. SUMMARY

In the previous sections, the main concepts of SDCM metamodel were
exemplified through its instantiation for the design of a real world
application. The example presented relies on MASCARA MAC layer

114 Chapter 8

protocol. The goal of the previous sections was to provide a proof of concept
that a generic conceptual metamodel like SDCM can be mapped on an
existing system designs. Most of the concepts conveyed by SDCM and
presented through MASCARA case study, can be instantiated in different
context for the design of different kinds of electronic systems. As a
complement to the current chapter, Annex A5 provides additional details on
system design through the instantiation of SDCM in the context of a second
example.

REFERENCES

[1] Bauchot F, Decrauzat S, Marmigere G, Merakos L, Passas N. MASCARA, a MAC
Protocol for Wire-less ATM. Proceedings of ACTS Mobile Summit; 1996 November;
Granada. Spain.

[2] Mikkonen J, Kruys J. The Magic WAND: A Wireless ATM Access System.
Proceedings of ACTS Mobile Summit; 1996 November; Granada. Spain.

[3] Mitschele-Thiel, A, Systems Engineering with SDL: Developing Performance-Critical
Communication Systems. John Wiley & Sons, 2001.

[4] Jerraya, A., O' Brien, K. SOLAR: an intermediate format for system-level modeling
and synthesis. In Computer Aided Software/Hardware Engineering,
ed. J. Rozenblit and K. Buchenrieder, IEEE Press, 1994.

[5] Voros N., Sanchez L., Alonso A., Birbas A., Jerraya A. Hardware/Software Co-design
of Complex Embedded Systems: An approach using efficient process models, multiple
formalism specification and validation via co-simulation. Journal of Design Automation
for Embedded Systems 2003; 8:5-49

Annex A1

GLOSSARY

Klaus Kronlöf
Nokia Research Center, Helsinki, Finland

Abstract: This glossary defines the key terms used in this book.

Key words: System design, system design process, system under design, system IP, system
architecture, platform.

A

Abstract data type
An object defined by a set of values and available operations on those

values. It can be seen as a data type that is not precisely defined in
implementation terms.

Abstract machine

A procedure for executing a set of instructions in some formal language,
possibly also taking in input data and producing output. Such abstract
machines are not intended to be constructed as hardware but are used in
thought experiments about computability. Examples: Finite State Machine,
Turing Machine [1].

In B, an abstract machine, is a formal specification of system or sub-
system, encompassing variables, operations, variant and invariant properties.
A B specification is a hierarchy of abstract machines and their refinements
[2].

Abstraction level

A set of self-sufficient and consistent concepts used to specify a system.
A system specification can be described at different abstraction levels

that are characterised by their specific data types and time model. Higher

116 Annex A1

abstraction levels have compact descriptions that hide the details typical to
lower levels [3].

Abstraction

A means to hide details (known or unknown) in order to describe an
object. A higher-level of abstraction indicates that fewer details are included
and vice versa. Can be divided into levels and between points of view. An
unlimited number of abstraction levels and views can exist. A given type of
abstraction – level or view – can be defined by a limited set of basic
concepts providing that it is self-sufficient, consistent and has enough
semantic power. It must be noted that abstraction level does not indicate
accuracy, and abstraction point of view does not indicate a part of.

Activity

A single step in a phase of the design flow, where actors do
transformations of the model of the system under design (SUD) typically
from a higher level of abstraction to a lower one that is closer to
implementation.

Actor

Actors perform activities of the design process. An actor has one or more
roles, each of which defining a specific responsibility in the design process.

Allocation

The process (or results of) of distributing requirements, resources, or
other entities among the components of a system or program [4].

Analysis

The part of the development process whose primary purpose is to
formulate a model of the problem domain. Analysis focuses on what to do,
design focuses on how to do it.

Application (simulation) independent language

A formal language that describes design artefacts in the same way
independently of the way they are used inside different applications
(simulation is a particular application).

Architect

A person who is responsible of defining architectures and using them to
construct things. The term is used in multiple domains and should be
therefore qualified. In the domain of systems engineering, "system

Glossary 117

architect", "software architect", etc. are particular roles played in the system
design process.

Architectural configuration

Architectural configurations, or topologies, are connected graphs of
components and connectors that describe architectural structure.

Architecture

In general, an architecture is a concept that defines the principles and
rules used when constructing a thing. The term is used in all domains of
design and engineering, and it should be therefore qualified to give it a more
precise meaning. Relevant qualifiers in the domain of systems engineering
include for example "functional architecture", "implementation
architecture", "software architecture", and "hardware architecture".

Architecture language (design or description or definition)

In general, a language for describing architectures, architectural
configurations and relations between different structural elements. It should
allow architects to use necessary operations to change the design to establish
a good mapping between the different facets, such as hardware and software.
It shoud allow this work to be controlled by a set of architectural rules.

Architecture model

A set of descriptions (that may be written in an architecture language)
that define an architecture or a configuration or a combination of an
architecture and a compatible configuration (that obeys the rules defined by
the architecture).

Architecture pattern

A proven generic solution to a class of system construction problems that
can be used to derive a specific architectural configuration to a specific
problem.

Architecture rule

Part of the architecture definition. An architecture rule constrains the
available design choices and thereby eases the task of the designer.

Assertion

A statement in a behavioural description that expresses a condition that
must be true at that point of execution. The purpose of inserting assertions to
the description is to ease the verification task.

118 Annex A1

Asynchronous
A system that cannot be said synchronous is said asynchronous.

B

Behaviour
Influence of the input and internal variables of a system on its output

variables. In the context of action semantics, the behaviour of a system can
be defined as the set of its operations.

Behavioural model

A model that describes the dynamic internal evolution (operation) of the
object of reference (system, subsystem, component) and its response to
external stimuli.

C

Causality
The relation between a cause and its effect or between regularly

correlated events or phenomena [5].
This concept is needed to explain the action semantics of behaviour. In a

system model causality is expressed as an asymmetric relation between
variables in a system, leading to a partial order (i.e., a set of maplets).

Causal chain

This concept is needed to explain the action semantics of behaviour. It is
defined by a set of maplets connecting a totally ordered subset of variables.
In a chain all variables but two appear exactly twice, once as fist element
once as second element of a maplet.

Channel

A subsystem of the functional configuration that defines a connectivity
mechanism between two or more functional entities (e.g., functions,
services, operations).

Clock

A concept used in a behavioural model to represent time. In the action
semantics it is defined as an application of the set of natural numbers into the
time domain with the usual metric: the number of clock ticks (events),
between two events is the difference of the associated naturals.

Glossary 119

Communication

In the context of system design, transfer of data among functional units
according to sets of rules governing data transmission and the coordination
of the exchange [6].

Component

A component is any part of a design that may be instantiated one or more
times and combined with other components to form a system or higher level
component [7]. It is a modular, deployable, and replaceable part of a system
that encapsulates implementation and exposes a set of interfaces [8]. In
architectural modelling, a component is a subsystem capable of performing
operations (services). See: Connector.

Component based design

A design paradigm where the system under design is composed of
discrete components such that the design of one component depends only on
the interface to other components, not on their internal design. Often
standard-based interfaces are used to enable system development from pre-
designed components.

Composition

The aggregation of two or more entities to form a new entity.
Composition does not in general preserve proven properties.

Conceptual design

A system design activity concerned with specifying the logical aspects of
the system organization, its processes, and the flow of information through
the system. [9]

Conceptual model

The Conceptual Model is a meta-model that serves as a reference and
gives a global view and perspective. Any design model should be a
specialisation of the conceptual model.

Concern

Those stakeholders’ interests which pertain to the development,
operation, or other key characteristics of the system (e.g. performance,
reliability, security, evolvability, distribution, …).

120 Annex A1

Concurrency
The occurrence of two or more non-ordered activities during the same

time interval. Concurrency can be achieved by interleaving or
simultaneously executing two or more threads. In the case of action
semantics, non-ordered events (i.e., associated to non-comparable tags) are
said concurrent.

Concurrent

In general, two or more activities of a behavioural model are said
concurrent if their execution order is not defined. Within the context of
action semantics, two non-ordered events in the same interval are said
concurrent.

Configuration

The actual construction of the system, typically hierarchical
decomposition to subsystems. The configuration must conform to the chosen
architecture of the system. In the simplest case a configuration can be
represented by a fixed graph that defines how the interfaces of subsystems
are connected.

Connector

In architectural modeling, a connector is a subsystem of the configuration
whose purpose is communication. A connector has two or more interfaces.
Connectors are architectural entities used to specify interactions between any
components and properties attached to those interactions. See: Component.

Constraint

A limitation or implied requirement which constrains the design solution
or implementation of the systems engineering process, is not changeable by
the performing activity, and is generally non allocable [10]. It is a boundary
condition within which the developer must remain while allocating
performance requirements and synthesizing system elements [11].

Constraint language

Specific, usually formal, language to express constraints. The Object
Constraint Language (OCL) of the UML is an example [8].

Continuous time

Marked by uninterrupted extension in space, time, or sequence [5]. In the
context of action semantics, continuous time is modelled as a mapping of the
set of reals into the time domain.

Glossary 121

Contemporary events
Two ordered sets of events are contemporary if there exists one event in

each set that is lower (higher) than one event of the other set.

Control
A means or device to regulate a process or sequence of events [12].

Control graph
Graphical notation used to describe how the control flows between

objects of a system. It is a graph whose nodes are control primitives. Contol
nodes have inputs coming from state variables and from external events.
Control primitives generate outputs that trigger system’s operations.

Coverage (of verification)

The degree to which a given verification procedure examines the state
space of the system under design.

Cycle

In the context of the action semantics of behaviour, a cycle is a chain in
which a maplet joining the last variable to the first one is added.

Cycle-based

Cycle-based simulators are trigerred by a general clock that associates
new events to each variable at each new clock cycle. Although they have to
consider non-significant events they are generally faster than event driven
simulators because they have no event queue to maintain.

D

Data flow (model)
Computational model which can execute completely on the basis of the

availability of data to its operations [3].

Data flow graph
A graphical notation used to describe a data flow model. A system is

specified by a directed graph in which nodes perform computation and edges
carry totally ordered sequences of events (represented by tokens).

Decomposition

The principle of breaking a problem to smaller pieces with potentially
simpler solutions or at least better understanding. In system design

122 Annex A1

decomposition means breaking the system to subsystems. Subsystems can be
(hierarchically) decomposed further as needed.

Derivative design

Modifications, changes, replacements, enhancements etc. of a product or
an integration platform in order to obtain a new instance, usually for a
different target product [13].

Derived requirements

Requirements that are not explicitly stated in the customer requirements,
but are inferred (1) from contextual requirements (e.g., applicable standards,
laws, policies, common practices, and management decisions), or (2) from
requirements needed to specify a product component. Derived requirements
can also arise during analysis and design of components of the product or
system [14].

Design

(1) The process of defining, selecting, and describing solutions to
requirements in terms of products and processes, or (2) the product of the
process of designing that describes the solution (either conceptual,
preliminary, or detailed) of the system, system elements or system end-items
[12].

Design artefact

A physical piece of information that is used or produced by the system
design process [8].

Design flow

Decomposition of the design process into a number of phases, e.g.
requirements definition, specification, architecture design, mapping,
software design, hardware design, and integration. Phases are composed of
activities, where actors do transformations of the system model of the system
under design (SUD) from a higher level of abstraction to a lower one.

Design flow model

A model of the design flow considered as a system. A design flow model
can be represented by patterns or activity diagrams.

Design pattern

A proven generalised solution to a generalised problem that can be used
to derive a specific solution to a specific problem.

Glossary 123

Design rule
Piece of knowledge applicable to a class of designs that defines a

constraint on how design shall be performed or on design content.

Design space
The set of all possible implementations of a system (whether realistic or

not). The design space is bounded in practice by the capabilities of the
technology, the cost of a solution and the imagination of the system
architect.

Design task

Activity of architect or designer which adds information and
specialisation to the system under design model (SUDM).

Design-for-functionality (paradigm)

Design paradigm emphasising detailed functions and their relationships
as first descriptions of a system.

Design-for-reuse (paradigm)

Design paradigm emphasising component design with reusability as one
of the main concerns.

Design-with-reuse (paradigm)

Design paradigm emphasising reuse of existing components reusability
as one of the main concerns.

Determinism

Occurrences in nature that are causally determined by preceding events
or natural laws [5].

Discrete event

The events triggering the system obey a discrete timing metric. If the
events have a common time base, then they are totally ordered. Note that
different subsets of events can have different discrete time bases, leading to
a partial order despite the system is discrete.

Discrete time

Property of a time metric in which between any two events there are a
finite number of events. A necessary condition is that the set of discrete
events is order-isomorphic to a subset of natural numbers (which implies
that it is totally ordered). This condition may be sufficient if the time domain
is infinite but not when it is finite. A sufficient condition for a set of events

124 Annex A1

to be discrete is that there exists a least lower bound of the distance between
two events.

Domain

An area of knowledge or activity characterized by a set of concepts and
terminology understood by practitioners in that area [8].

Domain understanding

Knowledge and experience related to the (problem) domain.

Duality (principle of architecture)
An interface of a connector can only connect to an interface of a

component and vice versa. That is, an interface of a connector (component)
cannot connect to an interface of another connector (component). See:
Component, Connector, Architecture, Configuration.

E

Encapsulation
A development technique that consists of isolating a system function or a

set of data and operations on those data within a module and providing
precise specifications for the module [4].

Environment

Another system which constitutes a closed system when composed with
the system under design.

Estimation

Estimation of performance: Getting data on the physical behaviour of a

system or device based on timing, power consumption, heat dissipation,
signal propagation, etc. [3].

Evaluation

The process of determining whether an item or activity meets specified
criteria [15].

Event

An event is a change in the state of the system. In certain models of
computation it can be represented as a pair consisting of a tag and a value.

Glossary 125

Event driven
Quality of a system whose behavior is triggered by events.

Evolution
Modification of system properties to meet the changing

needs/requirements of stakeholders. Since evolution (i.e., maintenance) is
the single costliest development activity, system evolvability becomes a key
aspect of architecture-based development.

Executable model

Model that can be translated to a form executable on a computer.

F

Facet
The subset of system under design (SUD) defined by a domain, for

example by an engineering discipline. In a N-dimensional design space, a
facet of the SUD is its intersection with any surface of dimension less than N
that represents a characterisation along a set of criteria.

Finite state machine

An abstract machine consisting of a set of states (including the initial
state), a set of input events, a set of output events, and a state transition
function. The function takes the current state and an input event and returns
the new set of output events and the next state. Some states may be
designated as "terminal states". The state machine can also be viewed as a
function which maps an ordered sequence of input events into a
corresponding sequence of (sets of) output events [1].

FSM can be non-deterministic either because the environment is non-
deterministic (inputs order is unknown) or because they can transit randomly
to several states (behaviour is incompletely specified). Making a non-
deterministic FSM deterministic often results in an exponential growth of the
set of states.

FSMs can be organized hierachically and can communicate (e.g., State-
charts).

Function (mathematical)

A relation that defines an unique mapping from one set onto another.
That is, F ⊆ A x B is a function, if there is one and only one element in F for
each a ∈ A. A function is denoted by F: A → B. If (a, b) ∈ F: A → B then
we write F(a) = b, meaning the application of F to a yields b.

126 Annex A1

Function (service)

A task, action or activity that must be accomplished to achieve a desired
outcome, or to provide a desired capability [10].

Functional

Designed or developed chiefly from the point of view of use and/or
performing or able to perform a regular function or service [5].

Functional analysis

Examination of a defined function to identify all the sub-functions
necessary to the accomplishment of that function; identification of functional
relationships and interfaces (internal and external) and capturing these in a
functional architecture; and flow down of upper-level performance
requirements and assignment of these requirements to lower-level sub-
functions [14]. (See also "functional architecture.")

Functional architecture

The architecture that guides the (functional) decomposition of the
functionality of the system under design (SUD). See: Functional
configuration.

Functional configuration

The hierarchical arrangement of functions, their internal and external
(external to the aggregation itself) functional interfaces and external physical
interfaces, their respective functional and performance requirements, and
design constraints [14]. See: Functional architecture.

Functional model

A functional model describes a system or component by means of
functions. These functions define a mapping of a subset of the set of
interface variables (IV) of the system (or component) onto another sub-set. If
the union of these two subsets is not equal to the set of IV, the functional
model is partial. If the two subsets are always disjoint, then the first can be
qualified as inputs and the second as outputs. A behavioural model can be
functional, if time appears as annotations (clocks, delays...) to a functional
model. A functional model can be behavioural, if time is added to the
variables used by the functions.

Glossary 127

Functionality
The functionality of a system is its customers use model or its marketing

product requirements. The functionality is part of the specification
document.

G

Generics
The set of parameters that make an entity to be a family of less generic

entities.

Global time
The situation which occurs when all events of a system behaviour are

given a time stamp in the same totally ordered time domain.

Global variable
A variable that is accessible to two or more processes of a concurrent

behavioural description.

H

Hardware (architecture or design)
All or part of the physical components of an information processing

system [6].

Hardware architecture
A special case of an architecture where all the subsystems are pure

hardware.

Hardware configuration
The composition of hardware from its parts. This is guided by the

hardware architecture.

Hardware/software co-design
The simultaneous and interactive hardware and software design of parts

of a system. This implies the ability to modify the hardware-software
partitioning at any time during the design.

128 Annex A1

Hardware/software partitioning
Step of design process that decides what parts of a system will be

allocated to hardware implementation and which parts to software
implementation, respectively.

Heterogeneity

Property of a system composed of sets of different kinds subsystems.

Hierarchy
A means to represent decomposition and composition. A system can be

decomposed into subsystems presented at a lower level of a hierarchy.
Several subsystems can be composed into one system presented on a higher
level of a hierarchy. This also applies to different views of a system: any can
be decomposed into hierarchies, and an open methodological issue is the
correspondence between one hierarchy of, say, a model, and that of an
architecture. The hierarchy is not corresponding to the level of detail, but
only to the level of command assigned to pieces inside a composition.

I

Idiom
An idiom is an expression peculiar to certain description technique or

design culture. In the particular case of patterns it designates a specific
implementation of a pattern with a choice of tools and parameters.

Implementation

In general, 1) a definition of how something is constructed or computed
or 2) the process of creating an implementation. In the domain of systems
engineering, an implementation is the end product of a system design
process. The final implementation is the status of the system as delivered to
its users.

Implementation mapping

A mapping from the set of functional subsystems (services, functions,
operations and channels of the functional configuration) to the set of
subsystems (components and connectors). It defines where different parts of
the system functionality are implemented. The mapping must obey
consistency rules that among other things ensure that the necessary
communications can be implemented.

Glossary 129

Incompleteness (of specification)
A specification that leaves the details of some system features ambiguous

is said incomplete.

Indeterminism
Possiblility for a system to go from one particular state to several

successor states with no choice criteria.

Informal specification
Specification expressed by techniques, e.g. natural language document,

that do not belong to the class of formal techniques, or specification that has
not been approved.

Inheritance

The mechanism by which more specific elements incorporate structure
and behavior of more general elements related by behavior [8].

Instantiation

Instantation is the mechanism that brings to the provision of an instance
(a concrete evidence of) in support of the description of a specific target. The
target of electronic system design is typically a specification, which goes
through a sequence of steps - a “procedure” – that can be partially or totally
supported by a computer (while an instance can be provided also for a
theory, concept, claim, or the like). A single specification can enter p
different procedures, which in turn can provide i different instances. Thus, p
times i instances can be derived from one single specification. As in spoken
language, an instance signifies the case or occurrence of anything, thus
expressing the event of tangible innovation.

Instruction accurate

A modelling level in which the granularity of all events correspond to
processor instruction fetch

Intellectual property (e.g. out-source, pre-defined, hard/soft/firm)

(1) Law. property that results from original creative thought, as patents,
copyright material, and trademarks. (2) Reusable (encapsulated,
documented) information about a system and how to develop it. (3) The
original idea from which springs an added value.

130 Annex A1

Intellectual property instance
An intellectual property instance (IPI) is an implementation of the

intellectual property (IP) in the form of software code, or hardware device,
or whatever mixture of them. The IP rights are put forth on such instances.

Interface

An element of a system that defines a communication capability with
other systems. A system can communicate with other systems only through
its interfaces. A system may have zero or more interfaces. A system with
zero interfaces is defined as a closed system. An interface is defined by
various characteristics pertaining to the services, physical interconnections,
signal exchanges, and other characteristics, as appropriate. It may include
not only the static types and sizes of ports, but also the definition of the
entire protocol necessary to communicate.

Interface based design

Interface-based design is the design flow that moves design from an
interconnected set of communicating processes with clearly defined and
separately captured interface protocols (usually intended to test conceptual
behavior) to interconnected realized components in the final system. At this
design point, interactions conform to the interface specifications captured at
all the levels of abstraction. At the higher levels of abstraction, the set of
operations or tasks required to perform an application are initially linked by
“ideal” channels through which information is sent and received as needed,
without concern for conflicting resource requests or synchronization. At this
stage, the architectural design may be concerned only with functionality or
with communication protocols. As this design is refined, common
communication resources are specified, control protocols administered, and
sharing of functional units identified. The common issues associated with
system design become visible, and the design moves from that of the ideal to
the real. The separate specification of the interfaces allows the design
process to proceed fully and concurrently with the minimum of design
interference between teams working on separate components [7].

Interface model

A component model that describes the operation of a component with
respect to its surrounding environment. The external port-structure,
functional, and timing details of the interface are provided to show how the
component exchanges information with its environment. An interface model
contains no details about the internal structure, function, data values, or
timing other than that necessary to accurately model the external interface
behavior. External data values are usually not modeled unless they represent

Glossary 131

control information. An interface model may describe interface details of a
component at any level of abstraction. The terms "bus functional" and
"interface behavioral" have also been used to refer to an interface model and
are considered synonyms. The more general interface model name is
preferred to the anachronistic term "bus functional" [7].

Invariant

A subset of the properties of the system that will remain as permanent
properties, to be satisfied forever. They will constitute the invariant.

L

Layer
The organization of classifiers or packages at the same level of

abstraction. A layer represents a horizontal slice through an architecture,
whereas a partition represents a vertical slice [8].

Loop

In the context of the action semantics of behaviour, a set of operations
derived from a cycle is a loop

M

Maplet
This concept is needed to explain the action semantics of behaviour. It is

defined by an ordered pair of two variables belonging to the specification of
the system. It denotes the influence exercised by the first variable on the
other variable.

Meta-model

A model that defines the language for expressing a model [8].

Method
A formal, well-documented approach for accomplishing a task, activity,

or process step governed by decision rules to provide a description of the
form or representation of the outputs [10]. Within an engineering discipline,
a method describes a way to conduct a process. In the context of systems
engineering, a method is defined as consisting of [16]:

1. An underlying model
2. A language

132 Annex A1

3. Defined steps and ordering of these steps
4. Guidance for Applying the method

Methodology
The term methodology generally means a study of methods. A

methodology is a coherent set of theories, methods, techniques and/or
principles used to analyse and/or develop methods for a particular domain,
for example the domain of systems engineering [16].

Metric

A quantitative measure of the degree to which a system, component or
process possesses a given attribute [4].

Model of communication

The mathematical instruments necessary to build a model of the
communication between two or more systems.

Model of computation

The mathematical instruments necessary to build a model of what the
system can compute. Examples are: Turing machines, TLA, CHOCS,
Lambda calculus, Pi calculus (also a model of communication), CCS, Petri
nets, Linear logic, etc.

Module

A unit of design description that is discrete and identifiable [4].

N

Non-functional property
Attribute of a system or component that does not contribute to

functionality or distinguish itself through functionality.

O

Object
An entity with a well-defined boundary and identity that encapsulates

state and behavior. State is represented by attributes and relationships,
behavior is represented by operations, methods, and state machines. An
object is an instance of a class [8].

Glossary 133

Objective function
In the context of synthesis process, objective function measures the

"goodness" of the result.

Operation
A service that can be requested from an object to affect behavior. An

operation has a signature, which may restrict the actual parameters that are
possible. An operation can be a hierachy of functions and other operations
[8]. In the action semantics of behaviour an operation is defined by the
association of an event to a function (or multi-function).

P

Parallel
In general, two or more activities of a behavioural description are said

parallel if they occur at the same time. In the context of the action semantics
of behaviour, two sequences that are not in the same thread are parallel if
they have contemporary events. In some models, the events of parallel
sequences can be interleaved.

Parallelism

In general, a property of a behavioural description that has parallel
activities. In the context of the action semantics, a property of having two or
more parallel sequences.

Parameter

A variable that is given a constant value for a specified application [4].
Design parameters are qualitative, quantitative, physical, and functional
value characteristics that are inputs to the design process, for use in design
tradeoffs, risk analyses, and development of a system that is responsive to
system requirements [17].

Partitioning

The process of identifying parts in a whole, for example subsystems in a
system.

Performance

An observable and measurable characteristic or attribute of a system. It
represents, in general, a quality attribute that can be used to establish how
well a functional or non-functional requirement is met. There are multiple
performance characteristics that are of interest for a system or component.

134 Annex A1

Each characteristic could be called a “performance index” [18]. Note that a
performance is in general a non-functional characteristic.

Performance evaluation
Performance evaluation is the process of checking the system properties

with respect to given quality attributes [10]. See performance.

Performance model
A particular view of system under design (SUD). The SUD may include

several performance models each of which are used to analyse a given
quality attribute. See performance [7].

Physical system

The tangible target of system design. Manufacturing is responsible of
transforming SUD to physical system and reproducing them.

Platform

A platform is a package of technology to deliver a predictable
functionality, i.e. a platform can be relied upon to behave (physical) as
predicted (modeled). The deployment of a platform does not require detailed
knowledge of the process within (beneath) it and it is completely supported
in its context of use. A platform is a special kind of sub-system, in that its
functionality-in-context is a finite but large degree of flexibility, such that it
may be used to implement a number of different things. Examples of
platform technologies are ARM Instruction Set, Gate-Array Logic, Micro-
Controler, C/C++. Platforms can be hierarchical (or layered) such that one
platform technology uses another beneath it. Example: ARM CPU
implemented on Gate-Array.

Depending of the owner and purpose, platforms can be classified as
product platforms and integration platforms. Product platforms are used by
system houses as an isolation layer between their product family design and
the implementation technology. Integration platforms are used by
implementation technology vendors and component vendors to facilitate
their customers' product development and their own technology protection.
In both cases the isolation provided by the platform facilitates technology
refreshment, i.e. changing the underlying implementation technology with
minimal impact to the product design [13].

Glossary 135

Platform based design
A layered design methodology that utilizes platforms. The goal of

platform based design is to achieve high productivity through large scale
planned design reuse[13].

Pragma

An element in a design description that direct the operation of specific
tools.

Process

A set of interrelated activities which transform inputs to outputs [19].

Proof
Logical process that establishes the truth of a statement.
Property (static, dynamic, other)
A predicate on variables of the system that can be true or false.

Protocol
A set of semantic and syntactic rules that must be followed to perform

communication within a communication system (i.e. connector).

Q

Queue
An ordered set of entities (elements) where the removal and insertion of

elements is restricted to the first and last element, respectively.

R

Refinement (of specification)
A refinement is the action performed by the system designer on a

specification in order to introduce his knowledge and experience to produce
a more detailed specification, closer to an implementation. The design
choices of the designer, operated through the refinement process, reduce
progressively the undeterminism of the specification.

Relation

An aspect or quality (as resemblance) that connects two or more things or
parts as being or belonging or working together or as being of the same kind
[5]. Mathematically a relation is defined by a subset of the product of two

136 Annex A1

sets. If (a, b) ∈ R ⊆ A x B then we write a R b, meaning a is related to b by
R.

Relationship

A formalised statement of interdependence.

Repository (of system intellectual property)
Organised and maintained facility for storing and retrieving system

intellectual property.

Requirement
Requirements are statements of fact or assumptions that define the

expectations of the system in terms of mission or objectives, environment,
constraints, and measures of effectiveness. Requirements should not
prescribe or imply implementation details unless they are specifically
features which are required.

Requirements analysis

The determination of product-specific performance and functional
characteristics based on analyses of: customer needs, expectations, and
constraints; operational concept; projected utilization environments for
people, products, and processes; and measures of effectiveness [14].

Requirements formalization

A particular kind of analysis that transfoms all relevant requirements into
logical properties suitable for reasoning or readable by various formal tools.

Resource

An entity that is utilized or consumed during the execution of a process.
Resources may include diverse entities such as personnel, facilities, capital
equipment, tools, and utilities such as power, water, fuel and communication
infrastructures. Resources may be reusable, renewable or consumable [19].

Response (of simulation)

In the context of simulation, response is the result of aplying a specific
stimulus in a simulation process.

Reusability

Reusability is the degree to which a module, component, or system may
be used again in other instances for which it may or may not have been
specifically intended. Reuse occurs across several dimensions, such as life-

Glossary 137

cycle phases, at the packaging levels, and across model-years. Reuse occurs
at various distinct levels, such as [7]:
1. reuse of components (hardware parts) or modules (software object-code),

also called direct implementation
2. reuse of hardware logic or software source-code recast in new technology

or integrated with other logic or code
3. reuse of architecture through re-implementation of functional block

concept with new partitioning, integration, or technologies

Reuse (of system design know-how), system intellectual property reuse
The action of using again a part of a design developed previously. The

levels of reuse are:
1. Using again to produce valuable results, like for a tool: the value doesn’t

come from the object itself but it is exploited in a field different from the
one the object belongs to (a synthesis tool applied to different libraries).

2. Using again to produce valuable new objects: the value comes and it is
exploited in the same field the object belongs to (different semi-custom
ASICs built with the same library).

3. Using again to extend the reach of the object: the value comes from the
extension of the exploitation field the object belongs to (same algorithm
applied in a more general case).

4. Using again the metaphor to produce different objects: the value comes
from a new field, not existing before (exploitation in new different
markets).

Role
An actor plays a role in an activity. A role is a specific behavior of an

actor participating in a particular context. In the context of system design, a
role is defined by a set of actions/activities of the system design process.

S

Semantics
The relationships of symbols or groups of symbols to their meanings in a

given language [4].

Sequence (of operations)
In the action semantics of behaviour a sequence is defined as a set of

totally ordered operations derived from at least one causality chain.

138 Annex A1

Service
A task, action or activity that must be accomplished to achieve a desired

outcome, or to provide a desired capability.

Simulation
A mathematical model that emulates a system, usually using a standard

simulation procedure or computer language, to predict the value of a
parameter or set of parameters for a given system.

Simulation mode

Discrete event simulators (Verilog, VHDL) use a global event queue in
which events are chronologically sorted.

Continuous simulators are generally based on an equation solver. In case
of linear approximation they solve a system of linear equations, more
generally they solve a system of algebro-differential equations which is often
stiff and requires implicit numerical methods.

Cycle-based simulators are trigerred by a general clock that associates
new events to each variable at each new clock cycle. Although they have to
consider non significant events they are generally faster than event driven
simulators because they have no event queue to maintain.

Instruction accurate (or instruction based) simulators emulate the
execution of a processor-under-design instruction code. They are a special
case of event driven simulators in which the event list is the list of
instructions (the program) to be simulated.

Mixed-mode simulators combine different simulation modes to simulate
multi-level models.

Simulation scenario

A set of stimuli and expected responses for a simulation process.
Simultaneous
Several events treated as a single one while keeping their consequences

distinct. For example the changes in the values of two variables are
associated with the same tag, or several variable assignements take place in
the same transition, etc.

Software (architecture or design)

All or part of the programs, procedures, rules, and associated
documentation of an information processing system [6].

Software architecture

A special case of an architecture. It is defined with the terms of the
software world and applies to the software parts of the system only.

Glossary 139

Software configuration

The decomposition of software to its subsystems. This is guided by the
software architecture. It contains all software routines and services for
meeting a system’s objective. Software application, operating system and
communication protocols can describe layers of a software architecture

Specialisation

In object modelling techniques, specialisation means derivation: the
derived type or class is the base type or class, but with additional (or
modified) properties. The derived (sub-) type or class is a specialisation of
(extends) the base (super) type or class.

Specification (formal, informal)

A specification is the set of the information related to a system to be
designed (variables, functionality, properties) which is available at the
beginning of a design process. A specification can be informal or formal.
Extracting a formal specification from an informal one is the first task of the
system designer to be done in co-operation with the informal specification
owner. A specification can be complete, incomplete or redundant, but the
formal specification must be consistent, non-ambiguous and machine
process-able. It can be written using a single notation or multiple inter-linked
formalism. The result of the design process can be either an implementation
of the designed system or, in case of a multi-step design process, a more
detailed specification to be used by the next design step.

Stakeholder

An interested party having a right, share or claim in the system or in its
possession of characteristics that meet that party’s needs and/or expectations
[19]. It is a person or party who has a (financial) interest in the successful
outcome of the identified activity. In the context of the design process model
a stakeholder is a special case of a role.

State (of SUD)

The state of the system under design (SUD) is a condition that
determines the set of all sequences of events that can occur in the course of
execution from that point on. In essence, the state of the SUD encapsulates
all that needs to be known of its execution history in order to reason about its
possible future behaviour. The set of possible states of the SUD forms its
state space. The state space can be continuous or discrete, finite or infinite.
At given instant of time, the SUD is always in one of its states. Changes in
the state of the SUD are triggered by events, either external or internal.

140 Annex A1

As a practical example, the state space of a SW object is the cartesian
product of the sets of the possible values of its variables. This is finite and
discrete, provided that all the variables are finite and discrete (which they are
in any real computer program). Also the state space of any digital HW
component is finite and discrete. In the case of functional components it is
possible, that the state space is continuous and/or infinite.

Within the context of action semantics, the state of the SUD depends on
the state variables and only on them. This can be elaborated as follows: Each
variable is associated with a set of values. The the state of the SUD at given
moment (of time) depends on the values of variables at that moment. Hence
the state space is the cartesian product of all variables' value sets.

Structural model

A structural model represents a component or system in terms of
interconnections of its constituent components. The components can in turn
be described structurally then creating a hierarchy. The hierarchy can be
related to, for example, the organisation of a set of software modules or to
the physical organisation of a specific implementation. A structural model
can represent either an abstract network or be isomorphic to the physical
structure of a specific implementation. In any case it specifies the
components interconnection topology.

Structure

Structure is something arranged in a definite pattern of organization, the
organization of parts as dominated by the general character of the whole and
the aggregate of elements of an entity in their relationships to each other [7].
It can be defined as the "Architecture as implemented".

Subsystem

A system that is part of a larger system.

Synchronicity
An axiom which allows two or more variables of the system to have

changes in their values such that these changes are mapped on the same
element in some associated partial order. When we use an ordered set of tags
to represent time and when we associate each change in the value of any
variable with a tag, then synchronicity allows several value changes to be
associated with the same tag.

Synchronous

Property of operations triggered by simultaneous events.

Glossary 141

System
A combination of interacting elements organised to achieve one or more

stated purposes. A whole that cannot be divided into independent parts
without losing its essential characteristics as a whole. It is complete in its
context and can be used without reference to its internal processes.

System design

A process of defining the hardware and software architecture,
components, modules, interfaces and data for a system to satisfy specified
requirements [9].

System design conceptual model

A meta-model comprised of models of system under design and system
design process.

System design description

A desricption of the system under design (SUD). It should include all the
views of SUD needed by the development and reproduction organisation.

System design process

A description of how the product development of system under design
(SUD) in a specific organization is arranged. Its core is a design flow that
describes the decomposition of the design process into a number of phases.
Design process is associated with activities for measuring the quality (in
broad sense) of the SUD. If the quality criteria, i.e. properties of the SUD are
not met at a phase, iteration may occur to one of the previous phases. A true
process is regular and repeatable, and is traversed many times without
change. The value of establishing a process is that it can be optimised by
feedback and continuous improvement.

System designer

An engineer who analyzes requirements, performance and functions of
the total system including hardware and software, partitions this system into
elements showing requirements and functions allocated to these elements.

System (design) intellectual property

As to design processes, system intellectual property can be:
1. Components of the process
2. Know-how of methods (analysis, synthesis, etc.) encapsulated in

rules and guidelines (possibly implemented by tools and design
patterns)

142 Annex A1

3. Know-how of design styles (modelling, verification, etc.)
encapsulated in checkers

4. Know-how of use of tools encapsulated in scripts.
As to design artefacts, system intellectual property can be:

1. Application components
2. System architecture
3. SW architecture
4. HW architecture
5. Knowledge of an invariant set of properties
6. System components (= sub-systems) that are in the stable core area of

the domain, i.e. there is a high probability for reuse
7. Out-source intellectual property that are developed and maintained by

3rd party on behalf of system house
8. Pre-defined star intellectual property.

System intellectual property reuse
A methodology associated with discipline and means to facilitate use

again of design artefacts and design knowledge at system-level, i.e. during
early phases of product development (e.g. requirements definition,
specification, architecture design, mapping). The reuse methodology
requires establishing design-for-reuse and design-with-reuse processes.

System specification language

An informal or formal language able to capture the available knowledge
about properties and behavior of a system.

System Specification and Design Language

A language to describe a system under design (SUD) at required levels of
abstraction providing required views to the SUD in order to allow actors to
perform transformation, validation and analysis tasks that are specific to the
level of abstraction and to the design process applied. Specifically, it should
allow the description of system in terms of external and internal views to the
modeling domains of structure, connectivity and behavior.

System under design (SUD)

The set of models representing the conceptual object of system design. It
includes all intermediary models produced during the system design process.

Glossary 143

T

Technical requirement
Properties (or attributes) of products or services to be acquired or

developed [14].

Thread
A single path of execution through a program, a dynamic model, or some

other representation of control flow. Also, a stereotype for the
implementation of an active object as a lightweight process [8].

In the context of a multi-tasking operating system, a thread is a separable
process within the current task that shares the same memory space as the
other threads in the task (as opposed to tasks themselves that all have the full
memory space available to them).

In the context of the action semantics of behaviour, a thread is a set of
causal chains with common variables. It is a directed acyclic graph (DAG)
and it represents the dependency graph of variables.

Time base

A set chosen to be order-isomorphic to the set of events . It can be an
enumerated, a discrete, a countable or a continuous (real) set, with or
without partial or total order, with or without metric.

Time metric

In the case of timed events, the time base may be a metric space. The
events are said to have a time metric. Delays can be specified, one pass from
chronology (total order) to chronometry (measure).

Tool interface

The facility offered by a tool for interaction by users or by other tools.

Traceability
The capability to track system requirements from a system function to all

elements of the system which, collectively or individually, perform the
function; an element of the system to all functions which it performs: a
specific requirement of the source analysis or contractual constraint which
originated the requirement.

Transformation

A design activity that transforms a design artefact to another related
design artefact. Typically a design transformation refines a design artefact

144 Annex A1

from one level of abstraction to a lower level that is closer to
implementation.

U

Use case (or scenario, or model)
The specification of a sequence of actions, including variants, that a

system (or other entity) can perform, interacting with actors of the system
and which demonstrate predictable response [8]. A set of Use-Cases is used
to demonstrate gross functionality in a system under design (SUD).

User requirements

A set of requirements that describe services and related properties and
constraints that user(s) want a system to deliver.

V

Validation (strategy)
Confirmation, through the provision of objective evidence, that the

requirements for a specific intended use or application have been fulfilled.
Validation in a system life cycle context is the set of activities ensuring and
gaining confidence that the system is able to accomplish its intended use,
goals and objectives [19].

Variable

A symbol representing a quantity that may assume any one of a set of
values [5].

Verification

The process of evaluating a system or component to determine whether
the products of a given development phase satisfy the conditions imposed at
the start of that phase [4]. Verification can be by observation, by
experimental use, by simulation of a system’s model or by proof that a
formal representation of the system under design (SUD) implies its formal
specification.

View

A projection of a model which is seen from a given perspective or
vantage point and omits entities that are not relevant to this perspective [8].
In the case of the system under design (SUD), a view is the result of looking

Glossary 145

at the SUD from the perspective of a stakeholder, in particular from the
various perspectives of intending deployers. To be sucessfully used
(deployed) a SUD must have all of the required views available. Formally a
view is the result of applying a viewpoint to a specific SUD.

Viewpoint

A viewpoint is a way of looking at something, for example the system
under design (SUD). A viewpoint defines how a view is obtained from a
specific SUD. Formally it is a function that yields the models of interest (a
view) when applied to SUD. In the design process a role may define several
viewpoints.

W

Workflow
A workflow is a set of inter-related activities performed by a set of actors

on a set of artefacts.

REFERENCES

[1] Howe D. (Editor), FOLDOC, The Free On-line Dictionary of Computing.
http://www.foldoc.org/

[2] Abrial J.-R. The B Book: Assigning Programs to Meaning. Cambridge University
Press, 1996.

[3] EDAA System Design Technology Roadmap. Available from http://www.edaa.com/
[4] IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology
[5] Merriam-Webster's Collegiate® Dictionary, Tenth Edition. ISBN: 0-87779-709-9
[6] ISO/IEC 2382-1:1993, Information technology Vocabulary Part 1: Fundamental terms.
[7] VSI AllianceTM System Level Design Model Taxonomy, Version 2.1 (SLD 2 2.1),

July 2001, Available from http://www.vsi.org.
[8] OMG Unified Modeling Language Specification, Version 1.4, September 2001,

Available from http://www.omg.org/
[9] ISO/IEC 2382-20:1990, Information technology -- Vocabulary -- Part 20: System

development
[10] IEEE Std. 1220-1998: Standard for Application and Management of the Systems

Engineering Process
[11] MIL-STD-499B, Systems Engineering (Draft Military Standard)
[12] INCOSE Systems Engineering Handbook V2.0, Available from http://www.incose.org/
[13] Chang, H., Cooke, L., Hunt, M., Martin, G., McNelly, A., Todd, L. Surviving the SOC

revolution: A Guide to Platform-Based Design. Kluwer Academic Publishers, 1999,
ISBN 0-7923-8679-5.

146 Annex A1

[14] CMMISM for Systems Engineering/Software Engineering/Integrated Product and
Process Development, Version 1.02, CMU/SEI-2000-TR-031, ESC-TR-2000-096,
November 2000

[15 DOD-STD-2167A
[16] Kronlöf K. (Editor), Method Integration: Concepts and Case Studies. John Wiley &

Sons, 1993, ISBN 0-471-93555-7.
[17 MIL-STD-1388-1A,
[18] Thomé B. (Editor), Systems Engineering: Principles and Practice of Computer-Based

Systems Engineering. John Wiley & Sons, 1993
[19] ISO/IEC CD 15288 CD3, System Life Cycle Processes.

Annex A2

ACTION SEMANTICS

Jean Mermet
ECSI, Grenoble, France

Abstract: This annex relates together a series of definitions of the main terms used in the
SYDIC-Telecom glossary and the SDCM chapter, with regard to the behavior
of a system. This is not yet another formal semantics, but mostly an attempt to
introduce in a concise way more internal consistency and more precise
meaning to several usual modelling concepts.

Keywords: System behavior, model of computation

1. INTRODUCTION

This annex defines and relates the basic concepts that occur in the
different aspects of the behavior of a system. There is a link to the section
dealing with abstraction layers in the SDCM chapter and the idea is that of a
top down constructive approach. However the subject is difficult and
addressed by an immense literature. There is no claim here to produce a new
formal semantic representation of system behavioral concepts. The goal is to
introduce concepts in the order which is required by their mutual
dependencies and to give illustrations of their definitions through simple
examples.

2. TOP-DOWN INTRODUCTION OF CONCEPTS

Binary relation:

At the beginning of the identification of a system there are variables

(there can be different sets of variables defining different types) and some of

148 Annex A2

them are linked by the assumption of mutual influence. This is a symmetric
relation. When made explicit it can take the form of a property because what
is described has properties not behavior. The functions, if any, appear in
equations. It can be the static equilibrium of a system in its environment
without stimuli (this corresponds to abstraction level 1).

Example 1: Let x1, x2,…. , xn∈ N10 be the set of 10 digit integers,
representing for example phone numbers. Then x1←→x2 is the binary
relation establishing that any two numbers could be connected.

Example 2: Let u1, u2,….,un ∈ U be a set of phone users. If any user has a
single phone number, there is a binary relation ui ←→ xi associating a 10
digit natural to each user (bijection in this case).

Property:

A property on some variables is either their belonging to some sets or

their appearance in a predicate that must remain always true to guarantee the
property.

Example 3: For any x1, x2, x3 ∈ N10 (Typing),
¬(((x1←→x2)&(x2←→x3))V((x2←→x3)&(x1←→x3))V((x1←→x2)&(x1←→x3)))
“The connect relation cannot connect any given number to 2 other
numbers at the same time”.

Equations:

An equation of n variables en is a n-uple of variables en ∈ {V, V, .., V}

tied together by a property

Example 4: ik ∈ V being the currents at an electric node:
i1 + i2 + …+ in = 0 (Ohm law)

Example 5: u1, u2,….,uj ∈ Uj, Uj ⊂ U being the subset of users connected
to a phone station Sj, we have property:
Card { (xl←→xk) = true} ≤ µ, µ being the capacity of the station.
But we can also have:
max(µ) =1/2 Card {Uj} (if the capacity allows all users to talk to each
other at the same time, while satisfying the previous property).

Action Semantics 149

Invariant:

A subset of the properties will remain as permanent properties of the

system, to be satisfied forever. They will constitute the invariant.

Maplet:

A maplet is an ordered couple of 2 different variables belonging to the

specification of the system. It denotes the influence exercised by the first
variable on the other variable.

Example 6: ui ——> uj, user ui wants to call user uj

Example 7: stl ——> stk, station l connects itself to station k
Example 8: ui ——> stl, user ui is identified by his station l

Example 9: stk ——>uj station k connects itself to its customer uj

Causal Chain:

A chain is a set of maplets connecting a subset of variables in such a way

that all variables but 2 appear exactly twice, once as fist element and once as
second element of a maplet.

Example 10: c1 = (v1, v4), c2 = (v4, v5), c3 = (v5, v7), c = (v7, v8)

Example 11: ui ——> stl,, stl ——>stk, stk ——> uj, user ui wants to call
user uj, this is done through his station and uj’s station

Cycle:

A cycle is a chain with a maplet added to join the last variable to the first.

Thread of maplets:

A thread of maplets is a set of causal chains with common variables. It is

a directed acyclic graph (DAG) the variable dependency graph. It is also the
skeleton of a multiple pre--functions.

Example 12: Let us consider the following 6 chains

x1 —> x4—> x7 —> x8 —> x11 —> x14

x2 —> x4 —> x8

x7 —> x12 —> x15

150 Annex A2

x2 —> x5—> x7 —> x10 —> x14
x3 —> x5—>x9 —> x10 —> x13

x3 —> x6 —> x9 —> x15

The corresponding DAG is:

Causality:

A set of maplets (sub-set of a Cartesian product {V, V}) establishes an

asymmetric relation that pre-figures causality.

Pre-function:

Each maplet, because it has a single target variable, can be considered as

a not yet defined function and can be refined into a function. Similarly,
several maplets which have the same target, can be considered as yet-to-be-
defined functions of the cartesian product of the sets of their origin variables
on the set of the target variable. Let’s call them pre-functions. Contrarily to
functions, for which each argument has a single image, pre-functions may be
defined with the same set of origin variables and different target variables.
Each will be refined as different functions of the same variables.

Finally, in the same way as a function of functions is a function, a thread
of maplets that has a single terminal variable is a pre-function.

Example 13:

 x1 x4

 x2 x5 x7 x10 x13

 x3 x6 x9 x12

The set of pre-functions x4 (x1, x2), x5 (x2, x3), etc. define x13 as a pre-
function of x1, x2, x3.

x
8 x

14
x

13 x1

x2

x8

x3
x5

x4

X6

x7

x9

x10

x12

x11

x13

x14

x15

Action Semantics 151

Example 14: Let’s assume now that the users belonging to a set U are
mobile and that there is a network of fixed switching stations ST
supporting phone connections. There is a need for a pre-function “attach
(ui,li) —>stk” able to attach user ui, when he is at location li , to station stk
(we shall assume that some device can provide li). Then station stk will
connect itself to station sti (where ui is registered as a customer). Station
sti will connect itself to station stj where user uj is registered, thanks to the
number xj sent by ui.. Then attach (uj, lj) —> stl will allow the direct
connection of stk to stl. As soon a the connection is set a pre- function
“charge bill(li, lj) —> aui” starts measuring the duration of the connection
to charge the account of ui.

 ui xj sti stk stj stl uj
 xi
 li lj aui

Functions:

Functions, in the mathematical sense are applications between sets. Any

element of the first set has a single image in the second set. Pre-functions are
applications between “things” or “objects”(”users” for example above).
They can have multiple interpretations depending on the multiple attributes
and properties of the considered things or objects. They will be refined
progressively into functions between the sets of attributes of these things or
objects. These refinements will also give implementable types.to the values
of the attributes

System function:

The overall function of a system can be defined as the influence of its

input variables on its output variables. The composition of all maplets from
the inputs down to the outputs constitute an abstraction of this function.

Event:

An event can be defined as the occurence of the change of the value of a

variable or a set of variables. In the former case it is practical to characterise
events as it is proposed by Lee and Sangiovanni as a pair {tag,value} but, of
course, other definitions are possible. In the case for example of a system
described as a set of predicates and its changes described as substitutions
operated on variables by a predicate transformer, the couple of tags

152 Annex A2

{before,after} is enough to describe the system as a FSM in which
substitutions make the system transit from the state of its variables before to
the state of its variable after substitutions, and so on iteratively.

At this level causality only exist.
In the {tag,value} paradigm, each variable is associated an element of a

set of tags. However the fact that two variables can have the same tag raises
the basic question whether or not 2 events can be simultaneous. The positive
answer is the synchronicity axiom and must be considered as a modelling
approximation that can become legitimate already in early phases of
refinement. But initially tags will be assumed different. The synchronicity
hypothesis will be a particular interpretation of concurrency (see below).

If synchronicity is assumed, then concurrent events that are not tight by
any causality, (they don’t belong to the same ordered set), can be
simultaneous.

The set of used tags must be given initially a partial order isomorphic to
the causality of the maplets (variable dependencies).

Example 15:

 ui xj sti stk stj stl uj

 xi
 li lj aui

Let us chose an ordered set of 10 tags {t1,t2,t3,t4,t5,t6,t7,t8, t9,t10}. In the
graph the tags are associated to the variable on the left of the arrow. The
same tag may appear on different edges, because a given event (for
example new value for (u1,t1)) can be seen in different nodes (xi,xj). But
it in the case of t3 for example, we are assuming that 2 events (changes of
(xi,t3), (li,t3)) have the same tag assuming in this case the synchronicity.
The {tag,value} paradigm is naturally associated to a trace semantics.

The way such semantics relate to others like, the functional (also called
denotational) semantics, or an operational, semantics, or the weakest
precondition predicate transformer semantics, is a difficult problem.

Event chain:

An event chain is the association of a totally ordered set of tags to a chain

of maplets. We can define this chain of events as an event associated to the
target by causality.

t
1

t1

t1

t4 t2 t5 t6 t8
t3

t7 t3 t7

t8

t3

Action Semantics 153

Example 16: From above

 t1 t2 t4 t5 t6 t8
ui xj sti stk stj stl uj

In the transition system interpretation, an event chain is an ordered set of

transitions between the states of the system (like in state-charts). Inside a
single transition there can be several causal chains that are time-
free(causality only). In the {tag,value} representation, either each variable of
the chain should be given the same tag,which is contradictory to their
ordering, or 2 kinds of topologies should be defined on 2 sets of tags. the
time free chain can rely on partial order, but the sequence of transition
chains contain many cycle due to the loops in the underlying automaton.
Furthermore, the question of associating tags to the variables in the guards is
also opened.

Operations:

An operation is the association of an event to a pre-function.

In the {tag,value} representation, an operation using functions of functions
can be interpreted as a composite event.

Example 17:
Attach (stj (stk (sti (xj (ui)))), li) —> stl

 ui xj sti stk stj stl

li

Concurrency:

Non ordered events (i.e associated to non comparable tags) are

concurrent (example above: {x1, x2, x3}, {x4, x5, x6}, but also {x1, x5,
x6}).

Example 18: In the example of the telephone network, let us consider one
subset DU of couples of users {ui,uj} ∈ DU ⊂ U*U such that any user
appear in no more than one couple. In this case all operations connect
(ui,uj) applied on elements of this subset, can be considered as concurrent
events.

t1 t4 t2 t5 t6

t7

154 Annex A2

Ordered operations:

Two operations are ordered if they are associated to ordered events (if

their operands have tags, all of tags of the first set of variables -the operands-
of the first operation must be lower than at least one tag of the operands of
the second operation).

Example 19: We can now refine the previous example by making the
assumption that the system can have 3 ordered operations: connect,
communicate, disconnect. We add to the specification that, after being
connected, ui can send a message mi to uj, and, that after receiving the
message uj will hang up and stl will stop charging aui

 mi m’i

ui xj sti stk stj stl uj t9

 xi
 li lj aui t10

With the chosen ordered set of 8 tags {t1,t2,t3,t4,t5,t6,t7,t8} we would be
obliged to create more simultaneous events in order to respect the causal
order (see above (mi,t2), (m’i,t6)..), but the 3 operations (events in event-
B) induce a new order and duplicate some state variables with the
before/after paradigm.

Connect:

ui xj sti stk stj stl uj

 xi
 li lj aui

Communicate:
 mi m’i

ui sti stl uj

 li lj aui

t
1

t11

t11

t15 t12 t16 t17
t13

t18 t14 t18

t19

t14

t19

t
1

t29

t28
t24 t28

t24

t22 t25 t26 t21

t
1

t1
t1

t4 t2 t5
t6

t8
t3

t7 t3 t7

t8

t3

t1
t2 t4

t6

Action Semantics 155

m’i can be the encoded state of mi, the counter of duration of aui has been
triggered, li and lj remain monitored by their attach function (because
both ui and uj are moving)

 Disconnect
 sti stk stj stl uj

 aui

We see that the causality chain (sti, stk, stj , stl , uj) is inverted without
creating loops (the before/after values of these variables creates
memory).

Sequence:

A set of ordered operations linked by at least one causality chain is a

sequence.

Example 20: It is easy to see in example above that each operation can
be further refined into a sequence of operations, replacing the causal
maplets.

Thread of operations:

A thread of operations is a set of sequences with common events

Contemporary events:

Two ordered sets of events are contemporary if there exist one event in

each set that is lower (higher) than one event of the other set.

Parallel sequences:

Two sequences are parallel if they have contemporary events. In some

models, the events of parallel sequences can be interleaved (There are many
models of parallelism and the fairness problem results only from
interleaving).

t1

t34 t31

t32

t35 t
33

156 Annex A2

Consecutive sequences:

Two sequences, not linked by any causality, are consecutive if they are

not parallel and if there is at least one event of the first comparable to one
event of the other.

Remarks.
- 2 consecutive sequences between which a causality link is established

become a single sequence;
- 2 concurrent events can always be assumed simultaneous if the axiom

of synchronicity is accepted (i.e. this axiom is not accepted in event-B).

Loop:

A set of operations linked by a cycle is a loop

Behavior:

The behavior of a system can be defined as the set of its operations.

FSMs, control graphs, data-flow graphs:

As soon as events are defined in the specification of a system, the question
of transition between two consecutive (comparable) events is raised.
Several mathematical concepts have been proposed to describe the reaction
of the system to events and the generation of new events as a consequence of
this reaction. Finite state machine was the first to appear, which introduced
the notion of internal state. Control graphs like data flow graphs represent
the distributed production of events as firing of various primitive and
propagation of tokens.

There is a variety of such graphs and they are not always easy to compare
but they use the same concepts. The main difference between data-flow and
control flow is that operations are performed at the nodes of the graph in the
former and are triggered by the node and performed elsewhere in the latter.
The control graph propagates the conditions enabling events and the data
flow graph the change of variables producing events.

The plain deterministic FSM deals with a totally ordered sub-set of
events. This is why combinations of FSMs have been imagined to deal with
real concurrent systems. Hierarchical Communicating FSMs, represented by
State-Charts is the most famous. It must be noticed that, when establishing
communication between independent FSMs one decreases the non-
determinism of the system by making independent subsets of ordered events
comparable. The initial partial order moves progressively to a total order.

Action Semantics 157

3. CONCLUSION

No notion of time has been necessary so far. All previous concepts can
work with an asynchronous partially ordered set of events. However it is a
natural support to thinking to decompose the behavior of the system into 2
alternative phases: during the 1st phase the system receives events from the
environment, then during the second phase it responds by new events to the
environment. This is an other avatar of the{before,after} paradigm.

The notion of an abstract clock follows. It must be noticed that this is
enough to refine the system down to programs or to cycle based hardware
models. But this clock will become a more concrete local counter that will
count phases, most likely represented as rising or falling edges of the clock.

All concurrent events occurring during each clock phase are then
assumed to occur on one of this edge, (remember that simultaneous is a
particular case of concurrent). In the tag-value paradigm, this assumption
defines an isomorphism between the set of tags and the set of integers.

The system at this point has become a timed system. Concepts like data
flow or control flow graphs can in their turn become timed graphs. FSMs are
synchronized by a clock.

One more level of refinement will consist in mapping the set of tags onto
a metric space. Then time will be measured, delays, intervals will appear.
The notion of discrete event will have to be defined: intuitively, it is a space
where only a finite number of events can occur between any 2 events.

Mapping the set of tags onto a subset of the real numbers will allow to
model continuous systems.

Annex A3

LANGUAGE ANALYSIS FRAMEWORK

Patrizia Cavalloro
Italtel SpA, Milan, Italy

Abstract: It is not always easy to provide appropriate support for expressing concepts at
system design level. This annex proposes the use of a questionnaire in order to
understand if a selected language is useful for system specification and design.
Examples of the use of the questionnaire are provided.

Keywords: Language analysis, language assessment guidelines.

1. INTRODUCTION

The purpose of this annex is to propose guidelines for the analysis and
selection of System Specification and Design Language(s) in order to
provide appropriate support for expressing concepts needed in a given
application area. The main idea is that in principle and in practice it is not so
easy to understand if a chosen language will be able to express all the
concepts needed at system level: this section gathers the important aspects of
language analysis, and helps the system designer to focus on the real
important points.

Of course, this is a proposal based on the results of the SYDIC-Telecom
project. Other approaches could be envisaged, and also this approach could
be improved, but nevertheless it is believed that this is a good starting point.

The goal is not to provide a semantic and/or a syntax definition for a new
language, but to propose a way of analyzing existing languages to verify
their usefulness for system level specification and design.

160 Annex A3

2. LANGUAGE ASSESSMENT GUIDELINES

One of the goals of the SYDIC-Telecom project was to suggest
guidelines for the assessment of System Specification and Design
Languages. In order to provide such guidelines, a questionnaire has been
invented in which system design concepts were listed, and questions were
asked for each identified concept.

The scope of the questionnaire is to understand if the language under
analysis is able to express concepts that are considered important in system
design. Language and concepts classifications are described in Chapter 5.
The definitions of all concepts are available in the SYDIC-Telecom
Glossary, in Annex A1 of this book.

2.1 The Questionnaire

The questionnaire is divided in the following sections:
1. Identification: expert and language identification.
2. Questions on the familiarity of the evaluator with the language.
3. Questions on the maturity of the language.
4. Questions related to Architecture Language.
5. Questions related to System Specification and Modeling Languages.
6. Questions on Design Command Languages.
7. About reuse.
8. Examples.
9. Notes.

Sections 1 to 3 are used to identify the language under consideration, and

the evaluator identity. Questions on the familiarity of the evaluator with the
language can be used as a weight factor in the final evaluation of the
language. Questions on the maturity of the language are important in order
to understand if the language itself is stable or improvements and
modifications are still to be provided. An excerpt of the questionnaire
sections 1 to 3 is shown in Figure A3-1.

Sections 4 to 6 refer to the concept and language classification proposed
in Chapter 5. For each concept, the evaluator is asked to choose among four
available answers in order to show how good is the language in expressing
it. Possible answers are:

• YES: the expression of the concept in the language is straightforward
• YES, with elaboration: the concept can be express by the language,

but not with basic constructs
• NO: the language cannot express the concept
• Not relevant: the concept has no meaning for the language

Language Analysis Framework 161

How familiar is the evaluator of
the language with the language?

Is the language still under
development?
What version of the language?
Do many users use it?
From how long?

Architect task [concepts in this class are related to actions that a system architect can perform]
Specification of requirements does the language allow requirement specification? [In G&T]
Design space does the language support design space exploration? [In G&T]
Refinement does the language allow expressing refinement? [In G&T]

Architecture rule
does the language allow the definition of architecture rule? [In G&T:
Architecture (and derivatives)]

Questions related to architecture language

EVALUATION OF: (insert the name of the language evaluated)

By: (insert the name of the evaluator)

Questions on the maturity of the language

YES
YES, with elaboration
NO
Not relevant

YES
YES, with elaboration
NO
Not relevant

Is familiar
Is user
Has knowledge about

Is familiar
Is user
Has knowledge about

Language identificationLanguage identification

Evaluator identificationEvaluator identification

Figure A3-1. Sections 1 to 4 of the questionnaire.

Scope [terms in this category refer to general concepts related to the class]
Requirement (user, domain, e.g.
technology)

does the language allow expressing system requirements (formally,
informally)? YES

Use case does the language allow the definition of “use cases”? NO

Specification does the language allow expressing system specification (formally,
informally)?

YES

Functionality
does the language support the definition of functionality and
services? YES

Basic construct [basic concepts for language aspect]
Abstract data type does the language allow defining abstract data types? YES
User defined data type does the language allow defining user defined data types? YES
Abstract machine does the language allow defining abstract machines? YES
Generics does the language allow the use of generics? YES, with elaboration
Parameter does the language allow defining parameters? YES
Assertion does the language allow the use of assertions? YES, with elaboration

Predicate/formal property does the language allow defining predicates and formal properties? NO

Invariant
does the language allow specifying an invariant of the properties of
the system? NO

Module does the language contain modules as basic construct? YES
Object does the language contain objects as basic construct? YES
Component/entity does the language contain components or entities as basic construct? YES, with elaboration
Operation/service does the language allow defining operations and services? YES

Questions related to System Specification and Modeling Languages

Figure A3-2. Example of assigning answers.

162 Annex A3

Figure A3-2 shows an example of the compilation of a subset of
questions in the questionnaire, concerning the language SystemC.

Section 7 refers to the reuse aspects of the language (Figure A3-3). The
evaluator is asked to describe how the language supports reuse and to
indicate the language constructs that are actually reused.

 About reuse
Describe how the language
supports reuse

Indicate the language constructs
that are actually reused

Module-based modelling concept, parameterization of SystemC modules and channels
(with different resolution times), strong interface/port concept for a separation of
functionality and communication, support for multi-abstraction-level modelling, template

Classical approach: Module and channel reuse, function and method reuse. SystemC
allows a mixture of (IP) components on different levels of abstraction in one model.

Figure A3-3. Section 7 of the questionnaire.

Examples for concepts related
to System Specification and
Modeling Languages

Module
Channel
Protocol

#ifndef COUNTER_H
#define COUNTER_H

#include "systemc.h"

SC_MODULE (counter)
{
sc_in_clk clk; // Clock
sc_in<bool> enable; // Start/Stop
sc_out<sc_int<32> > ticks;

int n; // internal counter;

void counterFunc();

SC_CTOR(counter)
{
SC_CTHREAD(counterFunc, clk.pos());
n = 0;

}
};

#endif

Figure A3-4. Section 8 of the questionnaire.

Language Analysis Framework 163

In Section 8. (Figure A3-4) the evaluator can explain through examples
how the language can express some particular concepts.

Finally, the evaluator can use section 9 to comment particular aspects
linked to the evaluation of the language.

2.2 How to Use It

The first thing to do is to understand what is the purpose of the analysis
of the language that is going to be performed. The questionnaire could be
tailored to the specific purposes e.g. adding questions related to important
concepts in the domain of interest etc.

Nevertheless, the first step towards the analysis of a language is to fill the
questionnaire. It could be filled completely, or just in parts, depending on the
analysis the user is interested in, as we will see in next chapter.

The second step relates to the elaboration of the answers given in the
questionnaire. It is convenient to convert answers to the questions on
concepts into numbers, with the following correspondence:

YES → 3,
YES, with elaboration → 1
NO → 0
Not relevant → 0

If for some reason multiple evaluations of the same language are
available, answers should been combined into one by taking average of
scores and rounding it to the closest integer.

In the third step, the individual scores of sub-categories for each
language are summed up and then normalized by dividing by the sum of the
maximum possible scores for corresponding sub-categories.

The result will be a numerical table, and numbers will be taken into
account in the further elaboration of the language analysis.

3. GUIDELINES

This section will provide some guidelines of potential ways of using the
analysis results.

Once the questionnaire has been filled, several different uses of it can be
envisaged, depending on the interest of the language evaluator.

We can envisage the following uses:
1. Analysis of a language in general

164 Annex A3

2. Analysis of a language with respect to a particular domain
application

3. Comparison of a language with respect to available languages
(library of existing language analyses)

4. Analysis of combination of languages with respect to a particular
domain.

3.1 Analysis of a Language

When analysing a language, three things may be of interest: the general
support of a subcategory, the support of single concepts and the support of a
particular level of abstraction.

Following the steps indicated in section 2.2, it can be observed that in
step three, when the result of the normalization is 1, the concepts in the sub-
category are fully supported by language constructs. On the contrary, when
the result is 0, there is no support for the concepts of the category.

Analysis in deeper details can be extended to individual concepts, in
order to highlight one hand the concepts with good support and on the other
hand the concepts with little or no support. In this case the analysis can be
done just after step two.

If the analysis of the language is performed in order to understand if the
language itself can be used at a particular level of abstraction, then the
concepts appearing in Figure 4-11 (SUD layers and concepts) of Chapter 4
are to be considered. First, the level of abstraction has to be identified, then
concepts in that level have to be selected in the questionnaire and then
answers must be analyzed.

For example, in order to understand if a language can be used for the
design description at abstraction level L2, the following concepts must have
a good support: Constraint, Stimuli, Interface, Connector, Component,
Behavior, Function, Invariant, Type: they obviously belong to different
subcategories. And cover all the design aspects at that level.

3.2 Analysis of a Language with Respect to a Particular
Domain Application

A method to understand if a language can be useful at system level could
be that the user selects a subset of key concepts in its domain among the
ones available in the questionnaire, looks at the evaluation made with the

Language Analysis Framework 165

questionnaire and uses the language if also those concepts get good
evaluations (in addition to basic concepts).

It should be noted that in addition to the domain concepts, the language
evaluation might be complicated by other factors, external to the application
itself, for example the availability of tool support, and the company policy.

3.3 Comparison of a Language with Respect to
Available Languages

In some cases it might be of interest to analyse more than one language,
and compare them in order to understand which of them better support e.g.
the specification phase.

Evaluations of different languages can be performed through the
questionnaire and stored in a database

It should be noted the fact that when making direct comparison, one
should be careful as to the skills, expertise, background and history of the
evaluators in order to get objective evaluations.

3.4 Analysis of Combination of Languages with Respect
to a Particular Domain

Before analyzing combination of languages, some considerations should
be done.

For large projects, it is very common to find a mixture of languages used
in a system design. Usually, this is because it may happen that description to
be reused (existing system libraries, organizational reuse libraries, IP) is in a
language other than the primary language, or else a particular language is
required to accomplish a particular function for some special reason. In this
case, the primary language chosen will be the "glue" that will bind all the
system together, and it should provide good support for this. Other code to
be developed should probably also be in the primary language. However, if
another language better suits the development needs, then both languages
could be chosen, each for its specific purpose, provided that the languages
can be readily interfaced.

For example, the combination of UML and SystemC shows to be a very
good combination in covering a large number of the concepts appearing in
our questionnaire. UML allows graphical specification, visualization,
construction and documentation of systems, and can be useful in the first
design phases. SystemC and standard C++ development tools can be then

166 Annex A3

used to quickly simulate, to validate and optimise the design, to explore
various algorithms, and to provide an executable specification of the system.

The formal aspect of the specification is still mixed in this language
combination, and the use of B in the correct design phase could improve the
overall design.

Note that interfacing two languages should consider two factors. If the
calling language has a built-in ability to do language interfaces, the language
mix will probably produce more reliable results. Also, if an IP product
provides interfaces for the "glue" language, the interfacing is smoother and
more straightforward than if such bindings must be developed.

The questionnaire we have created faces this aspect through some
concepts appearing in the Design Command Languages class.

In particular, concepts in the IP Reuse and Retrieve subcategory are
strictly related with the ability of the language to interface with IP
repository, while the concept Tool interface in subcategory Design
Elaboration concerns the interface aspect of a language towards other
languages (and tools).

Mixing languages is not as straightforward as using just one language.
While there is always good reason to reuse proven components, including
IP, regardless of the primary language used, the use of two or more
development languages together can often be more trouble than it is worth.
However, a practice gaining in support is the use of an interface standard to
facilitate the communication between heterogeneous systems. Using such a
standard would make mixing languages much easier and more predictable.

4. EXAMPLE OF ASSESSMENT

4.1 Analysis of a Language: SDL

An exercise developed during the project concerned the analysis of some
existing languages. This section contains some results related to the analysis
of the Specification and Description Language (SDL) in order to understand
if the language could be considered an Architecture language.

In this section, observations about language support for some of the sub-
categories of the Architecture language class described in Chapter 5 of this
book is summarised. The individual scores of sub-categories for SDL are
summed up and then normalised by dividing by the sum of the maximum
possible scores for corresponding sub-categories. When the result is 1, the
concepts in the sub-category are fully supported by language constructs.

Language Analysis Framework 167

The result per sub-category is depicted in Figure A3-5. SDL shows
reasonably good support for Architect primitive operations and for
Modelling capabilities. The sub-category Architect discipline is well
supported by SDL. The sub-category Primitive architecture element gets full
scores SDL, while the sub-category Complex architecture element gets low
scores.

Architect discipline

Architect primitive operations

Primitive architecture element

Complex architecture element

Modeling capabilities SDL

0.0

0.5

1.0

Figure A3-5. Summary of support for sub-categories of architecture concepts.

In the rest of this section, support for individual concepts of sub-
categories are presented by highlighting on one hand the concepts with good
support and on the other hand the concepts with little or no support.

168 Annex A3

S pec ific atio n	
 o f	
 requirements
D es ign	
 s pace

R efinement

A rchitec ture	
 rule

A rchitec ture	
 pattern

C ons traints

Non-­‐func tional	
 property SDL

0

1

2

3

Figure A3-6. Support for concepts of Architect discipline.

The Architect discipline sub-category groups concepts that are related to
the activities of the design architect. The results per concept are depicted in
Figure A3-6. They show that for the subcategory Architect discipline SDL
fully supports most of the concepts except for only little Specification of
requirements and Architecture rule.

The Architect primitive operation sub-category groups concepts that are
related to operations performed on the System under Design. The results are
depicted in Figure A3-7. SDL supports fully Encapsulate, Instantiate and
Connect, but little or none for others.

Language Analysis Framework 169

C ompose

Encapsulate

Decompose

B ind

Instantiate

C onnect

V iewpoint

Projection SDL

0

1

2

3

Figure A3-7. Support for concepts of Architect primitive operation.

Concerning the sub-category Primitive Architecture Element, Figure A3-
8 shows that SDL provides full support for all the concepts.

Figure A3-9 shows the results related to the sub-category Complex
Architecture Element, otherwise, only a little or none support is assessed
SDL provides full support for Configuration. Missing support for more
complex architecture elements indicates that the notion of large-scale
architectures and systems was not taken into account in language
development.

170 Annex A3

Component

Connector

Function (service)

Interface SDL

0

1

2

3

Figure A3-8. Support for concepts of Primitive Architecture Element.

Configuration

View

Facet SDL

0

0.5

1

1.5

2

2.5

3

Figure A3-9. Support for concepts of Complex Architecture Element.

Language Analysis Framework 171

4.2 Analysis of Combination of SDL and Other
Languages with Respect to a Particular Domain

During the project, a second exercise has been performed in order to
understand if the combination of two languages could better support
concepts belonging to the System Specification and modeling class.

Single evaluations have been performed on several languages, and then
they have been combined. Figure A3-10 shows the result of the combination
of SDL with some other language.

Scope

Basic construct

Communication-related concepts

Order- and Time-related concepts

Modeling capabilities

Qualifiers Esterel+SDL

UML+SDL

SystemC+SDL

SDL+B

0
10

20
30

40

Figure A3-10. Scores of couples of languages.

Figure A3-10 shows that the more realistic combination is of UML and
SDL, and this is definitely a very useful combination. Essentially formal
properties and assertions reasoning about design remain missing in this
combination, but almost everything else is provided. Certainly the best
informal system level specification tool.

4.3 Conclusion

This Annex provides some suggestions on the way of analyzing existing
languages to verify their usefulness for system level specification and
design. A questionnaire build up on that purpose has been described. Finally,

172 Annex A3

the use of the questionnaire has been demonstrated through an example,
showing on one side that existing language is enough to describe and/or
specify the System under Design: combination of different languages
provides a better coverage, and on the other that architecture has not been in
the center of requirements for language development.

Annex A4

GUIDELINES FOR SYSTEM-LEVEL
PERFORMANCE ANALYSIS

Christophe Gendarme,
Jos van Sas
Alcatel Bell, Antwerp, Belgium

Abstract: The goal of the Performance Analysis research is to investigate how system-

level methods and tools support the architecture design phase. During the
architecture design phase, system-level modelling can be used to evaluate and
optimise algorithms incorporated in a system, enabling an estimation of their
influence on the performance of the system. The purpose is to assess
requirements for performance analysis methods and tools, based on the needs
of an architecture design process. The first phase of the Performance Analysis
focuses on system-level modelling of the functional aspects of complex
systems (algorithm exploration). The second phase addresses other design
aspects (e.g., implementation aspects) to extend the defined requirements.

Key words: System design, Performance Analysis, Property, Abstraction, Switch Core,
Flow Control.

1. INTRODUCTION TO PERFORMANCE
ANALYSIS

In this annex, we will highlight the issues of Performance Analysis in a
current system level design flow. The purpose is to perform an in depth
analysis of the design and decision process for one type of system
requirement , namely the performance.

The initial focus is to explore the functional aspects of a pilot complex
system, enabling an investigation of the requirements for obtaining founded
design decisions.

174 Annex A4

The goal of the Performance Analysis research is to investigate how
system-level methods and tools support the architecture design phase.
During the architecture design phase, system-level modelling can be used to
evaluate and optimise algorithms incorporated in a system, enabling an
estimation of their influence on the performance of the system. The purpose
is to provide guidelines for performance analysis methods and tools, based
on the needs of an architecture design process.

The Switch, which is referred to as Multi-Path Self-Routing (MPSR)
Switch System, is basically an input/output buffered switch system. The
quality of the System models will be assessed with respect to aspects such as
scalability, confidence and accuracy of simulation results, model
abstractness versus model adequacy and parameterisation. Those quality
aspects will be related to the aspect of simulation performance (simulation
speed). As a result, a framework of guidelines for performance analysis
methods and tools will be defined. It will support system-level design
activities such as algorithm exploration and queue dimensioning in an early
stage of the design phase.

Sources ITMs OTMs SinksMPSR

1 1 1 1

N N N N

ITPs OTPs

L

L L

LA•L B•L

B•LA•L

L = Link Bit
Input
s

Output
s

Figure A4-1. Schematic representation of the MPSR Switch System.

Figure A4-1 gives an overview of the MPSR Switch System. In
principle, the MPSR Switch System involves an equal number (N) of inputs
and outputs. The input traffic available for the N inputs originates from N
independent Sources. However, each Source actually represents a number
(M) of Links, which all induce independent input traffic on the involved

Guidelines for System-Level Performance Analysis 175

input. The aggregate bit rate with which files of packets are induced on a
single input is indicated with the link bit rate (L).

The input traffic is organised in such a way that the destination of all
packets of a file is the same. After passing through the MPSR Switch
System, the packets of a file should be available at the correct destination
output without changing the order of the packets of that file. However, the
sequence of packets of the considered file can be interleaved with packets of
other files. For every output of the MPSR Switch System, a Sink is
available, which can handle output traffic with at bit rate equal to the link bit
rate. As a result, a number of MPSR Switch Systems could be
interconnected.

Due to the varying size of the files of packets induced on the inputs of the
MPSR Switch System, the size of the packets is varying too. Two types of
files are distinguished. Long files consist of a number of packets with a
maximum packet size and possibly an additional packet of some other size
that is larger than a minimum packet size. Short files consist of only one
packet of which the size is equal to the minimum packet size. In addition to
the varying size of the files, the destination varied uniformly over the N
possible destinations. To handle the properties of such input traffic, the
MPSR Switch System includes input queues and output queues for buffering
traffic.

The input buffers of the MPSR Switch System are located in the Input
Termination Modules (ITM), whereas the Output Termination Modules
(OTM) incorporate the output buffers. To overcome the problem of head-of-
line blocking, any ITM includes a queue for every destination OTM. To
transfer information between the ITMs and the OTMs, the MPSR Switch
Core provides a so-called Virtual Ingress-Egress Pipe (VIEP) between every
input queue of an ITM and every output queue in the OTM. Physically, only
a single connection between an ITM or OTM and the MPSR Switch Core is
available. These connections are called Input Termination Port (ITP) and
Output Termination Port (OTP) respectively. Scheduling mechanisms are
involved to ensure proper utilisation of the physical connections.

To reduce a possible loss of packets in the MPSR Switch System, an
aggregate bit rate of A times the link bit rate is available at every ITP. An
OTP can handle traffic with a bit rate equal to B times the link bit rate. Both
so-called bandwidth factors A and B are larger than 1. Next to the size of the
queues, the bandwidth factors A and B should be dimensioned in such a way
that no packet will be lost at the OTMs and the loss of packets at the ITMs is
reduced to a minimum.

176 Annex A4

2. MODELLING REQUIREMENTS

Designing a MPSR Switch System, from generation to generation,
involves the identification of several system parameters, which can be
considered invariants, for a dedicated product.

The Internet Protocol Core Router switch has the following performance
characteristics. If the input traffic is constant bit rate (CBR), the output
traffic has a known delay vs load distribution. The switch can be assumed to
be lossless if the total load stays below a given upper bound.

The required system performance is expressed in terms of e.g.:
• average and minimum latency
• minimum throughput
• maximum drop probability.

In order to achieve the required performance, a bandwidth negotiation

and allocation mechanism must be optimized. This mechanism is required in
order to: limit the total input traffic towards the switch (to ensure lossless
behavior), limit the traffic between the switch and each individual line card.

The resources available on the line cards are 1. bandwidth towards the
switch and 2. the available buffer space on each line card. Because of the
limitation of the total load on the switch, the bandwidth of the line cards to
and from the switch is resource shared between all line cards. In order to
evaluate the maximum achievable performance as a function of available
buffer space and bandwidth, the buffer and bandwidth management
algorithms need to be incorporated in the model, and the algorithms must be
exploration and optimized.

Below, the case for a 2,5 Gbits/s (OC-48) is detailed as an example.
Table A4-1 gives an overview of all system parameters that are available for
the MPSR Switch System.

In general, a functional model of a system, which concerns an abstract
functional representation, enables to reason about the functional properties
incorporated in that system. In addition, the functional model should be able
to answer whether some configuration of values for the system parameters
satisfies the performance requirements according to the performance
metrics. The functional model is called to be adequate if it satisfies the
functional properties of the system and enables to provide a properly
founded answer to this question.

A functional system-level model focuses on the conceptual aspects of the
functionality incorporated in the considered system. In order to develop a
compact model, which supports reasoning in an easy way about the
conceptual functional properties, such a system-level of abstraction is

Guidelines for System-Level Performance Analysis 177

chosen. To ensure that the functional system-level model is sufficiently
adequate, discussability presents an important modelling requirement.

As indicated in Table A4-1, the system parameters N and M can vary
depending on whether a small or large MPSR Switch System is considered.
As a result, the modelling requirements for developing a functional system-
level model include the capability of easily changing any system parameter.
Such a parameterisation enables to develop a template functional system-
level model for a future generation of MPSR Switch Systems that will be
based on the same conceptual functional properties. However, the support of
parameterisation serves another goal. Increasing the size of the MPSR
Switch System (i.e., N becomes 256 or 2048), results in a decrease in
simulation performance. The functional system-level model should enable
an investigation of how conclusions for a large MPSR Switch System can be
drawn based on simulations performed with a small MPSR Switch System.
The consideration of how to support parameterisation therefore presents the
result of an important modelling requirement.

Table A4-1. The system parameters of the MPSR Switch System.
System Parameter Notation Typical
Bandwidth factor A A 2.5
Bandwidth factor B B 1.35
Maximum size of a long file MaximumLongFileSize 65536 Bytes
Maximum size of a packet MaximumPacketSize 1500 Bytes
Minimum size of a long file MinimumLongFileSize 1500 Bytes
Minimum size of a packet MinimumPacketSize 40 Bytes
Number M of Links per Source M Range: 1 – 16
Number N of ITMs (OTMs) N Range: 1 – 64
Markov State transition probability α Alpha 0.9
Markov State transition probability β Beta 0.98
The link bit rate LinkBitRate 2.488 Gb/s
Time delay for transferring a packet
through the MPSR Switch Core

SwitchDelay 100 µs

Total size of all input queues of an
ITM

TotalOutputQueueSize 256*1024*58
Bytes

Total size of the output queue of an
OTM

TotalInputQueueSize 4096*58
Bytes

Another modelling requirement concerns support for estimating the

confidence and accuracy of the values obtained for the performance metrics
after some simulation. In general, simulating for a longer time results in
more accurate results. Without knowing the simulation time for obtaining
accurate results, confidence intervals can be used to enable drawing properly

178 Annex A4

founded conclusions. Supporting the use of confidence intervals results in
automatically adjusting the simulation time for obtaining results with a
certain confidence. Additionally, it is possible to assess how accurate the
estimated result is in comparison with the real value. Since simulation
performance decreases due to increasing a system parameter like N,
modelling tools should scale properly. This means that simulation speed
should decrease in a proper way according to the increase of N.

3. MODELLING ADEQUATELY AT A SYSTEM-LEVEL OF
ABSTRACTION

To enable thorough investigations on whether a particular configuration
of system parameters satisfies the performance requirements for the MPSR
Switch System, the development of an adequate functional model at a
system-level of abstraction is involved. This section presents a detailed
discussion on two aspects that are encountered when modelling the MPSR
Switch System at a system-level of abstraction. The first aspect concerns the
allocation of memory resources regarding the input queues and output
queues, whereas the second aspect concerns the abstraction from scheduling
mechanisms. Additionally, this section presents how to support the use of
parameterisation.

3.1 Queue Filling Levels

In order to develop an adequate model at a system-level of abstraction, it
is important to understand the functional property of how memory resources
are allocated for a packet that is temporarily buffered in an input queue or
output queue. If this functional property is not modelled adequately, the
results of all performance metrics are affected. This Section presents the
assumed memory allocation strategy, which is equal for both types of
queues.

To ensure that the order in which packets of a certain file are transferred
through the MPSR Switch System is not changed, the incorporated queues
use a FIFO policy. However, because the bandwidth with which packets are
received into a queue and the bandwidth with which packets are sent out of
that queue may differ, two independent activities are concurrently involved
with respect to the occupation of memory resources regarding the queue. A
queue input handler is concerned with receiving packets into a queue,
whereas sending packets out of a queue is performed by a queue output
handler.

Guidelines for System-Level Performance Analysis 179

tpta tg td

Figure A4-2. Changes in queue filling level during some period of time.

Figure A4-2 indicates how the filling level of a queue may change during
some period of time. At time ta, the head of a packet is arrived. After some
time duration tp - ta, which should be equal to the duration of receiving the
packet (i.e., the size of the packet divided by the rate with which it is sent),
the packet is received completely at time tp. Since the tail of the packet is
received at time tp, the packet is only completely available in the queue at tp.
From this time tp on, the queue’s output handler may decide to send the
packet out again. Assume that the queue output handler decides to do so at
time tg. The head of the packet is sent out at time tg, whereas the packet is
completely sent at time td. The duration td - tg is equal to duration of sending
the packet out. It is remarked that td - tg might not be equal to tp - ta due to
differences in the available bandwidth and that tg can only be equal to tp if
just a single packet is involved.

According to Figure A4-2 the packet is available as a whole in the queue
for time tg - tp. It is possible to assume that the queue is merely occupied
with a packet during the period [tg, tp]. However, this results in the implicit
assumption that some extra memory is available to receive a packet during
the period [ta, tp] and also some extra memory for sending the packet out
during the period [tg, td]. In the physical implementation this might result in
unnecessary movements of information between different memories. Based
on this assumption, it is even possible that a packet can be sent out faster
then that it is received into the queue. This situation occurs if the bandwidth
with which packets are sent out of a queue is larger than the bandwidth with
which packets can be received and the condition tg = tp holds.

To overcome the indicated unrealistic situation, it is assumed that the
queue is occupied during the period [ta, td]. So, at time ta, the necessary
amount of memory for the packet must be reserved or allocated (if there is
enough room in the queue, otherwise the packet is discarded). This amount

180 Annex A4

of memory will not be available for any other packet until time td, at which it
can be de-allocated since the packet is then completely sent. Applying this
assumption results in a much more conservative model, which might enable
to draw conclusions regarding the memory needed during receiving or
sending a packet.

3.2 Abstracting from Scheduling Mechanisms

Several physical resources are shared to transfer information through
VIEPs between the ITMs and OTMs. A similar observation is possible for
the communication between the Links of a Source and the corresponding
ITM. Due to the sharing of physical resources, the physical implementation
involves the use of a scheduling mechanism [1]. Several different types of
scheduling mechanisms could be applied to obtain the required effect.
However, the exact scheduling mechanism that is chosen for the final
implementation is, in principle, not important for the conceptual functional
aspects of the MPSR Switch System. As a result, modelling the MPSR
Switch System at a system-level of abstraction includes abstracting from any
possible solution for the scheduling mechanisms.

The effect of the scheduling mechanisms that are applied for the MPSR
Switch System is the reservation of a physical resource for one specific
sender and receiver combination during a specific time. To obtain this effect,
such scheduling mechanisms divide the time into time slots of which a
number will be reserved that is in accordance with the available bandwidth.
Between the ITMs and the OTMs, the results of this negociation
mechanisms are responsible for reserving more or less time slots (i.e.,
bandwidth) for some VIEP. Between the Links of a Source and the
corresponding ITM, however, the resulting bandwidth for a single Link to
ITM combination remains equal to the link bit rate divided by M.

Considering the implementation of scheduling mechanisms that use time
slots, it is important how fast the average number of reserved time slots
results in the assigned bandwidths. The smaller the time slots are, the more
optimal the scheduling mechanism is. In the implementation of the MPSR
Switch System, packets are subdivided in cells of 58 bytes to come close to
the results obtained with an optimal scheduling mechanism. The optimal
scheduling mechanism can be modelled by separately assigning the
appropriate bandwidth to each individual sender and receiver combination
[1]. Abstraction from the scheduling mechanisms as applied in the model is
therefore based on the use of an individual concurrent scheduling activity for
every sender and receiver combination. Each scheduling activity ensures the
use of the correct bandwidth available for the considered sender and receiver
combination.

Guidelines for System-Level Performance Analysis 181

Due to abstracting from scheduling mechanisms, the level of abstraction
for the communicated information can be chosen independent from the
actual implementation. Because the occupation of the input queues and
output queues is based on the availability of packets, using the abstraction
level of packets in the model is an appropriate choice. A packet is discarded
completely if one or more of its cells would not fit into a queue. In the case a
packet is lost, the file to which it belonged is not lost.

3.3 Concurrency

A system commonly consists of a number of different elementary active
resources. Considering the example of the MPSR Switch System, a single
MPSR Switch Core can be distinguished next to an equal number of ITMs
and OTMs. During operation of the system, the different elementary active
resources simultaneously exhibit some specific behaviour due to the
incorporated functionality. To model such parallel behaviour, object-
oriented modelling languages offer the use of some number of instances of
object-classes. In the case that more than one elementary active resource is
available of the same type, several instances of a single object-class can be
used to reuse modelled functions. Support for parameterising the number of
elementary active resources consists of instantiating a varying number of
instances from a specific object-class.

Similar to other object-oriented modelling languages offer, the use of
instantiating a varying number of parallel processes, which are represented
by process objects, is beneficial. However, process objects can only share
data information by explicitly communicating that information through
channels. Next to multiple process objects, it offers the use of concurrent
activities within a single process object for modelling concurrently exhibited
behaviour. Concurrent activities may share data information that is available
within the involved process object.

4. MODELLING THE FUNCTIONAL SYSTEM
ARCHITECTURE

To develop a comprehensible model of the functional system architecture
that is flexible enough for use with distinct configurations of values for the
system parameters, it is essential to recognise how a particular function is
used at several places in a system. Figure A4-3 depicts the functional system
architecture for the MPSR Switch System. The dashed boxes in Figure A4-3
denote the use of equal functions in distinct functional blocks. All N Source

182 Annex A4

blocks represent exactly the same function. A similar recognition is possible
for the functions represented by the ITM blocks, OTM blocks and Sink
blocks. It is furthermore indicated that the function of transferring packets
through a VIEP is equal for all VIEPs.

Source
s

ITMs OTMs SinksMPSR

1 1 1 1

N N N N

ITPs OTP

Figure A4-3. Functional system architecture of the MPSR Switch System.

The symmetric construction of the MPSR Switch System enables to take
the use of equal functions in different functional blocks into account when
modelling the functional system architecture. The functional blocks depicted
in Figure A4-3 represent the elementary active resources of the MPSR
Switch System, which have an own locus of control. Using multiple
instances of the process class that describes some type of functional block
enables to reuse modelled functions. In addition to using multiple instances
of the same process class, the model offers the use of a number of similar
concurrent activities for the purpose of reusing modelled functions.

A disadvantage of using multiple instances of the same process class is
the individual initialisation of the instance parameters (E.g., the identifier of
the instance). Considering the required scalability of the model, instantiating
and initialising multiple process objects is not favourable. Using a number of
similar concurrent activities instead, instantiation of only a single process
object is involved. Initialisation of a scalable number of similar concurrent
activities can be performed automatically.

Guidelines for System-Level Performance Analysis 183

5. MODELLING THE BEHAVIOUR EXHIBITED BY
THE FUNCTIONAL BLOCKS

The developed model of the functional system architecture involves
modelling the behaviour of the functional blocks correspondingly. The
utilisation of concurrent activities for reusing modelled functions entails
describing the initialisation of (similar) concurrent activities and the
activities themselves. The examples are limited to some core descriptions,
ITMs, OTMS, and Sinks can be easily derived from the Sources and MPSR
ones.

5.1 The Process Part

This Section presents an elaborate discussion on the process part of the
model of the MPSR Switch System. Figure A4-4 gives an indication of the
functions included in the functional blocks of Figure A4-3. Next to the
equally tinted states for the Sources, the equally tinted curled arrows denote
the use of equal functions in different functional blocks. The symmetric
construction of the MPSR Switch System enables to model such equal
functions using similar concurrent activities within the involved process
object.

Source
s

ITMs OTMs SinksMPSR

ITPs OTP

1
 ·
M

Figure A4-4. Behaviour in the MPSR Switch System.

5.2 Modelling the Behaviour for Sources

Any Source depicted in Figure A4-4 actually represents the input traffic
that is available from M independent Links. All M Links of a specific Source

184 Annex A4

send packets to the corresponding ITM with an aggregate bit rate equal to
the LinkBitRate (L). Considering the physical implementation of M Links
sending packets to one ITM, a scheduling mechanism and a queue is
involved to smoothen the input traffic offered to the ITM. The physical
connection between the queue and the ITM, which offers the bit rate of
LinkBitRate, induces a load equal to 1. This worst case situation can be
modelled adequately by abstracting from the scheduling mechanism and
using M similar concurrent activities that represent the M Links. The bit
rates with which packets from an individual Link of a Source are sent to the
corresponding ITM is equal to the LinkBitRate divided by M, ensuring an
aggregate load of exactly 1. As a result, no smoothening queue needs to be
modelled.

ITM
Source

1

M

L/M

L/M
L/M

L = LinkBitRate

Figure A4-5. Modelling the structure of a Source using similar concurrent activities.

Figure A4-5 indicates how the structure of a Source, which actually
represent M Links, is modelled using similar concurrent activities. Since all
M Links of a Source are independent, autonomous activities are needed to
generate the corresponding input traffic. To model the input traffic
generation for any Link, a 2-state Markov mechanism is used. The process
object Sources therefore involves the initialisation of M independent 2-state
Markov mechanisms per Source. Since the 2-state Markov mechanism
concerns a (probabilistic) finite state machine of which only one state can be
active at a time, the process object Sources involves NxM similar concurrent
activities at any time during simulation of the model.

Guidelines for System-Level Performance Analysis 185

State1 State2 β

1 - β

1 - α

α

α = 0.9
β = 0.98

Figure A4-6. The 2-State Markov mechanism.

Figure A4-6 depicts the 2-state Markov mechanism that is used for
generating the input traffic originating from a Link. Input traffic generation
starts from the initial state: State1. In State1, long files are generated of
which the destination is chosen according to a discrete uniform destination
distribution with parameters [1, N]. A long file is subdivided into a number
of packets, which all have the same destination.

The size of a long file ranges from MinimumLongFileSize (1500 Bytes)
to MaximumLongFileSize (64*1024 Bytes). The size of all packets for a
long file, except the last one, is equal to MaximumPacketSize (1500 Bytes).
The last packet is sized between MinimumPacketSize (40 Bytes) and
MaximumPacketSize. The size of the generated long file is chosen according
to a discrete uniform distribution with parameters [MinimumLongFileSize,
MaximumLongFileSize] in such a way that the last packet will not be
smaller than MinimumPacketSize. After the generation and transmission of a
long file, the 2-state Markov mechanism may continue traffic generation
from State2 based on a state transition probability of 1 - α.

In State2, short files are generated for which the destination is chosen
using a discrete uniform destination distribution with parameters [1, N]
again. Such a short file consists of one packet of which the size is equal to
MinimumPacketSize (40 Bytes). After generation and transmission of a
short file, the 2-state Markov mechanism may continue traffic generation
from State1 according to a state transition probability of 1 - β.

The use of similar concurrent activities results in an efficient reuse of
modelled functions: only two methods need to be specified for modelling the
behaviour of generating input traffic for all Links of any Source. These
methods represent the behaviour exhibited according to the possible states of
the 2-state Markov mechanism.

5.3 Modelling the Behaviour of the MPSR Switch Core

Figure A4-7 indicates the activities available in the MPSR Switch Core.
Every individual VIEP concerns an independent activity for transferring

186 Annex A4

packets from an input queue in an ITM to the correct output queue in an
OTM. Since not all VIEPs may transfer packets at the same time, dynamic
creation and termination of similar concurrent activities is used to model the
behaviour of the MPSR Switch Core. As a result, the number of similar
concurrent activities that is available during simulation of the model ranges
from 1 to NxN. A smaller number of concurrent activities may improve
simulation speed. Since a new similar concurrent activity is created
whenever needed, no special initialisation procedure is involved for the
process object MPSR.

Figure A4-7. VIEP activities included in the MPSR Switch Core.

6. SUMMARY

To develop a proper understanding of the conceptual functional
properties on which the MPSR Switch System is based, this annex presented
an initial model. Appropriate validation is enabled by developing a compact
model at a system-level of abstraction satisfying the modelling requirement
of discussability. To satisfy the modelling requirement of parameterisation,
it is indicated how to support the development of a parameterised model.
The applied modelling strategy, which is based on similar concurrent
activities, enables an investigation on whether conclusions regarding a large
MPSR Switch System can be drawn based on the simulation results of a
small model.

Two aspects that are encountered during the development of this model
concerned the queue filling levels and the abstraction from scheduling
mechanisms. A comparison of two options for modelling the occupation of

Guidelines for System-Level Performance Analysis 187

input queues and output queues resulted in the conclusion that one of them is
more close to the functional property defined for the MPSR Switch System.
Abstracting from the scheduling mechanisms that are implemented in the
MPSR Switch System enabled to concentrate on the conceptual functional
aspects by disregarding design decisions concerning the implementation of
such scheduling mechanisms.

Based on the modelling strategy of a parametrisable number of similar
concurrent activities, the model of the functional system architecture is
presented. The behaviour exhibited due to the functionality incorporated in
the MPSR Switch System is partly modelled in a process part and partly in a
data part. The process part models all conceptual aspects of the behaviour
exhibited by the elementary active resources incorporated in the MPSR
Switch System. Based on the use of aggregate data objects, the data part
concerns the detailed modelling aspects of all major data operations invoked
by the process part. The compactness of the process part improves
concentration on the conceptual functional properties.

ABBREVIATIONS

Abbreviation Description
ID Identity
IP Internet Protocol
ITM Input Termination Module
ITP Input Termination Port
L Link Bit Rate
MPSR Multi-Path Self-Routing
OTM Output Termination Module
OTP Output Termination Port
VIEP Virtual Ingress-Egress Pipe

REFERENCES

[1] Keshav, S. An Engineering Approach to Computer Networking; ATM Networks, the
Internet and the Telephone Network. Reading, Massachussetts (U.S.A.):Addison.

Annex A5

BLUESTONE: A CASE EXAMPLE

Kari Tiensyrjä
VTT Electronics, Oulu, Finland

Abstract: In order to illustrate the concepts in a practical way, this annex presents an
artificial but realistic example of an application of the SDCM to an electronic
product development. The story told here starts with the idea of a need and
ends with a set of information needed to synthesise the information needed to
make a product to meet that need. The example is based on extensive reuse of
existing system intellectual property (SIP), part of which comes form the
company itself, while part comes from external sources. For the purposes of
the example we conjure up a company called Bolderbits Inc. They are in the
business of making consumer electronic products and have a track record in
wireless communications. They develop and market advanced mobile phones.
A Bluetooth equipped model is their latest one. The example will follow the
design of a new product, which they will call “BlueStone”.

Key words: System design, user and domain requirements, functionality, functional
architecture, architecture template, hardware architecture, software
architecture, system design process, system under design, system IP, reuse,
platform, Bluetooth.

1. SDP: A FLOW FROM IDEA TO SYNTHESIS

In this part of the example we will coarsely outline how the conceptual
model of the System Design Process (SDP) is instantiated in the case of
BlueStone.

The example is constructed to include enough detail to help illustrate our
conceptual model. To do this the set of facets will be specialised along with
the other elements in the model: e.g. the activities, artefacts and roles.

For this example we will define the following team, called BlueTeam,
consisting of actors (with names taken from a well known cartoon), and list

190 Annex A5

their roles, activity responsibilities, and artefact responsibilities in the
example process:

• Mark: Market Analyst
• Dino: Product Manager
• Fred : System Architect
• Barney: Software Designer
• Wilma: Hardware Designer

There are a number of activities that will take place in the process, the

names of which are those used in Bolderbits:
• Market Definition: Where the idea happens, identification of a need,

enumeration of price, volume and margin. The resulting artefact set
is User and Domain Requirements Specification.

• System Design - Refinement (SD-R): Refinement of the idea into a
set of informal and formal requirements. The resulting artefact set is
Technical Requirements Specification.

• System Design - Partitioning (SD-P): Exploration of potential
solutions leading to a design proposal. The resulting artefact set is
System/Architecture Specification.

• System Design - Synthesis (SD-S): Design activities in various
technical domains (e.g. HW and SW). The resulting artefact set is
System/Architecture Description.

The core of BlueTeam is summarised in Table A5-1, and Figure A5-1

shows the top-level view of the design process BlueTeam will carry out.
Although the market definition as a facet and the market analyst as a
respective actor have been included, explicit information about business
goals has been left to the reader. Actual system implementation has neither
been addressed.

Table A5-1. Core Blue Team.
Resource Actor Role Facet/Activity Artefact Set
Mark Market

Analyst
Analyser Market Definition User and Domain

Requirements Specification
Dino Product

Manager
Manager Requirements

Analysis
Technical Requirements
Specification

Fred System
Architect

Architect Conceptual Design System/ Architecture
Specification

Barney Software
Designer

Designer Functional
Decomposition

System/ Architecture
Description Wilma Hardware

Designer
Designer Platform Analysis

BlueStone: A Case Example 191

User and
Domain

Requirements
Analysis

Conceptual
Design

Platform
Analysis

Functional
Decomposition

MappingMarket
Definition

System
Implementation

Figure A5-1. Facets of BlueStone design process.

The descriptions given above are not intended to be exhaustively
complete but they should illustrate the nature of the activity. These can be
seen as top-level activities in a hierarchy that could be decomposed using the
SDP conceptual model process composition view.

There is a close linkage between the SDP and the SUDM produced as a
result of that process so it will not be possible to maintain a strict distinction
between them. It is important to remember that the progress of the design
process is not directly correlated to the layers of abstraction. Table A5-2
shows the way information might build up in the layers by plotting the
information content in each layer at a set of points or phases in the design
process.

L4 L3 L2 L1

P0
P1
P2
P3
P4

0

1

2

3

4

5

Content

Layer

Phase

Figure A5-2. Information Content Profile as System Design Progresses.

The y-axis is normalised so that, for each layer, 5 indicates “complete”. It
is not unusual for the design to progress at the “lower” layers faster than the
higher ones. By definition the design is not complete until all the required
information is available. A well behaved design process will address the
higher layers first and the check-points or toll-gates will require information
to be available at the higher layers early on. This follows from the fact that

192 Annex A5

the cost expended and time used to work in the higher layers tends to be less
than in the more detailed lower layers. In many cases the higher layer
information does exist but is not made explicit. This may be because there is
a paucity of ways to express, share and verify this information.

As will be seen in the following example, the design progresses rather
quickly to layer L3. Furthermore, it will be noticed that information is added
to the higher layers whilst, apparently, working in a lower layer.

The three-dimensional nature of the realisation of a design process means
the narrative that follows will inevitably mix the design process and system
under design aspects of the conceptual model. The authors have chosen to
unfold the story in a SUD layer first order. This has the effect that the
process is less visible. Even so there will be one or two points where the
process dimension shows through, for example, where the partitioning of
functionality between the handset and headset reveals that one of the
requirements cannot be completely fulfilled.

2. SUD: A WIRELESS HEADSET FOR A MOBILE
PHONE

This section describes the example System Under Design (SUD). The
system will be described according to the layers of abstraction presented in
the conceptual model. It should be noted that the relationship between the
design process and the SUD model (SUDM) is not defined by these layers.
The next section will show the relationships based on the concept of views
between SDP and model subsets of the SUDM presented at the end of the
chapter.

2.1 User and Domain Requirements

Although the heading gives away the end result, we start the design
process off at as an early stage as possible to fully illustrate the model. The
starting point, stated in as simple and brief terms as possible is the following
need:

A system that allows a person to use a mobile
phone without touching it.

(Motivations to have such a product include e.g.
safety, comfort, regulations, mobility, privacy,
life-style, etc.).

BlueStone: A Case Example 193

This can be expanded into a list of informal elements of functionality,
each of which can be thought of as providing a service to a user of the
system:

FR1. Initiate a call

FR2. Accept an incoming call

FR3. Reject an incoming call

FR4. End a call.

With these come some elements of usability:

NFR1. Plug-and-play: easy to start to use

NFR2. Light in weight

NFR3. Power supply included

NFR4. Not physically connected to mobile phone

NFR5. Easy to operate.

An assumption about a possible way to meet the stated need has crept in

with the fourth item in the list. There is an implicit partitioning between the
mobile phone and the means used to meet the need. It has been assumed that
a solution includes some physical addition to the phone rather than just a
new facility or function that is added to the phone. Whilst we are aiming to
avoid discussion of the relationship between SDP and SUDM it is interesting
to note at this point that the system design process has clearly already
started! In fact, in our definition the process started as soon as a germ of an
idea came into being.

For Bolderbits, the proposal to use their mobile handset model as basis is
quite natural. The system architecture is apparent, if only in very rough
terms, as there has been a partitioning into two main parts: the handset and
the headset as depicted in Figure A5-3. As the handset is taken to already
exist, the headset can be identified as the system under design (SUD).

Headset Handset

Mobile_networkUser

Figure A5-3. BlueStone partitioning into headset and handset.

194 Annex A5

Once this first partitioning step is taken (phone + physically separate
add-on), there are some (derived) requirements that can be identified which
relate to the interface of the user with the device:

DR1. Earpiece and microphone

DR2. Activate/deactivate with push button

DR3. Control with voice commands

DR4. Audio feedback/response to commands

DR5. Visual indication of status (e.g.
active/inactive)

DR6. Audio and/or visual indication of low power
supply capacity.

Based on the above, there is obviously need for other interfaces:

I1. Non-physical connection to mobile phone

I2. Power supply change or automatic loading.

So far no quantitative information has been revealed so the following

performance measures are included in the example:
P1. Sound quality at least as good as mobile phone
(assume GSM EFR for this example)

P2. Range (distance between ear and phone)<5m

P3. Time to set up system <20 seconds

P4. Minimum operation/standby time 24 h / 336 h
with full power supply.

Among possible connection technologies, Bolderbits studies e.g.
• Infra-red, but rejects it due to e.g. line-of-sight requirement
• FM radio, but rejects it due to e.g. missing call privacy
• Etc.

Bolderbits decides to set Bluetooth as a preferential choice of connection

technology. In order to ensure co-operability with Bluetooth equipped
mobile phones of other manufactures, the company sets the respective
Bluetooth specification (www.bluetooth.com) and especially its Part K:6
Headset Profile as a requirement. Consequently, the system is a wireless
headset that connects to a mobile phone via Bluetooth channel, as depicted
in Figure A5-4.

BlueStone: A Case Example 195

Bluetooth Channel

Headset
Handset
Bluetooth
Audio GW

Figure A5-4. Bluetooth communication channel.

BlueStone Use Cases (UC)
The main interactions of the user and the handset with BlueStone are

depicted in the use case diagram of Figure A5-5.

BlueStone
Handle User Activa

ted Call

Handle Handset
Activated Call

Handle Voice
Command

Control/Indicate
Feature/Status

User Handset

Figure A5-5. Use case diagram for BlueStone.

UC1: Handle User Activated Call
• Pre-condition: Active headset (i.e. paired)
• The user initiates a call and selects the recipient by using voice

commands.
• During on-going call, the user can control the audio volume of the

earpiece by the button.

196 Annex A5

• The handset closes the call connection when the recipient ends the
call

• The user ends the call by pressing the button (for longer than a
certain time 1).

UC2: Handle Handset Activated Call
• Pre-condition: Active headset (i.e. paired)
• The handset initiates a call by alerting user via the headset to the

earpiece. The user can accept or reject the call by using voice
commands.

• During on-going call, the user can control the audio volume of the
earpiece by the button.

• The handset closes the call connection when the recipient ends the
call

• The user ends a call by pressing the button (for longer than a certain
time 1).

UC3: Handle Voice Command
• Pre-condition: Active headset (i.e. paired)
• Voice commands are available, when a headset is active (i.e. the

headset is paired with the handset) and no call activity is on-going.
The headset relies on the respective speech recognition features of
the handset. The responses from the handset are received via the
earpiece.

UC4: Control/Indicate Features/Status
• Assuming a powered-off headset, the user turns the power on by

pressing the button (for longer than a certain time 2). The headset
indicates successful operation by LED and audio tone.

• In order to activate a headset for operation after power on, a paring
process with a handset for authentication and encryption is needed.
The user starts the paring and provides the required PIN-code at the
handset. The headset indicates successful operation by LED and
audio tone.

• Assuming a powered-on headset, the user turns the power off by
pressing the button (for longer than a certain time 3). The headset
indicates successful operation by LED and audio tone (later turning
them off).

• During on-going call, the user can control the audio volume of the
earpiece by the button.

BlueStone: A Case Example 197

All of the above can be seen to fall into the “User and Domain
Requirements” but they also fall into “Functionality”. This is consistent with
the observation that the System Design Process had started before the set of
lists above were complete. It could be said that, as soon as one tries to write
down something about a system, one is designing it.

In this example the Wireless Headset is the System Under Design (SUD).
The development of the mobile handset, not untypically, is carried out in
another department who will be responsible for adding the Bluetooth
capability to the phone including the Audio Gateway implementation of the
Bluetooth Headset profile.

The following sub-sections will describe the SUD in terms of the layers
of abstraction presented in the SDCM.

2.2 BlueStone at Layer L1 Abstraction

To illustrate this layer the SUDM for the wireless headset product called
BlueStone will be expressed in terms of states, variables, relations and
properties. The following variables (short names in brackets) can be
identified:

1. Configuration: Uninitialised/Initialised (Boolean)
(C)

2. Power: on/off (Boolean) (P)
3. Activity: Active/Inactive (Boolean) (A)
4. Call: ongoing/No call (Boolean) (N)
5. Capacity: ok/low (Boolean) (B).

The sets of values these may take represent the states of the SUD. Put

more formally, the total number of states is the cardinality of the Cartesian
product of the sets of values. In this case, as all the variables are Boolean the
total number is 32.

There are some properties that can be expressed as relations between the
variables that begin to say interesting things about the SUD (let us call it
“device” for simplicity):

1. An uninitialised device cannot have an ongoing
call.

C=false :- N=false (:- means implies)

2. An inactive device cannot have an ongoing call.
A=false :- N=false

3. A powered off device cannot change its
configuration.

198 Annex A5

P=false :- const(C)=true (const(V) is a predicate
that is true if V does not change).

4. A powered off device cannot be active.
P=false :- A=false

5. A device with low capacity will be powered off.
B=true :- P=false.

These properties reduce the total number of possible states of the SUD.

The reader should note that the states described here do not relate to a real
system but the system under design. In other words we are dealing with a
model of the real system, so a characteristic of the model is that it has a total
number of states = Card(℘(Values)) and a reduced number of possible
states due to the properties that have been, so far, identified.

The variables and properties depicted here are only a subset of those that
could be identified in the real system under design. The state-space and
design-space would soon get out of hand, even when the reduction by
identification of properties is included. The common way to handle this
growing complexity is to partition the design space. The result is the creation
of one or more sub-systems. Each of these has a set of interfaces, a set of
variables and a set of properties. The paradox is that the overall complexity
of the model (SUD) is increased by the partitioning operation but, taken
alone, each sub-system will have a lower complexity (fewer variables and
hence states). Interfaces will be formed when interactions between variables
span the partitioning boundaries. Some variables, for example the power
state, will be shared across the boundaries.

In the BlueStone example we will partition the SUD into three sub-
systems. Two of these are the User_sub-system and the
Communication_sub-system. Both of these are sub-systems of the
component kind as depicted in Figure A5-6. The third is a sub-system of
kind connector that joins the other two.

User_sub-
system

Comm
Sub-
system

Connector

Figure A5-6. Partitioning of functionality of BlueStone.

This functional partitioning separates the concerns of the user interface
from those of the radio link to the headset. The result of the decision to

BlueStone: A Case Example 199

divide the system in this way is the need to have some way of connecting the
two parts. For now this will be kept loosely defined as a connector.

2.3 BlueStone at Layer L2 Abstraction

The functionality that was described in an informal way by the
requirements above is translated into services and mathematical functions. In
this layer the details of the architecture of the system can begin to be seen. It
is important to recognise that a real system design process might iterate and
produce a number of candidate architectures, however only one top-level
view will be presented in this example.

The functions will be represented here in a form of pseudo-code. The
following conventions will be used in the pseudo-code.

Upper_case_initial = identifier/name
Lower_case_initial = operator/function/keyword

system is {Bluestone}

environment is {Mobile_phone, User}

system + environment ! join {Mobile_phone, User}
with Bluestone

state System_state of Bluestone is {Off,
Initialised, Active, Incoming_request, Incoming_
active, Outgoing_initiate, Outgoing_active}

function User_sub-system of Bluestone is
{Power_on_off, Initialise, Activate, Indicate_
status, Initiate_call, Accept_call, Reject_call,
End-call}

interface User_interface of User_sub-system is
{Button, LED, Microphone, Earpiece}

connect (Bluestone, User) by (LED, Button,
Microphone, Earpiece)

NB. LED, Button etc. represent here logical
functionality (services), not the electrical
components.

function Communication_sub-system is
{Establish_link, Establish_control, Establish_
audio, Release_audio, Release_control, Release_
link}

interface Communication_interface of
Communication_sub-system is {Bluetooth_radio}

NB. Bluetooth_radio represents here logical
functionality (services), not the electrical
component.

200 Annex A5

connect (Bluestone, Mobile_phone) by
{Bluetooth_radio}

connect (User_sub-system of Bluestone,
Communication_sub-system of Bluestone) by
Connector.

To summarize, the example system has, as depicted in Figure A5-7, at L2

layer three sub-systems (or indications of such) Communication_sub-system
and User_sub-system, which are connected by a connector. Furthermore, the
Communication_interface of the Communication_sub-system has become a
separate sub-system Bluetooth Radio reflecting the decision to use external
System Intellectual Property (SIP) for its implementation.

User_sub-
system

Comm_
sub-
system

Bluetooth
Radio

Figure A5-7. Functional architecture of BlueStone.

In the Architecture (functional) view the following can be seen: state =
System_state of Bluestone, which lists different modes of the system.
Additionally, there are functions (services) of the two sub-systems. These
can be expressed using Action Semantics as shown below for the User sub-
system.

A property:

Capacity=low :- Power=off

An equation:

Capacity = Check_battery(voltage,threshold)

Where the Check_battery function is defined by:

 x>y :- Check_battery(x,y) = true

 x=y :- Check_battery(x,y) = false

 x<y :- Check_battery(x,y) = false

A maplet:

Button|---- Power // pressing the button will
affect the power state

Battery_voltage|---- LED // the LED will indicate
a low battery voltage

Causal chain:

BlueStone: A Case Example 201

Button|---- Power|---- System_state |----
Radio_state |---- BT_link_state

// Pressing the button will turn on the power and
initialise the system. The radio will operate and
a Bluetooth link with the handset will be
established.

Thread of maplets is shown in Figure A5-8.

Button

LED

ConnectionPswitch Power

Figure A5-8. Thread of maplets.

This example shows that the value of the Button variable can affect both
the value of the power switch (Pswitch) variable and the Connection
variable. Similarly, the LED variable is influenced by both the Power and
the Connection variables.

The causal chain and thread of maplets span the whole system. When the
interaction crosses the boundary of variables, there will emerge interfaces
between the sub-systems and connectors.

One thing that is evident from the chain of maplets is that the button
affects the value of both Power and the Connection variables. However, the
power affects the connection too. The button functionality needs to provide
different changes in the variable to distinguish what the user wants to
change. This detail is left until later but the requirement has been defined
here.

2.4 BlueStone at Layer L3 Abstraction

At this layer the structure of the SUD is described in terms of modules.
The Bluetooth platform that is the candidate for the system offers two
options that can be seen as different architectural templates. The first divides
the functionality into two parts: host controller and device controller. The
host handles the higher layer of the Bluetooth protocol stack and the profile
functionality while the device performs the lower layers and implements the
air interface. The second implements all the functionality on one unit. These
are described as the two processor and single processor configurations,
respectively due to the fact that the partitioning involves software and the

202 Annex A5

software needs a processor to run. They are also known as hosted and
embedded scenarios. In the SDCM the host and device controllers or
embedded controller can be seen as modules and the task in the design
process is to partition the functions into modules. Figures A5-9 and A5-10
show the resulting mappings for the two architectural templates.

User
Sub-system

Connector
_ sub-system

Bluetooth
Comm

Host Controller

Device
Controller

RADIO
HCI RFI

Codec PCM

B

L

M

E

BTLM s/w

UI s/w

BTHC s/w

Figure A5-9. BlueStone based on hosted Bluetooth platform.

The major modules in this hosted platform partitioning are: Host
Controller, Device Controller and Radio. The BTLM (Bluetooth Link
Manager) and BTHC (Bluetooth Host Controller) software are part of the
platform. The UI (User Interface) software is developed by BolderBits.
There are some sub-modules shown within the Host Controller. These are
the voice codec (containing audio AtoD and DtoA converters), a button (B),
LED (L), microphone (M) and an earpiece (E). The host and device
controllers are connected by the Host Controller Interface (HCI) and Pulse
Code Modulation (PCM) interfaces. The Radio is connected by an interface
called RFI (Radio Frequency Interface). The software is divided into two
parts. The platform includes the Link Manager software (BTLM) that runs
on the device controller. The Host Controller includes a processor that runs
the Host Controller (BTHC) software and the User Interface software. Both
of these would need to be sourced or developed separately from the
Bluetooth hosted platform.

The mapping of functions in the functional architecture are shown by
arrows pointing at the modules in the physical architecture. It is interesting

BlueStone: A Case Example 203

to note that the connector sub-system maps to a number of sub-modules. The
rectangles in the Host Controller adjacent to the software “star” represent
peripheral input-output sub-systems.

 UI Logic Embedded
Controller

RADIO
ULI RFI

Codec PCM

B

L

M

E

BT s/w

User
Sub-system

Connector
_ sub-system

Bluetooth
Comm

UI s/w

Figure A5-10. BlueStone based on embedded Bluetooth platform.

The embedded platform partitioning has a codec and a User Interface
Logic module (UI Logic) which are connected to an Embedded Bluetooth
Controller by the User Logic Interface (ULI) defined by BolderBits and the
PCM interface. In this alternative all the software runs on one processor that
is part of the platform and resides in the Embedded Controller.

The selection of the appropriate option for the platform depends on a
number of factors including system cost and size. These favour the
embedded platform but there are performance requirements that must be
met. The use of the embedded option introduces a constraint: the UI
software has to run on the processor in the embedded platform. From this
issue we can identify that the System IP (SIP) provider must supply
information about the available capacity on that processor. They also need to
provide open (or at least well documented) interfaces to peripheral devices
such as the codec and the UI logic. The same goes for the run-time
environment: the SIP user will want a reliable way to add functionality to the
platform to realise their product.

It can be argued that the performance issue introduces the need to have a
notion of time. The reader may have noticed that time has not been
mentioned at all so far. The system description (in some facet of the SUDM)

204 Annex A5

needs to be elaborated with information about events and the time from one
event to the next. An example below tries to depict that.

From the requirements: the time to set up the
system must be <20s

The constraint will be:

Button {t1,off} {t2,on} // NB t1 < t2

Connection {t3,idle} {t4,connected} // NB t3 > t2
, t4 > t3

// Where tn are ordered tags : no notion of time
as yet

Now we can introduce time by saying that the tags
are in the set of natural numbers and that their
values represent the time of the event in
microseconds. The constraint can be written as:

t4 – t2 < 20000000
Assuming that the sound quality can be expressed
in objective terms, such as maximum bit error rate
on the PCM stream, this requirement can be
expressed in a similar way.

The battery for the headset was not shown in the
partitioning figures, but it is interesting to
consider a derived constraint on the battery
management sub-system, if we introduce a
requirement that the system should provide a
audio/visual warning of low battery voltage and
shut down if the battery voltage falls below a
certain critical level.

The embedded controller based system is realized in our example by

Bolderbits licensing a platform for embedded Bluetooth applications. One
way to look at a platform is as the set of services it offers. These services
exist in different facets, for example, the physical architecture that has been
presented so far in this story. Another important facet of a platform contains
the system design know-how. This may take the form of rules or constraints
that must be met by any design that uses the platform. A very concrete
example of this would be an ASIC design platform consisting of a cell
library, design rules and rule checking scripts (e.g. a DRC (Design Rule
Check) run-set). In the context of our example the platform supports the
addition of user software to run on the embedded processor but that software
may not violate the constraint that says that the CPU must be available to the
Bluetooth software so that it can service the hardware. The Bluetooth
specification divides time into slots with a period of 625us. The software, in

BlueStone: A Case Example 205

our example, requires access to the processor once every two slots. This
constraint is ensured in the implementation by a real-time assertion checker.
In an ideal world there would be some way to check the rule in a static way
but this would require tools that, as far as the author knows, are not
commercially available.

2.5 BlueStone at a Diversion

At this point in the story Bolderbits carries out a review of their design.
Consider the original requirements and their allocation as depicted in Table
A5-2:

Table A5-2. List of Bluestone derived requirements.
Id Requirement Allocated to
DR1 Earpiece and microphone UIL
DR2 Activate/deactivate with push button UIL
DR3 Control with voice commands ???
DR4 Audio feedback/response to commands ???
DR5 Visual indication of status (e.g. active/inactive) UIL
DR6 Audio and/or visual indication of low power supply capacity. UIL (audio?)

DR3 and DR4 are not completely satisfied by the UIL module or at least

for the sake of this example let us assume this is the case so far. The reader
will have to take it as fact that the handset has voice dialling and which can
be activated by a magic word. The requirements imply that all the features of
the phone should be accessible via the headset. The battery life requirement
means that the radio link cannot be active all of the time the phone is
switched on. This means that any magic word recognition would have to be
implemented in the headset (as well as the phone). After evaluation of the
platform it is apparent that it does not have enough spare processing capacity
to implement even a simple speech recognition facility. The requirement for
voice control needs to be modified if it is to be met. So, something that could
have only been discovered at layer L4 has an effect on the design in layer
L1.

This, admittedly fabricated, example has illustrated the multi-
dimensional nature of the design space. The layers in the SUD and the
activities or check-points in the SDP cannot be described in a linear fashion.
It has been possible with implementation design, such as at RT level
synthesis, to draw lines in the sand and define more or less strict boundaries
between activities. To do the same in system design, it will be necessary to
find sets of assumptions that can be used to reliably define similar
boundaries. Having found these boundaries then tools can be created that
operate within them.

206 Annex A5

It is not clear if UIL should provide the audio feedback or if the phone
should generate tones and send them over the radio link. The partitioning of
this requirement can be realised by considering the properties and states and
the SUD. Strictly according to the SDCM, this design task could operate at
layer L3 and above as all the required information is available there. By
analysing the way Bolderbits do their product design we have identified an
opportunity to improve their design process. This particular example is not
critical to the choice of platform but Bolderbits may have found themselves
committed to a sub-optimal solution and unable to change the design without
incurring a large cost.

To illustrate the action semantics involved consider these example power
consumption estimates of the embedded platform in different states:

Standby: 10uA average (for single Bluetooth
chip)
Parked: 1.2mA average (100ms period)
Connected: 20mA average (voice active) for
BT+ 20mA for UIL.

Given that the required standby time was 336h compared to the talk time

of 24h it follows that the current consumption needs to be lower in the
system standby state. When the system is in this state the headset is in a state
in which is ready to receive an incoming call. This requires the connection
between the handset and the headset to be able to react within a less than a
second or so. To achieve this with Bluetooth the devices need to be
participating in a link which is parked. This means they will rendezvous
every period to maintain synchronisation. The period can be selected to trade
off power consumption with system latency. One solution for the magic
word facility would be to implement it by detecting sound at the microphone
on the headset and then connecting to the handset to send the speech for
recognition. The chain of maplets would be:

Microphone|----Threshold|----Connection|----Power.

Here the “Power” system variable would have possible values = {off,

standby, on}. This variable should not be confused with the state of some
switch in the implementation of the system. In terms of implementation it is
more likely to be a value stored in a memory or flip-flop. Both “standby”
and “on” draw current from the battery. As stated earlier, to minimise to
latency, the Power state called “standby” is implemented by keeping the
Bluetooth link to the handset in the “parked” state.

The argument for the audio feedback is rather simpler to work through.
An unpaired headset (i.e. one that has lost its authentication to connect to the
handset) or, more simply a headset out of the range of its handset, will still

BlueStone: A Case Example 207

need to provide the audio indication of low battery level etc. So this
requirement must be met within the headset and some way must be provided
in the implementation to send tones to the earpiece.

Check(Battery,Threshold)|-----Audio.

Rather than, for example:

Check(Battery,Threshold)|-----Connection|----
Tone|----Audio.

Where “Tone” is a variable in the handset sub-system in the context of

the original layer L1 model.

2.6 BlueStone at Layer L4 Abstraction

Having chosen to use the embedded Bluetooth platform as a basis for the
headset, Bolderbits are faced with the task of specializing that platform
towards their end product. In addition to the user logic hardware and user
interface software it becomes apparent that there will need to be some
additional software in the handset. The handset software team takes
responsibility for the implementation so this example will not include any
details except to mention that the software is needed to support the
configuration of the headset. For example, the authentication and encryption
mechanism in Bluetooth uses a secret key (PIN codes) to facilitate the
pairing process. As the headset has no way to enter numeric data by itself,
the phone is used to set the PIN code via a data link (RFCOMM) via the
Bluetooth interface. The Bluetooth platforms includes the Generic Access
Profile, which implements the pairing process but the initiation and data
input have to be added by the platform user. This illustrates that a platform
can be seen, in a way, as an incomplete design where certain refinements are
left to the platform user. The differences between this System IP (SIP) and
Implementation IP (IIP) such as a virtual component (i.e. a combination of
synthesisable RTL, scripts and verification test benches) lie in the fact that
the refinement of the IIP is more or less automatic whereas the SIP calls for
much more manual intervention. The other main issue is the fact the form
and content of SIP is much less well defined. The industry has no clear
definition of what to expect from SIP. The situation is as it was before VSIA
began to influence the IIP domain.

The layer L4 in the SDCM is characterised by the SUD being elaborated
with model artefacts representing notions such as queue, shared variable,
buffer etc. The hardware models take the form of logical block diagrams
and, in the analogue domain, schematics. The digital functionality is refined
down to FSMs and data flow graphs that are amenable to automatic

208 Annex A5

synthesis. The mapping from the functional architecture to the hardware
architecture is shown in Figure A5-11.

Figure A5-11. BlueStone mapping onto hardware architecture.

The mapping is shown by the braces and arrows. This figure also shows
the mapping from the software functional view into the hardware structural
view. The User Interface software is executed on the CPU in the baseband
controller and it consumes memory in the RAM (read-write data) and Flash
(code and read-only data). The connector maps mainly onto the IO block and
the PCM block but there is an element of the connector that maps to
software that runs on the CPU. This is shown as a dotted line in the figure.

The mapping of functions can be explored by looking at the Button
element in the functional architecture:

Table A5-3. Button functions.
Function Button action
Power on/off PUSH
Pair PUSH
Activate PUSH
Volume up/down +/-
Accept call PUSH
End call PUSH

BlueStone: A Case Example 209

The volume up/down function introduces the need for a hardware button
that has 3 actions. This comes from the need to indicate whether the user is
requesting an increase or decrease in volume level at the earpiece. This
request also needs to be distinguished from a request to end the call. It would
not be sensible to expect a voice command to be used as the commands
would be heard by the other party in the phone call.

There is another conflict in the mapping concerning the “power off” and
other functions activated by the “Push” action. This is resolved by defining a
simple protocol that says that the power will only go off if the button is
depressed for more than a certain length of time. This can be implemented
using the timer hardware/software function in the platform.

The overall function of the button can be represented by a finite state
machine (FSM) model. A data flow graph is a more appropriate model for
the functionality of the PCM interface and the mapping of the voice path and
the tone generation path into the single hardware resource at the codec. The
actual switching could be done in the software domain by selecting PCM
data from the relevant buffer. Or it could be done in hardware by
implementing a logical switch for the data source going over the PCM
interface. The software option is easier to provide in the platform if the more
general case is considered.

The software architecture is best represented as a stack diagram shown in
Figure A5-12.

Power
control

Tonegen

PLATFORM HARDWARE

BIOS

BT Stack

RTOS

Initialise Configure Volume
control

Handle
Call

UI h/w

Figure A5-12. BlueStone software architecture.

The software included as part of the Bluetooth platform forms the bulk of
the functionality. This sits on top of a Basic Input Output System (BIOS)
and the Real Time Operating System (RTOS). The BIOS contains driver
code for the hardware contained in the platform. More important is the

210 Annex A5

existence of packaged know-how which allows the platform user
(Bolderbits) to add hardware and software functionality. This is shown on
the left and above the BT Stack software. The top layer in the software stack
diagram represents the application developed by Bolderbits to meet the
needs of their customer. It is here that the integration with the software and
the handset is realised. The software above the User Interface hardware (UI
h/w) implements the drivers for the added hardware, such as the codec and
the power control hardware. Software interfaces exist at the boundaries of
the various boxes in the stack diagram. For example the “Tonegen” block or
module presents an application programmer interface (API) to the top level
code. This API may be facilitated by the programming language
environment, i.e. through the function call mechanism or via an operating
system function such as message passing. The platform includes guidance
for how the user should apply these in the implementation of their system.
For example, the power control function is affected by a number of variables
that might not all be implemented in one software unit. In this case the
message passing mechanism is the best to use.

As was highlighted earlier, the platform imposes certain constraints on
the system designer in order to preserve its invariant. For example, part of
the invariant of the Bluetooth platform is: the system complies with the
Bluetooth standard. One constraint that has to be met is that the CPU has
enough processing power available to fulfil the tasks that implement the BT
Stack. On the hardware side the RAM is of a fixed size in the embedded
controller for a given variant of the platform. The selection of variant is
therefore a function of the data usage of the application software. This is
another example of the interaction across the abstraction layers in the
System Design Process.

3. SDP AND SUD INTERACTION

Now that the design process and the SUD have been described it is
possible to provide an overview of the relationship between SDP and SUD.
This is depicted in Figure A5-13.

BlueStone: A Case Example 211

SUDM

User and
Domain

Requirements
Specification

Technical
Requirements
Specification

System/
architecture
Specification

System/
architecture
Description

Mobile Phone
with Bluetooth

SIP

Bluetooth
Platform

SIP

Bluetooth
Standard and

Design
Knowledge

SIP

User and
Domain

Requirements
Analysis

Conceptual
Design

Platform
Analysis

Functional
Decompo-

sition

Mapping

SUDM

SDP

Figure A5-13. BlueStone SDP/SUDM linkage.

4. SUMMARY

This chapter has described a walk-through of an artificial but realistic
example in order to show how the SDCM can be instantiated in practice.

When applying the SDCM, the user is expected to instantiate both the
design process, modelling methods, languages and the specific artefacts
according to the needs of her/his organisation. This requires effort from the
user, but the payback will come from improved reuse capability of the
organisation. This example has tried to show some aspects of the
instantiation of the SDCM.

