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This third edition of the well-known calculus review book by Frank Ayres, 
Jr., has been thoroughly revised and includes many new features. Here are some 
of the more significant changes: 

Analytic geometry, knowledge of which was presupposed in the first two 
editions, is now treated in detail from the beginning. Chapters 1 through 
5 are completely new and introduce the reader to the basic ideas and 
results. 
Exponential and logarithmic functions are now treated in two places. 
They are first discussed briefly in Chapter 14, in the classical manner of 
earlier editions. Then, in Chapter 40, they are introduced and studied 
rigorously as is now customary in calculus courses. A thorough treatment 
of exponential growth and decay also is included in that chapter. 
Terminology, notation, and standards of rigor have been brought up to 
date. This is especially true in connection with limits, continuity, the 
chain rule, and the derivative tests for extreme values. 
Definitions of the trigonometric functions and information about the 
important trigonometric identities have been provided. 
The chapter on curve tracing has been thoroughly revised, with the 
emphasis shifted from singular points to examples that occur more 
frequently in current calculus courses. 

The purpose and method of the original text have nonetheless been pre- 
served. In particular, the direct and concise exposition typical of the Schaum 
Outline Series has been retained. The basic aim is to offer to students a collection 
of carefully solved problems that are representative of those they will encounter 
in elementary calculus courses (generally, the first two or three semesters of a 
calculus sequence). Moreover, since all fundamental concepts are defined and the 
most important theorems are proved, this book may be used as a text for a 
regular calculus course, in both colleges and secondary schools. 

Each chapter begins with statements of definitions, principles, and theorems. 
These are followed by the solved problems that form the core of the book. They 
give step-by-step practice in applying the principles and provide derivations of 
some of the theorems. In choosing these problems, we have attempted to 
anticipate the difficulties that normally beset the beginner. Every chapter ends 
with a carefully selected group of supplementary problems (with answers) whose 
solution is essential to the effective use of this book. 

1. 

2. 

3. 

4. 

5 .  
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Chapter 1 

Absolute Value; Linear Coordinate Systems; 
Inequalities 

THE SET OF REAL NUMBERS consists of the rational numbers (the fractions a l b ,  where a and b 
are integers) and the irrational numbers (such as fi = 1.4142 . . . and T = 3.14159 . . .), which 
are not ratios of integers. Imaginary numbers, of the form x + y m ,  will not be considered. 
Since no confusion can result, the word number will always mean real number here. 

THE ABSOLUTE VALUE 1x1 of a number x is defined as follows: 

x if x is zero or a positive number 
I x l  = { --x if x is a negative number 

For example, 131 = 1-31 = 3 and 101 = 0. 
In general, if x and y are any two numbers, then 

- 1x1 5 x 5 1x1 
I -x l  = 1x1 and Ix - yl = l y  - X I  

1x1 = lyl implies x = * y  

Ix + yl 5 1x1 + Iyl (Triangle inequality) (1 .5)  

A LINEAR COORDINATE SYSTEM is a graphical representation of the real numbers as the points 
of a straight line. To each number corresponds one and only one point, and conversely. 

To set up a linear coordinate system on a given line: (1) select any point of the line as the 
origin (corresponding to 0); (2) choose a positive direction (indicated by an arrow); and (3) 
choose a fixed distance as a unit of measure. If x is a positive number, find the point 
corresponding to x by moving a distance of x units from the origin in the positive direction. If x 
is negative, find the point corresponding to x by moving a distance of 1x1 units from the origin in 
the negative direction. (See Fig. 1-1.) 

1 1 1 1 1 1  I I I 1  I I 1  1 
I 1 1 1 1 1  I I I I  I 1 1  1 Y 

-4 -3 -512 -2 -312 -1 0 1/2 1 ~ 2 3 r  4 

Fig. 1-1 

The number assigned to a point on such a line is called the coordinate of that point. We 
often will make no distinction between a point and its coordinate. Thus, we might refer to “the 
point 3” rather than to “the point with coordinate 3.” 

If points P ,  and P,  on the line have coordinates x, and x ,  (as in Fig. 1-2), then 

I x ,  - x 2 (  = PIP2 = distance between P ,  and P2 

1x1 = distance between P and the origin 

(1 .6)  

( 1 . 7 )  

As a special case, if x is the coordinate of a point P, then 

1 
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FINITE INTER 

x2 

Fig. 1-2 

[CHAP. 1 

QLS. Let a and b be two points such that a < b.  By the open ',zterval ( a ,  ") we mean 
the set of all points between a and b ,  that is, the set of all x such that a < x < b.  By the closed 
interval [ a ,  b ]  we mean the set of all points between a and b or equal to a or b ,  that is, the set of 
all x such that a I x 5 b.  (See Fig. 1-3.) The points a and b are called the endpoints of the 
intervals ( a ,  b )  and [ a ,  b ] .  

A 4 - W * 
U b 

Open interval ( a ,  b ) :  a < x < b 

L - - m 
U b 

Closed interval [ a ,  b]: a I x I b 

Fig. 1-3 

By a huff-open interval we mean an open interval ( a ,  b )  together with one of its endpoints. 
There are two such intervals: [ a ,  b) is the set of all x such that a 5 x < b, and ( a ,  b ]  is the set of 
all x such that a < x 5 b. 

For any positive number c ,  

1x1 5 c if and only if - c  5 x I c 
1x1 < c if and only if - c  < x < c 

See Fig. 1-4. 

I n 1 n 
1 - * - + W 1 W 

-C 0 C -C 0 C 

Fig. 1-4 

INFINITE INTERVALS. Let a be any number. The set of all points x such that a < x is denoted by 
( a ,  30); the set of all points x such that a I x is denoted by [ a ,  00). Similarly, (-00, b )  denotes the 
set of all points x such that x < b ,  and (-00, b]  denotes the set of all x such that x 5 b.  

INEQUALITIES such as 2 x  - 3 > 0 and 5 < 3x + 10 I 16 define intervals on a line, with respect to a 
given coordinate system. 

EXAMPLE 1 : Solve 2x - 3 > 0. 

2 ~ - 3 > 0  
2x > 3 (Adding 3) 
x > (Dividing by 2) 

Thus, the corresponding interval is ( $ ,  00). 
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EXAMPLE 2: Solve 5 < 3x + 10 5 16. 

5<3x+10116 

- 5 <  3x 5 6  (Subtracting 10) 

- ;< x 12 (Dividing by 3) 

Thus, the corresponding interval is (-5/3,2]. 

EXAMPLE 3: Solve -2x + 3 < 7. 

- 2 ~ + 3 < 7  
- 2x < 4 (Subtracting 3) 

x > -2  (Dividing by - 2) 

Note, in the last step, that division by a negative number reverses an inequality (as does multiplication by 
a negative number). 

Solved Problems 

1. Describe and diagram the following intervals, and write their interval notation: ( a )  - 3 < 
x < 5 ;  ( b )  2 1 x 5 6 ;  ( c )  - 4 < x 5 0 ;  ( d ) x > 5 ;  ( e ) x s 2 ;  (f) 3 x - 4 5 8 ;  (g) 1 < 5 - 3 x < 1 1 .  

(a) All numbers greater than -3 and less than 5; the interval notation is (-3,5): 

(6) All numbers equal to or greater than 2 and less than or equal to 6; [2,6]: 

( c )  All numbers greater than - 4  and less than or equal to 0; (-4,0]: 

( d )  All numbers greater than 5; ( 5 , ~ ) :  

(e) All numbers less than or equal to 2; ( -W, 21: 

( f)  3x - 4 I 8 is equivalent to 3x I 12 and, therefore, to x 5 4. Thus, we get (-m, 41: 

1 < 5 - 3x < 11 

- 4 <  -3x < 6  (Subtracting 5) 
-2 < x < (Dividing by -3; note the reversal of inequalities) 

Thus, we obtain (-2, $): 
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2. Describe and diagram the intervals determined by the following inequalities: (a)  1x1 <2;  (6) 
1x1 > 3; ( c )  Ix - 31 < 1; ( d )  Ix - 21 < 6, where 6 > 0; ( e )  Ix + 21 5 3; (f) 0 < Ix - 41 < 6, where 
6 CO. 

(a )  This is equivalent to - 2  < x < 2, defining the open interval (-2,2): 

( 6 )  This is equivalent to x > 3  or x < -3, defining the union of the infinite intervals (3, a) and 
(-m, -3).  

(c) This is equivalent to saying that the distance between x and 3 is less than 1, or that 2 < x < 4, which 
defines the open interval (2,4): 

We can also note that Ix - 31 < 1 is equivalent to - 1 < x - 3 < 1. Adding 3, we obtain 2 < x < 4. 
( d )  This is equivalent to saying that the distance between x and 2 is less than 6, or that 2 - 6 < x < 2 + 6, 

which defines the open interval (2 - 6,2  + 6) .  This interval is called the 6-neighborhood of 2: 

n 
v 1 0 - 

2 - 6  2 2 + 6  

( e )  Ix + 21 < 3 is equivalent to -3 < x + 2 < 3. Subtracting 2, we obtain - 5  < x < 1, which defines the 
open interval (-5, 1): 

(f) The inequality Ix - 41 < 6 determines the interval 4 - 6 < x < 4 + 6. The additional condition 
0 < Ix - 41 tells us that x # 4. Thus, we get the union of the two intervals (4 - 6,4) and (4 ,4 + 6) .  
The result is called the deleted 6-neighborhood of 4: 

n n n 
W - e - 

4 - 6  4 4 + 6  

3. Describe and diagram the intervals determined by the following inequalities: ( a )  15 - X I  5 3; 
(6) 1 2 ~  - 31 < 5 ;  (c) 11 - 4 x ( <  $.  

(a) Since 15 - X I  = Ix - 51, we have Ix - 51 I 3, which is equivalent to -3 5 x - 5 5 3. Adding 5, we get 
2 I x 5 8, which defines the open interval (2,s): 

( 6 )  12x - 31 < 5 is equivalent to -5 < 2x - 3 < 5. Adding 3, we have - 2  < 2x < 8; then dividing by 2 
yields - 1 < x < 4, which defines the open interval (- 1,4): 

v 

- 1  
- 
4 

(c) Since 11 - 4x1 = 14x - 11, we have (4x - 11 < 4 ,  which is equivalent to - 4 < 4x - 1 < 4 .  Adding 1, we 
get 5 < 4x < t .  Dividing by 4, we obtain Q < x < i, which defines the interval ( Q  , ): 
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4. Solve the inequalities (a)  18x - 3x2 > 0,  ( b )  ( x  + 3 ) ( x  - 2 ) ( x  - 4) < 0, and 

5 

( x  + l ) L ( x  - 3 )  > 0, and diagram the solutions. 

Set 18x - 3x2 = 3x(6 - x) = 0, obtaining x = 0 and x = 6. We need to determine the sign of 18x - 3x‘ 
on each of the intervals x < 0, 0 < x < 6, and x > 6, to determine where 18x - 3x’ > 0. We note that 
it is negative when x < 0, and that it changes sign when we pass through 0 and 6. Hence, it is positive 
when and only when O<x<6: 

The crucial points are x = -3 ,  x = 2, and x = 4. Note that (x + 3)(x - 2)(x - 4) is negative for 
x < - 3  (since each of the factors is negative) and that it changes sign when we pass through each of 
the crucial points. Hence, it is negative for x < - 3 and for 2 < x < 4: 

* 
- 3  2 4 

Note that (x + 1)’ is always positive (except at x = - 1, where it is 0). Hence ( x  + l)*(x - 3) > 0 
when and only when x - 3 > 0, that is, for x > 3: 

5. Solve 13x - 71 = 8. 

In general, when c I 0, lul= c if and only if U = c or U = - c. Thus, we need to solve 3x - 7 = 8 and 
3 x - 7 = - 8 ,  from which w e g e t x = 5 o r x = - + .  

2x + 1 
x + 3  

6. Solve - > 3 .  

Case 2 : x + 3 > 0. Multiply by x + 3 to obtain 2 x  + 1 > 3x + 9, which reduces to - 8 > x .  However, 

Case 2: x + 3 < 0. Multiply by x + 3 to obtain 2 x  + 1 < 3x + 9. (Note that the inequality is reversed, 

Thus, the only solutions are -8 < x < -3 .  

since x + 3 > 0, it must be that x > -3 .  Thus, this case yields no solutions. 

since we multiplied by a negative number.) This yields - 8 < x .  Since x + 3 < 0, we have x < - 3. 

7. solve I f - 31 < 5 .  

2 
The given inequality is equivalent to -5 < - - 3 < 5 .  Add 3 to obtain - 2  < 2 / x  < 8, and divide by 2 

Case I : x > 0. Multiply by x to get - x  < 1 < 4x. Then x > j and x > - 1; these two inequalities are 

Case 2: x < 0. Multiply by x to obtain -x  > 1 > 4x. (Note that the inequalities have been reversed, 
and x < - 1. These two inequalities are 

Thus, the solutions are x > 4 or x < - 1, the union of the two infinite intervals ( 4 ,  M) and (-E, - 1). 

X 
to get - 1  < l / x < 4 .  

equivalent to the single inequality x > i. 

since we multiplied by the negative number x.) Then x < 
equivalent to x < - 1. 

8. Solve 12x - 51 I 3. 

Let us first solve the negation 12x - 51 < 3. The latter is equivalent to - 3  < 2x - 5 < 3. Add 5 to 
obtain 2 < 2 x  < 8, and divide by 2 to obtain 1 < x < 4. Since this is the solution of the negation, the 
original inequality has the solution x 5 1 or x 2 4. 

9. Prove the triangle inequality, Ix + yI 5 1x1 + I y l .  
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Add the inequalities - 1x1 5 x 5 1x1 and - l y l ~  y 5 lyl to obtain 

- ( l ~ l + l Y l > ~ ~ + Y ' I ~ l + l Y l  

Then, by (1 .8) ,  Ix + y11Ixl + l y l .  

Supplementary Problems 

10. Describe and diagram the set determined by each of the following conditions: 

( 4  I x F 3  

Am. (e) - 3 < x < 3 ; ( f ) x r 5 o r x I - 5 ; ( g ) ~  < x <  $ ; ( h ) x > - 2 0 r x < - 4 ; ( i ) x # 2 a n d l < x < 3 ;  

(d) x L 1 
(h)  Ix + 31 > 1 

( U )  - 5 < x < O  ( 6 )  X I 0  (c) - 2 1 ~ < 3  
(f) 1x1 2? 5 (8) lx - 21 < t 

(i) O <  Ix - 21 < 1 ( j )  O<Ix+31< (k)  Ix-2121. 

( j )  - ~ < x < - ~ ; ( k ) x 2 3 o r x I l  

11. Describe and diagram the set determined by each of the following conditions: 

(U)  1 3 ~  - 71 < 2 (6) ( 4 x - l I r l  (c) 1; - 2 1 1 4  

Ans. ( a )  5 < x < 3 ;  (6) X L  

(e) x > O  or x < -1 or - f < x  < O ;  (f) x > 4 or x < - + or x s 0 ;  (c) - 6 1 x 1  18; (d) XI -; or x L  I *  2 9  

12. Describe and diagram the set determined by each of the following conditions: 
( a )  x ( x  - 5 )  < 0 
(d) x ( x  - 2)(x + 3) > 0 

( j )  ( x + 1 ) 3 < 0  

(6) (X - 2)(x - 6) > 0 
(e) ( x  + 2)(x + 3)(x + 4) < 0 

( k )  ( x  - 2)3(x + 1) < o 

(c) ( x  + l)(x - 2) < 0 
( f )  ( x  - l)(x + l)(x - 2)(x + 3) > 0 

( I )  ( x  - 1)3(x + 114 < o  
(g) (X - l ) ' ( ~  + 4) > 0 

(m) (31 - 1)(2x + 3) > 0 

Ans. 

(h) ( x  - 3)(x + 5 ) ( x  - 4)2 < 0 

(n) ( x  - 4)(2x - 3) < 0 

(i) ( x  - 2)3 > 0 

( a )  O < x < 5 ;  ( 6 )  x > 6  or x < 2 ;  (c) - 1 < x < 2 ;  (d) x > 2  or - 3 < x < O ;  
(e) - 3 < x < - 2 o r x < - 4 ;  ( f ) x > 2 o r  - l < x < l o r x < - 3 ;  ( g ) x > - 4 a n d x # l ;  
(h)  -5 < x < 3; (i) x > 2; ( j )  x < - 1; (k) - 1 < x < 2; (I) x < 1 and x # - 1; 
( m ) x > f o r x < - ; ;  ( n ) t < x < 4  

13. Describe and diagram the set determined by each of the following conditions: 

(e) x 2  + 3x - 4 > o ( f ) x 2 + 6 x + 8 s O  ( g ) x 2 < 5 x + 1 4  
(i) 6x' + 13x < 5 

Ans. 

( a )  x 2  < 4 ( 6 )  x 2  2 9  (c) (X - 2)' 5 16 (d) (2x + 1)2 > 1 
(h) 2x2 > x + 6 

( j )  x 3  + 3x2 > 10x 

(a )  - 2 < x < 2 ;  (6) x 2 3  or XI -3; (c) - 2 1 x 1 6 ;  (d) x > O  or x < - 1 ;  
( e ) x > l  o r x < - 4 ;  (f) - 4 5 x 5 - 2 ;  (g) - 2 < x < 7 ;  ( h ) x > 2 o r x < - $ ;  
(i) - $ < x < f ;  ( j )  - 5 < x < O o r x > 2  

2x - 1 X 
< 1  x+2 14. Solve: ( a )  - 4 < 2 - x < 7  ( 6 )  7 < 3  
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Am. (a )  - 5 < x < 6 ;  ( b ) x > O o r x < - l ;  ( c ) x > - 2 ;  ( d )  - y < x < - z ;  
( e ) x < O o r O < x < $ ;  ( f ) x r - 4 o r x l - l  

15. Solve: (a )  14x -51 = 3  (6) Ix + 61 = 2 (c )  1 3 ~  - 41 = 1 2 ~  + 11 
( d )  Ix + 11 = ( x  + 21 (e) Ix + 1 1  = 3 x  - 1 ix + 1 1  < 13x - 11 
( g )  1 3 ~  - 41 2 1 2 ~  + 11 

Am. (a) x = 2 or x = i ;  (6) x = -4 or x = -8; (c )  x = 5 or x = g ;  ( d )  x = - 5;  (e) x = 1; 
( f ) x > l o r x < O ; ( g ) x > 5 o r x < 5  

(4 lx21 = lx12 16. Prove: (a )  lxyl = 1x1 * ly l  (6) If1 = 1x1 if y Z 0  

(4 I x - Y l ~ I x l + l Y l  ( 4  I x - Y l ~ l l x l - l Y l l  
(Hint: In (e), prove that Ix - yl 2 1x1 - lyl and Ix - y (  2 lyl - 1x1.) 

7 



Chapter 2 

The Rectangular Coordinate System 

COORDINATE AXES. In any plane 9, choose a pair of perpendicular lines. Let one of the lines be 
horizontal. Then the other line must be vertical. The horizontal line is called the x axis, and the 
vertical line the y axis. (See Fig. 2-1.) 

Y 

1 
I 
I 
I I I 

I I 
I 1 1  I 1 1 1  I 1  

- 2  - 1  01 1 2 3 4 s l a  X 

Fig. 2-1 

Now choose linear coordinate systems on the x axis and the y axis satisfying the following 
conditions: The origin for each coordinate system is the point 0 at which the axes intersect. 
The x axis is directed from left to right, and the y axis from bottom to top. The part of the x 
axis with positive coordinates is called the positive x axis, and the part of the y axis with positive 
coordinates is called the positive y axis. 

We shall establish a correspondence between the points of the plane LP and pairs of real 
numbers. 

COORDINATES. Consider any point P of the plane (Fig. 2-1). The vertical line through P 
intersects the x axis at a unique point; let a be the coordinate of this point on the x axis. The 
number a is called the x coordinate of P (or the abscissa of P). The horizontal line through P 
intersects the y axis at a unique point; let 6 be the coordinate of this point on the y axis. The 
number 6 is called the y coordinate of P (or the ordinate of P). In this way, every point P has a 
unique pair ( a ,  6) of real numbers associated with it. Conversely, every pair ( a ,  6) of real 
numbers is associated with a unique point in the plane. 

The coordinates of several points are shown in Fig. 2-2. For the sake of simplicity, we have 
limited them to integers. 

EXAMPLE 1: 
the origin, move two units to  the right, and then three units upward. 

two units upward. 

one unit downward. 

by starting at the origin, moving three units upward, and then two units to the right. 

In the coordinate system of Fig. 2-3, to  find the point having coordinates (2 ,3) ,  start at 

To find the point with coordinates ( -4 ,2) ,  start at the origin, move four units to the left, and then 

To find the point with coordinates (-3, - l ) ,  start at the origin, move three units to the left, and then 

The order of these moves is not important. Hence, for example, the point (2 ,3)  can also be reached 

8 
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(-3,7) 0 

Y 

9 

-3 -'I (0. -3)  

e (4. - 4 )  -4t  ( -3 .  -4) 0 

Fig. 2-2 

Y 

2 

~ 1 

0 (2,3) 
I 
I 
I 
4 
I 
I 
I 

I 1 - 1  1 1 1 - 1  I X - 
-4  -3 -2 - 1  01 1 2 3  

4 
(-3, -1). - 

l t  

-3 - * ~  

Fig. 2-3 

QUADRANTS. Assume that a coordinate system has been established in the plane 9. Then the 
whole plane P, with the exception of the coordinate axes, can be divided into four equal parts, 
called quadrants. All points with both coordinates positive form the first quadrant, called 
quadrant I, in the upper right-hand corner. (See Fig. 2-4.) Quadrunt II  consists of all points 
with negative x coordinate and positive y coordinate. Quadrants I U  and n/ are also shown in 
Fig. 2-4. 
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Y 

[CHAP. 2 

I 

-3 -2 - 1  0 

( -2 ,  -1). - 1  

-2 
I11 

(-, -)  

I 
(+ .  + I  

. ( 3 - 1 )  

1 1 1 X 

1 2 3  

. ( 2 .  -2 )  
IV 

(+. -1 

Fig. 2-4 

The points on the x axis have coordinates of the form ( a , O ) .  The y axis consists of the 

Given a coordinate system, it is customary to refer to the point with coordinates (a ,  6) as 
points with coordinates of the form (0,6). 

“the point ( a ,  6).” For example, one might say, “The point (0, 1) lies on the y axis.” 

DISTANCE FORMULA. The distance P I P 2  between points PI and P, with coordinates ( x ,  , y , )  and 
(x27 Y 2 )  is 

EXAMPLE 2: (a )  The distance between (2 , s )  and (7,17) is 

v ( 2  - 7)’ + (5 - 17)’ = d(-5)‘ + (- 12)’ = d 2 5  + 144 = VT@= 13 

(6) The distance between (1,4) and (5,2) 

v( 1 - 5 ) ?  + (4 - 2)’ = v m  = = a= -= ~ . f i =  2 f i  

MIDPOINT FORMULAS. The point M ( x ,  y) that is the midpoint of the segment connecting the 
points PI ( x ,  , y ,  ) and P2(x2, y2) has coordinates 

(2.2 ) 
Y l  + Y 2  

Y ’ 2  
XI + x 2  

2 
x = -  

The coordinates of the midpoint are the averages of the coordinates of the endpoints. 

2 + 4  9 + 3  
EXAMPLE 3: (a )  The midpoint of the segment connecting (2,9) and (4,3) is (7, 7) = (3,6).  

t . 5  L j  

- 5 + 1  1 + 4  
(6) The point halfway between (-5, l )  and (1,4) is (- 2 ’ 2  -) = (-2,  ). 

PROOFS OF GEOMETRIC THEOREMS can often be given more easily by use of coordinates than 
by deduction from axioms and previously derived theorems. Proofs by means of coordinates are 
called analytic, in contrast to the so-called synthetic proofs from axioms. 
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EXAMPLE 4: Let us prove analytically that the segment joining the midpoints of two sides of a triangle 
is one-half the length of the third side. Construct a coordinate system so that the third side A B  lies on the 
positive x axis, A is the origin, and the third vertex C lies above the x axis, as in Fig. 2-5. 

Y 

Fig. 2-5 

Let b be the x coordinate of B .  (In other words, let b = AB.) Let C have coordinates ( U ,  U). Let M ,  
and M, be the midpoints of sides AC and BC, respectively. By the midpoint formulas (2.2), the 

coordinates of M, are ( 5 ,  2). and the coordinates of M ,  are ( - , i). By the distance formula (2.1 ), 
u u  

i b  M , M ,  = d( U - 1)2 u + b  + ( U  - U), = d ( t )  = - 
2 2  2 

which is half the length of side AB. 

Solved Problems 

1. Derive the distance formula (2.1). 

Given points P,  and P, in Fig. 2-6, let Q be the point at which the vertical line through P2 intersects 
the horizontal line through P,. The x coordinate of Q is x 2 ,  the same as that of P2.  The y coordinate of 
Q is y , ,  the same as that of P I .  

Y 

I I I 
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By the Pythagorean theorem, 

(P,P,)’ = (m)’ + (Em’ 
If A , and A ,  are the projections of P ,  and P2 on the x axis, then the segments P ,  Q and A I A ,  are 
opposite sides of a rectangle. Hence, PIQ = A,A,. But A,A,  = I x ,  - x,I by (1 .6 ) .  Therefore, P,Q = 
I x ,  - x , I .  By similar reasoning, = I y ,  - y,l .  Hence, by ( I ) ,  

- -  

= 1x1 - X 2 l 2  + I Y ,  - Y2I2 = (X I  - 1 2 1 ,  + ( Y ,  - Y2)2  

Taking square roots yields the distance formula (2.1). 

2. Show that the distance between a point P ( x ,  y) and the origin is v x 2  + y 2 .  

Since the origin has coordinates (0, O ) ,  the distance formula yields I/(x - 0)2  + ( y - 0)2  = d m .  

3. Prove the midpoint formulas (2.2). 

and C be the perpendicular projections of P , ,  M ,  and P,  on the x axis. 
We wish to find the coordinates ( x ,  y )  of the midpoint M of the segment P ,  P, in Fig. 2-7. Let A ,  B, 

Y 

Fig. 2-7 

The x coordinates of A ,  B, and C are x , ,  x ,  and x , ,  respectively. Since the lines P,A, MB, and P,C 
are parallel, the ratios P , M / M P ,  and ABIBC are equal. (In general, if two lines are intersected by three 
parallel lines, the ratios of corresponding segments are equal.) But, P , M  = MP, .  Hence, A B  = BC. 
Since AB = x - x ,  and BC = x 2  - x ,  we obtain x - x ,  = x ,  - x, and therefore 2 x  = x, + x , .  Dividing by 
2 ,  we get x = ( x ,  + x 2 ) / 2 .  (We obtain the same result when P2 is to the left of P I .  In that case, 
AB = x, - x and BC = x - x , . )  A similar argument shows that y = ( y ,  + y , )  / 2 .  

-- -- 
- -  - -  

4. Is the triangle with vertices A(l ,  5), B(4,2), and C(5,6) isosceles? 

A B = v ( 1 - 4 ) 2 + ( 5 - 2 ) 2 = d ~ = m = v D  
= v(1 - 5 ) *  + ( 5  - 6), = d(-4), + (- 1), = 

BC = I/(4 - 5)’  + (2 - 6), = d(- 1), + (-4)2 = 

= fl 
= fl 

- 

- -  
Since AC = BC, the triangle is isosceles. 

5. Is the triangle with vertices A(-5,6), B(2,3), and C(5,lO) a right triangle? 
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- 
AB = v ( - 5  - 2 ) ,  + (6 - 3), = v m  = -= V% 
A C = v ( - 5 - 5 ) 2 + ( 6 - 1 0 ) ' = v ( - 1 0 ) '  +(-4)'=VE%FT6=VTE 
- 
B C = ~ ( 2 - 5 ) 2 + ( 3 - 1 0 ) 2 = ~ ( - 3 ) 2 + ( - 7 ) ' = m = V %  

Since x2 = AB2 +E2, the converse of the Pythagorean theorem tells us that AABC is a right 
triangle, with right angle at B; in fact, since AB = BC, AABC is an isosceles right triangle. 

- -  

6. Prove analytically that, if the medians to two sides of a triangle are equal, then those sides are 
equal. (Recall that a median of a triangle is a line segment joining a vertex to the midpoint of 
the opposite side.) 

In AABC, let M ,  and M, be the midpoints of sides AC and BC, respectively. Construct a 
coordinate system so that A is the origin, B lies on the positive x axis, and C lies above the x axis (see 
Fig. 2-8). Assume that AM, = BM,. We must prove that AC = BC. Let b be the x coordinate of B, and 

let C have coordinates (U, U). Then, by the midpoint formulas, M ,  has coordinates (-, -), and M, has 

coordinates (7, 2 1. Hence, 

- -  - -  

u u  
2 2  u + b  U 

Y 

1 
Fig. 2-8 

( U  + b ) ,  U* ( U  -2b)' U' 
4 

+ - and, therefore, (U + b)' = ( U  - 26)*. So, U + b = ? ( U  - 2b) .  If Hence, - +4= 4 
U + b = U - 2b,  then' b = -2b ,  and therefore, 6 = 0, which is impossible, since A # B .  Hence, U + 6 = 

- ( U  - 2b)  = -U + 26, whence 2u = b .  Now = v m  = v ( u  - 2u)' + U' = v w  = 

m, and = w. Thus, AC = E. 

7. Find the coordinates (x, y) of the point Q on the line segment joining P,(l, 2) and P , ( 6 , 7 ) ,  
such that Q divides the segment in the ratio 2:3,  that is, such that P , Q / Q P ,  = 2/3.  

Let the projections of P I ,  Q,  and P2 on the x axis be A ,, Q', and A ,, with x coordinates 1, x ,  and 6, 
respectively (see Fig. 2-9). Now A , Q ' / Q ' A ,  = P , Q / Q P ,  = 2 / 3 .  (When two lines are cut by three 
parallel lines, corresponding segments are in proportion.) But A ,Q' = x - 1, and Q'A,  = 6 - x .  So 

-- 

-- -- 
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Y 

6 

Fig. 2-9 

-- - -  x - 1  
6 - x  3 ’ y - 2  
reasoning, - - - - from which it follows that y = 4. 

and cross-multiplying yields 3x - 3 = 12 - 2 x .  Hence 5x = 15, whence x = 3. By similar 

7 - y  3 ’  

Supplementary Problems 

8. In Fig. 2-10, find the coordinates of points A ,  B, C, D, E, and F. 

Y 

E. 

e F  

A e  

D. - 2  

- l  I 
Fig. 2-10 

Ans. A = ( -2 , l ) ;  B = (0, -1); C = (1,3); D = (-4, -2); E = (4,4); F =  (7,2). 

9. Draw a coordinate system and show the points having the following coordinates: (2, -3), (3,3),  (- 1, l ) ,  
(2, -21, (0,317 (3,017 ( -43 ) .  
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11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

Draw the triangle with vertices A(2,5) ,  B(2, - 5 ) ,  and C(-3,5) ,  and find its area. 

Ans. area=25 

If (2 ,2) ,  (2, -4) ,  and (5 ,2)  are three vertices of a rectangle, find the fourth vertex. 

Ans. (5,  -4) 

If the points (2 ,4)  and (- 1,3)  are opposite vertices of a rectangle whose sides are parallel to the 
coordinate axes (that is, the x and y axes), find the other two vertices. 

Am. ( -1 ,4)  and (2 ,3)  

Determine whether the following triples of points are the vertices of an isosceles triangle: (a) (4 ,3) ,  

Ans. 

(1 ,4) ,  (3,101; ( 6 )  ( -1 ,1) ,  (3 ,3) ,  (1, - 1); (4 (2,419 (5,217 (695 ) .  

( a )  no; (6) yes; (c) no 

Determine whether the following triples of points are the vertices of a right triangle. For those that are, 
find the area of the right triangle: (a) (10,6), (3 ,3) ,  (6, -4); ( 6 )  (3, l ) ,  (1, -2) ,  (-3, - 1); (c) (5,  -2) ,  
(0 ,3) ,  (294). 

Ans. (a )  yes, area = 29; ( 6 )  no; (c) yes, area = 

Find the perimeter of the triangle with vertices A(4,9) ,  B(-3,2) ,  and C(8, -5) .  

Am.  7 f i  +- + 2 m  

Find the value or values of y for which (6, y) is equidistant from (4 ,2)  and (9 ,7) .  

Am.  5 

Find the midpoints of the line segments with the following endpoints: (a) (2, -3)  and (7 ,4) ;  (6) ( 5 , 2 )  
and ( 4 , l ) ;  (c) (*, 0) and (1 ,4) .  

Find the point ( x ,  y) such that (2 ,4)  is the midpoint of the line segment connecting ( x ,  y) and (1 ,5) .  

Am.  (3 ,3)  

Determine the point that is equidistant from the points A(- 1,7) ,  B(6,6) ,  and C(5, - 1). 

Ans. (%,%)  

Prove analytically that the midpoint of the hypotenuse of a right triangle is equidistant from the three 
vertices. 

Show analytically that the sum of the squares of the distances of any point P from two opposite vertices 
of a rectangle is equal to the sum of the squares of its distances from the other two vertices. 

Prove analytically that the sum of the squares of the four sides of a parallelogram is equal to the sum of 
the squares of the diagonals. 

Prove analytically that the sum of the squares of the medians of a triangle is equal to three-fourths the 
sum of the squares of the sides. 

Prove analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect 
each other. 
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26. Prove that the coordinates ( x ,  y )  of the point Q that divides the line segment from Pl(xl,  y , )  to 

and y = r l y ,  + r,Yl . (Hint: P 2 ( x 2 ,  y 2 )  in the ratio r l  : rz  are determined by the formulas x = 
r ,  + r 2  

Use the reasoning of Problem 7.) 

r1x2 + r2*1 
rl + r2 

-- 
27. Find the coordinates of the point Q on the segment P , P 2  such that P , Q l Q P ,  = 2/7 ,  if ( U )  P ,  = (0, O),  

Am. 

P,  = (7 ,9) ;  (6) P ,  = (- 1, O), 4 = (0 ,7) ;  ( c )  P ,  = ( -7 ,  -21, P,  = (2,7); ( d )  P ,  = ( 1 , 3 ) ,  P ,  = (4 .2) .  

( U )  ( v ,  2); (6) (- 6 ,  y ) ;  ( c )  ( - 5 ,  9 ) ;  ( d )  ($, 9 )  



Chapter 3 

THE STEEPNESS OF A LINE is measured by a number called the dope of the line. Let 2 be any 
line, and let P l ( x , ,  y , )  and P 2 ( x 2 ,  y 2 )  be two points of 2. The slope of 2 is defined to be the 

number m = - y 2  - ”.  The slope is the ratio of a change in the y coordinate to the correspond- 

ing change in the x coordinate. (See Fig. 3-1.) 
x2 - XI 

W 

Fig. 3-1 

For the definition of the slope to make sense, it is necessary to check that the number rn is 
independent of the choice of the points P ,  and P2.  If we choose another pair P3(x3 ,  y 3 )  and 
P4(x4, y4),  the same value of m must result. In Fig. 3-2, triangle P3P4T is similar to triangle 
P1P2Q.  Hence, 

- -  
Y2 - Y ,  - Y 4  - Y ,  QP2 - TP4 

PiQ P3T x 2 - x ,  x4 - x 3  
or - --- 

Therefore, P ,  and P2 determine the same slope as P3 and P, .  

Fig. 3-2 

17 
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6 - 2  4 
4 - 1  3 ’  

EXAMPLE 1 : The slope of the line joining the points ( 1 , 2 )  and ( 4 , 6 )  in Fig. 3-3 is - = - Hence, as 
a point on the line moves 3 units to the right, it moves 4 units upward. Moreover, the slope is not affected 

by the order in which the points are given: - - - - - - In general, ~ - 2 - 6 - - 4  4 Y , - Y 1  Y l  - Y 2  

1 - 4  - 3  3 ’  x, - x ,  XI - x ,  

Fig. 3-3 

THE SIGN OF THE SLOPE has significance. Consider, for example, a line 2 that moves upward as 
it moves to the right, as in Fig. 3-4(a). Since y, > y,  and x, > xl, we have m = - y 2  -” > O .  The 

slope of 2 is positive. 
Now consider a line 2 that moves downward as it moves to the right, as in Fig. 3-4(6). 

Here y, < y ,  while x, > x,; hence, m = - ” - y1  < 0. The slope of 2 is negative. 

Now let the line 2 be horizontal as in Fig. 3-4(c). Here y,  = y,, so that y, - y ,  = 0. In 

x2 - x, 

x2.- X! 

b 
addition, x2 - x, # 0. Hence, rn = - = 0. The slope of 2 is zero. 

Line 2 is vertical in Fig. 3-4(d) ,  where we see that y 2  - y ,  > 0 while x 2  - x, = 0. Thus, the 
expression - y 2  - is undefined. The slope is not defined for a vertical line 2. (Sometimes we 

x2 - - X I  
describe this situation by saying that the slope of 2’ is “infinite.”) 

x2 - x 1  

Y 

I 

Y 

(4 
Fig. 3-4 
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SLOPE AND STEEPNESS. Consider any line 9 with positive slope, passing through a point 
P , ( x , ,  y , ) ;  such a line is shown in Fig. 3-5. Choose the point P 2 ( x 2 ,  y 2 )  on 2 such that 
x 2  - x ,  = 1. Then the slope rn of 2' is equal to the distance e. As the steepness of the line 
increases, increases without limit, as shown in Fig. 3-6(a).  Thus, the slope of 2increases 
without bound from 0 (when 2 is horizontal) to +m (when the line is vertical). By a similar 
argument, using Fig. 3-6(b) ,  we can show that as a negatively sloped line becomes steeper, the 
slope steadily decreases from 0 (when the line is horizontal) to --oo (when the line is vertical). 

Y 

I 

X 

Fig. 3-5 

Y 

( 6 )  
Fig. 3-6 

EQUATIONS OF LINES. Let 2 b e  a line that passes through a point P , ( x , ,  y, )  and has slope rn, as 
in Fig. 3-7(a). For any other point P ( x ,  y) on the line, the slope rn is, by definition, the ratio of 
y - y,  to x - x , .  Thus, for any point ( x ,  y) on 2, 

Y - Y ,  
x - x ,  

rn=- 

Conversely, if P ( x ,  y) is nut on line 9, as in Fig. 3-7(b) ,  then the slope - - y 1  of the line PP, is 

different from the slope rn of 9; hence (3.1 ) does not hold for points that are not on 9. Thus, 
the line 2' consists of only those points ( x ,  y) that satisfy (3.1 ). In such a case, we say that 2 is 
the graph of (3.1 ). 

x - x ,  
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( b )  

Fig. 3-7 

A POINT-SLOPE EQUATION of the line .Y is any equation of the form (3.1 ). If the slope m of 2’ is 
known, then each point ( x , ,  y,)  of 2 yields a point-slope equation of 2. Hence, there are 
infinitely many point-slope equations for 9. 

EXAMPLE 2: (a) The line passing through the point (2,s) with slope 3 has a point-slope equation 

= 3. (6) Let 2 be the line through the points (3, - 1) and (2,3). Its slope is m = ~ = - - 3- ( -1 )  4 - 
- 

x - 2  Y + l  Y-3 2 - 3  -1 
-4 .  Two point-slope equations of 3’ are - = -4 and - = -4. 

x - 3  x - 2  

SLOPE-INTERCEPT EQUATION. If we multiply (3.1 ) by x - x,, we obtain the equation y - y,  = 
m(x - x , ) ,  which can be reduced first to y - y ,  = mx - mx,,  and then to y = mx + ( y ,  - mx, ) .  
Let 6 stand for the number y,  - mx,. Then the equation for line .Y becomes 

y = m x + 6  (3.2 1 
Equation (3.2) yields the value y = 6 when x = 0, so the point (0, 6) lies on 2. Thus, 6 is the y 
coordinate of the intersection of 2 and the y axis, as shown in Fig. 3-8. The number 6 is called 
the y intercept of 2, and (3 .2 )  is called the slope-intercept equation for 2. 

Y 

Fig. 3-8 

EXAMPLE 3: The line through the points (2,3) and (4,9) has slope 

9 - 3  6 m=-- - - = 3  
4 - 2  2 

Its slope-intercept equation has the form y = 3x + 6. Since the point (2,3) lies on the line, (2,3) must 
satisfy this equation. Substitution yields 3 =3(2)+ 6, from which we find 6 = -3. Thus, the slope- 
intercept equation is y = 3x - 3. 



CHAP. 31 LINES 21 

Y - 3  Another method for finding this equation is to write a point-slope equation of the line, say - = 3 .  x - 2  
Then multiplying by x - 2 and adding 3 yield y = 3x - 3 .  

PARALLEL LINES. Let 2El and 3, be parallel nonvertical lines, and let A and A be the points at 
which 2, and 9, intersect the y axis, as in Fig. 3-9(a). Further, let B, be one unit to the right of 
A , ,  and B, one unit to the right of A,. Let C,  and C, be the intersections of the verticals 
through B ,  and B, with 2, and Y2. Now, triangle A , B I C ,  is congruent to triangle A2B,C2 (by 
the angle-side-angle congruence theorem). Hence, B ,  C ,  = B,  C2 and 

- -  
-slope of Y2 Slope of XI = - - - - BlCl - B2C2 

1 1 
Thus, parallel lines have equal slopes. 

X 

Fig. 3-9 

Conversely, assume that two different lines 2, and Y2 are not parallel, and let them meet at 
point P, as in Fig. 3-9(b). If 9, and Y, had the same slope, then they would have to be the same 
line. Hence, Yl and p2 have different slopes. 

Theorem 3.1: Two distinct nonvertical lines are parallel if and only if their slopes are equal. 

EXAMPLE 4: Find the slope-intercept equation of the line 2'through (4, 1) and parallel to the line A 
having the equation 4x - 2y = 5. 

By solving the latter equation for y, we see that A has the slope-intercept equation y = 2x - g. 
Hence, A has slope 2. The slope of the parallel line Zalso must be 2. So the slope-intercept equation of 2' 
has the form y = 2x + 6. Since (4, l )  lies on 9, we can write 1 = 2(4) + 6. Hence, 6 = -7, and the 
slope-intercept equation of 2' is y = 2x - 7. 

PERPENDICULAR LINES. In Problem 5 we shall prove the following: 

Theorem 3.2: Two nonvertical lines are perpendicular if and only if the product of their slopes is - 1. 

If m, and m2 are the slopes of perpendicular lines, then m1m2 = - 1. This is equivalent to 

, hence, the slopes of perpendicular lines are negative reciprocals of each other. m 2 = - - *  
1 

*I  
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Solved Problems 

1. Find the slope of the line having the equation 3x - 4y = 8. Draw the line. Do the points (6 ,2)  
and (12,7) lie on the line? 

Solving the equation for y yields y = i x  - 2. This is the slope-intercept equation; the slope is a and 
the y intercept is -2. 

Substituting 0 for x shows that the line passes through the point (0, -2). To draw the line, we need 
another point. If we substitute 4 for x in the slope-intercept equation, we get y = $(4) - 2 = 1. So, (4, 1)  
also lies on the line, which is drawn in Fig. 3-10. (We could have found other points on the line by 
substituting numbers other than 4 for x . )  

Y 

2 -  

I .  

I 1 

Fig. 3-10 

To test whether (6 ,2)  is on the line, we substitute 6 for x and 2 for y in the original equation, 
3x - 4y = 8. The two sides turn out to  be unequal; hence, ( 6 , 2 )  is not on the line. The same procedure 
shows that (12,7)  lies on the line. 

2. Line 2’ is the perpendicular bisector of the line segment joining the points A(- 1,2) and 
B(3,4),  as shown in Fig. 3-11. Find an equation for 2’. 

- l  t 
Fig. 3-11 
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2 passes through the midpoint M of segment AB.  By the midpoint formulas (2.2), the coordinates 
4 - 2  2 1 

of M are (1,3). The slope of the line through A and B is ~ = - = - Let rn be the slope of 2. By 
3-(-1) 4 2 '  

Theorem 3.2, t r n  = - 1, whence rn = -2. 
The slope-intercept equation for 2' has the form y = -2x + b. Since M (1,3) lies on 2, we have 

3 = -2(1) + b. Hence, b = 5, and the slope-intercept equation of 2' is y = -2x + 5 .  

3. Determine whether the points A( 1, - l), B ( 3 , 2 ) ,  and C(7,S) are collinear, that is, lie on the 
same line. 

A ,  B,  and C are collinear if and only if the line AB is identical with the line A C ,  which is equivalent 
2 - ( 1 1 )  3 - to the slope of AB being equal to the slope of AC. (Why?) The slopes of AB and AC are ~ - - 

and ~ - - - 
8- ( -1 )  - 9 - 3 3 - 1  2 

Hence, A ,  B,  and C are collinear. 
7 - 1  6 5' 

4. Prove analytically that the figure obtained by joining the midpoints of consecutive sides of a 
quadrilateral is a parallelogram. 

Locate a quadrilateral with consecutive vertices A ,  B, C, and D on a coordinate system so that A is 
the origin, B lies on the positive x axis, and C and D lie above the x axis. (See Fig. 3-12.) Let b be the x 
coordinate of B,  ( U ,  U) the coordinates of C, and ( x ,  y) the coordinates of D. Then, by the midpoint 
formula (2.2), the midpoints M, ,  M,, M,, and M ,  of sides AB,  BC, CD, and DA have coordinates (:, 0), (7, u + b  ?), U (7, x + u  T), y + v  and ( x_ '), respectively. We must show that M , M , M , M ,  is a 

parallelogram. To do this, it suffices to prove that lines M , M ,  and M , M ,  are parallel and that lines 
M , M ,  and M , M ,  are parallel. Let us calculate the slopes of these lines: 

2 '  2 

l i - 0  U '-y+v - U  
- 2 u  - 2 v  2 2  

slope(M,M,) = - -  _ - - -  2 
Slope(M,M,) = 

u u  u + b  b U U x x + u  - -  
2 2 2  2 2  2 

Y + u 2  ' z - 0  
2 2  - 2 - Y  2 Y slope(M,M,) = ~ = - 

x b X - b  
2 2  

Slope(M,M,) = 
_ - -  X + U  u + b  X - b  X - b  - 

2 2 2 

Since slope(M,M,) = slope(M,M,), M , M ,  and M , M ,  are parallel. Since slope(M,M,) = slope(M,M,), 
M,M,  and M , M ,  are parallel. Thus, M , M , M , M ,  is a parallelogram. 

Y 

Fig. 3-12 



24 LINES [CHAP. 3 

5. Prove Theorem 3.2. 

First we assume 3, and 92 are perpendicular nonvertical lines with slopes m, and m,. We must 
show that m,m, = - 1. Let A ,  and A, be the lines through the origin 0 that are parallel to 9, and Y,, 
as shown in Fig. 3-13(a). Then the slope of 4, is m,, and the slope of A, is m2 (by Theorem I) .  
Moreover, A ,  and A, are perpendicular, since $4 and Y2 are perpendicular. 

Fig. 3-13 

Now let A be the point on A with x coordinate 1, and let B be the point on A, with x coordinate 1, 
as in Fig. 3-13(6). The slope-intercept equation of A , is y = m , x ;  therefore, the y coordinate of A is m,, 
since its x coordinate is 1. Similarly, the y coordinate of B is m,. By the distance formula (2.2), 

O B  = v( 1 - + (m, - 0)‘ = vm 
O A  = f ( 1  -U)? + (m, - 0 ) I  = d m  
B A = v(1 - + ( m ,  - m , ) ’  = v- 

- 
- 
- 

Then by the Pythagorean theorem for right triangle B O A ,  
- B A ~ = O B ~ + O A ’  

o r  (m, - m,), = ( 1  + . I ; )  + ( 1  + m;) 
m; - 2m,m, + m ; = 2 +  m; + m; 

m,m, = -1  

Now, conversely, we assume that mlm2 = - 1, where rn, and m2 are the slopes of nonvertical lines 
Y ,  and Y2. Then 2, is not parallel to 9,. (Otherwise, by Theorem 3.1, m, = m, and, therefore, 

Y 

Fig. 3-14 
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6. 

7. 

8. 

mi = - 1,  which contradicts the fact that the square of a real number is never negative.) We must show 
that 2, and Y2 are perpendicular. Let P be the intersection of Zl and Z2 (see Fig. 3-14). Let 23 be the 
line through P that is perpendicular to 21. If m3 is the slope of 23, then, by the first part of the proof, 
m,m3 = -1 and, therefore, mlm3 = mlm2.  Since m,m, = - 1 ,  m, # O ;  therefore, m3 = m 2 .  Since p2 and 
23 pass through the same point P and have the same slope, they must coincide. Since =Yl and =Y3 are 
perpendicular, 2, and Z2 are also perpendicular. 

Show that, if a and b are not both zero, then the equation ax + by = c is the equation of a line 
and, conversely, every line has an equation of that form. 

Assume b # 0. Then, if the equation ax + by = c is solved for y ,  we obtain a slope-intercept 
equation y = ( - a / b ) x  + c / b  of a line. If b = 0, then a # 0, and the equation ax + by = c reduces to 
IUT = c; this is equivalent to x = c / a ,  the equation of a vertical line. 

Conversely, every nonvertical line has a slope-intercept equation y = m + 6 ,  which is equivalent to 
-m + y = b ,  an equation of the desired form. A vertical line has an equation of the form x = c, which 
is also an equation of the required form with a = 1 and b = 0. 

Show that the line y = x makes an angle of 45" with the positive x axis (that is, that angle 
BOA in Fig. 3-15 contains 45"). 

Y 

Fig. 3-15 

Let A be the point on the line y = x with coordinates ( 1 , l ) .  Drop a perpendicular AB to the 
= 1. Hence, angle OAB = angle BOA, since they are the base positive x axis. Then AB = 1 and 

angles of isosceles triangle BOA. Since angle OBA is a right angle, 

Angle OAB + angle BOA = 180" - angle OBA = 180" - 90" = 90" 

Since angle BOA = angle OAB, they each contain 45". 

Show that the distance d from a point P ( x l ,  y l )  to a line 9 with equation ax + by = c is given 
+ by - CI 
m *  by the formula d =  

Let 3u be the line through P that is perpendicular to 2'. Then A intersects 2 at some point Q with 
coordinates (U, U ) ,  as in Fig. 3-16. Clearly, d is the length m, so if we can find U and U ,  we can compute 
d with the distance formula. The slope of 2'is - a / b .  Hence, by Theorem 3.2, the slope of .,U is b /a .  

Then a point-slope equation of A is = -. Thus, U and U are the solutions of the pair of equations 

au + bv = c and - - -. Tedious algebraic calculations yield the solution 

Y - Y  b 
x - x 1  a 

V - Y I -  b 
U - x 1  a 

ac + b2x, + aby, bc - abx, + a2y1 
and U =  U =  

a2 + b2 a* + b2 
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Fig. 3-16 

The distance formula, together with further calculations, yields 

lax, + by,  - cl  

IKZ 
d = PQ = V ( x ,  - U)’ + ( y ,  - U)’ = 

Supplementary Problems 

9. Find a point-slope equation for the line through each of the following pairs of points: ( a )  ( 3 , 6 )  and 
( 2 ,  - 4 ) ;  (b) ( 8 , 5 )  and (4,O); (c) ( 1 , 3 )  and the origin; (d) ( 2 , 4 )  and ( -2 ,4 ) .  

Am. ( a )  = 10; ( b )  y-5 = - *  Y - 3 - 3 ; ( d )  Y - 4 - 0  
x - g  4 7 @ )  x- x - 2  

10. Find the slope-intercept equation of each line: 
( a )  Through the points (4 ,  -2) and ( 1 , 7 )  
(b) Having slope 3 and y intercept 4 
(c) Through the points (- 1,O) and (0 ,3)  
( d )  Through (2, - 3 )  and parallel to  the x axis 
(e) Through (2,3) and rising 4 units for every unit increase in x 
( f )  Through ( - 2 , 2 )  and falling 2 units for every unit increase in x 
(g) Through (3 ,  - 4 )  and parallel to the line with equation 5x - 2y = 4 
(h )  Through the origin and parallel to  the line with equation y = 2 
( i )  Through ( - 2 , 5 )  and perpendicular to  the line with equation 4x + 8y = 3 
( j )  Through the origin and perpendicular to  the line with equation 3x - 2y = 1 
(k) Through ( 2 ,  1 )  and perpendicular to the line with equation x = 2 
(I)  Through the origin and bisecting the angle between the positive x axis and the positive y axis 

Am. ( a )  y = -3x  + 10; ( b )  y = 3x + 3; ( c )  y = 3x + 3;  ( d )  y = - 3 ;  ( e )  y = 4x - 5 ;  ( f )  y = -2x - 2;  
( g)  y = $ x  - $ ; ( h )  y = 0; (i) y = 2x + 9;  ( j )  y = - i x ;  (k) y = 1;  ( I )  y = x 

11. (a )  Describe the lines having equations of the form x = a. 
(b) Describe the lines having equations of the form y = 6 .  
(c) Describe the line having the equation y = -x. 

12. ( a )  Find the slopes and y intercepts of the lines that have the following equations: (i) y = 3x - 2 ;  (ii) 

(6) Find the coordinates of a point other than (0, 6 )  on each of the lines of part (a) .  

Y X  

2 3  
2x - 5 y  = 3; (iii) y = 4x - 3; (iv) y = -3; (v) - + - = 1. 
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13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Ans. (a )  (i) rn = 3, b = -2; (ii) rn = 3 ,  b = - 5 ;  (iii) rn = 4, 
(v) rn = - 3 ,  b =2 .  ( 6 )  (i) (1, 1); (ii) (-6, -3); (iii) ( 

If the point (3, k) lies on the line with slope rn = -2 passing 

Ans. k = 3  

hrough the point (2,5), find k 

Does the point (3, -2) lie on the line through the points (8,O) and (-7, -6)? 

Ans. yes 

Use slopes to determine whether the points (7, - l ) ,  (10, l ) ,  and (6,7) are the vertices of a right 
triangle. 

Am. They are. 

Use slopes to determine whether (8,0), (-1, -2), (-2,3), and (7,5) are the vertices of a paral- 
lelogram. 

Am. They are. 

Under what conditions are the points (U, U + w ) ,  (U, U + w ) ,  and ( w ,  U + U) collinear? 

Ans. always 

Determine k so that the points A(7,3) ,  B(- l,O), and C(k, -2) are the vertices of a right triangle with 
right angle at B .  

Am. k = l  

Determine whether the following pairs of lines are parallel, perpendicular, or neither: 
(a )  y = 3x + 2 and y = 3x - 2 
(c) 3x - 2y = 5 and 2x + 3y = 4 
(e) x = 3 and y = -4 
( g )  x =  -2 and x = 7 .  

Ans. 

( 6 )  y = 2x - 4 and y = 3x + 5 
(d) 6x + 3y = 1 and 4x + 2y = 3 
( f )  5 x  + 4y = 1 and 4x + 5y = 2 

(a )  parallel; (b) neither; (c) perpendicular; (d) parallel; (e) perpendicular; ( f )  neither; 
( g )  parallel 

Draw the lines determined by the equation 2x + 5y = 10. Determine if the points (10,2) and (12,3) lie 
on this line. 

For what values of k will the line kx - 3y = 4k have the following properties: (a )  have slope 1; ( 6 )  have y 
intercept 2; (c) pass through the point (2,4); (d) be parallel to the line 2 x  - 4y = 1; (e) be perpendicular 
to the line x - 6y = 2? 

Am. ( a ) k = 3 ; ( b ) k = - i ; ( c ) k = - 6 ; ( d ) k = $ ; ( e ) k = - 1 8  

Describe geometrically the families of lines ( a )  y = mx - 3 and (b) y = 4x + b, where rn and b are any 
real numbers. 

Ans. ( a )  lines with y intercept -3; ( 6 )  lines with slope 4 

In the triangle with vertices A(O,O), B(2,0), and C(3,3), find equations for ( a )  the median from B to 
the midpoint of the opposite side; (b) the perpendicular bisector of side BC; and (c) the altitude from B 
to the opposite side. 

Ans. (a )  y = -3x + 6; (b) x + 3y = 7; (c) y = - x  + 2 
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24. 

25. 

26. 

27. 

2%. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

In the triangle with vertices A(2,0), B( l ,6 ) ,  and C(3,9), find the slope-intercept equation of ( a )  the 
median from B to the opposite side; ( b )  the perpendicular bisector of side AB; (c) the altitude from A to 
the opposite side. 

Am. ( U )  y = - X  + 7 ;  ( b )  y = ;X + y ;  (c) y = - 3~ + 2 

Temperature is usually measured in either Fahrenheit or Celsius degrees. Fahrenheit (F) and Celsius (C) 
temperatures are related by a linear equation of the form F = aC + b. The freezing point of water is 0°C 
and 32"F, and the boiling point of water is 100°C and 212°F. ( a )  Find the equation relating F and C. ( b )  
What temperature is the same in both scales? 

Am. ( U )  F =  gC + 32; ( b )  -40" 

The x intercept of a line Y' is defined to be the x coordinate of the unique point where Y' intersects the x 
axis. It is the number a for which (a ,O)  lies o n  2. 
( a )  Which lines do not have x intercepts? 
( b )  Find the x intercepts of (i) 3x - 4 y  = 2; (ii) x + y = 1; (iii) 12x - 13y = 2 ;  (iv) x = 2; (v) y = 0. 
( c )  If a and b are the x intercept and y intercept of a line, show that x la  + y / b  = 1 is an equation of the 

(d) If x la  + y / b  = 1 is an equation of a line, show that a and b are the x intercept and y intercept of the 

Am. 

line. 

line. 

(a )  horizontal lines. ( b )  (i) 3 ;  (ii) 1;  (iii) a ;  (iv) 2;  (v) none 

Prove analytically that the diagonals of a rhombus (a parallelogram of which all sides are equal) are 
perpendicular to each other. 

( a )  Prove analytically that the altitudes of a triangle meet at a point. [Hint: Let the vertices of the 

( b )  Prove analytically that the medians of a triangle meet at a point (called the centroid). 
(c) Prove analytically that the perpendicular bisectors of the sides of a triangle meet at a point. 
(d) Prove that the three points in parts ( a )  to (c) are collinear. 

triangle be (2a ,  0), ( 2 6 , O )  and (0,2c).] 

Prove analytically that a parallelogram with perpendicular diagonals is a rhombus. 

Prove analytically that a quadrilateral with diagonals that bisect each other is a parallelogram. 

Prove analytically that the line joining the midpoints of two sides of a triangle is parallel to the third side. 

( a )  If a line 9 has the equation 5 x  + 3y  = 4 ,  prove that a point P(x ,  y )  is above 2' if and only if 

( b )  If a line Y has the equation ax + by  = c and b > 0, prove that a point P(x ,  y )  is above .Y if and only 

(c) If a line Y has the equation ax + by  = c and b < 0, prove that a point P ( x ,  y )  is above Y' if and only 

5 x  + 3y  > 4 .  

if ax + by  > c .  

if ax + by  < c .  

Use two inequalities to describe the set of all points above the line 3 x  + 2y  = 7 and below the line 
4x - 2y = 1 .  Draw a diagram showing the set. 

Ans. 3 x + 2 y > 7 ;  4 x - 2 y < 1  

Find the distance from the point ( 4 , 7 )  to the line 3 x  + 4 y  = 1 .  

Ans. 4 

Find the distance from the point (- 1,2)  to the line 8x - 15y = 3 .  

Ans. 3 
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36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

Find the area of the triangle with vertices A(0 ,  l ) ,  B(5,3) ,  and C(2, -2) .  

Ans. 6 

Show that two equations a l x  + 6 ,y  = c ,  and a,x + b,y = c ,  determine parallel lines if and only if 
a,6 ,  = a 2 6 , .  (When neither a, nor 6, is 0, this is equivalent to a , / a 2  = 6 , / 6 , . )  

Show that two equations a l x  + 6 , y  = c ,  and a,x + 6,y = c,  determine the same line if and only if the 
coefficients of one equation are proportional to those of the other, that is, there is a number r such that 
a ,  = ra, ,  6 ,  = r6,, and c ,  = rc,. 

If M + by = c is an equation of a line L? and c 2 0 ,  then the normal equation of 2' is defined to be 

U b C 

d m x + d m ~ y = v m  

(a )  Show that Icl /- is the distance from the origin to 2. 
(6) Find the normal equation of the line 5 x  - 12y = 26 and compute the distance from the origin to the 

line. 

A m .  ( 6 )  & x  - s y  = 2; distance = 2 

Find equations of the lines parallel to the line 3x + 4y = 7 and at a perpendicular distance of 4 from it .  

A m .  3x + 4y = - 13; 3x + 4y = 27 

Show that a point-slope equation of the line passing through the points ( x l ,  y , )  and ( x 2 *  y z )  is 
Y - Y ,  - Y ,  - Y 2  

x - x l  x , - x 2  

Find the values of k such that the distance from (-2* 3) to the line 7x - 24y = k is 3. 

Ans. k = - 1 1 ;  k = -161 

Find equations for the families of lines ( a )  passing through (2 .5);  (6) having slope 3; (c) having y 
intercept 1; ( d )  having x intercept -2; ( e )  having y intercept three times the x intercept; ( f )  whose x 
intercept and y intercept add up to 6. 

Ans. ( a )  y - 5 = m(x - 2); ( 6 )  y = 3x + 6; ( c )  y = m + 1;  ( d )  y = m(x + 2); ( e )  3x + y = 3a; 
X Y  (f) a + 6-a = 1 

Find the value of k such that the line 3x - 4y = k determines, with the coordinate axes, a triangle of area 
6. 

Ans. k = -+12 

Find the point o n  the line 3x + y = - 4  that is equidistant from ( -5 ,6 )  and (3 ,2)  

Ans. ( -2 ,2 )  

Find the equation of the line that passes through the point of intersection of the lines 3 x  - 2y = 6 and 
x + 3y = 13 and whose distance from the origin is 5 .  

Ans. 4x + 3y = 25 

Find the equations of the two lines that are the bisectors of the angles formed by the intersection of the 
lines 3x + 4y = 2 and 5 x  - 12y = 7. (Hint: Points on an angle bisector are equidistant from the two 
sides.) 

Ans. 14x + 112y + 9 = 0; 64x - 8 y  - 61 = 0 
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48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

( a )  Find the distance between the parallel lines 3x + 4 y  = 2 and 6 x  + 8 y  = 1. (b) Find the equation of the 
line midway between the lines of part (a ) .  

Ans. ( a )  A ;  ( b )  12x + 16y = 5 

What are the conditions on a, b, and c so that the line ax + by = c forms an isosceles triangle with the 
coordinate axes? 

Ans. (a1 = 161 

Show that, if a ,  b,  and c are nonzero, the area bounded by the line ax + b y  = c and the coordinate axes 
is fc2/la61. 

Show that the lines ax + b y  = c, and bx - ay = c ,  are perpendicular. 

Show that the area of the triangle with vertices A(x , ,  y , ) ,  B (x , ,  y , ) ,  and C(x,, y,) is 
[ ( x ,  - x , ) (  y,  - y , )  - ( y ,  - y , ) ( x ,  - x 3 ) ] .  (Hint :  The altitude from A to side BC is the distance from A 

to the line through B and C.) 

lc, - c,t v m *  Show that the distance between parallel lines ax + by = c ,  and ax + by = c2 is 

Prove that, if  the lines a , x  + b , y  = c, and a,x + b,y = c, are nonparallel lines that intersect at point P, 
then, for any number k ,  the equation (a ,x  + b , y  - c , )  + k(a ,x  + b , y  - c , )  = 0 determines a line through 
P. Conversely, any line through P other than a,x + b , y  = c ,  is represented by such an equation for a 
suitable value of k.  

Of all the lines that pass through the intersection point of the two lines 2 x  - 3y = 5 and 4x + y = 2, find 
an equation of the line that also passes through ( 1 , O ) .  

Ans. 1 6 ~  - 3 y  16 



Chapter 4 

Circles 

EQUATIONS OF CIRCLES. For a point P ( x ,  y) to lie on the circle with center C(a,  b) and radius 
r ,  the distance pc must be equal to r (see Fig. 4-1). By the distance formula (2.1), 

pc = V ( x  - a)’ + ( y - b)’ 

Y 

I 
I d / I 

I 

Fig. 4-1 

Thus, P lies on the circle if and only if 

( x  - a)’ + ( y  - b)’ = r2 

Equation ( 4 . 1 )  is called the standard equation of the circle with center at ( a ,  b) and radius r .  

EXAMPLE 1: 
(6) The circle with center (2, - 1) and radius 3 has the equation ( x  - 2)* + ( y  + 1)’ = 9. 
(c) What is the set of points satisfying the equation ( x  - 4)’ + ( y  - 5)’ = 25? 

the graph of the given equation, that is, the set of points satisfying the equation. 
(d) The graph of the equation ( x  + 3)2 + y 2  = 2 is the circle with center at (-3,0) and radius fi. 

(a) The circle with center (3, 1) and radius 2 has the equation ( x  - 3)* + ( y  - 1)* = 4.  

By ( 4 . 1 ) ,  this is the equation of the circle with center at ( 4 , 5 )  and radius 5.  That circle is said to be 

THE STANDARD EQUATION OF A CIRCLE with center at the origin (0,O) and radius r is 

x 2  + y 2  = t (4 .2  ) 

For example, x 2  + y’ = 1 is the equation of the circle with center at the origin and radius 1.  The 
graph of x 2  + y 2  = 5 is the circle with center at the origin and radius fi. 

The equation of a circle sometimes appears in a disguised form. For example, the equation 

x2  + y 2  + 8~ - 6 y  + 21 = 0 

( x  + 4)* + ( y  - 3)’ = 4 

( 4 . 3 )  

(4 .4  1 
turns out to be equivalent to 

Equation ( 4 . 4 )  is the standard equation of a circle with center at ( -4 ,3 )  and radius 2. 
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Equation (4 .4 )  is obtained from (4.3) by a process called completing the square. In general 
terms, the process involves finding the number that must be added to the sum x’ + Ax to obtain 

a square. Here, we note that (x + +) = x2 + Ax + (+) . Thus, in general, we must add 

($)’ to x’ + Ax to obtain the square x + . For example, to get a square from x2 + 8x, we 

add ( g ) ’ ,  that is, 16. The result is x’ + 8x + 16, which is (x + 4)’. This is the process of 
completing the square. 

Consider the original (4.3): x2 + y’ + 8x - 6y + 21 = 0. To complete the square in x’ + 8 x ,  
we add 16. To complete the square in y’ - 6y ,  we add (- 4>‘, which is 9. Of course, since we 
added 16 and 9 to the left side of the equation, we must also add them to the right side, 
obtaining 

2 2 

( $1’ 

(x’ + 8~ + 16) + ( ~ ‘ - 6 y  +9)  + 21 = 16+ 9 

This is equivalent to 

(X + 4)’ + ( y - 3)’ + 21 = 25 

and subtraction of 21 from both sides yields (4 .4) .  

EXAMPLE 2: Consider the equation xz + y 2  - 4x - 1Oy + 20 = 0. Completing the square yields 

(x’ - 4x + 4) + ( yz - 1Oy + 25)  + 20 = 4 + 25 
( x  - 2)2 + ( y - 5 ) 2  = 9 

Thus, the original equation is the equation of a circle with center at ( 2 , 5 )  and radius 3.  

The process of completing the square can be applied to any equation of the form 

x’+ y’ + Ax + By + C = O  (4 .5 )  

to obtain 

or 

A’ B’ 

4 

There are three different cases, depending on whether A’ + B’ - 4C is positive, zero, or 
negative. 

Case 1: A’ + B’ - 4C>O.  In this case, (4.6) is the standard equation of a circle with 
A V A 2 + B 2 - 4 C  

center at (- - - ”) and radius 
2 ’  2 2 

Case 2: A’ + B’ - 4C = 0. A sum of the squares of two quantities is zero when and only 
when each of the quantities is zero. Hence, (4.6) is equivalent to the conjunction of the 
equations x + A / 2  = 0 and y + B / 2  = 0 in this case, and the only solution of (4.6) is the point 
( - A / 2 ,  - B / 2 ) .  Hence, the graph of (4.5) is a single point, which may be considered a 
degenerate circle of radius 0. 

Case 3 :  A’ + B’ - 4C < 0. A sum of two squares cannot be negative. So, in this case, 
(4.5) has no solution at all. 

We can show that any circle has an equation of the form (4.5). Suppose its center is (a ,  6) 
and its radius is r; then its standard equation is 

(x - a)’ + ( y  - 6)’ = r’ 

Expanding yields x2 - 2ax + a2 + y 2  - 26y + 6’ = r’, or 

x’ + y’ - 2ax - 26y + (a’ + 6’ - r’)  = 0 
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Solved Problems 

1. Identify the graphs of (a )  2x2 + 2y2 - 4x + y + 1 = 0; ( 6 )  x 2  + y 2  - 4y + 7 = 0; 
(c) x 2  + y 2  - 6 x  - 2y + 10 = 0. 

(a )  First divide by 2, obtaining x2 + y‘ - 2x + 4 y + 4 = 0. Then complete the squares: 

( x ’ - 2 x + 1 ) + ( y 2 + $ y + & ) + ; = 1 + i l i ; = ~  

( x - l ) ’ + ( y +  $ ) 2 =  - J = $ - 5 = 0 16 

Thus, the graph is the circle with center ( 1 ,  - f ) and radius a .  
(6) Complete the square: 

x2 + ( y  - 2)’ + 7 = 4 

x 2 + ( y - 2 ) 2 =  - 3  

Because the right side is negative, there are no points in the graph. 
(c) Complete the square: 

(X - 3)’ + ( y  - 1)’ + 10 = 9 + 1 
(x - 3)’ + ( y  - 1 ) 2  = o  

The only solution is the point ( 3 , l ) .  

2. Find the standard equation of the circle with center at C(2,3) and passing through the point 
P(- 1,s). 

The radius of the circle is the distance 
- 
CP = q ( 5  - 3)’ + (- 1 - 2)’ = q m  = V m  = fl 

so the standard equation is (x - 2)’ + ( y  - 3)* = 13. 

3. Find the standard equation of the circle passing through the points P ( 3 , 8 ) ,  Q(9,6), and 

First method: The circle has an equation of the form x 2  + y 2  + Ax + By + C = 0. Substitute the 

R(13, -2). 

values of x and y at point P, to obtain 9 + 64 + 3 A  + 8 B  + C = 0 or 

3 A  + 8 B  + C =  -73 ( 1 )  

A similar procedure for points Q and R yields the equations 

9 A + 6 B + C = - 1 1 7  
1 3 A - 2 B + C = - 1 7 3  

Eliminate C from (1) and (2) by subtracting ( 2 )  from ( 1 ) :  

- 6 A  + 2B = 44 or - 3 A  + B = 22 ( 4  ) 

-lOA + 10B = 100 or - A  + B =  10 (5 1 

Eliminate C from ( 1 )  and (3) by subtracting (3) from ( 1 ) :  

Eliminate B from ( 4 )  and ( 5 )  by subtracting ( 5 )  from ( 4 ) ,  obtaining A = - 6 .  Substitute this value in 
( 5 )  to find that B = 4. Then solve for C in (1  ): C = -87. 

Hence, the original equation for the circle is x2 + y’ - 6x + 4y - 87 = 0. Completing the squares 
then yields 

(X - 3)’ + ( y  + 2)’ = 87 + 9 + 4 =  100 

Thus, the circle has center ( 3 ,  -2) and radius 10. 
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Second method: The perpendicular bisector of any chord of a circle passes through the center of the 
circle. Hence, the perpendicular bisector 2’ of chord PQ will intersect the perpendicular bisector J4 of 
chord QR at the center of the circle (see Fig. 4-2). 

X 

R( 13, -2) 

Fig. 4-2 

The slope of line P Q  is - $ .  So, by Theorem 3.2, the slope of 2 is 3. Also, 2’ passes through the 

midpoint (6 ,7 )  of segment PQ. Hence a point-slope equation of 9 is - - ’ - - 3, and therefore its 
slope-intercept equation is y = 3x - 11 .  Similarly, the slope of line QR is - 2, and therefore the slope of 
Ju is i .  Since A passes through the midpoint (11,2)  of segment QR, it has a point-slope equation 

- = which yields the slope-intercept equation y = i x  - 2’. Hence, the coordinates of the center 
x-11  2 ’  
of the circle satisfy the two equations y = 3x - 11 and y = 4.x - $ ,  and we may write 

X - 6  

3 ~ - 1 1 = + ~ -  3 
from which we find that x = 3. Therefore, 

y = 3x - 11 = 3(3) - 11 = - 2  

So the center is at (3, -2) .  The radius is the distance between the center and the point (3 ,8) :  

v ( - 2  - 8)2 + (3 - 3)2 = d m  = = 10 

Thus, the standard equation of the circle is (x - 3)2 + ( y  + 2)2 = 100. 

4. Find the center and radius of the circle that passes through P( 1 , l )  and is tangent to the line 
y = 2x - 3 at the point Q ( 3 , 3 ) .  (See Fig. 4-3.) 

The line 2’ perpendicular to y = 2x - 3 at (3 ,3)  must pass through the center of the circle. By 
Theorem 3.2, the slope of 2’ is - i .  Therefore, the slope-intercept equation of 2 has the form 
y = - i x  + 6. Since ( 3 , 3 )  is on 2, we have 3 = - i (3)  + 6; hence, 6 = 3 ,  and 2 has the equation 

The perpendicular bisector A of chord PQ in Fig. 4-3 also passes through the center of the circle, so 
the intersection of 2’ and 4 will be the center of the circle. The slope of is 1. Hence, by Theorem 
3.2, the slope of A is - 1.  So A has the slope-intercept equation y = - x  + 6’. Since the midpoint (2,2) 
of chord PQ is a point on A, we have 2 = - (2) + 6’; hence, 6’ = 4, and the equation of A is y = - x  + 4. 
We must find the common solution of y = - x  + 4 and y = - l x  + z .  Setting 

y = - 1x + ;* 

- x  + 4 =  - Ix 2 2  + 9 

yields x = - 1 .  Therefore, y = - x  + 4 = -(- 1) + 4 = 5,  and the center C of the circle is (- 1,5) .  The 
radius is the distance pc = v( - 1 - 3)2 + (5 - 3)2 = = m. The standard equation of the circle 
is then ( ~ + l ) ~ + ( y - 5 ) * = 2 0 .  
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Fig. 4-3 

5. Find the standard equation of every circle that passes through the points P( 1 ,  - 1)  and Q ( 3 , l )  
and is tangent to the line y = - 3 x .  

Then, because CP = CQ, we have 
Let C(c ,  d )  be the center of one of the circles, and let A be the point of tangency (see Fig. 4-4). - -  

- 
CP’ = CQ’ or ( c  - 1)’ + ( d  + 112 = ( c  - 312 + (d  - 112 

Expanding and simplifying, we obtain 

(1 c + d = 2  

y =  - 3 x  

Fig. 4-4 
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3c + d 
m 

- -  
In addition, CP = CA, and by the formula of Problem 8 in Chapter 3 ,  CA = - . Setting CP’ = CAZ 

. Substituting ( 1  ) in the right-hand side and multiplying by 10 thus yields (c - 1)2 + ( d  + 1)’ = 

then yields 

(3c + d)’ 
10 

1O[(c - 1)2 + (d  + 1)2] = ( 2 c  + 2)’ from which 3c’ + 5 d 2  - 14c + 10d + 8 = 0 

By ( 1  ), we can replace d by 2 - c, obtaining 

2c’ - I I C  + 12 = o or 

Hence, c = 5 or c = 4. Then ( 1  ) gives us the two solutions c = $ ,  d = i and c = 4, d = - 2 .  Since the 

radius CA = m, these solutions produce radii of - = - and - = m. Thus, there are two 

such circles, and their standard equations are 

( x -  $ ) ’ + ( y -  i)’= 5 and ( ~ - 4 ) ’ + ( y + 2 ) ’ = 1 0  

( 2 c  - 3)(c  - 4) = o 

3c + d 10/2 m 10 
m 2  fi 

Supplementary Problems 

6. Find the standard equations of the circles satisfying the following conditions: 
( a )  center at ( 3 , 5 )  and radius 2 (6) center at (4, -1) and radius 1 
(c) center at ( 5 , O )  and radius fl ( d )  center at ( - 2 ,  - 2 )  and radius 5V2 
(e) center at ( - 2 , 3 )  and passing through ( 3 ,  - 2 )  
( f )  center at ( 6 , l )  and passing through the origin 

Ans. (a)  ( x  - 3)2  + ( y  - 5)’ = 4; (6) ( x  - 4)2 + ( y  + 1)’ = 1; (c) ( x  - 5)*  + y’ = 3 ;  
( d )  ( x  + 2)2 + ( y  + 2)’ = 50; ( e )  ( x  + 2)’+ ( y  -3)’ =50; ( f )  ( x  -6)’ + ( y  - 1)* = 3 7  

7. Identify the graphs of the following equations: 
(U) X’ + y2 + 1 6 ~  - 12y + 10 = 0 (6) X‘ + y’ - 4x + 5y + 10 = 0 (c) x 2  + y’ + x - y = 0 
( d )  4x2 + 4y’ + 8y - 3 = 0 ( e )  x 2 + y 2 - x - 2 y + 3 = ~  ( f) x 2  + y2 + f i x  - 2 = 0 

Ans. ( a )  circle, center at (-8,6), radius 3m; (6) circle, center at ( 2 ,  - $), radius i ;  (c) circle, center 
at (- $ ,  $), radius f i / 2 ;  ( d )  circle, center at (0, - l ) ,  radius I; (e) empty graph; ( f )  circle, 
center at ( - f i / 2 , 0 ) ,  radius 

8. Find the standard equations of the circles through ( a )  ( - 2 ,  l ) ,  (1,4), and ( - 3 , 2 ) ;  (6) (0, l ) ,  ( 2 , 3 ) ,  and 
( L 1  + fi); ( c )  (6, I) ,  ( 2 ,  -51, and (1, -4); ( d )  ( 2 , 3 ) ,  ( - 6 ,  - 3 ) ,  and (1,4). 

Ans. (a)  ( x  + 1)’ + ( y  - 3)’ = 5 ;  ( 6 )  (x  - 2)’ + ( y  - 1)’ = 4; (c) (x  - 4)’ + (y  + 2)2 = 13; 
( d )  ( x  + 2)’ + y2 = 25 

9. For what values of k does the circle ( x  + 2k)’ + ( y  - 3 k ) 2  = 10 pass through the point (1, O)?  

Ans. k = & o r k = - l  

10. Find the standard equations of the circles of radius 2 that are tangent to both the lines x = 1 and y = 3 .  

Am. ( X  + 1)2 + ( y  - 1)’ = 4 ;  ( X  + 1)2 + ( y  - 5)’ = 4; (X - 3 ) 2  + ( y  - 1)2 = 4; ( X  - 3)2 + ( y  - 5)2 = 4  

11. Find the value of k so that x 2  + y2 + 4x - 6y + k = 0 is the equation of a circle of radius 5. 

Ans. k = -12 
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12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

Find the standard equation of the circle having as a diameter the segment joining (2, -3) and (6.5). 

Am. ( ~ - 4 ) ’ + ( y - 1 ) ’ = 2 0  

Find the standard equation of every circle that passes through the origin, has radius 5, and is such that 
the y coordinate of its center is -4 .  

Ans. (x - 3)2 + ( y + 4)’ = 25 or (x + 3)2 + (y  + 4)’ = 25 

Find the standard equation of the circle that passes through the points (8, -5) and (- 1,4) and has its 
center on the line 2x + 3y = 3. 

Am. (X - 3)’ + ( y + 1)2 = 41 

Find the standard equation of the circle with center (3,5) that is tangent to the line 121 - 5y + 2 = 0. 

Am. (X - 3)2 + (y  - 5)’ = 1 

Find the standard equation of the circle that passes through the point (1,3 + fi) and is tangent to the 
line x + y = 2 at (2,O). 

ART. (X - 5)’ + (y  - 3)2 = 18 

Prove analytically that an angle inscribed in a semicircle is a right angle. (See Fig. 4-5.) 

Y 
Y 
I 

Fig. 4-5 Fig. 4-6 

Find the length of a tangent from (6, -2) to the circle (x - 1)’ + (y  - 3)’ = 1. (See Fig. 4-6.) 

Ans. 7 

Find the standard equations of the circles that pass through (2,3) and are tangent to both the lines 
3 x - 4 y = - l  a n d 4 x + 3 y = 7 .  

Ans. ( ~ - 2 ) ~ + ( y - 8 ) ~ = 2 5  and ( x -  ;) ’+(y- y ) 2 = l  

Find the standard equations of the circles that have their centers on the line 4x + 3y = 8 and are tangent 
to both the lines x + y = -2  and 7x - y = -6. 

Ans. (x - 2)’ + y’ = 2 and (x + 4)’ + ( y  - 8)2 = 18 

Find the standard equation of the circle that is concentric with the circle x’ + y2 - 2x - 8y + 1 = 0 and is 
tangent to the line 2x - y = 3. 

Am. (X - 1)’ + ( y - 4)’ = 5 
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22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Find the standard equations of the circles that have radius 10 and are tangent to the circle x 2  + y2 = 25 at 
the point (3 ,4) .  

Am. ( x  - 9), + ( y  - 12), = 100 and ( x  + 3), + ( y  + 4), = 100 

Find the longest and shortest distances from the point (7, 12) to the circle x 2  + y 2  + 2x + 6y - 15 = 0.  

Am.  22 and 12 

Let %, and %, be two intersecting circles determined by the equations x 2  + y2 + A ,x  + B,y + C ,  = 0 and 
x 2  + y2 + A,x + B,y + C,  = 0. For any number k # - 1 ,  show that 

x 2  + y2 + A,x + B,y  + C ,  + k(x2  + y2 + A,x + B,y + C,) = 0 

is the equation of a circle through the intersection points of %, and %*. Show, conversely, that every such 
circle may be represented by such an equation for a suitable k. 

Find the standard equation of the circle passing through the point ( -3 ,1 )  and containing the points of 
intersection of the circles x 2  + y2 + 5 x  = 1 and x 2  + y2 + y = 7. 

Ans. ( x  + $), + ( y  + &), = E 

Find the standard equations of the circles that have centers on the line 5 x  - 2y = -21 and are tangent to 
both coordinate axes. 

Ans. ( x  + 7)2 + ( y  + 7), = 49 and ( x  + 3), + ( y  - 3), = 9 

( a )  If two circles x 2  + y2 + A , x  + B,y + C ,  = 0 and x 2  + y2 + A,x + B,y + C, = 0 intersect at two 

(b)  Prove that if  two circles intersect at two points, then the line through their points of intersection is 

Ans. 

points, find an equation of the line through their points of intersection. 

perpendicular to the line through their centers. 

( a )  ( A  , - A2)x  + ( B ,  - B,)y + ( C ,  - C , )  = 0 

Find the points of intersection of the circles x 2  + y2 + 8y - 64 = 0 and x 2  + y2 - 6x - 16 = 0.  

Ans. (8,O) and (g ,  y )  

Find the equations of the lines through (4, 10) and tangent to the circle x 2  + y2 - 4y - 36 = 0. 

Ans. y = - 3 x  + 22 and x - 3y + 26 = 0 



Chapter 5 

Equations and Their Graphs 

THE GRAPH OF AN EQUATION involving x and y as its only variables consists of all points (x, y) 
satisfying the equation. 

EXAMPLE 1: 

with slope 2 and y intercept -3. 
(b) What is the graph of the equation x2  + y z  - 2 x  + 4y - 4 = O? 

(x - 1)2  + ( y  + 2)2 = 9. Hence, its graph is the circle with center (1, -2) and radius 3. 

( a )  What is the graph of the equation 2x - y = 3? 
The equation is equivalent to  y = 2x - 3, which we know is the slope-intercept equation of the line 

Completing the square shows that the given equation is equivalent to  the equation 

PARABOLAS. Consider the equation y = x2. If we substitute a few values for x and calculate the 
associated values of y ,  we obtain the results tabulated in Fig. 5-1. We can plot the correspond- 
ing points, as shown in the figure. These points suggest the heavy curve, which belongs to a 
family of curves called parabolas. In particular, the graphs of equations of the form y = cx', 
where c is a nonzero constant, are parabolas, as are any other curves obtained from them by 
translations and rotations. 

X 

3 

2 
1 

0 

-1  
-2 
- 3  

Y 

- 3  - 2  - I  

Fig. 5-1 

X 

In Fig. 5-1, we note that the graph of y = x2 contains the origin (0,O) but all its other points 
lie above the x axis, since x2 is positive except when x = 0. When x is positive and increasing, y 
increases without bound. Hence, in the first quadrant, the graph moves up without bound as it 
moves right. Since ( - x ) ~  = x2, it follows that, if any point (x, y )  lies on the graph in the first 
quadrant, then the point (-x, y) also lies on the graph in the second quadrant. Thus, the graph 
is symmetric with respect to the y axis. The y axis is called the axis of symmetry of this 
parabola. 

x2 
9 4  

ELLIPSES. To construct the graph of the equation - + = 1, we again compute a few values and 

plot the corresponding points, as shown in Fig. 5-2. The graph suggested by these points is also 
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Y 
I 

3 

2 

1 

0 

- 1  

-2  

- 3  

Fig. 5-2 

drawn in the figure; it is a mem>er 02f a family of curves called ellipses. In particular, the graph 

of an equation of the form 7 + 7 = 1 is an ellipse, as is any curve obtained from it by 

translation or rotation. 

X Y  

a b  

Note that, in contrast to parabolas, ellipses are bounded. In fact, if ( x ,  y )  is on the graph of 

= 1, and, therefore, x 2  1 9 .  Hence, - 3 5 x 5 3 .  So, the graph 
x*  x 2  x 2  
- + 
9 4  9 9 4  

= 1, then - I - + 
lies between the vertical lines x = -3 and x = 3. Its rightmost point is (3,0), and its leftmost 
point is (-3,O). A similar argument shows that the graph lies between the horizontal lines 
y = -2 and y = 2, and that its lowest point is (0, -2) and its highest point is (0,2). In the first 
quadrant, as x increases from 0 to 3, y decreases from 2 to 0. If ( x ,  y )  is any point on the graph, 
then ( - x ,  y )  also is on the graph. Hence, the graph is symmetric with respect to the y axis. 
Similarly, if ( x ,  y )  is on the graph, so is ( x ,  - y ) ,  and therefore the graph is symmetric with 
respect to the x axis. 

When a = b,  the ellipse 7 + 7 = 1 is the circle with the equation x 2  + y* = a*, that is, a 
x2 y 2  
a b  

circle with center at the origin and radius a. Thus, circles are special cases of ellipses. 

2 

HYPERBOLAS. Consider the graph of the equation x 2  9 - - = 1. Some of the points on this graph 
are tabulated and plotted in Fig. 5-3 .  These points suggest the curve shown in the figure, which 
is_ a mgmber of a family of curves called hyperbolas. The graphs of equations of the form 

4 

X L  
' L" = 1 are 

a' b' 
Let us look 

that x' 2 9, and 

- - _  hyperbolas, as are any curves obtained from them by translations and rotations. 

at the hyperbola - - - = 1 in more detail. Since - = 1 + - 2 1, it follows 

therefore, 1x1 2 3 .  Hence, there are no points on the graph between the vertical 

x 2  y 2  X 2  Y 2  
9 4  9 4 

lines x = -3 and x = 3 .  If ( x ,  y )  is on the graph, so is ( - x ,  y ) ;  thus, the graph is symmetric with 
respect to the y axis. Similarly, the graph is symmetric with respect to the x axis. In the first 
quadrant, as x increases, y increases without bound. 

Note the dashed lines in Fig. 5-3;  they are the lines y = $ x  and y = - f x ,  and they called 
the asymptotes of the hyperbola: Points on the hyperbola get closer and closer to these 
asymptotes as they recede from the origin. In general, the asymptotes of the hyperbola 
x -  b b 
a' b' a a 
--- y L  = 1 are the lines y = - x and y = - - x .  

CONIC SECTIONS. Parabolas, ellipses, and hyperbolas together make up a class of curves called 
conic sections. They can be defined geometrically as the intersections of planes with the surface 
of a right circular cone, as shown in Fig. 5-4. 
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Solved Problems 

1. Sketch the graph of the cubic curve y = x3. 

The graph passes through the origin (0,O). Also, for any point ( x ,  y) on the graph, x and y have the 
same sign; hence, the graph lies in the first and third quadrants. In the first quadrant, as x increases, y 
increases without bound. Moreover, if ( x ,  y) lies on the graph, then ( - x ,  - y )  also lies on the graph. 
Since the origin is the midpoint of the segment connecting the points ( x ,  y) and ( - x ,  - y ) ,  the graph is 
symmetric with respect to the origin. Some points on the graph are tabulated and shown in Fig. 5-5; 
these points suggest the heavy curve in the figure. 

Fig. 5-5 

Y 

2. Sketch the graph of the equation y = -x2.  

If ( x ,  y) is on the graph of the parabola y = x 2  (Fig. 5-1), then ( x ,  - y )  is on the graph of y = -x2 ,  
and vice versa. Hence, the graph of y = - x 2  is the reflection in the x axis of the graph of y = x2. The 
result is the parabola in Fig. 5-6. 

Y 

Fig. 5-6 
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3. Sketch the graph of x = y2 .  

This graph is obtained from the parabola y = x’ by exchanging the roles of x and y. The resulting 
curve is a parabola with the x axis as its axis of symmetry and its “nose” at the origin (see Fig. 5-7). A 
point ( x ,  y) is on the graph of x = y’ if and only if ( y ,  x )  is on the graph of y = x’. Since the segment 
connecting the points ( x ,  y) and ( y ,  x )  is perpendicular to the diagonal line y = x (why?), and the 

midpoint (’+’ - - x + y )  of that segment is on the line y = x (see Fig. 5-8) .  the parabola x =y’ is 

obtained from the parabola y = x’ by reflection in the line y = x. 
2 ’ 2  

Y 

Fig. 5-7 Fig. 5-8 

4. Let 9 b e  a line, and let F be a point not on 3. Show that the set of all points equidistant from 
F and 9 is a parabola. 

Construct a coordinate system such that F lies on the positive y axis, and the x axis is parallel to 3 
and halfway between F and 2. (See Fig. 5-9.) Let 2p be the distance between F and 3. Then 9 has the 
equation y = - p ,  and the coordinates of F are (0, p). 

Consider an arbitrary point P ( x ,  y). Its distance from 2 is l y  + P I ,  and its distance from F is 
V x ’  + ( y  - p)”. Thus, for the point to be equidistant from F and 3 we must have Ip + p (  = 

V m .  Squaring yields ( y  + p)’ = x 2  + ( y  - p)’, from which we find that 4py = x’. This is the 
equation of a parabola with the y axis as its axis of symmetry. The point F is called the focus of the 
parabola, and the line 2 is called its directrix. The chord AB through the focus and parallel to 9 is called 
the Zutus rectum. The “nose” of the parabola at (0,O) is called its vertex. 

Fig. 5-9 
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5. Find the length of the latus rectum of a parabola 4py = x2. 

points, 4p2 = x 2  and, therefore, x = +2p. Thus, the length AB of the latus rectum is 4p. 
The y coordinate of the endpoints A and B of the latus rectum (see Fig. 5-9) is p. Hence, at these 

6. Find the focus, directrix, and the length of the latus rectum of the parabola y = i x ‘ ,  and draw 
its graph. 

The equation of the parabola can be written as 2y  = x2. Hence, Jp = 2 and p = 4 .  Therefore, the 
focus is at (0, $), the equation of the directix is y = - $ ,  and the length of the latus rectum is 2. The 
graph is shown in Fig. 5-10. 

2 3  I ’  -3 - 2  - 1  

Fig. 5-10 

7. Let F and F’ be two distinct points at a distance 2c from each other. Show that the set of all 
points P ( x ,  y) such that PF + PF’ = 2a,  a > c, is an ellipse. 

Construct a coordinate system such that the x axis passes through F and F’, the origin is the 
midpoint of the segment FF’, and F lies on the positive x axis. Then the coordinates of F and F’ are 
(c, 0) and (-c, 0). (See Fig. 5-11.) Thus, the condition PF + PF’ = 2a is equivalent to d M  + 
d m  = 2a. After rearranging and squaring twice (to eliminate the square roots) and perform- 
ing indicated operations, we obtain 

(a2 - c ’ ) x 2  + a‘y’ = a2(u2 - c’) ( 1  ) 

Since a > c ,  a‘ - c2 > 0. Let b = m. Then (1 ) becomes b’x’ + a’y’ = a’b’. which we may rewrite 

as 7 + < = 1, the equation of an ellipse. 
x’ ’ 
a b  

Y 

B’(0 ,  - b )  I 
Fig. 5-11 
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8. 

9. 

10. 

When y = 0 ,  x’ = a’; hence, the ellipse intersects the x axis at the points A’( -a ,O) ,  and A(a,O),  
called the vertices of the ellipse (Fig. 5-11). The segment A’A is called the major axis; the segment OA is 
called the semimajor axis and has length a. The origin is the center of the ellipse. F and F’ are called the 
foci (each is a focus). When x = 0, y 2  = 6’. Hence, the ellipse intersects the y axis at the points B ’ ( 0 ,  - b) 
and B ( 0 , b ) .  The segment B’B is called the minor axis; the segment OB is called the semiminor axis and 
has length b. Note that b = - C O =  a. Hence, the semiminor axis is smaller than the 
semimajor axis. The basic relation among a,  b, and c is a’ = b2 + c2. 

The eccentricity of an ellipse is defined to be e = c / a .  Note that O <  e < 1. Moreover, e = 

- /a  = q w .  Hence, when e is very small, b / a  is very close to 1, the minor axis is close in 
size to the major axis, and the ellipse is close to being a circle. On the other hand, when e is close to 1, 
bla is close to zero, the minor axis is very small in comparison with the major axis, and the ellipse is very 
“flat.” 

Identify the graph of the equation 9 x 2  + 16y2 = 144. 

The given equation is equivalent to x2/16 + y 2 / 9  = 1. Hence, the graph is an ellipse with semimajor 
axis of length a = 4 and semiminor axis of length b = 3. (See Fig. 5-12.) The vertices are (-4,O) and 
(4,O). Since c = = = fl, the eccentricity e is c l a  = f l / 4  = 0.6614. 

Fig. 5-12 

Identify the graph of the equation 25x2 + 4y2 = 100. 

The given equation is equivalent to x2/4 + y2/25 = 1, an ellipse. Since the denominator under y’ is 
larger than the denominator under x’, the graph is an ellipse with the major axis on the y axis and the 
minor axis on the x axis (see Fig. 5-13). The vertices are at (0, -5) and (0,5). Since c = = 

a, the eccentricity is a / 5  = 0.9165. 

Let F and F’ be distinct points at a distance of 2c from each other. Find the set of all points 
P ( x ,  y) such that IPF - PF’I = 2u, for U < c. 

Choose a coordinate system such that the x axis passes through F and F’, with the origin as the 
midpoint of the segment FF’ and with F on the positive x axis (see Fig. 5-14). The coordinates of F and 
F’ are (c, 0) and ( - c ,  0). Hence, the given condition is equivalent to q m  - im = 
+2a.  After manipulations required to eliminate the square roots, this yields 

- -  

(c’ - a2)x2 - u’y’ = a2(c2 - a ’ )  ( 1 )  
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V 

Fig. 5-13 Fig. 5-14 

Since c > a,  c2 - a* > 0. Let b = m. (Notice that a‘ + b‘ = c’.) Then ( I  ) becomes b’x‘ - a’y’ = 

a2b2, which we rewrite as 7 - ;? = 1, the equation of a hyperbola. 

When y = 0, x = * a .  Hence, the hyperbola intersects the x axis at the points A’( -a ,  0) and A(a, 0). 

which are called the vertices of the hyperbola. The asymptotes are y = t - x .  The segment A’A is called 

the transverse axis. The segment connecting the points (0, - b )  and (0, b) is called the conjugate axis. 
The center of the hyperbola is the origin. The points F and F’ are called the foci.  The eccentricity is 

defined to be e = - = 

relative to a,  and the hyperbola has a very pointed “nose”; when e is very large, b is very large relative 
to a,  and the hyperbola is very “flat.” 

x 2  y 2  
a b  

b 
U 

c \i.lth?=JT. 1 + - Since c > a ,  e > 1. When e is close to 1, b is very small 
a 

11. Identify the graph of the equation 25x2 - 16y2 = 400. 

axis as its transverse axis, vertices (-4,O) and (4,O), and asymptotes y = t Zx .  (See Fig. 5-15.) 
The given equation is equivalent to x2/16 - y2 /25  = 1. This is the equation of a hyperbola with the x 

Y 

Fig. 5-15 
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12. Identify the graph of the equation y 2  - 4x2 = 4. 

The given equation is equivalent to - - - = 1. This is the equation of a hyperbola, with the roles 
of x and y interchanged. Thus, the transverse axis is the y axis, the conjugate axis is the x axis, and the 
vertices are (0, -2) and (0,2). The asymptotes are x = * $ y  or, equivalently, y = k2x. (See Fig. 5-16.) 

y’ x 2  
4 1  

Fig. 5-16 

13. Identify the graph of the equation y = (x - 1)2. 

A point (U, U) is on the graph of y = (x - 1)’ if and only if the point (U - 1,  U)  is on the graph of 
y = xz. Hence, the desired graph is obtained from the parabola y = x 2  by moving each point of the latter 
one unit to the right. (See Fig. 5-17.) 

Y 

Fig. 5-17 
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14. = 1. ( x  - 1)’ + ( Y  - 2)’ 
9 

Identify the graph of the equation ~ 

4 
A point (U, U) is on the graph if and only if the point (U - 1, U - 2) is on the graph of the equation 

x2/4 + y2/9 = 1. Hence, the desired graph is obtained by moving the ellipse x2/4 + y2/9 = 1 one unit to 
the right and two units upward. (See Fig. 5-18.) The center of the ellipse is at (1,2),  the major axis is 
along the line x = 1, and the minor axis is along the line y = 2. 

Fig. 5-18 

15. How is the graph of an equation F(x - a, y - 6) = 0 related to the graph of the equation 

A point (U, U) is on the graph of F(x - a, y - b) = 0 if and only if the point (U - a, U - 6) is on the 
graph of F ( x ,  y) = 0. Hence, the graph of F(x - a,  y - b )  = 0 is obtained by moving each point of the 
graph of F ( x ,  y) = 0 by a units to the right and b units upward. (If a is negative, we move the point la( 
units to the left. If b is negative, we move the point 161 units downward.) Such a motion is called a 
translation. 

F(x,  y )  = O? 

16. Identify the graph of the equation y = x 2  - 2 x .  

Completing the square in x, we obtain y + 1 = (x - l)2. Based on the results of Problem 15, the 
graph is obtained by a translation of the parabola y = x 2  so that the new vertex is (1, - 1). [Notice that 
y + 1 is y - (- l) .]  It is shown in Fig. 5-19. 

Y 

Fig. 5-19 
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17. Identify the graph of 4x2 - 9yz - 16x + 18y - 29 = 0. 

Factoring yields 4(x2 - 4x) - 9( y 2  - 2 y )  - 29 = 0, and then completing the square in x and y 

- 1. By the results of produces 4(x - 2)’ - 9( y - 1)2  = 36. Dividing by 36 then yields ~ - ~ - 

Problem 15, the graph of this equation is obtained by translating the hyperbola 0 - % = 1 two units to 

(’ - (x - 2)2 
9 4 x 2  2 

Y 

I13 
112 

1 
2 

3 

4 

- 4  

- 3  

- 2  

- 1  

-112  

- 1 1 3  

the right and one unit upward, so that the new center of symmetry of the hypeibola (2, 1). (See Fig. 
5-20.) 

Y 

1 

Fig. 5-20 

18. Draw the graph of the equation xy = 1. 

Some points of the graph are tabulated and plotted in Fig. 5-21. The curve suggested by these points 
is shown dashed as well. I t  can be demonstrated that this curve is a hyperbola with the line y = x as 
transverse axis, the line y = - x  as converse axis, vertices (- 1, - 1 )  and (1, l ) ,  and the x axis and y axis 
as asymptotes. Similarly, the graph of any equation xy = d, where d is a positive constant, is a hyperbola 
with y = x as transverse axis and y = - x  as converse axis, and with the coordinate axes as asymptotes. 
Such hyperbolas are called equilateral hyperbolas. They can be shown to be rotations of hyperbolas of 
the form x2/a2 - y 2 / a 2  = 1. 

Y 

Fig. 5-21 
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Supplementary Problems 

19. On the same sheet of paper, draw the graphs of the following parabolas: ( a )  y = 2x2; ( 6 )  y = 3x2; (c) 
y = 4x2; ( d )  y = t x 2 ;  ( e )  y = f x 2 .  

20. On the same sheet of paper, draw the graphs of the following parabolas, and indicate points of 
intersection: ( a )  y = x 2 ;  ( 6 )  y = - x 2 ;  (c) x = y2; ( d )  x = -y2. 

21. Draw the graphs of the following equations: 
(a)  y = x 3  - 1 ( b )  y = ( x - 2 ) 3  ( c )  = ( x  + 1)’ - 2 
(d) y = -2 (e) y = - ( x  - (f) = - ( x  - 113 + 2 

22. Identify and draw the graphs of the following equations: 
( a )  y2 - x 2  = 1 
( e )  4x7 + 4y2 = 1 
(i) xy = -1 

(b) 25x2 + 36y2 = 900 (c) 2x2 - y’= 4 (d) xy = 4 
( f ) 8 X F Y 2  
( j )  3y - x 2 = 9  

(g) 1oy = x 2  (h)  4x2 + 9y2 = 16 

Ans. (a) hyperbola, y axis as transverse axis, vertices (0, * l ) ,  asymptotes y = * x ;  (6) ellipse, vertices 
(+6 ,0 )  foci (km, 0); (c) hyperbola, x axis as transverse axis, vertices ( 2  fi, 0), asymptotes 
y = +fix; (d) hyperbola, y = x as transverse axis, vertices (2,2) and (-2, -2), x and y axes as 
asymptotes; (e) circle, center (0, 0), radius 4 ; ( f )  parabola, vertex (0, 0), focus (2,0), directrix 
x = -2; (g) parabola, vertex ( O , O ) ,  focus (0, i ) ,  directrix y = - $ ;  (h) ellipse, vertices (*2,0), 
foci (2  in, 0); (i) hyperbola, y = - x  as transverse axis, vertices (- 1 , l )  and (1, - l ) ,  x and y 
axes as asymptotes; ( j )  hyperbola, y axis as transverse axis, vertices (0, *o), asymptotes 
y = **XI3 

23. Identify and draw the graphs of the following equations: 
(U)  4x2 - 3y2 + 8 x  + 12y - 4 = 0 
(c) X’ - 6~ - 4y + 5 = 0 

( g ) x y - 3 x - 2 ~ + 5 = 0  [Hint: Compare (f) .]  

(b) 5 x 2  + y2 - 2 0 ~  + 6y + 25 = 0 
(d) 2x2 + y2 - 4x + 4y + 6 = 0 

(h)  4x2 + y2 + 8x + 4y + 4 = 0 
(e) 3x2 + 2y2 + 12x - 4y + 15 = 0 ( f )  ( x  - W Y  + 2) = 1 

(i) 2x2 - 8 x  - y + 11 = 0 ( j )  2 5 ~ ’  + 16y2 - 1 0 0 ~  - 32y - 284 = 0 

Ans. (a )  empty graph; (6) ellipse, center at (2, -3); (c) parabola, vertex at (3, - 1); (d) single point 
(1, -2); (e) empty graph; ( f )  hyperbola, center at (1, -2); ( g )  hyperbola, center at (2,3); 
(h )  ellipse, center at (- 1,2);  (i) parabola, vertex at (2,3);  ( j )  ellipse, center at (2, 1) 

24. Find the focus, directrix, and length of the latus rectum of the following parabolas: ( a )  10x2 = 3y; 

Am.  (a) focus at (0, &), directrix y = - &, latum rectum A ;  (b) focus at ( i , O ) ,  directrix x = - i , 
latus rectum ; (c) focus at (-2,2), directrix y = 0, latus rectum 4; (d) focus at (0, -2), directrix 
y = 2, latus rectum 8 

(b) 2y2 = 3 ~ ;  (c) 4y = x 2  + 4x + 8; ( d )  8y = -x2. 

25. Find an equation for each parabola satisfying the following conditions: 
( a )  Focus at (0, -3), directrix y = 3 (b) Focus at (6,0), directrix x = 2 
(c) Focus at (1,4), directrix y = 0 (d) Vertex at (1,2) focus at (1,4) 
(e) Vertex at (3,0), directrix x = 1 
( f )  Vertex at the origin, y axis as axis of symmetry, contains the point (3, 18) 
(g) Vertex at ( 3 , 5 ) ,  axis of symmetry parallel to the y axis, contains the point (5,7) 
(h)  Axis of symmetry parallel to the x axis, contains the points (0, l ) ,  (3,2), (1,3) 
(i) Latus rectum is the segment joining (2,4) and (6,4), contains the point ( 8 , l )  
( j )  Contains the points (1,lO) and (2,4), axis of symmetry is vertical, vertex is on the line 4x - 3y = 6 

A ~ s .  (U) 12y=-x2;  (b) 8 ( x - 4 ) = y 2 ;  (c) 8 ( ~ - 2 ) = ( ~ - 1 ) ~ ;  ( d )  8 ( ~ - 2 ) = ( ~ - 1 ) ~ ;  
( e )  8(x - 3) = y2; (f) y = 2x2; (g) 2(y - 5 )  = ( x  - 3)2; ( h )  2(x - 
(i) 4(y -5) = - ( x  - 4)2; ( j )  y - 2  = 2(x - 3)’ or y - 6 =26(x - g ) 2  

= -5(y - g)2; 
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26. Find an equation for each ellipse satisfying the following conditions: 
(a) Center at the origin, one focus at (0,5), length of semimajor axis is 13 
(6) Center at the origin, major axis on the y axis, contains the points ( 1 , 2 f i )  and ( 4 ,  m) 
(c) Center at (2,4),  focus at (7,4),  contains the point ( 5 , 8 )  
(d) Center at (0, l ) ,  one vertex at (6, l ) ,  eccentricity 3 
(e) Foci at (0, * $), contains ( g ,  1) 
( f )  Foci (0, +9),  semiminor axis of length 12 

X 2  x2 ( x  - 2)* + ( y  - 4)2 
144 1$9 4 14  20 

Ans. ( ~ ) - + ~ = l ;  ( b ) - + Y = l ; ( c ) ~  -= 

( e )  x2 + - 9Y = 1;  (f) - I2 + Y = 1  
25 144 225 

27. Find an equation for each hyperbola satisfying the following conditions: 
(a) Center at the origin, transverse axis the x axis, contains the points (6,4) and (-3, 1) 
(6) Center at the origin, one vertex at (3,0), one asymptote is y = $ x  
(c) Has asymptotes y = t f i x ,  contains the point (1,2) 
(d) Center at the origin, one focus at (4,0), one vertex at (3,O) 

51 

- -  
28. Find an equation of the hyperbola consisting of all points P ( x ,  y) such that IPF - PF‘I = 2 f i ,  where 

F = ( f i , f i )  a n d F ’ = ( - f l , - f l ) .  

Am. x y = l  



Chapter 6 

Functions 

FUNCTION OF A VARIABLE. A function is a rule that associates, with each value of a variable x 
in a certain set, exactly one value of another variable y. The variable y is then called the 
dependent variable, and x is called the independent variable. The set from which the values of x 
can be chosen is called the domain of the function. The set of all the corresponding values of y 
is called the range of the function. 

EXAMPLE 1: The equation x 2  - y = 10, with x the independent variable, associates one value of y with 
each value of x. The function can be calculated with the formula y = x 2  - 10. The domain is the set of all 
real numbers. The same equation, x2 - y = 10, with y taken as the independent variable, sometimes 
associates two values of x with each value of y. Thus, we must distinguish two functions of y: x = q m  
and x = - d m .  The domain of both these functions is the set of all y such that y L - 10, since ~/m 
is not a real number when 10 + y < 0. 

If a function is denoted by a symbolf, then the expressionf(6) denotes the value obtained 
when f is applied t o  a number 6 in the domain off. Often, a function is defined by giving the 
formula for an arbitrary value f ( x ) .  For example, the formula f ( x )  = x 2  - 10 determines the first 
function mentioned in Example 1. The same function also can be defined by an equation like 
y = x2 - 10. 

EXAMPLE 2: ( U )  If f ( x )  = x 3  - 4x + 2, then 

f ( 1 )  = (1)3 - 4(1) + 2 = 1 - 4 + 2 =  - 1  f(-2) = (-2)3 - 4(-2) + 2 =  - 8  + 8 + 2 = 2  
f(a) = u3 - 4a + 2 

(6) The function f ( x )  = 18x - 3 x 2  is defined for every number x ;  that is, without exception, 18x - 3 x 2  is a 
real number whenever x is a real number. Thus, the domain of the function is the set of all real numbers. 
(c) The area A of a certain rectangle, one of whose sides has length x ,  is given by A = 18x - 3x2. Here, 
both x and A must be positive. By completing the square, we obtain A = -3(x - 3)2 + 27. In order to 
have A >0,  we must have 3(x  - 3)2 <27, which limits x to values below 6; hence, O < x < 6 .  Thus, the 
function determining A has the open interval (0,6) as domain. From Fig. 6-1, we see that the range of the 
function is the interval (0,271. 

Notice that the function of part ( c )  here is given by the same formula as the function of part (b), but 
the domain of the former is a proper subset of the domain of the latter. 

A 

Fig. 6-1 
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THE GRAPH of a function f is the graph of the equation y = f ( x ) .  

EXAMPLE 3: ( a )  Consider the function f ( x )  = 1x1. Its graph is the graph of the equation y = 1x1, shown 
in Fig. 6-2. Notice that f ( x )  = x when x 2 0, whereas f ( x )  = - x  when x I 0. The domain of fconsists of all 
real numbers, but the range is the set of all nonnegative real numbers. 
(b) The formula g(x )  = 2x + 3 defines a function g. The graph of this function is the graph of the equation 
y = 2x + 3 ,  which is the straight line with slope 2 and y intercept 3. The set of all real numbers is both the 
domain and range of g. 

A function is said to be defined on a set B if it is defined for every point of that set. 

Y 

Fig. 6-2 

Solved Problems 

0 - 1  1 - 1 - 1 -  2 2a - 1 

(4  f(x + h )  = 

( b )  f(-1) = ~ - - - (4 f ( 2 4  = 
- _  

1 + 2  3 (4 f(0) = 0+2 = 2 

x + h - l  - x + h - l  - 1 / x - 1  - x - x x z  
( d )  f ( 1 l x )  = ~ - ~ 

l / x 2  + 2  1 +2x2 (x + h ) 2  + 2 x 2  + 2 h x  + h2 + 2 

f (x  + 3 )  
f(x - 1 )  

2. If f ( x )  = 2", show that (a)  f ( x  + 3) - f ( x  - 1) = y f ( x )  and (b) ~ =f(4).  

3. Determine the domains of the functions 

( a )  Since y must be real, 4 - x2 2 0, o r  x2 I 4. The domain is the interval - 2 5 x 5 2 .  
( b )  Here, x2 - 16 L 0, or x 2  2 16. The domain consists of the intervals x I - 4  and x 2 4. 
(c) The function is defined for every value of x except 2 .  
(d) The function is defined for x # k 3 .  
(e) Since x 2  + 4 # 0 for all x, the domain is the set of all real numbers. 
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4. Sketch the graph of the function defined as follows: 

f ( x ) = 5 w h e n O < x ~ l  f ( x ) = l O w h e n l < x ~ 2  
f ( x )  = 15 when 2 < x 5 3 f ( x )  = 20 when 3 < x I 4 etc. 

Determine the domain and range of the function. 

The graph is shown in Fig. 6-3. The domain is the set of all positive real numbers, and the range is 
the set of integers, 5, 10, 15, 20, .  . . . 

5. A rectangular plot requires 2000 ft of fencing to enclose it. If one of its dimensions is x (in 
feet), express its area y (in square feet) as a function of x ,  and determine the domain of the 
function. 

Since one dimension is x ,  the other is i(2000 - 2x) = loo0 - x. The area is then y = x( loo0 - x), and 
the domain of this function is 0 < x < 1OOO. 

6. Express the length 1 of a chord of a circle of radius 8 in as a function of its distance x (in 
inches) from the center of the circle. Determine the domain of the function. 

From Fig. 6-4 we see that if = m, so that 1 = 2 m .  The domain is the interval 0 I x < 8. 

Fig. 6-4 

7. From each corner of a square of tin, 12 in on a side, small squares of side x (in inches) are 
removed, and the edges are turned up to form an open box (Fig. 6-5). Express the volume V 
of the box (in cubic inches) as a function of x ,  and determine the domain of the function. 

The box has a square base of side 12 - 2 x  and a height of x. The volume of the box is then 
V = x( 12 - 2 ~ ) ~  = 4x( 6 - x)’. The domain is the interval 0 < x < 6. 

As x increases over its domain, V increases for a time and then decreases thereafter. Thus, among 
such boxes that may be constructed, there is one of greatest volume, say M. To determine M ,  it is 
necessary to locate the precise value of x at which V ceases to increase. This problem will be studied in a 
later chapter. 
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Fig. 6-5 

f(a + h ,  - and interpret the result. 
h 

8. If f ( x )  = x2  + 2 x ,  find 

f ( ~  + h )  - f ( ~ )  - [ ( U  + h)’ + 2 ( ~  + h ) ]  - (U’ + 2 ~ )  
- = 2 u + 2 + h  

h h 

On the graph of the function (Fig. 6-6), locate points P and Q whose respective abscissas are U and 
a + h. The ordinate of P is f ( a ) ,  and that of Q is f ( a  + h ) .  Then 

f ( a  + h )  - f ( a )  - difference of ordinates 
h difference of abscissas 

- =slope of PQ 

Fig. 6-6 

9. Let f ( x )  = x 2  - 2 x  + 3. Evaluate ( a )  f(3); (b) f(-3); ( c )  f ( - x ) ;  ( d )  f ( x  + 2); (e) f ( x  - 2); 

(f) f(x + h ) ;  ( g )  f(x + h )  - f W  ( h )  
f(x + h )  - f (4  

h 

( U )  f ( 3 )  = 32 - 2(3) + 3 = 9 - 6 + 3 = 6 ( 6 )  f ( - 3 )  = ( -3)2  - 2(-3) + 3 = 9 + 6 + 3 = 18 
( c )  f ( - x )  = ( - x ) 2  - 2 ( - x )  + 3 = x 2  + 2x + 3 
( d )  f ( x  + 2 )  = ( x  + 2)’ - 2(x + 2)  + 3 = x2 + 4x + 4 - 2x - 4 + 3 = x 2  + 2 x  + 3 
( e )  f ( x  - 2 )  = (x - 2)2 - 2(x - 2 )  + 3 = x2 - 4x + 4 - 2x + 4 + 3 = x 2  - 6x + 11 
(f) f ( x  + h )  = (X + h)2  - 2(x + h )  + 3 = x2 + 2hx + h2 - 2x - 2h + 3 = X’ + (2h  - 2 ) ~  + (h2  - 2h + 3 )  
( g )  f ( x  + h )  - f ( x ) =  [ x 2  + (2h - 2 ) ~  + ( h 2  -2h  + 3 ) ] - ( x 2  - 2x + 3 )  =2hx  + h2 -2h  = h(2x + h - 2 )  

f ( x  + h ,  -f(x) = h(2x + - 2, = 2x + h - 2 
( h )  h h 

10. Draw the graph of the function f ( x )  = m, and find the domain and range of the function. 

The graph off is the graph of the equation y = l/G. For points on this graph, y 2  = 4 - x ’ ;  that 
is, x’ + y’ = 4. The graph of the last equation is the circle with center at the origin and radius 2. Since 
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Y 

Fig. 6-7 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

y = 
the interval -2  I x I 2, and the range is the interval 0 5 y 5 2 .  

2 0, the desired graph is the upper half of that circle. Figure 6-7 shows that the domain is 

Supplementary Problems 

If f ( x ) = x 2  - 4 x + 6 ,  find (a) f(0); (b) f(3); (c) f(-2). Show that f ( i ) = f ( f )  and f(2- h ) =  
f(2 + h ) .  Am. ( U )  -6; ( b )  3; (c) 18 

x - 1  1 
If f ( x )  = - 

Am. ( a )  -1; ( b )  0; ( c )  3 

If f ( x )  = xz - x ,  show that f ( x  + 1) = f ( - x ) .  

ab 
If f ( x )  = 1 / x ,  show that f(a) - f ( b )  = f (  -) 

5x i- 3 
If y = f ( x )  = ~ show that x = f( y ) .  

4 x - 5 '  

b - U  * 

Determine the domain of each of the following functions: 

(a) y = x 2 + 4  (b) y = G  ( c )  y=-  ( d )  y = x , 3  
X 

(4 Y = JZ 2 x  1 xz - 1 
(4  Y = ( x  - 2) (x  + 1) ( f )  Y = - W Y = =  lG-7 
Ans. (a ) ,  (b), (g) all values of x ;  (c) 1x1 1 2 ;  ( d )  x # -3;  ( e )  x # - 1, 2; ( f )  - 3  < x < 3; 

( h )  0 1 x < 2  

f(a + h ,  - f ( a )  in the following cases: (a) f ( x )  = - when a 2 2  and a + h # 2; ( 6 )  f ( x )  = Compute 
-when a 2 4  and a + h 2 4 ;  (c)f(x)= - when a #  -1 and a + h # -1. 

Am. 

h X x - 2  

x + l  
-1  1 1 

(a) (a - 2) (a  + h - 2) ' * ( b )  VU + h - 4 + V g '  (a  + l)(a + h + 1) 

Draw the graphs of the following functions, and find their domains and ranges: 

( a )  f ( x )  = -x2 + 1 

(c) f(x) = [XI = the greatest integer less than or equal to x 
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19. 

20. 

21. 

Am. 
(c) domain, all numbers; range, all integers 
(e) domain, all numbers; range, y 5 5  
(g) domain, all numbers; range, y 2 0 
(i) domain, x # 0; range, { - 1, 1) 
(k) domain, all numbers; range, y 2 0 

( a )  domain, all numbers; range, y~ 1 (6) domain, x > O ;  range, - 1 < y < O  o r  y 2 2  
( d )  domain, x # 2; range, y # 4 
( f )  domain, x 2 0; range, y I 0 
(h) domain, x # 0; range, y # 0 
( j) domain, all numbers; range, y 5 0 

Evaluate the expression ’(’ + h, -’(’) for the following functions f :  ( a )  f ( x )  = 3x - x2; (6) f(x) = fi; 
h 

(c) f ( x )  = 3x - 5; (d) f ( x )  = x 3  - 2. 

* (c) 3; (d) 3x2 + 3xh + h 2  
2 

q q i T q + f i ’  Am. ( U )  3 - 2 x  - h ;  ( 6 )  

Find a formula for the function f whose graph consists of all points ( x ,  y )  satisfying each of the following 

equations (in plain language, solve each equation for y ) :  ( a )  x5y + 4 x  - 2 = 0 ;  ( 6 )  x = -* 
2 + Y  
2 - y ’  

(c)  4 2  - 4xy + y 2  = 0. 

( a )  Prove the vertical-line test: A set of points in the xy plane is the graph of a function if and only if the 
set intersects every vertical line in at most one point, (6) Determine whether each set of points in Fig. 
6-8 is the graph of a function. 

Ans. only (6) is a function 

(4 

Fig. 6-8 



Chapter 7 

Limits 

AN INFINITE SEQUENCE is a function whose domain is the set of positive integers. For example, 
1 

when n is given in turn the values 1, 2, 3, 4 , .  . . , the function defined by the formula - 
n + l  

yields the sequeilee $ 4, i, f , . , . . The sequence is called an infinite sequence to indicate that 
there is no last term. 

By the general or nth term of an infinite sequence we mean a formula s, for the value of the 
function determining the sequence. The infinite sequence itseif is cften denoted by enclosing 
the general term in braces, as in {s,}, or by displayiq the first few terms of the secpence. For 

and that example, the general term s, of the sequence in the preceding paragraph is - 
1 

n + l ’  
sequewe can be denoted by or by t 7 7 a 7 $ 7  * * * 

LIMIT OF A SEQUENCE: If the terms of a sequence I s n }  approach a fixed number c as i i  gets 
larger and !arger, we say that c is the h i t  of the sequence, and we write either s, --j c or 
lim s, = c .  
f l A + Z  

As an example, consider the sequence 

some of whose terms are plotted on the coordinate system in Fig. 7-1. As n increases, 
consecutive points cluster toward the point 2 in such a way that the distance of the points from 
2 eventualiy becomes less than anypositive number that might have been preassigned as a 
measure of closeness, however small. For example, the point 2 - & = and all subsequent 
points are at a distance less than and all subsequent points are at a 

~ 

from 2, the point 
1 

n n-++= n distance less than m& from 2, and so on. Hence, { 2 - i}-+2 or lim (2 - -) = 2. 

e F, 

r ‘ m  
.. 

1 1 4 
I 1 I l ,  I + 
0 1 

I I 1  1 

312 513 2 

Fig. 7-1 

The sequence (7.1 ) does not contain its limit 2 as a term. On the other hand, the sequence 
1, i ,  1 ,  i, 1, 2 ,  1 , .  . . has 1 as limit, and every odd-numbered term is 1. Thus, a sequence 
having a limit may or may not contain that limit as a term. 

Many sequences do not have a limit. For example, the sequence {(-l),), thzt is, -1, 1, 
- 1, 1 ,  - 1, 1 ,  . . . , keeps alternating between - 1 and 1 and does not get closer and closer to 
any fixed number. 

LIMIT OF A FUNCTION. If f is a function, then we say that lim f ( x )  = A If the value of f ( x )  gets 
arbitrarily close to k as .xl gets closer and closer to a. For example, lim x 2  = 9, since x 2  gets 
arbitrarily close to 9 as x approaches as close as one wishes to 3. 

The definition can be stated more precisely as follows: lim f ( x )  = A if and only if, for any 
chosen positive number E ,  however small, there exists a positive number S such that, whenever 
O <  Ix - a1 < 8, then I f ( x j  - AI < E .  

x-+a 

x-3  

x+a 

58 
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The gist of the definition is illustrated in Fig. 7-2: After E has been chosen [that is, after 
interval (ii) has been chosen], then S can be found [that is, interval (i) can be determined] so 
that, whenever x # a is on interval (i), say at x,, then f ( x )  is on interval (ii), at f ( x o ) .  Notice the 
important fact that whether or not !k f ( x )  = A is true does not depend upon the value of f ( x )  
when x = a. In fact, f ( x )  need not even be defined when x = a. 

XO f ( x d  
a - 6  a a + 6  A - €  A A + €  

Fig. 7-2 

n n i  n n 
v v ,  W * x  I 1  - f W  

b I 

( i i )  ( i )  

- x2 - 4  x 2 - 4  x 2 - 4  
x+2 x - 2  x - 2  x - 2  

EXAMPLE 1: lirn - =4, although - is not defined when x =2. Since ___ - 
(x - 2)(x + 2) x2  - 4  

x - 2  x - 2  
= x + 2, we see that - approaches 4 as x approaches 2. 

EXAMPLE 2: Let us use the precise definition to show that lirn (x' + 3x) = 10. Let E > O  be chosen. We 

must produce a 6 > 0 such that, whenever 0 < Ix - 21 < 6 then l(x2 + 3x) - 101 < E. First we note that 
x-2 

[(x' + 3 ~ )  - 101 = I(x - 2)2 + 7(x - 2)( 5 I X  - 21' + 7 1 ~  - 21 

Also, if O <  6 5 1, then a 2  5 6. Hence, if we take 6 to be the minimum of 1 and ~ / 8 ,  then, whenever 
0 < Ix - 21 < 6, 

I(x' + 3 ~ )  - 101 < 6' + 76 5 6 + 76 = 86 5 E 

The definition of lim f ( x )  = A given above is equivalent to the following definition in terms of 
infinite sequences: lim f ( x )  = A if and only if, for any sequence {s,} such that lim s, = a,  

lirn f ( s n )  = A. In other words, no matter what sequence {s,} we may consider such that s, 
approaches a, the corresponding sequence { f(s,)} must approach A.  

x+a 

x - P a  n - t m  

n++m 

RIGHT AND LEFT LIMITS. By lim- f ( x )  = A we mean that f ( x )  approaches A as x approaches a 
through values less than a, that is, as x approaches a from the left. Similarly, lirn f ( x )  = A 

means that f ( x )  approaches A as x approaches a through values greater than a, that is, as x 
approaches a from the right. The statement lim f ( x )  = A is equivalent to the conjunction of the 
two statements lim- f ( x )  = A and lirn f ( x )  = A. The existence of the limit from the left does 

not imply the existence of the limit from the right, and conversely. 
When a function f is defined on only one side of a point a, then lim f ( x )  is identical with 

the one-sided limit, if it exists. For example, if f ( x )  = fi, then f is defined only to the right of 
zero. Hence, lim VX = lirn V3 = 0. Of course, lim V3 does not exist, since fi is not defined 

x+a 

x--a + 

x 4 a  

x+a x+a+ 

x-a 

x-0 x-0  + x-0 - 

when x < 0. On the other hand, consider the function g(x)  = m, which is defined only for 
x > O .  In this case, lim a does not exist and, therefore, lim does not exist. 

X - P O  + x+o 

EXAMPLE 3: The function f(x) = v9 - x 2  has the interval -3 -= - x I 3 as its domain of definition. If a is 
any number on the open interval -3 < x < 3, then lim d g  exists and is equal to m. Now 
consider a = 3. First, let x approach 3 from the left; th";; lirn = 0. Next, let x approach 3 from 
the right; then lirn is not a real number. Thus, 

lim G = 1iiZ.k7 = 0. 

lim 167 = o .  

does not exist, since for i73, 

x-3 x-3 -  

Similarly, lirn exists and is equal to 0, but lirn d g  does not exist. Thus, 
x+-3+ x - - 3 -  

x+-  3 
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THEOREMS ON LIMITS. The following theorems on limits are listed for future reference. 

Theorem 7.1 : If f ( x )  = c, a constant, then lea f ( x )  = c .  

g(x) = B, then: 

kf(x) = k A ,  k being any constant. 

If p; f ( x )  = A and 

Theorem 7.2: 

Theorem 7.3: lirn [ f ( x )  2 g(x)] = !@ f ( x )  If: 

Theorem 7.4: lirn [ f ( x ) g ( x ) ]  = !@ f ( x )  !% g(x) = AB.  

g(x) = A If: B .  
x - w  

x - w  

lim f ( x )  A 
Theorem 7.5: lirn fO = ZZL- = - provided B # 0. 

x-a  g(x) p 2  g(x) B ’  

Theorem 7.6: lim = 7- = m, provided a is a real number. 
x - a  x+a 

INFINITY. We say that a sequence { s,} approaches + 00, and we write sn + + 00 or lirn s, = + 00, 

if the values s, eventually become and thereafter remain greater than any preassigned positive 
number, however large. For example, lirn fi = +m and lirn n2 = + W .  

We say that a sequence {s,} approaches -00, and we write s,- --a or lim s, = -m, if 
the values s, eventually become and thereafter remain less than any preassigned negative 
number, however small. For example, lim -n = --oo and lirn (10 - n ) = - m. 

n++m 

n++m n + + m  

n + + m  

2 

n + + m  n + + m  

The corresponding notions for functions are the following: 
We say that f ( x )  approaches +m as x approaches a, and we write lim f ( x )  = + m ,  if, as x 

approaches its limit a (without assuming the value a), f ( x )  eventually Czomes and thereafter 
remains greater than any preassigned positive number, however large. This can be given the 
following more precise definition: Ffi f ( x )  = +m if and only if, for any positive number M, 
there exists a positive number 6 such that, whenever 0 < Ix - a1 < 6, then f ( x )  > M. 

We say that f ( x )  approaches - 0 0  as x approaches a,  and we write lim f ( x )  = - C O ,  if, as x 
approaches its limit a (without assuming the value a ) ,  f ( x )  eventually Czomes and thereafter 
remains less than any preassigned negative number. By !$ f ( x )  = we mean that, as x 
approaches its limit a (without assuming the value a) ,  I f ( x ) [  eventually becomes and thereafter 
remains larger than any preassigned number. Thus, lirn f ( x )  = if and only if lirn I f(x)I = + a. 

X-+U X+Cl 

1 
- (c) lim - =a EXAMPLE 4: (a) lim -5 = +m (6) lirn ____ 

- 1  - -cc 1 
x-+o x x-1 (x -  1)* x - 0  x 

These ideas can be extended to one-sided (left and right) limits in the obvious way. 

1 
1 x - 4 +  x 

EXAMPLE 5: 
numbers) - is positive and eventually becomes larger than any preassinged number. 

( a )  lim - = + m ,  since, as x approaches 0 from the right (that is, through positive 

X 
1 1 

(b) lim- - = -2, since, as x approaches 0 from the left (that is, through negative numbers), - is negative 
and eventually becomes smaller than any preassigned number. 

r h o  x X 

The limit concepts already introduced also can be extended in an obvious way to the case in 
which the variable approaches +m or - W .  For example, lirn f ( x )  = A means that f ( x )  
approaches A as x+ +m; or, in more precise terms, given any positive E ,  there exists a number 
N such that, whenever x > N, I f ( x )  - AI < E .  

Similar definitions can be given for the statements lim f ( x )  = A ,  lirn f ( x )  = +a, 

X-++aO 

x-+ - m X + + m  

lim f ( x )  = -30 ,  lirn f ( x )  = - 0 0 ,  and lirn f ( x )  = +CO. 
x+ - x x+ + m x+-m 
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Caution: When lim f ( x )  = +m and lim g(x)  = +m, Theorems 3.3 A 3.5 do not make 

+"; however, lim 7 - 
1 1 

sense and cannot be used. For example, lirn - = +m and lim - = 

lim x 2  = 0. 

x-a x-a 

- 1 l x 2  
x-0 x2 x - 4  x4 x-0 l l x  

x-0 

Solved Problems 

1. Write the first five terms of each of the following sequences. 

1 5  s=l--=- s =  1 1 1  1 3  
( a )  {I-%}: Set s,=l--; then s , = l - - = - ,  s =I--=- 2n 

1 

1 7  
2.4 8 

2.1 2 2.2 4' 2-3 6' 
1 - - = -, and s, = 6. The required terms are 1 ,  a ,  2 ,  $, &. 

1 1 -  1 
(6) ((-1)"" 3n-1): 1 Here s, = (-1)' - 1 -  - - s, = (-1)3 ~ - - - 3.1-1 2' 3-2-1 5 '  

1 8 ,  s, = - A, s, = A .  The required terms are i ,  - i ,  8 ,  - A, &.  1 -  s3 = (- 11, ~ - 3.3-1 

(c) { s}: The terms are 1, $,  4 ,  6 ,  A .  

1 -2 3 -4 5 
2.3' 3.4'4.5'5.6' 6.7' : The terms are - - - - - 

(e) {i[(-l)" + l]}: The terms are 0, 1, 0, 1, 0. 

2. Write the general term of each of the following sequences. 

(a )  1, f , f , 3 , 4,  . . . : The terms are the reciprocals of the odd positive integers. The general term is 
1 

2n-1' 
(6) 1, - 1  2 ,  I 3 ,  - I  4 ,  , 1 , . . . : Apart from sign, these are the reciprocals of the positive integers. The general 

1 1 
n term is (-I)"+' - or (--I)"-' -. 

, I 4 ,  I , r 16 , r 2 5 ,  . . . : The terms are the reciprocals of the squares of the positive integers. The general 
term is l/n2. 
1 1.3 1.3-5 1.3.5.7 1.3.5...(2n - 1) 

(24 * 

( d )  5 , 2.4, 2.4.6, 2. 4. 6. 8 , ,  . . : The general term is 2.4.6.. . 
(e) 1, - 4  9 ,  9 2 8 ,  -16 . . . : Apart from sign, the numerators are the squares of positive integers and2the 

n 
denominators are the cubes of these integers increased by 1. The general term is (-l)"+' - n3+1' 

3. Determine the limit of each of the following sequences. 

(a) 1, 4 ,  f , 4 ,  4 , .  . . : The general term is lln. As n takes on the values 1, 2, 3, 4,. . . in turn, lln 
decreases but remains positive. The limit is 0. 

( 6 ) l  , I 1  , , , 1 16 ,  -!- 2 5 ,  . . . : The general term is (l/n)*; the limit is 0. 
( c )  2, ;, 9 ,  y ,  y ,  . . . : The general term is 3 - l/n; the limit is 3. 
(d) 5 ,  4, 9 ,  g ,  y ,  . . . : The general term is 3 + 21n; the limit is 3. 

( f )  0.9, 0.99, 0.999, 0.9999, 0.99999, . . . : The general term is 1 - 1/10"; the limit is 1. 
( e ) i ' 1  , 5, 8 ,  G ,  1 1  3 , .  . . : The general term is 112"; the limit is 0. 
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4. Evaluate the limit in each of the following. 

(a) lirn 5x = 5 lirn x = 5 .2=  10 
x-2 x-2 

(b) lim (2x + 3) = 2 lim x + lirn 3 = 2.2 + 3 = 7 
x-2 x-bz x-2 

x - 2  ! i < " - 2 >  1 
(c) lirn (x' - 4x + 1) = 4 - 8 + 1 = - 3 ( d )  lim - - - 

(f) lim== , / i K @ C 7 j = f i = 3  

= -  
X' 2 x-3  x + 2  l im(x+2)  5 

x+ 3 

x 2 - 4  4 - 4  
= O  -- (e) lim ~ - 

Note: Do not assume from these problems that lirn f(x) is invariably f (a ) .  

(g) lim - - - lim ( x -5 )= -10  

x 4 - 2 x 2 + 4  4 + 4  x 4 4  x-4 

x+a 

X' - 25 
x - - 5  x + 5  x - - 5  

5. Examine the behavior of f ( x )  = (- 1)" as x ranges over the sequences (a)  f , 4 ,  f , i, . . . and 
(6) J , 3 ,  7 ,  9 ,  . . . . (c) What can be said concerning lim (- 1)' and f(O)? 

(a) (-1)"-*-1 over the sequence 4 ,  4 ,  4 ,  $ ,  . . . . 
(6) (- l ) x - +  + l  over the sequence 3, f ,  3, $, . . . . 
(c) Since (- 1)" approaches different limits over the two sequences, lirn (-l)x does not exist; 

2 2 2 2  

x-0 

x - 0  
f(0) = (-1)O = +l. 

6. Evaluate the limit in each of the following. 
x - 4  x - 4  1 1  - 

= lim - - - = lim (4 !!! x2 - x - 12 x 4 4  (x + 3)(x - 4) x-4 x + 3 7 

The division by x - 4 before passing to the limit is valid since x # 4 as x - 4; hence, x - 4 is 
never zero. 

x3  - 27 (x - 3)(x2 + 3x + 9) x 2 + 3 x + 9  - - 2  
2 

(6) lim 7 - - lirn = lim 
x 4 3  x - 9  x 4 3  (x-3)(x+3) x+3 x + 3  

(X + h)' - X' x2 + 2hx + h2 - x2 
= lirn = lim (2x + h )  = 2x h h+O h h 4 O  h h-0 

= lim (c) lirn 
h-0 

Here, and again in Problems 8 and 9, h is a variable so that it could be argued that we are in reality 
dealing with functions of two variables. However, the fact that x is a variable plays no role in these 
problems; we may then for the moment consider x to be a constant, that is, some one of the values of its 
range. The gist of the problem, as we ~~ shall see in Chapter 9, is that if x is any value, say x = xo, in the 

(x + - x2 
is always twice the selected value of x. 

h 
domain of y = x2, then lirn 

h+O 

(4 - x2)(3 + lP%) 
= lim 4 - x2 (4 - x2)(3 + Q%) 

= lim 
e x 2  

( d )  lim 
x42 3 - V G  I - 2  ( 3 - G T ) ( 3 + G T 5 )  x-2 

= lim (3 + v x 2  + 5) = 6 
x-2 

x ' + x - 2  (x - l)(x + 2) x + 2  
= lim = lim - = 03; no limit exists. 

(x - 1)2 X 4 l  x - 1 (e) lim 
x-1 ( x -  1)2 x-1 

7. In the following, interpret lim as an abbreviation for lirn or  lirn . Evaluate the limit by 
first dividing numerator and denominator by the highest power of x present and then using 

1 
lim - = 0. 

x - + * w  X 4 f W  x+-w 

X-+W x 

3 ~ - 2  - 3 - 2 / ~  - 3 - 0  - 1 
x-30 9~ + 7  x-m 9 + 7 / ~  9 + 0  - 5 (a) lim ~ - lim - - - 



CHAP. 71 LIMITS 63 

8. 

9. 

10. 

11. 

6 + 2 / x + l / x ’  6 + 0 + 0  6x’ + 2x + 1 = lim 

x 2 + x - 2  

=-= (6) lirn 

(c) lim = lim 

6 x 2 - 3 x + 4  6 - 3 / x + 4 / x 2  6 - 0 + 0  

i i x  + uxZ -2/x3 - o 
4 

- - = o  
I-= 4x3-1 I’m 4 - 1lX3 

. lim (d) lim -- = -03; no limit exists 2x3 
x2 + 1 I-= l i x  +px3 

L 
lim = +w;  no limit exists 

i i x  + 1lX3 

f(x + h )  - f (4  
h 

Given f ( x )  = x 2  - 3 x ,  find lim 
h-0 

Since f ( x )  = x 2  - 3x, we have f(x + h )  = ( x  + h)’ - 3(x + h )  and 

(x’ + 2hx + h’ - 3x - 3h) - ( x *  - 3 ~ )  2hx + h2 - 3h 
h 

= lim f(x + h )  -f(4 = lim 
h h+O h h-0 

lim 
h-0 

= lim (2x + h - 3) = 2x - 3 
h 4 O  

5x + 5h + 1 - IKTI V ~ X  + 5h + 1 + V F T l  
h V 5 x + 5 h  + 1 +m = lim ‘ 

= lim 

h 4 O  

( 5 ~  + 5h + 1 )  - ( 5 ~  + 1 )  
h - 4  h ( V 5 ~  + 5h + 1 + m) 

5 5 - = lirn 
h-o d 5 x  + 5h + 1 + - 2- 

(4 Y =fW = 

(4 Y =fW = 

y - ,  +m. 

y - ,  -m. 

Examine (a)  

In each of the following, determine the points x = a for which each denominator is zero. Then 
examine y as x+  a- and x+ a+. 

(a) y = f ( x )  = 2/x: The denominator is zero when x = 0. As x+O-, y +  -00 ;  as x+O+, y-* +W. 

(6) Y =f(4 = ( x  + 3)(x - 2) * * the denominator is zero for x = -3 and x = 2 .  As x+ -3-, y +  -00; as 

(4 Y =fW = ( x  + 2)(x - 1 )  * - The denominator is zero for x = -2 and x = 1.  As x +  -2-, y +  -m; as 

: The denominator is zero for x = 3 .  As x+3-,  y + + m ;  as x+3+ ,  

x - 1  

x - )  -3+, y - ,  +w.  As x+2-,  y - ,  -03; as x+2+ ,  y - )  +W. 

x - 3  

x - )  -2+, y +  +m. As x+ 1-, y-* +w; as x+ 1+, y - +  -m. 
( x  + 2)(x - 1)  

( x  - 3)2 

( x  + 2)( 1 - x )  
: The denominator is zero for x = 3 .  As x + 3 - ,  y + + m ;  as x+3+, 

x - 3  

1 +2l’” 
x-bo 3 + 21‘x * 

and (6) lim - lim - 
1 

x+o 3 + px 
1 - -  1 

(a) Let x - 0 - ;  then l / x - - W ,  2’IX-,0, and lim- - - 
X-DO 3+21/” 3 ’  

= 0. Let x - 0 ’ ;  then l lx++m, 21/x-,+m, and lim - 
x+o+ 3 +  2l’I 

Thus lim - does not exist. 

1 

1 + 2lIx 1 I-0 3 + 2llx 
(6) Let x + O - ;  then 21/x+0 and lim- - - -  - 

X-DO 3+2”” 3 ’  
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2-," + 1 2+" + 1 
- and since lim+ 2-'IX = 0, lim+ = 1. 

1 + 2,lx 
3 + 21'x 3 - 2-l'" + 1 X-0 x-0 3 - 2-,Ix + 1 

Let x-+O+. For x Z 0 ,  - - 

Thus, lirn - does not exist. 
1 + 21"x 

x-+0 3 + 2 ' / "  

12. For each of the functions of Problem 10, examine y as x +  --oo and as x -  +m. 

(a )  When 1x1 is large, Iy l  is small. 

( b ) ,  (c) Same as (a ) .  
( d )  When 1x1 is large, Iyl  is approximately 1. 

(e) When 1x1 is large, Iy i  is large. 

For x = - 1O00, y < 0; as x + - E, y --+ 0-. For x = + 1O00, y > 0; as x --+ + m, y + 0'. 

For x = - 1O00, y < 1; as x+ - m, y - 1-. For x = + 1O00, y > 1; as x --* +a, y + 1 '. 

For x = -1OO0, y > O ;  as x-. -03 ,  y- +m. For x = +1OOO, y CO; as x--, + m ,  y-. - m .  

13. Examine the function of Problem 4 in Chapter 6 as x+  a -  and as x--, a +  when a is any 
positive integer. 

Consider, as a typical case, a = 2. As x+2-, f ( x ) +  10. As x-,2+, f ( x ) +  15. Thus, lirn f ( x )  does 
not exist. In general, the limit fails to exist for all positive integers. (Note, however, that lim f ( x )  = 

lirn ~ f ( x )  = 5 ,  since f ( x )  is not defined for x 5 0.) 

x-2 

x-0 

x - 0 

14. Use the precise definition to show that ( a )  lirn (4x3 + 3x2 - 24x + 22) = 5 and 
(6) lim ( - 2 x 3  + 9 x  + 4) = -3 .  

x--, 1 

x+ -1  

( a )  Let E be chosen. For O <  Ix - 11 < A < 1, 

I(4x' + 3x2 - 24x + 22) - 51 = 14(x - 1)3 + 15x2 - 36x + 211 = 14(x - 1)3 + 15(x - 1)' - 6(x - 1)1 

1 4 1 ~  - 11' + 1 5 1 ~  - 11' + 6 1 ~  - 11 
<4A + 15A + 6A = 25A 

Now ((4x' + 3x2 - 24x + 22) - 51 < E for A < ~ / 2 5 ;  hence, any positive number smaller than both 1 
and ~ / 2 5  is an effective 6, and the limit is established. 

(b)  Let E be chosen. For O <  Ix + 11 < A < 1, 

](-2x3 + 9 x + 4 ) + 3 ) = ) - 2 ( x +  1)3+6(x+1)2+3(x+1)1 
5 2)x + 113 + 61x + 11' + 31x + 11 < 1 l A  

Any positive number smaller than both 1 and ~ / l l  is an effective 6, and the limit is established. 

15. Given lim f ( x )  = A and lim g(x)  = B ,  prove: 
( a )  lim [ f ( x )  + g ( x ) ]  = A + B f(x) A x-a  x - a  

(6) lim f ( x ) g ( x )  = A B  (c) lim - = - B # O  
x - a  x - a  g (x )  B '  X'U 

Since lim f ( x )  = A and g(x) = B, it follows by the precise definition that for numbers 6, > 0 and 
E, > 0, ho&;er small, there exist numbers 6, > 0 and 6, > O  such that: 

Whenever O <  Ix - a1 < S,, then I f (x)  - AI < E, 

Whenever 0 < Ix - a1 < a,, then I g(x) - BI < E, 

Let A denote the smaller of 6, and 6,; now 

Whenever O <  Ix - a1 < A ,  then If(.) - A(  < E, and I&)  - B (  < (3  ) 

(a) Let E be chosen. We are required to produce a 6 > O  such that 

Whenever 0 < Ix - a [  < 6, then l [ f ( x )  + g(x)] - (A + B ) (  < c 

If((.) - AI < E, whenever 0 < Ix - a1 < A and 1 g(x) - AI < E, whenever 0 < Ix - a1 < A,  where A is the 
smaller of 6, and 6,. Thus, 

Now IMx)  + &)I - ( A  + B)I = I[f(X) - A I  + [gW - Bll If(4 - AI + I&) - BI. BY (31, 
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I [ f (x )  + g(x)] - ( A  + B ) l <  E ,  + E ,  whenever 0 < Ix - a1 < A 

Take E ,  = E, = 1~ and S = A for this choice of e1 and E , ;  then, as required, 
1 1  

2 
I [ f (x )  + g(x) ]  - ( A  + B)I < 2 E + - E = E whenever O <  Ix - a [  < S 

Whenever 0 < Ix - a1 < S then I f (x)g(x) - AB1 < E 

Let E be chosen. We are required to produce a 6 > O  such that 

Now I f ( x k ( 4  - AB1 = IMx)  - Al[g(x) - BI + B [ f W  - AI + A[g(x) - BII 
If(.> - AlIg(4 - BI + IBllf(x) - AI + IAllg(x) - BI 

so that, by ( 3 ) ,  I f (x )g(x)  - AB1 < € , E ,  + IBIe, + IA1e2 whenever O <  Ix - a1 < A. Take cl and 

such that cl€* < - E ,  e1 < - -, and E ,  < - - are simultaneously satisfied and let 6 = A for this 

choice of E, and E , .  Then, as required, 

1 1 €  1 €  

3 3 PI 3 IAI 

€ € €  
( f ( x ) g ( x )  - AB( < 3 + 3 + 3 = E whenever 0 < Ix - a1 < S 

1 1 1  
Since fO = f ( x )  - , the theorem follows from (b) provided we can show that lim - = - , for 

B # 0 .  
g(x) g(x) x - 0  g(x)  B 

Let E be chosen. We are required to produce a S > O  such that 

Whenever O < I x - - a l < S  then 1- 1 - 

g(x) 

Now 

BY (21, 
Ig(x) - BI < E ,  whenever O <  Ix - a [  < S ,  

However, we are also dealing with l lg(x) ,  so we must be sure 8, is sufficiently small that the 
interval a - S, < x < a + 6, does not contain a root of g(x)  = 0. Let 6 , s  6, meet this requirement so 
that I g(x) - BI < E,  and I g(x)l > 0 whenever 0 < Ix - a1 5 6,. Now I g(x) l> 0 on the interval implies 

lg(x)l> b > O  and - < - on the interval for some b. Thus, we have 
1 1  

I g(x)  I b 

€2 Take E, < cb(BI ,  so that - < E and 6 = 6, for this choice of E , .  Then, as required, 
lBlb 

X X2 
- 1; ( c )  lim - = +w.  16. Prove (a)  limp 7 = -w; ( b )  lim - - 

1 
2.-2 ( x  -2) x-+m x + 1 x-+= x - 1 

1 
(a) Let M be any negative number. Choose S positive and equal to the minimum of 1 and -. Assume 

> I M I = - M .  But x < 2  and O <  Ix-21 < S .  Then I x - 2 1 ’ < S 3 s S  5 -. Hence, - 

< M .  ( x  - 2)’ < 0. Therefore, - - - - 

IMI 1 
IMI lx  - 21’ 

- 1 
( x  - 2 y  - 21, 

(b) Let E be any positive number, and let M = 1 / E .  Assume x > M. Then 

X2 XZ 
(c) Let M > 1 be any positive number. Assume x > M. Then - 2 - = x > M .  

x - 1  x 
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Supplementary Problems 

17. Write the first five terms of each sequence: 

18. Determine the general term of each sequence: 

(a )  1/2,  2/3,  3/4,  415, 5 / 6 , .  . . 
(c) 1/2,  1/12, 1/30, 1/56, 1/90,.  . . 
(e) 1/2!, -1/4!, 1/6!, -1/8!, 1/10!, . . . 

(6) 1/2,  -116, 1/12, -1/20, 1/30,.  . . 
(d) 1/S3, 3/S5, 5 / S 7 ,  7/5', 91511,. . . 

1 1 2n - 1 1 - 
(b) (-l)"- '  -* n 2  + 9 (4 (2n - l p n ;  ( 4  (4  (2n)! AnS. (4 5; 

19. Evaluate: 
(3x - 1)2 

"-8- 1 "-1 ( x +  q3 (b) lirn (x3 + 2x2 - 3x - 4) (c) lim ( a )  lim (x2 - 4x1 
x-- 2 

3" - 3-" 
(d) lim ~ 

x - 0  3" +3-"  
x - 1  

(e) lirn 7 
"-82 x - 1  

x2 + 3x + 2 x - 2  
(h) lirn 7 

"-82 x - 4  (8) !!ml x* + 4* + 3 

V F 2  
( j )  lim - 

"-2 x2 - 4 
(x + h ) 3  - x3 

h 
(k)  )m 

-Q  

x2 - 4  
5x + 6  (f) lim "-82 x2 - 

(i) lim - 
"-82 q z  

x - 1  

"-1 G 5 - 3 - 2  

x - 2  

( 1 )  lim 

Am. (a )  -4; (6) 0; (c) 4 ;  (d) 0; (e) 4; ( f )  -4; (g) 4 ;  (h)  $ ;  ( i )  0; ( j )  OQ, no limit; (k)  3x2; (I)  2 

20. Evaluate: 
2x + 3 

( a )  lim - 
"-= 4x - 5 

x + 3  
(e) lim 

*-a x + 5x + 6  

2x2 + 1 
(6) lim 

x - m  6 + x - 3 x 2  
3" - 3-" 

( f )  lirn - 
"-+a 3" + 3-" 

X 
(c) lim 7 

x-=x + 5  
3" - 3 --I 

( g )  lirn - 
"-9-w 3" + 3-" 

Ans. ( a )  :; (6) - $ ;  (c) 0; (d) OQ, no limit; ( e )  0; ( f )  1;  ( g )  -1 

f(a + h ) - f ( a )  for the functions f in Problems 11, 12, 13, 15, 16(a), (b), (d), and (g), and 21. Find lim 
h 

18(b):T:), ( g ) ,  and ( i )  of Chapter 6. 
a 

* 16. (U) 2 ~ ,  (b) - 
27 

GZ' Ans. 11. 2a -4 ;  12. -* 13. 2a -  1; 15. - 
( a  + 1)2 ' (4a - 5)2 ' 

3 4a 
18. ( a )  -2a, (6) 1, (c) no limit, (g) -1, (i) no limit (4 ( g )  m; 

a$m + alxm-l  + * * 

22. What is lirn 
+ 

where a,6, # 0 and rn and n are positive integers, when 
x-m box" + b,x"-l + * * * + bn 

( a )  m > n ;  (6) & = n ;  (c )  rn < n? Am. (a )  no limit; (6) a,/b,; (c) 0 
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23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

Investigate the behavior of f ( x )  = 1x1 as x-0. Draw a graph. (Hint: Examine lim- f ( x )  and lim f ( x ) . )  

Ans. lim 1x1 = O  
x-0 x-o+ 

x+o 

x > o  
Investigate the behavior of as x+O. Draw a graph. 

Ans. lirn f ( x )  does not exist. 
x + o  

( a )  Use Theorem 7.4 and mathematical induction to prove !$a X" = a", for n a positive integer 
(b) Use Theorem 7 . 3  and mathematical induction to prove 

lirn [ fl (x) + f i ( x )  + - - + f,(x)] = lim fi ( x )  + lim f , ( x )  + - - + lim f , ( x )  
x+a x+a x-0 x - a  

Use Theorem 7.2 and the results of Problem 25 to prove !z P ( x )  = P ( a ) ,  where P ( x )  is any polynomial 
in x. 

For f ( x )  = 5x - 6, find a S > 0 such that whenever 0 < Ix - 41 < 8, then I f ( x )  - 141 < E, when ( a )  E = i 
and (6) E = 0.001. Am. (a )  &; ( 6 )  0.0002 

Use the precise definition to prove ( a )  lim 5x = 15; (6) lirn x' = 4; (c) lirn (x' - 3x + 5 )  = 3 .  
X' 3 x-2 x-2 

Use the precise definition to prove 

X X X2 
= M  (c) lim - - 1  - (d) lim - = m  (6) lim - 

x+o x x-1 x - 1 x+= x - 1 x-= x + 1 
1 

(a )  lim - = 00 

Prove: If f ( x )  is defined for all x near x = a and has a limit as x+ a,  that limit is unique. (Hint:  Assume 
lirn f ( x )  = A, lirn f ( x )  = B ,  and B # A. Choose E ~ ,  E' < $ ( A  - B ( .  Determine 6, and 6, for the two limits 
gGi take S tL-imaller of 6, and 8,. Show that then IA - BI = I [A - f ( x ) ]  + [ f ( x )  - B]I < IA - BI, a 
contradiction .) 

Let f ( x ) ,  g(x), and h(x)  be such that (1) f ( x )  I g(x) 5 h(x)  for all values of x near x = a and (2) 
f ( x )  = lim h(x)  = A. Show that !z g(x) = A. (Hint: For a given E > 0, however small, there exists a 

S > O  such that whenever O <  Ix - a1 < S  then If(.) - AI < E and ( h ( x )  - A (  < E or A - E < f ( x )  ' g ( x )  5 

h(x)  < A + E . )  

x+a 

Prove: If f ( x )  5 M for all x and if lili f ( x )  = A,  then A I M. (Hint: Suppose A > M. Choose 
E = ; ( A  - M) and obtain a contradiction.) 



Chapter 8 

Continuity 

A FUNCTION f ( x )  IS CONTINUOUS at x = xo  if 

f ( x , )  is defined lim f ( x )  exists lim f ( x )  = f ( x o )  
x+xo  X + X O  

For example, f ( x )  = x 2  + 1 is continuous at x = 2 since lirn f ( x )  = 5 = f(2). The first condition 
above implies that a function can be continuous only at  points of its domain. Thus, f ( x )  = v g  is not continuous at x = 3 because f(3) is imaginary, i.e., is not defined. 

A function f ( x )  is called continuous if it is continuous at every point of its domain. Thus, 
f ( x )  = x 2  + 1 and all other polynomials in x are continuous functions; other examples are ex, 
sinx,  and cosx. 

A function f is said to be continuous on a closed interval [ a ,  61 if the function that restricts f 
to [a ,  61 is continuous at each point of [ a ,  61; in other words, we ignore what happens to the 
left of a and to the right of 6. Consider, for example, the function f such that f ( x )  = x for 
0 I x I 1, f ( x )  = - 1 for x < 0, and f ( x )  = 2 for x > 1. This function is continuous at every point 
except x = 0 and x = 1. However, the function is continuous on the interval [0,1] because, for 
that interval, we are considering the function g whose domain is [0, 11 such that g(x )  = x for x in 
[0,1]. Because 

x+2 

lim g(x)  = lim g(x)  = 0 
x-0 x-bo + 

x - b  1 x + l  
and lirn g ( x )  = lim- g(x)  = 1 

g is continuous at 0 and 1 (and, clearly, at all points between 0 and 1).  

A FUNCTION f ( x )  IS DISCONTINUOUS at x = xo if one or more of the conditions for continuity 
fails there. 

EXAMPLE 1: ( U )  f ( x )  = - is discontinuous at x = 2 because f ( 2 )  is not defined (has zero as 
denominator) and because lirn f ( x )  does not exist (equals a). The function is, however, continuous 
everywhere except at x = 2, where it is said to have an infinite discontinuity. See Fig. 8-1. 

( b )  fW = x-2 is discontinuous at x = 2 because f ( 2 )  is not defined (both numerator and denominator 
are zero) and because lim f ( x )  = 4. The discontinuity here is called removable since it may be removed by 

redefining the function as f ( x )  = ~ for x # 2; f ( 2 )  = 4. (Note that tQe discontinuity in ( U )  cannot be so 

removed because the limit also does not exist.) The graphs of f ( x )  = ~ and g(x) = x + 2 are identical 
except at x = 2 ,  where the former has a ‘hole’ (see Fig. 8 - 2 ) .  Removing the discontinuity consists simply of 
filling the ‘hole.’ 

x - 2  
s 4 2  

X 2  - 4  

x 2  - 4  x+2 

x - 4  
x - 2  

x - 2  

Fig. 8-1 Fig. 8-2 

68 
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x 3  - 27 
for x # 3; f(3) = 9 is discontinuous at x = 3 because f(3) = 9 while lim f ( x )  = 27, so that 

lim f ( x )  Zf(3). The discontinuity may be removed by redefining the function as f ( x )  = ~ for x # 3; 
76; = 27. 
(d) The function of Problem 4 of Chapter 6 is defined for all x > 0 but has discontinuities at x = 1 ,  2, 
3, .  . . (see Problem 13 of Chapter 7)  arising from the fact that 

(4 f(x) = x-3 x - 3  
x3 - 27 
x - 3  

lim- f ( x )  # lim f ( x )  for s any positive integer 
x-s x - s +  

These are called jump discontinuities. (See Problems 1 and 2.) 

PROPERTIES OF CONTINUOUS FUNCTIONS. The theorems on limits in Chapter 7 lead readily 
to theorems on continuous functions. In particular, if f ( x )  and g(x) are continuous at x = a,  so 
also are f ( x )  5 g ( x ) ,  f ( x ) g ( x ) ,  and f ( x ) / g ( x ) ,  provided in the latter that g(a) # 0. Hence, 
polynomials in x are everywhere continuous whereas rational functions of x are continuous 
everywhere except at values of x for which the denominator is zero. 

You have probably used certain properties of continuous functions in your study of algebra: 

1. In sketching the graph of a polynomial y = f ( x ) ,  any two points (a ,  f(a)) and (b, f ( b ) )  
are joined by an unbroken arc. 

2. If f(a) and f ( b )  have opposite signs, the graph of y = f ( x )  crosses the x axis at least 
once, and the equation f ( x )  = 0 has at least one root between x = a and x = b. 

The property of continuous functions used here is 

property 8.1: 
between f(a) and f(b) there is at least one value of x ,  say x = x, ,  for which f ( x , )  = c and a I x ,  I b. 

continuity throughout the interval is essential. 

If f ( x )  is continuous on the interval a 5 x I b and if f ( a )  # f ( b ) ,  then for any number c 

Figure 8-3 illustrates the two applications of this property, and Fig. 8-4 shows that 

( b )  f ( x )  = 0 has three roots 
between x = a and x = b .  Fig. 8-3 

Other properties of continuous functions are important here: 

Property 8.2: If f ( x )  is continuous on the interval a 5 x I 6, then f ( x )  takes on a least value m and a 
greatest value M on the interval. 

Although a proof of Property 8.2 is beyond the scope of this book, the property will be 
used freely in later chapters. Consider Figure 8-5(a)-(c). In Fig. 8-5(a) the function is 
continuous on a 5 x 5 6; the least value m and the greatest value M occur at x = c and x = d 
respectively, both points being within the interval. In Fig. 8-5(6) the function is continuous on 
a I x I b;  the least value occurs at the endpoint x = a, while the greatest value occurs at x = c 
within the interval. In Fig. 8-5(c) there is a discontinuity at x = c, where a < c < 6; the function 
has a least value at x = a but no greatest value. 
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(4 
Fig. 8-4 

( b )  f ( x )  = 0 has no root 
between x = a and x = b .  
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Property 8.3: If f ( x )  is continuous on the interval a I x I 6, and if c is any number between a and 6 and 
f(c) > 0, then there exists a number A > 0 such that whenever c - A < x < c + A ,  then f ( x )  > 0. 

This property is illustrated in Fig. 8-6. For a proof, see Problem 4. 

Solved Problems 

1. Use Problem 10 of Chapter 7 to find the discontinuities of: 

(a )  f ( x )  = 2 / x :  Has an infinite discontinuity at x = 0. 

(6) f(x) = ( x  + 3) (x  - 2) * * Has infinite discontinuities at x = -3 and x = 2. 

(C) f(x) = 

x - 1  

( x  + 2)(x - 
( x  - 312 

: Has an infinite discontinuity at x = 3. 

2. Use Problem 6 of Chapter 7 to find the discontinuities of: 

~ ~ - 2 7  
f ( x )  = z: Has a removable discontinuity at x = 3. There is also an infinite discontinuity at 

r = - 3 .  

f(4 = - v r :  - x2 Has a removable discontinuity at x = 2. There is also a removable discontinuity 
x + 5  

at x = -2. 

fW= 
x 2 + x - 2  

- 1)2 : Has an infinite discontinuity at x = 1. 

3. Show that the existence of lim f(a + h,  - f ( a )  implies f ( x )  is continuous at x = a. 
h-0 h 

The existence of the limit implies that f ( a  + h) - f (a)- ,O as h+O. Thus, lim f(a + h )  = f ( a )  and 
h-0 

f ( x )  is continuous at x = a. 

4. Prove: If f ( x )  is continuous on the interval a 5 x 5 6, and if c is any number between a and 6 
and f(c) > 0, then there exists a number A > 0 such that whenever c - A < x < c + A ,  then 
f (4 > 0. 

Since f ( x )  is continuous at x = c, !eC f ( x )  = f(c) and for any E > 0 there exists a S > 0 such that 

Whenever 0 < Ix - C I  < 6 then I f ( x )  - f(c)I < E ( 1  1 
Now f ( x )  > 0 at all points on the interval c - 6 C x C c + S for which f ( x )  rf (c) .  At all other points of 
the interval f ( x )  < f(c) so that I f ( x )  - f(c)I = f(c) - f ( x )  < E and f ( x )  > f(c) - E. Thus, at these points, 
f ( x )  > 0 unless E rf(c). Hence, to determine an interval meeting the requirements of the theorem, select 
E <f(c), determine S satisfying (I) ,  and take A -C S. (See Problem 10 for the companion theorem.) 

Supplementary Problems 

5. Examine the functions of Problem 19(a) to (h) of Chapter 7 for points of discontinuity. 

Am. (a) ,  (6), (d) none; (c) x = - 1; (e) x = * 1; ( f) x = 2, 3; (g) x = - 1, - 3; ( h )  x = 2 2 
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6.  

7. 

Show that f ( x )  = 1x1 is everywhere continuous. 

Show that f ( x )  = - + 21,X has a jump discontinuity at x = 0. 
1 - 2l'X 

X 
has a jump discontinuity and (6) f ( x )  = 7 has a removable Show that at x = 0, ( a )  f ( x )  = - 

discontinuity . 

If Fig. 8-4(a) is the graph of f ( x )  = 

and that c = 10 there. 

1 
8. 

31'X + 1 3 + 1  

x 2  - 4x - 21 
x - 7  

9. , show that there is a removable discontinuity at x = 7 

10. Prove: If f ( x )  is continuous on the interval a 5 x 5 6, and if c is any number between a and 6 and 
f ( c )  < 0, then there exists a number A > 0 such that whenever c - A < x < c + A then f ( x )  < 0. 

11. Sketch the graph of each of the following functions, find any discontinuities, and state why the function 
fails to be continuous at those points. Indicate which discontinuities are removable. 

4 - x  i f x ~ 3  
x - 2 if O <  x < 3 
x - 1  i f x s O  

x4 - 1 (f) f ( x )  = (4 f ( x )  = 1x1 - x 

Ans. (a )  x = 0; (6) x = -2  (removable); (c), ( d )  no discontinuities; (e) x = 0; ( f )  x = 1, - 1 (both 
removable); (g) x = 3, -5 (both removable) 

12. Sketch the graphs of the following functions, and determine whether they are continuous on the closed 
interval [0, 11. 

x for x r O  1 x for x ?  1 
( e )  f ( x )  = 0 for O < x <  1 ( d )  f ( x )  = 1 for 0 < x I 1 



Chapter 9 

The Derivative 

INCREMENTS. The increment Ax of a variable x is the change in x as it increases or decreases 
from one value x = x ,  to another value x = x ,  in its domain. Here, Ax = x ,  - x ,  and we may 
write x ,  = x ,  + Ax.  

If the variable x is given an increment Ax from x = x ,  (that is, if x changes from x = x ,  to 
x = x ,  + A x )  and a function y = f ( x )  is thereby given an increment A y  = f ( x o  + A x )  - f ( x o )  from 
y = f ( x o ) ,  then the quotient 

A y  - change in y 
Ax change in x 

is called the average rate of change of the function on the interval between x = x ,  and 
x = x ,  + Ax.  

- -  

EXAMPLE 1: When x is given the increment Ax = 0.5 from x ,  = 1, the function y = f ( x )  = x 2  + 2x is 
given the increment A y  = f( 1 + 0.5) - f( 1) = 5.25 - 3 = 2.25. Thus, the average rate of change of y on the 

interval between x = 1 and x = 1.5 is - = - = 4.5. 
A y  2.25 
Ax 0.5 

(See Problems 1 and 2.) 

THE DERIVATIVE of a function y = f ( x )  with respect to x at the point x = x ,  is defined as 

f ( x 0  + A 4  - f(X0) lim 9 = lim 
Ax-0 Ax Ax-0 Ax 

provided the limit exists. This limit is also called the instantaneous rate of change (or simply, the 
rate of change) of y with respect to x at x = x,.  

EXAMPLE 2: 
value of the derivative at (a)  x ,  = 2 and (b) xo  = -4 .  

Find the derivative of y = f ( x )  = x 2  + 3x with respect to x at x = x o .  Use this to find the 

y ,  = f ( x o )  = x i  + 3x ,  
y , ,  + A y  = f ( x ,  + A x )  = ( x ,  + A x ) ~  + 3(x0 + A x )  

= x i  + 2x ,  Ax + ( A x ) ~  + 3 x ,  + 3 Ax 
A y  = f ( x ,  + A x )  - f ( x 0 )  = 2x ,  AX + 3 AX + (Ax)' 

= 2x0 + 3 + Ax -- AY - f (x0  + A 4  - f ( x o )  
Ax  Ax 

The derivative at x = x ,  is 
lim - AY = lim (2x0  + 3 + A x )  = 2x0 + 3 

Ax-0 AX Ax-0 

(a) At x, = 2, the value of the derivative is 2(2) + 3 = 7. 
( b )  At x ,  = -4 ,  the value of the derivative is 2(-4) + 3 = - 5 .  

IN FINDING DERIVATIVES it is customary to drop the subscript 0 and obtain the derivative of 
y = f ( x )  with respect to x as 

73 
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The derivative of y = f ( x )  with respect to x may be indicated by any one of the symbols 

(See Problems 3 to 8.) 

DIFFERENTIABILITY. A function is said to be differentiable at a point x = xo if the derivative of 
the function exists at that point. Problem 3 of Chapter 8 shows that differentiability implies 
continuity. The converse is false (see Problem 11). 

Solved Problems 

1. Given y = f ( x )  = x 2  +5x -8, find Ay and Ay/Ax as x changes (a) from x ,  = 1 to 
x ,  = x,, + Ax = 1.2 and (6) from x ,  = 1 to x ,  = 0.8. 

(a )  Ax = x ,  - x o  = 1.2 - 1 =0.2 and 

(6) Ax = 0.8 - 1 = -0.2 and 

Ay 144  
Ax 0.2 

Ay = f(x,, + Ax) - f ( x , )  = f( 1.2) - f( 1) = - 0.56 - (- 2) = 1.44. SO - = - = 7.2 

Ay -1.36 
AX -0.2 A ~ = f ( O . g ) - f ( l ) = - 3 . 3 6 - ( - 2 ) = - 1 . 3 6 .  SO - = - = 6.8 

Geometrically, Ay/Ax in (a )  is the slope of the secant line joining the points (1, -2) and 
(1.2, -0.56) of the parabola y = x 2  + 5 x  - 8, and in (b) is the slope of the secant line joining the points 
(0.8, -3.36) and (1, -2) of the same parabola. 

2. When a body freely falls a distance s feet from rest in t seconds, s = 16t2. Find AslAt  as t 
changes from to to to + At. Use this to find AslAt as t changes (a) from 3 to 3.5, (6) from 3 to 
3.2, and (c) from 3 to 3.1. 

As  - 16(to + At)2 - 16ti - 32t, A t  + 16(At)’ 
- -  - = 32to + 16 A t  
At  A t  At  

(a )  Here to = 3, A t  = 0.5, and As/At  = 32(3) + 16(0.5) = 104ft/s. 
(b) Here to = 3, A t  = 0.2, and As/At  = 32(3) + 16(0.2) = 99.2 ft/s. 
(c) Here t ,  = 3, A t  = 0.1, and As/At = 97.6 ft/s. 

Since As is the displacement of the body from time t = to to t = to + At, 

As - displacement 
- -  
A t  time 

= average velocity of the body over the time interval 

3. Find dyldx, given y = x 3  - x 2  - 4. Find also the value of dy/dx when (a) x = 4, ( 6 )  x = 0, 
( c )  x = -1. 

y + Ay = (X + A x ) ~  - (X + Ax)’ - 4 
= x 3  + 3x2(Ax) + ~ x ( A x ) ~  + (Ax)~ - x 2  - 2x(Ax) - (Ax)~ - 4 

Ay = (3x2 - 2 ~ )  AX + ( 3 ~  - ~ ) ( A x ) ~  + (Ax)’ 

9 = 3x2 - 2x + (3x - 1) Ax + (Ax)~ 
Ax 

9 = lim [3x2 - 2x + (3x - 1) Ax + (Ax)’] = 3x2 - 2x 
dX Ax-0 

dY 
( a )  2 1 = 3(4)2 - 2(4) = 40; (6) - 1 = 3(0)2 - 2(0) = 0; (c) = 3(- 1)* - 2(- 1) = 5 

X = 4  dx x = o  
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4. Find the derivative of y = x2  + 3 x  + 5 .  

y + Ay = ( x  + A x ) ~  + 3(x + Ax)  + 5 =  x2  + 2x Ax + Ax2 + 3x + 3 A x  + 5 
Ay = (2x  + 3 )  Ax + Ax2 

AY (2x  + 3 ) ~ x  + A x 2  = 2x + 3 + Ax -= 
Ax Ax 

-- d~ - lim (2x  + 3 + A X )  = 2x + 3 
dr A 1 4 0  

a t x = 1  a n d x = 3 .  
1 

Find the derivative of y = - 
x - 2  

5. 

1 
y + A y =  x + AX - 2 

1 
x - 2 

( X  - 2 )  - (X + AX - 2 )  - - AX 
( X  - 2 ) ( ~  + AX - 2 )  

--- - - 1 
x + AX - 2 Ay = 

( X  - 2 ) ( ~  + AX - 2 )  

AY= -1 - 
AX ( X  - 2 ) ( ~  + AX - 2 )  

dy -1 dy -1 A t x =  1, - = - = -1; at x = 3 ,  - = - - - -1. 
dr (1 -2)2  dr ( 3 - 2 ) 2  

6. 
2 x  - 3 

Find the derivative of f ( x )  = - 
3 x + 4 '  

2(x + Ax) - 3 
3(x + Ax)  + 4 

f ( x  + Ax)  = 

2 ~ + 2 A x - 3  2 ~ - 3  -- f(' + A I )  -f(') = 3x + 3 Ax + 4 3x + 4 
- ( 3 ~  + 4 ) [ ( 2 ~  - 3 )  + 2 Ax] - ( 2 ~  - 3 ) [ ( 3 ~  + 4 )  + 3 Ax] - 

(3x  + 4)(3x + 3 Ax + 4 )  

17 Ax 
(3x  + 4)(3x + 3 Ax + 4 )  

( 6 ~  + 8 - 6x + 9 )  AX - - - - 
(3x  + 4)(3x + 3 Ax + 4 )  

f ( x  + A 4  - fW - 17 
(3x  + 4)(3x + 3 Ax + 4 )  

- 
Ax 

17 
(3x  + 4)2 

- - 17 
f ' ( x )  = A!?O (3x  + 4)( 3x + 3 Ax + 4 )  

7. Find the derivative of y = m. 
y + Ay = (2x  + 2 Ax + 1)'" 

Ay = (2x  + 2 AX + 1)'l2 - ( 2 ~  + 1)'l2 
(2x  + 2 Ax + 1)"2 + (2x  + 1)1'2 
(2x  + 2 Ax + 1)'l2 + (2x  + = [(2x + 2 AX + 1)'l2 - ( 2 ~  + 1)'12] 

- ( 2 ~  + 2 AX + 1) - ( 2 ~  + 1) - 2 Ax - 
(2x  + 2 Ax + 1)"2 + (2x  + ,)'I2 - (2x  + 2 Ax + 1)'l2 + (2x  + 1)''2 

(2x  + 2 Ax + 1)'l2 + (2% + 1)'l2 

AX+O (2x  + 2 Ax + 1)'" + (2x  + 1)'l2 

AY 2 

dY 2 

-= 
AX 

-= lim dr 
1 

(2x  + 1)'" 
- - 
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For the function f ( x )  = m, lim f ( x )  = 0 = f( - ) while lim f ( x )  does not exist; the 
x - (  - 1 ! 2 ) +  x--. ( -1/2)-  

function has right-hand continuity at x = - 5 .  At x = - i ,  the derivative is infinite. 

8. Find the derivative of f ( x )  = x " ~ .  Examine f'(0). 

f ( x  + A x )  = ( x  + A x ) " ~  
f(x + A x )  - f ( x )  = (X + Ax)'" - x " ~  

- [(x + Ax)' - x 1  '][(x + A x ) " ~  + x"'(x + Ax)' ' + X' '1 - 
(x + A x ) " ~  + x ' / ~ ( x  + A x ) " ~  + x 2 1 3  

f ( x  + A-4 - f W  - 1 
(x + A x ) " ~  + x '" (x  + A x ) " ~  + x2l3 

- 
Ax 

The derivative does not exist at x = 0 because the denominator is zero there. However, the function 
is continuous at x = 0. This, together with the remark at the end of Problem 7, illustrates: If the 
derivative of a function exists at x = a then the function is continuous there, but not conversely. 

9. Interpret dyldx geometrically. 

From Fig. 9-1 we see that AylAx is the slope of the secant line joining an arbitrary but fixed point 
P ( x ,  y )  and a nearby point Q(x  + Ax,  y + A y )  of the curve. As A x + O ,  P remains fixed while Q moves 
along the curve toward P, and the line PQ revolves about P toward its limiting position, the tangent line 
P T  to the curve at P. Thus, dy ldx  gives the slope of the tangent at P to the curve y = f ( x ) .  

Y 

2 

0 
Fig. 9-1 

For example, from Problem 3, the slope of the cubic y = x 3  - x2 - 4 is rn = 40 at the point x = 4; it is 
rn = 0 at the point x = 0; and it is rn = 5 at the point x = -1. 

10. Find ds/dt for the function of Problem 2 and interpret it physically. 

Here 

As 
- = 3 2 t o + 1 6 A t  and - ds - - lim (32t,  + 16 A t )  = 32t,, 
At dt ~ r - 0  
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As At-0,  AslAt gives the average velocity of the body for shorter and shorter time intervals At. Then 
we can define dsldt to be the instantaneous velocity U of the body at time t = to. For example, at t = 3,  
U = 32(3) = 96 ft/s. 

11. 

12. 

13. 

Find f ’ ( x ) ,  given f ( x )  = 1x1. 

The function is continuous for all values of x .  For x<O, f ( x )  = - x  and f ’ ( x )  = 

At x = 0, f ( x )  = 0 and lim ’(O + 

- ( x  + Ax)  - ( - X )  
= -1; for x >0,  f ( x )  = x and f ’ ( x )  = 1. 

I Axl I Axl 
Ax lim 

Ax+O 

= lim -. As Ax+ 0-, - ---* - 1; but as Ax- O’, 
Ax+O Ax A X + O  AX Ax I AXI - + 1. Hence, the derivative does not exist at x = 0. 

Ax 

Compute E = - - - dy  for the function of (a )  Problem 3 and (b) Problem 5. Verify that E + 0 
Ax dx 

as A x - 0 .  

( U )  E = [3x2 - 2~ + ( 3 ~  - 1) AX + (Ax)’] - ( 3 ~ ’  - 2 ~ )  = ( 3 ~  - 1 + Ax)  AX 

Ax 
-1 - ( ~ - 2 ) + ( x + A x - 2 )  - 1 - - --- - 1  

( X  - 2 ) ( ~  + AX - 2 )  
( 6 )  E = 

( X  - 2)2 ( X  - 2) ’ (~  + AX - 2 )  ( X  - 2) ’ (~  + AX - 2)  

Both obviously go to zero as Ax + 0. 

dY Interpret Ay = - Ax + E Ax of Problem 12 geometrically. 
dx 

dY In Fig. 9-1, Ay = RQ and - Ax = PR tan L TPR = RS; thus, E Ax = S Q .  For a change Ax in x from 

P(x ,  y ) ,  Ay is the corresponding change in y along the curve while - Ax is the corresponding change in 

y along the tangent line PT. Since their difference E Ax is a multiple of ( A x ) ~ ,  it goes to zero faster than 

Ax,  and - Ax can be used as an approximation of Ay when IAxl is small. 

dY dx 
dx 

dY 
dx 

Supplementary Problems 

14. Find Ay and AylAx,  given 
( a )  y = 2x - 3 and x changes from 3.3 to 3.5. 
( 6 )  y = x2  + 4x and x changes from 0.7 to 0.85. 
(c) y = 21x and x changes from 0.75 to 0.5. 

Ans. ( a )  0.4 and 2; (6) 0.8325 and 5.55; (c) 4 and - 9 

15. Find Ay ,  given y = x’ - 3x + 5 ,  x = 5 ,  and Ax = -0.01. What then is the value of y when x = 4.99? 

Am. Ay = -0.0699; y = 14.9301 

16. Find the average velocity, given 
( a )  s = (3 t2  + 5 )  ft and t changes from 2 to 3 s. 
(6) s = (2t2 + 5t - 3 )  ft and t changes from 2 to 5 s. 

Am.  ( a )  15 ft/s; ( 6 )  19 ft/s 

17. Find the increase in the volume of a spherical balloon when its radius is increased ( a )  from r to r + Ar in; 
( 6 )  from 2 to 3 in. Am. ( a )  4 7r(3r2 + 3r Ar + Ar)2 Ar in3; ( 6 )  4 7r in3 
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18. Find the derivative of each of the following: 
(a) y = 4 x - 3  (6) y = 4 - 3 ~  
( d )  y = l / x 2  (e) y = (2x - 1)/(2x + 1) 
( g ) y = *  ( h )  y = l / f i  (i) y = m  
( j )  y =  1 / m  

(c) y = x 2  + 2x - 3 
(f) y=(1+2x)/(1-2x) 

1 
( h )  --* 

4 4 1 
1 1 (2x + (f) (1 - z x ) 2 ;  ( g )  m; 2 x f i  ’ Am. (a) 4; (6) -3; (c) 2(x + 1); ( d )  - 2 / x 3 ;  (e) 

(i) -* m’ ( j )  - 2(2 + x ) 3 ’ 2  

19. Find the slope of the following curves at the point x = 1: 

(a) y = 8 - 5 x 2  
4 

( 6 )  Y = x+l 2 (4 Y = x+3 
Am. (U) -10; (6) -1; (c) - 4  

20. Find the coordinates of the vertex U of the parabola y = x2 - 4x + 1 by making use of the fact that at the 
vertex the slope of the tangent is zero. Am. V(2, -3) 

21. Find the slope of the tangents to the parabola y = - x 2  + 5 x  - 6 at its points of intersection with the x 
axis. Am. at x = 2 ,  rn = 1; at x = 3 ,  m = -1 

22. When s is measured in feet and t in seconds, find the velocity at time t = 2 of the following motions: 

Am. ( a )  7 ft/s; (6) 0 ft/s; (c) ft/s 

(a )  s = t2  + 3t ( 6 )  s = t3 - 3t2 (c )  s =m 

23. Show that the instantaneous rate of change of the volume of a cube with respect to its edge x in inches is 
12 in3/in when x = 2 in. 
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Rules for Differentiating Functions 

DIFFERENTIATION. Recall that a function f is said to be differentiable at x = x ,  if the derivative 
f ' ( x , )  exists. A function is said to be differentiable on an interval if it is differentiable at every 
point of the interval. The functions of elementary calculus are differentiable, except possibly at 
isolated points, on their intervals of definition. The process of finding the derivative of a 
function is called differentiation. 

DIFFERENTIATION FORMULAS. In the following formulas U ,  U ,  and w are differentiable 
functions of x ,  and c and m are constants. 

d 
2. -& ( x )  = 1 

d 
1 .  -& ( c )  = o  

d d d 
dx  dx dx  

3. - (U + U + * * .) = - (U) + - (U) + a 

d d 
dx dx 

4. - (cu) = c - (U) 

d d d 
dx dx dx 
d d d d 
dx dx dx dx 

I d  
dx c c d x  
d c  d 1  c d  

5 .  

6 .  

- (uv) = U - (U) + U - (U) 

- ( U V W )  = uu - (w) + uw - (U) + uw - (U) 

7. d ("= - - ( u ) , c # O  

8. dx U 
- ( - ) = c - ( - ) = - - -  dx U u2 dx (4, U f O  

d d 
dx 

V 2  

U - (U) - U (U) 
, u # O  

d 
dx 

10. - ( x " )  = m X m - l  

d d 
dx dx 

1 1 .  - (U") = mu"-' - (4 
(See Problems 1 to 13.) 

INVERSE FUNCTIONS. Two functions f and g such that g(  f ( x ) )  = x and f( g(  y)) = y are said to be 
inverse functions. Inverse functions reverse the effect of each other. 

EXAMPLE 1: 
(6) The inverse of f ( x )  = - x  is the same function. 
(c )  The inverse of f ( x )  = fi is the function g( y) = y 2  (defined for y L 0). 

(a )  The inverse of f ( x )  = x + 1 is the function g(  y) = y - 1. 

Y + l  (d) The inverse of f ( x )  = 2 x  - 1 is the function g ( y )  = - 
2 .  

Not every function has an inverse function. For example, the function f ( x )  = x 2  does not 
possess an inverse. Since f( 1) = f( - 1) = 1, an inverse function g would have to satisfy g( 1) = 1 
and g(  1 )  = - 1, which is impossible. However, if we restrict the function f ( x )  = x 2  to the domain 
x 2 0 ,  then the function g(  y) = fl would be an inverse of f. The condition that a function f 
must satisfy to have an inverse is that f i s  one-to-one; that is, for any x ,  and x ,  in the domain of 
f, if x ,  + X2, then f ( x , )  Z f ( X 2 ) .  

79 
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Notation: The inverse of f is denoted f - ’. If y = f ( x ) ,  we often write x = f - ’( y). If f is 
differentiable, we write, as usual, dyldx for the derivative f ’ ( x ) ,  and dxldy for the derivative 

If a function f has an inverse and we are given a formula for f ( x ) ,  then to find a formula for 
the inverse f -’, we solve the equation y = f ( x )  for x in terms of y .  For example, given 

( f  - ‘ ) ‘ ( Y ) *  

f ( x )  = 5 x  + 2 ,  set y = 5x + 2 .  Then, x = - - * ,  and a formula for the inverse function is 
5 

f = y-2 
5 .  

DIFFERENTIATION FORMULA for finding dy ldx given dxldy : 

dY - 1 
12. - - - 

dx dxldy 

EXAMPLE 2: Find dyldx, given x = ~ + 5 .  
First method: Solve for y = ( x  - 5)*. Then dyldx = 2(x - 5). 

Second method: Differentiate to find - = - y dx -”’ = Then, by rule 12, - dY = 2 f i = 2 ( x  - 5 ) .  
2 f l .  dx dY 2 

(See Problems 14, 15, and 57 to 62.) 

COMPOSITE FUNCTIONS; THE CHAIN RULE. For two functions f and g ,  the function given by 
the formula f (  g (x ) )  is called a composite function. If f and g are differentiable, then so is the 
composite function, and its derivative may be obtained by either of two procedures. The first is 
to compute an explicit formula for f ( g ( x ) )  and differentiate. 

EXAMPLE 3: If f ( x )  = x 2  + 3 and g ( x )  = 2 x  + 1, then 

y=f(g(x) )=(2x+ 1 ) ’ + 3 = 4 x 2 + 4 x + 4  and - dY = 8 x + 4  
dx 

The derivative of a composite function may also be obtained with the following rule: 

13. 

If f is called the outer function and g is called the inner function, then D,( f( g(x ) ) )  is the 
product of the derivative of the outer function (evaluated at g ( x ) )  and the derivative of the 
inner function. 

The chain rule: D,( f( g(x ) ) )  = f’( g(x))g’(x)  

EXAMPLE 4: In Example 3, f ‘ ( x )  = 2 x  and g’ (x)  = 2. Hence, by the chain rule, 

D,r( f( g(x))) = f’( g(x))g’ (x)  = 2g(x)  - 2 = 4g(x) = 4(2x + 1) = 8 x  + 4 

ALTERNATIVE FORMULATION OF THE CHAIN RULE. 
composite function is y = f ( u )  = f( g ( x ) ) ,  and we have: 

Write y = f ( u )  and U = g(x ) .  Then the 

dy dy du 
dx du dx The chain rule: - = - 

EXAMPLE 5: 
derivative 

Let y = u3 and U = 4x2 - 2 x  + 5. Then the composite function y = (4x2 - 2x + 5)3 has the 

dy dy du 
dx du dx 

= 3u2(8x - 2) = 3(4x2 - 2x + 5 ) ’ ( 8 ~  - 2) - = - -  
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dy du 
Notes: (1) In the second formulation of the chain rule, dy = - - the y on the left 

denotes the composite function of x ,  whereas the y on the right denotes the original function of 
dx du d x '  

U (what we called the outer function before). ( 2 )  Differentiation rule 11 is a special case of the 
chain rule. (See Problems 16 to 20.) 

HIGHER DERIVATIVES. Let y = f ( x )  be a differentiable function of x ,  and let its derivative be 
called the first derivative of the function. If the first derivative is differentiable, its derivative is 

called the second derivative of the (original) function and is denoted by one of the symbols - 
dx2 ' 

y", or f"(x). In turn, the derivative of the second derivative is called the third derivative of the 

function and is denoted by one of the symbols 7, y"', or f"'(x) .  And so on. 

derivatives of lower order are differentiable at the point. (See Problems 21 to 23.) 

d2Y 

d3Y 
dx. 

Note: The derivative of a given order at a point can exist only when the function and all 

Solved Problems 

d d d 
dx A dx dx 

1. Prove: (a)  - (c) = 0, where c is any constant; (b) - ( x )  = 1; ( c )  - (cx)  = c, where c is any 
U 

constant; and ( d )  - ( x " )  = nx"-l, when n is a positive integer. 
dx 

d f ( x  + A 4  - f ( x )  Since - f ( x )  = lim 

d c - c  

d 

d 

Ax 9 dx Ax-0 

(a) -& (c)  = h0 = )lFo 0 = 0 

( X  + Ax) - x Ax 
= lim - = lim 1 = 1  

Ax-0  AX A x d O  
(') (')= )yo AX 

C ( X  + Ax) - cx - - lim c = c (c) - (cx)  = lim dw Ax-0  Ax Ax+O 

x n  + U"-'  AX + ~ n(n - 1) xnP2(Ax) '  + . . . + (Ax)"] - X" 

Ax 
1 . 2  (X + Ax)" - X" 

= lim 
d 

( d )  - ( x " )  = lim dx A x d O  A x  Ax-0 

d d d 
dx dx 

2. Let U and U be differentiable functions of x .  Prove: ( a )  - ( U  + v )  = - ( U )  + (U); 

d 
d d d dx 
dx dx dx , V # O  

u2 
( b )  - ( U V )  = U - (U) + U - (U); 

(a)  Set f ( x )  = U + U = u(x) + ~ ( x ) ;  then 

f ( x  + Ax) - f ( x )  - U ( X  + Ax) + U ( X  + Ax) - U ( X )  - V ( X )  - U ( X  + Ax) - U ( X )  U ( X  + Ax) - U ( X )  + - - 
Ax Ax Ax Ax 

d d d d d d 
dx dx dx dx dx Taking the limit as A x - 0  yields - f ( x )  = - (U + U) = - U ( X )  + - u ( x )  = - (U) + (U) 
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(b)  Set f ( x )  = uu = u(x )u (x ) ;  then 

f(x + A x )  - f (x )  - U ( X  + AX)U(X + A x )  - U ( X ) U ( X )  - 
Ax Ax 

- [ U ( X  + A X ) U ( X  + A x )  - U ( X ) U ( X  + A x ) ]  + [ U ( X ) U ( X  + A x )  - u ( x ) u ( x ) ]  - 
Ax 

U ( X  + A x )  - U ( X )  

Ax 
U ( X  + A x )  - U ( X )  

Ax = u(x + A x )  + U(X) 

d d d d d d 
dx dx dx dx dx dx and for Ax+O,  - f ( x )  = - (uu) = u(x)  - ~ ( x )  + u ( x )  - u(x )  = U - (U) + U - (U). 

(c) Set f ( x )  = - = - 0  then 
U u ( x ) ’  

U ( X  + A x )  u(x)  -- 
f(x + A x )  -f(x) - U ( X  + A x )  U ( X )  = U ( X  + Ax)u(x )  - U ( X ) U ( X  + Ax) 

- 
Ax Ax Ax{  u ( x ) u ( x  + A x ) }  

- [ U ( X  + Ax)u(x )  - u ( x ) u ( x ) ]  - [ U ( X ) U ( X  + A x )  - u ( x ) u ( x ) ]  - 
Ax[u(x )u(x  + A x ) ]  

U ( X  + A x )  - U ( X )  U ( X  + Ax) - U ( X )  

Ax - u ( x )  Ax 4 x )  
- - 

u(x)u(x  + A x )  

d d d d .  
U ( X )  -& u(x )  - U ( X )  - u ( x )  U - (U) - U - (U) 

d d u  dx - dx dx - and for Ax+O,  - f ( x )  = - (-) = 
dx d x u  [Wl’ U 2  

3. Differentiate y = 4 + 2x - 3x2 - 5x3 - 8x4 + 9x5. 

9 = 0 + 2( 1) - 3(2x) - 5(3x2) - 8(4x3) + 9(5x4) = 2 - 6x - 15x2 - 32x3 + 45x4 
dx 

1 3 2  
Differentiate y = - + 7 + 7 = x- ’  + 3x-* + 

x x  x 
4. 

5. Differentiate y = 2x112 + 6x1I3 - 2x3I2. 

2 6 2 4 - 2 x - 3 / 2  - 4 p 4  6. Differentiate y = - + - - - - - = 2x-’12 + 6x-l13 
X1I2 x1’3 X3l2 X3l4 

dy = 2( - x-3’2) + 6( - 5 x-‘”) - 2( - x - ~ ’ ~ )  - 4( - 
dx 2 

1 2 3 3  - 3 1 2  - 2X-4’3 + 3x-5i2 + 3X-7/4 = 
= - x  x312 4’3 + x5/2 + x7/4 

1 
7. Differentiate y =w - - = (3x2)’I3 - (5x)-li2. 6 

1 +- - = - ( 3 ~ ~ ) - ~ ’ ~ ( 6 ~ )  - (- i ) (5x)-3/2(5)  = - 5 2 
2x + dY 1 

dx 3 (9x4)lI3 2(5x)(5x)’/* =E 2x- 
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8. Differentiate s = (f2 - 3)4. 

@ = 4(t2 - 3)3(2t) = 8t(t2 - 3)3 
dt 

= 3(a2 - y 2 ) - 2 .  
3 

9. Differentiate z = 
(a’ - Y 1 

- dz = 3(-2)(a2 - y 2 ) - 3  (a2 - y ’ )  = 3(-2)(a’ - y2)-’((-2y) = 12Y 
dY dY ( U 2  - y2)’ 

10. Differentiate f ( x )  = v x ’  + 6 x  + 3 = ( x 2  + 6 x  + 3)”’. 

d x + 3  
dx f ’ ( x )  = ;(x’ + 6x + 3)-1’2 - (x’ + 6x + 3 )  = ;(x’ + 6x + 3 ) - ’ ” ( 2 ~  + 6 )  = 

l /x2 + 6x + 3 

11. Differentiate y = (x’ + 4)2(2x3 - 1)’. 
d d 
dx dx y’ = ( x 2  + 412 - ( 2 2  - 1)’ + (2x3 - 113 - ( x 2  + q2 

d d 
dx dx = ( x 2  + 4)2(3)(2x3 - 1)’ - (2x3 - 1 )  + ( 2 2  - 1)3(2)(x2 + 4 )  - ( x 2  + 4 )  

= ( x 2  + 4)2(3)(2x3 - 1)2(6x2) + (2x3  - l ) ’ (2)(x2 + 4)(2x) 
= 2 . 4 ~ ~  + 4)(2x3 - 1)2( 13x3 + 3 6 ~  - 2 )  

3 - 2x 
12. Differentiate y = - 

3 + 2 x ’  

y ’  = 

d d 
dx dx ( 3  + 2x)  - (3  - 2x)  - (3  - 2x)  - (3  + 2x)  

(3 + 2x)2 
(3 + 2x)( -2)  - (3  - 2x)(2) 

(3  + 2x)2 
- 12 

(3 + 2x)2 

X 2  - X 2  

q G  (4 - X 2 ) ’ l 2  * 
13. Differentiate y = ~ - 

( 4  - x 2 ) 1 / 2  - d ( x 2 )  - x 2  - d ( 4  - x 2 ) ’ / 2  

dY dx dx - - ( 4  - x2)1 /2(2x)  - ( x 2 ) (  t ) ( 4  - x 2 ) y 2 ( - 2 x )  
- =  
dr 4 - x 2  4 - x 2  

( 4  - ~ ’ ) ‘ ’ ~ ( 2 x )  + x3(4 - x2)- ’ / ’  ( 4  - x2)l12 2 4 4  - x 2 )  + x 3  - 8 x  - x 3  - - - - - 
4 - x 2  ( 4  - x 2 y 2  ( 4  - x2y/ ’  ( 4  - x2y12 

14. Find dyldx,  given x = y v l  - y2 .  

15. Find the slope of the curve x = y 2  - 4 y  at the points where it crosses the y axis. 

1 
At The points of crossing are (0,O) and (0,4). We have - = 2y - 4 and so - = - = - dx dY 1 

dY dx dxldy 2 y - 4 ’  
(0,O) the slope is - f , and at ( 0 , 4 )  the slope is $. 
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THE CHAIN RULE 

RULES FOR DIFFERENTIATING FUNCTIONS [CHAP. 10 

16. 

17. 

18. 

19. 

20. 

21. 

dy dy  du Derive the alternative chain rule, - = - - 
dx du d x ’  

Let hu and Ay be, respectively, the increments given to y and U when x is given an increment Ax.  
A y  A y  A u  dy dy du 

and, provided Au Z 0 as Ax+O, - = - - as required. dx du dx Now, provided Au # 0, - = - - * 
A x  A u  A x ’  

The restriction on A u  can usually be met by taking IAx( sufficiently small. When this is not possible, 
the chain rule may be established as follows: 

Set Ay = - A u  + E A u ,  where E -  0 as Ax+O. (See Problem 13 of Chapter 9.) Then dY 
du 

- = -  AY dY 
A x  du  A x  A x  

dy dy du  du  dy du 
dx  du dx  dx  du dx  

and, taking the limits as Ax+O yields - = - - + 0 - = - - as before. 

and U=-. Find dy/dx,  given y = - 
u2 - 1 
u2 + 1 

Then 
dy dy du 4u 2x - 8x - = - - -  ---- 
dx du dx ( U ~ +  1)’ 3u2 3u(u2+ 1)’ 

A point moves along the curve y = x3 - 3x + 5 so that x = ifi + 3, where t is time. At what 
rate is y changing when t = 4? 

We are to find the value of dyldt  when t = 4. We have 

dy dy = 3(x2 - 1) so - = -  dx 1 3 = 3 ( x 2  - 1) and - - - - 
dx dt 4 f i  dt dx dt 4v? 

dy 3(16- 1) 45 W h e n r = 4 , x = $ f i + 3 = 4 , a n d - =  - -  - units per unit of time 
dt 4(2) 8 

A point moves in the plane according to the equations x = t 2  + 2t and y = 2t3 - 6t. Find dyldx 
when t = 0, 2, and 5. 

Since the first relation may be solved for t and this result substituted for t in the second relation, y is 

dt Then 
dY dx 

clearly a function of x .  We have - = 6t2 - 6 and - = 2t + 2 ,  from which - = ~ 

dt dt dx 2 t + 2 ‘  

dy dy dt 1 
dx dt dx 2(t + 1 )  

= 6(t2 - 1) - = 3(t - 1) - = - -  

The required values of dyldx are -3 at t = 0, 3 at t = 2 ,  and 12 at t = 5. 

If y = x2 - 4x and x = m, find dyldt when t = a. 
dy dy dx - 4t(x  - 2 )  so - = - - -  

dY dx 2t 
dt dx dt (2 t2  + 1)”’ 

- = 2 ( x  - 2 )  and - = 
dx dt (2t2 + 

Show that the function f ( x )  = x 3  + 3x2 - 8x + 2 has derivatives of all orders at x = U .  
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f ‘ ( x )  = 3x2 + 6x - 8 
f ” ( x )  = 6x + 6 
f”’(x) = 6 and f”’(a)=6 

and 
and 

f’(a) = 3a2 + 6a - 8 

f”(a) = 6a + 6 

All derivatives of higher order exist and are identically zero. 

22. Investigate the successive derivatives of f ( x )  = x4’3 at x = 0. 
4 
3 

f’(x) = - p 3  and f ‘ ( O ) = O  

f y x )  = - and f”(0) does not exist 

Thus the first derivative, but no derivative of higher order, exists at x = 0. 
9 x 2 I 3  

2 
1 - x  

23. Given f ( x )  = - = 2(1 - x ) - ’ ,  find f ‘ ” ’ ( x ) .  

f ’ ( X )  = 2( - 1 )( 1 - x )  - 2( - 1) = 2( 1 - x )  - = 2( 1 !)( 1 - x )  - 
y(X) = 2(19(-2)(1- 4-”-- 1) = 2(2!)(1- x)-3 
f ‘ ”(x) = 2(2!)(-3)( 1 - x) - ‘ ( -  1) = 2(3!)( 1 - x ) - ‘  

which suggest f ‘ ” ’ ( x )  = 2(n! ) (  1 - x) - ( ”+” .  This result may be established by mathematical induction by 
showing that if f ‘ ” ( x )  = 2(k!)( 1 - x ) - ( & + ’ ) ,  then 

f‘k+l’(x) = -2(k!)(k + 1)(1 - x)-(k+2’(-l) = 2 [ ( k  + l)!](l - x ) - ‘ k + 2 )  

Supplementary Problems 

d 1  
d x x  

24. Establish formula 10 for rn = - 1 /n, n a positive integer, by using formula 9 to compute - (7). (For 
the case rn = p / 4 ,  p and 4 integers, see Problem 4 of Chapter 11.) 

In Problems 25 to 43, find the derivative. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

y = f i + 2 f i  

2 6  
f ( t )  = - + 3- 

~ t / i  

y = (1 - 5 x y  

f ( x )  = (3x - x 3  + 1)‘ 

y = (3 + 4x - x 2 y 2  

3r + 2 8 = -  
2r + 3 

Am. dy/& = 5 x ( x 3  + 4x2 - 4) 

3 
2 f i  

Am. dyldx = - - $Ki - l lx3l2 

dy 1 2 
dx x 3  x 3 I 2  

Ans. - = - - - -  

Am. y ’ = ( l + f i ) / f i  

t i i 2  + 2t213 

t2  
Ans. f ’ ( t )  = - 

Am. y’ = -30( 1 - 5 ~ ) ’  

AM. f ’ ( x )  = 12(1- x2)(3x - x 3  + 1)3 

AM. y’ = (2 - x ) / y  

de 5 
dr (2r + 3)2 

Am. - = ~ 
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34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

y = 2 X 2 G  

f ( x )  = X W  

y = (x  - l ) l L 2  - 2x + 2 

RULES FOR DIFFERENTIATING FUNCTIONS 

5x4 
(1 + x)6 

~ ( 8  - 5 ~ )  
V F i  

Am. y'=- 

Ans. y ' =  

3 - 4x2 
AnS. f ' (4 = q m  

dy - 2x2 - 4~ + 3 
Ans. - - 

dx V x 2 - 2 x + 2  

1 - dz 
Ans. - - 

dw (1 - 4 ~ ~ ) ~ ' ~  

1 
4 f i m f i  

Ans. y f  = 

1 
f Y X )  = (x  + l)&T-q 

y = (x' + 3)'(2x3 - 5)3 Ans. y' = 2x(x2 + 3)3(2x3 - 5)'(17x3 + 27x - 20) 

t' + 2 
3 - r 2  

s=-  

y = ( 2 q  
2x- + 1 

ds 10r 
dt (3  - t2)2 

=- Am. - 

36x2(x3 - 1 ) 3  
(2x3 + 115 

Ans. y ' =  

[CHAP. 10 

For each of the following, compute dy ldx  by two different methods and check that the results are the 
same: ( a )  x = ( 1  + 2 ~ ) ~ ,  ( 6 )  x = 1 / ( 2  + y ) .  

In Problems 45 to 48, use the chain rule to find dyldx. 

U - 1  
45. y =  u+l' u = f i  

46. y = u ' + 4 ,  u = x z + 2 x  

47. y = m , u = f i  

48. 

In Problems 49 to 52, find the indicated derivative. 

y = Vii, U = 4 3  - 2u), U = x2 Hint: - = - - - ( dx du du d x '  

49. y = 3x4 - 2X2 + x - 5 ;  y"' Am. y"'= 72x 

50. y = l/v'T; y"") Am. y'"' = 16x9/2 105 

Ans. dy ldx  = 6x2(x + 2)2(x + 1 )  

Am. See Problem 39. 

Am. See Problem 36. 

51. f ( x )  = v2 - 3x2;  f " (x )  Ans. f " (x)  = - 6 / ( 2  - 3 ~ ~ ) ~ ' ~  

4 - x  
52. y = x / m ,  y" Am. Y " =  4(x - 1 ) 5 / 2  

In Problems 53 and 54, find the nth derivative. 
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53. y = 1 /x2 
(- l ) " [ ( n  + l ) ! ]  

X n + 2  
Am. y'") = 

3"(n!)  
(3x + 2)"+' 

54. f ( x )  = 1 / ( 3 x  + 2 )  Am. f'"'(x) = (- 1)n 

55. If y = f ( u )  and U = g(x), show that 

(a) -=- . -  d2y  dy d2u  d2y  d u  ( 6 )  7 = - - - + 3 - . - . -  d 3 y  dy d 3 u  d 2 y  d 2 u  d u  d 3 y  du 
dr2 d u  dx2+z(z) dr du dr3 du2 dx2 dr+s(z) 

d x 1  d ' x  d3x  - 3(y")' - y'y'" 56. From - = - derive - = - - ' "  and 7 - 
dY Y" dY2 ( Y ' I 3  dy ( Y ' S  

In Problems 57 to 62, determine whether the given function f has an inverse; if it does, find a formula 
for the inverse f - '  and calculate its derivative. 

60. f ( x ) = x 2  + 2  Am. no inverse function 

61. f ( x ) = x 3  
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Implicit Differentiation 

IMPLICIT FUNCTIONS. An equation f ( x ,  y) = 0, on perhaps certain restricted ranges of the 
variables, is said to define y implicitly as a function of x. 

1 - x  
( a )  The equation xy + x - 2y  - 1 = 0 ,  with x # 2, defines the function y = - 

x - 2 ’  
EXAMPLE 1: 
(6) The equation 4x2 + 9 y 2  - 36 = 0 defines the function y = when 1x1 5 3 and y L 0, and the 
function y = - $- when 1x1 5 3 and y 5 0. The ellipse determined by the given equation should be 
thought of as consisting of two arcs joined at the points (-3,0) and (3,O). 

The derivative y’  may be obtained by one of the following procedures: 

1. 

2. 

Solve, when possible, for y and differentiate with respect to x. Except for very simple 
equations, this procedure is to be avoided. 
Thinking of y as a function of x, differentiate both sides of the given equation with 
respect to x and solve the resulting relation for y’. This differentiation process is known 
as implicit differentiation. 

EXAMPLE 2: (a) Find y‘, given xy + x - 2 y  - 1 = 0. 
d d d d d d 

We h a v e x - - ( y ) + y ~ ( x ) + - - j - ( x ) - 2 - ( y ) - - ( l ) = - ( O )  dx dx dx dx 

l + Y  or xy’  + y + 1 - 2 y ’  = 0;  then y ’ = -. 
(6) Find y ’  when x = fi, given 4x2 + 9 y 2  - 36 = 0. 

2 - x  

d d d dY 
dx dx dY f7k 

We have 4 - (x’) + 9 - ( y ’ )  = 8 x  + 9 - ( y 2 )  - = 8 x  + 18yy’  = 0 

or y ’  = - 4 x / 9 y .  When x = fi, y = 2413.  At the point ( f i , 4 / 3 )  on the upper arc of the ellipse, 
y ’  = -V3/3, and at the point (fl, -4/3)  on the lower arc, y ’  = G/3. 

DERIVATIVES OF HIGHER ORDER may be obtained in two ways. The first is to differentiate 
implicitly the derivative of one lower order and replace y’ by the relation previously found. 

EXAMPLE 3: From Example 2(a) ,  y ’  = - ’+’ Then 
2 - x ’  

The second method is to differentiate implicitly both sides of the given equation as many 
times as is necessary to produce the required derivative and eliminate all derivatives of lower 
order. This procedure is recommended only when a derivative of higher order at a given point 
is required. 

EXAMPLE 4: Find the value of y” at the point (- 1, 1) of the curve x2y + 3 y  - 4 = 0. 
We differentiate implicitly with respect to x twice, obtaining 

x’y’ + 2xy + 3 y ’  = 0 and x2y” + 2 x y ‘  + 2xy’  + 2 y  + 3y” = 0 

We substitute x = - 1 ,  y = 1 in the first relation to obtain y ’  = f . Then we substitute x = - 1 ,  y = 1, y ’  = 
in the second relation to get y” = 0. 

88 
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Solved Problems 

1. 

2. 

3. 

4. 

5. 

6.  

7. 

8. 

Find y ’ ,  given x2y - xy2 + x 2  + y 2  = 0. 

d d d d 

2 d  d d d d d 
dx dx dx dx 

-& (X’Y) - (XY’) + -& ( x ’ )  + (Y ’ )  = 0 

x - ( y ) + y  -& ( x 2 ) - x  -& ( y ” - y 2  - ( x ) +  - ( x 2 ) +  - ( y ’ ) = O  

y ’  = x 2  + 2y - 2xy 
y 2  - 2.x - 2x1, 

Hence x2y’  + 2xy - 2xyy’ - y 2  + 2x + 2yy‘ = 0 and 

Find y ’  and y”, given x 2  - xy + y 2  = 3. 
d d d 2 x  - y 
- ( x 2 ) -  - ( x y ) +  - ( y 2 ) = 2 x - x y ’ - y + 2 y y ’ = O .  so y ’ =  5 dx dx dx 

d d 
dx dx ( x  - 2y)  - (2x - y )  - (2x - y )  - (x  - 2y)  

( x  - 2Y)’ 

2x - y 

- ( x  - 2y)(2 - y ‘ )  - (2x - y)( 1 - 21”) 
(x - 2YI2 

- Then y ” =  

18 - - - 3xy’ - 3y - - 3x(x-2y) - 3y - - 6(x2 - xy + y ’ )  - 
(x  - 2Y)’ (x  - 2Y)’ ( x  - zYl3 ( x  - zYl3  

Find y ’  and y”, given x3y + xy3 = 2 and x = 1. 

We have 

x3y‘ + 3x2y + 3xy’y’ + y’ = 0 

and x3y” + 3x2y’ + 3x2y’ + 6xy + 3xy2y’’ + 6xy( y‘)’ + 3y2y’ + 3y2y’ = 0 

When x = 1, y = 1; substituting these values in the first derived relation yields y ’  = - 1. Then 
substituting x = 1, y = 1, y ’ = - 1 in the second relation yields y” = 0. 

Supplementary Problems 

Establish formula 10 of Chapter 10 for rn = p / q ,  p and q integers, by writing y = x ’ ‘ ~  as y q  = x p  and 
differentiating with respect to x .  

Find y”, given (a) x + xy + y = 2 ;  ( 6 )  x 3  - 3xy + y 3  = 1. 

Find y ’ ,  y”, and y”’ at (a) the point ( 2 , l )  on x 2  - y2 - x = 1; (6) the point ( 1 , l )  on x3 + 3x2y - 6xy2 + 
2y3 = O .  Ans. (a )  312, - 5 / 4 ,  45/8; ( 6 )  1, 0, 0 

Find the slope at the point (x, ,  y , )  of (a )  b2x2 + a2y2 = a2b2; ( b )  b2x2 - a2y’ = a2b2; ( c )  x 3  + y’ - 
6x’y = 0. 

b’x, b’x, ~x,Y,-x; 

a Y o  
Ans. (a )  -7; ( 6 )  7; (c) 

a Y o  y; - 2 4  

Prove that the lines tangent to the curves 5y - 2 x  + y 3  - x2y = 0 and 2y + 5 x  + x4 - x3y2 = 0 at the 
origin intersect at right angles. 
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9. (a )  The total surface area of a rectangular parallelepiped of square base y on  a side and height x is given 

( 6 )  The total surface area of a right circular cylinder of radius r and height h is given by 
by S = 2y2 + 4xy. If S is constant, find dyldx without solving for y .  

S = 27rr2 + 27rrh. If S is constant, find drldh. 
r 

Ans. (a) - y *  

x + y ’ @ )  -m 

10. For the circle x 2  + y 2  = rz,  show that 

11. Given S = n x ( x  + 2 y )  and V =  7rx2y, show that dSldx = 27r(x - y )  when V is a constant and dVldx = 
- n x ( x  - y )  when S is a constant. 



Chapter 12 

Tangents and Normals 

IF THE FUNCTION f ( x )  has a finite derivative f ' ( x , )  at x = x,, the curve y = f ( x )  has a tangent at 

m = tan 8 = f ' ( x , )  
Po(x,, y,) whose slope is 

If m = 0, the curve has a horizontal tangent of equation y = y, at PO,  as at A ,  C, and E of Fig. 
2-1. Otherwise the equation of the tangent is 

Y - Y o  = m(x - xo) 

If f ( x )  is continuous at x = x ,  but lim f ' ( x )  = 00, the curve has a vertical tangent of 
equation x = x, ,  as at B and D of Fig. 12-1. 

x-xg 

Fig. 12-1 

The normal to a curve at one of its points is the line that passes through the point and is 
perpendicular to the tangent at the point. The equation of the normal at Po(xo,  y,) is 

x = x,  if the tangent is horizontal 
y = y, if the tangent is vertical 

1 
y - y ,  = - ; ( x  - x , )  otherwise 

(See Problems 1 to 8.) 

THE ANGLE OF INTERSECTION of two curves is defined as the angle between the tangents to the 
curve at their point of intersection. 

To determine the angles of intersection of two curves: 

1. Solve the equations simultaneously to find the points of intersection. 
2. Find the slopes m ,  and m2 of the tangents to the two curves at each point of 

3. If m ,  = m 2 ,  the angle of intersection is 4 = O", and if m ,  = - l / m 2 ,  the angle of 
intersection is 4 = 90"; otherwise it can be found from 

intersection. 

m, -m2 
1 + m1m2 

tan 4 = 

4 is the acute angle of intersection when tan 4 > 0, and 180" - 4 is the acute angle of 
intersection when tan 4 < 0. 

(See Problems 9 to 11.) 
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Solved Problems 

1. Find the points of tangency of horizontal and vertical tangents to the curve x2 - xy + y 2  = 27. 
y - 2x 
2 y - x ’  

Differentiating yields y’  = - 

For horizontal tangents: Set the numerator of y ’  equal to zero and obtain y = 2x. The points of 
tangency are the points of intersection of the line y = 2x and the given curve. Simultaneously solve the 
two equations to find that these points are (3,6) and (-3, -6). 

For vertical tangents: Set the denominator of yr equal to zero and obtain x = 2y. The points of 
tangency are the points of intersection of the line x = 2y and the given curve. Simultaneously solve the 
two equations to find that these points are (6,3) and (-6, -3). 

2. Find the equations of the tangent and normal to y = x3 - 2x2 + 4 at (2,4). 

f ’ ( x )  = 3x2 - 4x; hence the slope of the tangent at (2,4) is rn = f’(2) = 4. 
The equation of the tangent is y - 4 = 4(x - 2) or y = 4x - 4. 
The equation of the normal is y - 4 = - 4 (x - 2) or x + 4y = 18. 

3. Find the equations of the tangent and normal to x2 + 3xy + y 2  = 5 at ( 1 , l ) .  

dy 2x + 3 y  

The equation of the tangent is y - 1 = - l (x - 1) or x + y = 2. 
The equation of the normal is y - 1 = l(x - 1) or x - y = 0. 

hence the slope of the tangent at ( 1 , l )  is rn = - 1. dx 3 x + 2 y ’  

4. Find the equations of the tangents with slope m = - 5 to the ellipse 4x2 + 9y2 = 40. 

Let P,(xo ,  y,) be the point of tangency of a required tangent. P, is on the ellipse, so 

4xi + 9yi  = 40 ( 1  ) 

So y, = 2x0. The points of tangency are the = - - dy 4x 4x 2 

dx 9Y 9y0 9 ‘  
Also, - = - - . Hence, at (x , ,  yo), rn = - 

simultaneous solutions (1,2) and (- 1, - 2) of ( 1  ) and the equation y, = 2x,. 
The equation of the tangent at (1,2) is y - 2 = - (x - 1) or 2x + 9y = 20. 
The equation of the tangent at (- 1, -2) is y + 2 = - f ( x  + 1) or 2x + 9y = -20. 

5. Find the equation of the tangent, through the point (2, -2), to the hyperbola x 2  - y 2  = 16. 

( 1  1 
Let Po(xo ,  y,)  be the point of tangency of the required tangent. P, is on the hyperbola, so 

- y i  = 16 

dY x X 

dx Y Y, x o - 2  
Also, - = -. Hence, at (x,, yo), rn = = = slope of the line joining PO and (2, -2); then 

2x0 + 2y, = x: - y i  = 16 or x, + y ,  = 8 ( 2 )  

The point of tangency is the simultaneous solution ( 5 , 3 )  of ( 1  ) and (2). Thus the equation of the 
tangent is y - 3 = $(x - 5 )  or 5x - 3y = 16. 

6. Find the equations of the vertical lines that meet the curves (1 ) y = x3 + 2x2 - 4x + 5 and (2) 
3y = 2x3 + 9 x 2  - 3 x  - 3 in points at which the tangents to the respective curves are parallel. 

Let x = x,, be such a vertical line. The tangents to the curves at x, have the slopes 

For(1):  y r = 3 x 2 + 4 x - 4 ;  a t x = x o ,  m, =3x;+4xo-4  
For (2 ) :  3y’ = 6x2 + 18x - 3; at x = x,, m2 = 2xi  + 6x, - 1 
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Since m, = m,, we have 3x; + 4x ,  - 4 = 2 x i  + 6 x ,  - 1 ,  from which x ,  = - 1 and x ,  = 3. The lines are 
x =  - 1  a n d x = 3 .  

7. (a) Show that the equation of the tangent of slope m ZO to the parabola y 2  = 4px is 
y = m x + p l m .  

(b )  Show that the equation of the tan ent to the ellipse b2x2 + a2y2 = a2b2 at the point 
P,(x,, y,) on the ellipse is b2x,x + a y,y = a2b2. 

(a )  y ’ = 2 p / y .  Let Po(x,, y,) be the point of tangency; then y i = 4 p x ,  and m = 2 p l y 0 .  Hence, 
y o  = 2 p / m  and x ,  = $ y : / p  = p / m 2 .  The equation of the tangent is then y - 2 p / m  = m ( x  - p / m 2 )  or 
v = mu + a/m.  

Q 

b ’x b ’x, b ’x  
( b )  y’ = - 7. At PO,  m = - -, and the equation of the tangent is y - y o  = - ( x  - x,) or 

a y  a’Yo a Yo 
b2x,x + a2yoy = b’x; + a’y; = a’b’. 

8. Show that at a point Po(xo, y,) on the hyperbola b2x2 - a2y2 = a2b2, the tangent bisects the 
angle included by the focal radii of PO.  

At PO the slope of the tangent to the hyperbola is b2xo/a2yo and the slopes of the focal radii PO,’ 
and P,F (see Fig. 12-2) are y,l(x,  + c) and y, / (x ,  - c), respectively. Now 

b2xo Yo 

a‘y, x ,  + c 

since b2x; - a2yf = a’b’ and a2 + b2 = c2, and 

tan p = 

Yo b’xo --- 
x ,  - c aZy,  

b 2 X ,  Y ,  l + - r , * -  

b’cx,, - a’b’ 
c2xoyo - a’cy, 

- b’ 

C Y ,  

- -  

- aLy,  x ,  - c 

Hence, a = /3 because tan a = tan p, 

Fig. 12-2 

9. Find the acute angles of intersection of the curves ( 1 )  y 2  = 4 x  and (2) 2x2 = 12 - 5y.  

The points of intersection of the curves are P,(1,2) and P,(4, - 4 ) .  
For ( I ) ,  y’ = 2 / y ;  for (2 ) ,  y’ = -4x/5. Hence, 
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At P,:  rn, = I and rn, = - 3 ,  so tan 4 = - rn2 = 1+4/5 = 9 and 4 = 83'40' is the acute angle of l + r n , r n ,  1 - 4 / 5  
intersection. 

- 1 / 2  + 16/5 
= 1.0385 and 4 = 46'5' is the acute angle of 

1 + 8/5 At P,: rn,  = - $ and rn2 = - y ,  so tan 4 = 

intersection. 

10. Find the acute angles of intersection of the curves (1 ) 2x2 + y 2  = 20 and (2) 4y2 - x2 = 8. 

The points of intersection are ( + 2 f i ,  2) and ( 2  2 a ,  - 2). 
For ( 1  ), y '  = -2x/y;  for ( 2 ) ,  y '  = x/4y. 
At the point ( 2 f i ,  2), rn, = - 2 f i  and rn2 = $a. Since rn,rn, = - 1, the angle of intersection is 

4 = 90" (i.e., the curves are orthogonal). By symmetry, the curves are orthogonal at each of their points 
of intersection. 

11. A cable of a certain suspension bridge is attached to supporting pillars 250 ft apart. If it hangs 
in the form of a parabola with the lowest point 50 ft below the point of suspension, find the 
angle between the cable and the pillar. 

y = &x2, and y '  = 4x/625. 

51"20'. 

Take the origin at the vertex of the parabola, as in Fig. 12-3. The equation of the parabola is 

At (125,50), rn = 4( 125) /625 = 0.8OOO and 8 = 38"40'. Hence, the required angle is 4 = 90" - 8 = 

Y 

Fig. 12-3 

Supplementary Problems 

12. Examine xz + 4xy + 16y2 = 27 for horizontal and vertical tangents. 

Ans. horizontal tangents at (3, - 3 / 2 )  and (-3,3/2); vertical tangents at (6, - 3 / 4 )  and (-6,314) 

13. Find the equations of the tangent and normal to x2 - y2 = 7 at the point (4, -3) .  

Ans. 4x + 3y = 7; 3x - 4y = 24 

14. At what points on the curve y = x3 + 5 is its tangent (a )  parallel to the line 12x - y =  17; 
(b) perpendicular to the line x + 3y = 2? Am. (a )  (2,13), (-2, -3); ( 6 )  (1,6), (-1.4) 

15. Find the equations of the tangents to 9 x 2  + 16y2 = 52 that are parallel to the line 9 x  - 8 y  = 1. 

Ans. 9x -- 8 y  = +26 
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16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

Find the equations of the tangents to the hyperbola xy = 1 through the point (- 1, 1). 

ATIS. y = ( 2 d - 3 ) ~  + 2 f i - 2 ;  y = - ( 2 d +  3 ) ~  - 2 d -  2 

For the parabola y 2  = 4px ,  show that the equation of the tangent at one of its points P(xo ,  y , )  is 
YYO = + xo)* 

For the ellipse b2x2 + a2y2 =a2b2, show that the equations of its tangents of slope rn are 
y = m x r t G Z z 7 .  

For the hyperbola b2x2 - a2y2 =a2b2 ,  show that ( a )  the equation of the tangent at one of its 
points P(x, ,  y , )  is b2xox - a2yoy = a2b2 and ( 6 )  the equations of its tangents of slope rn are 
y = m x + l O T 7 .  

Show that the normal to a parabola at any of its points PO bisects the angle included by the focal radius 
of PO and the line through PO parallel to the axis of the parabola. 

Prove: Any tangent to a parabola, except at the vertex, intersects the directrix and the latus rectum 
(produced if necessary) in points equidistant from the focus. 

Prove: The chord joining the points of contact of the tangents to a parabola through any point on its 
directrix passes through the focus. 

Prove: The normal to an ellipse at any of its points PO bisects the angle included by the focal radii of PO. 

Prove: The point of contact of a tangent of a hyperbola is the midpoint of the segment of the tangent 
included between the asymptotes. 

Prove: (a )  The sum of the intercepts on the coordinate axes of any tangent to VT+ fi= .L/si is a 
constant. ( b )  The sum of the squares of the intercepts on the coordinate axes of any tangent to 
x213 + y213 = a213 is a constant. 

Find the acute angles of intersection of the circles x 2  - 4x + y 2  = 0 and x 2  + y 2  = 8. Ans. 45" 

Show that the curves y = x3 + 2 and y = 2x2 + 2 have a common tangent at the point ( 0 , 2 )  and intersect 
at an angle 4 = Arctan 6 at the point ( 2 , l O ) .  

Show that the ellipse 4x2 + 9 y 2  = 45 and the hyperbola x 2  - 4y2  = 5 are orthogonal. 

Find the equations of the tangent and normal to the parabola y = 4x2 at the point (- 1 , 4 ) .  

Am. y + 8 ~ + 4 = 0 ;  8 y - x - 3 3 ~ 0  

At what points on the curve y = 2x3 + 13x2 + 5x + 9 does its tangent pass through the origin? 

Ans. x = - 3 ,  - 1 ,  314 



Chapter 13 

Maximum and Minimum Values 

INCREASING AND DECREASING F’UNCTIONS. A function f ( x )  is said to be increasing on an 
open interval if U < U implies f(u) < f(u) for all U and U in the interval. A function f ( x )  is said to 
be increasing at x = x, if f ( x )  is increasing on an open interval containing x,. Similarly, f ( x )  is 
decreasing on an open interval if U < U implies f(u) > f(u) for all U and U in the interval, and 
f ( x )  is decreasing at x = x ,  if f ( x )  is decreasing on an open interval containing x,. 

If f ’ ( x , )  > 0, then it can be shown that f ( x )  is an increasing function at x = x,; similarly, if 
f’(x,) < 0, then f ( x )  is a decreasing function at x = x,. (For a proof, see Problem 17.) If 
f ’ ( x , )  = 0, then f ( x )  is said to be stationary at x = x,. 

- -  

Fig. 13-1 

In Fig. 13-1, the curve y = f ( x )  is rising (the function is increasing) on the intervals 
a < x < r and t < x < U ;  the curve is falling (the function is decreasing) on the interval r < x < t .  
The function is stationary at x = r ,  x = s, and x = t ;  the curve has a horizontal tangent at the 
points R, S, and T. The values of x (that is, r ,  s, and t), for which the function f ( x )  is stationary 
(that is, for f ’ ( x )  = 0) are frequently called critical values (or critical numbers) for the function, 
and the corresponding points (R, S, and T) of the graph are called critical points of the curve. 

RELATIVE MAXIMUM AND MINIMUM VALUES OF A FUNCTION. A function f ( x )  is said to 
have a refative maximum at x = x ,  if f ( x , )  2 f ( x )  for all x in some open interval containing x,, 
that is, if the value of f ( x , )  is greater than or equal to the values of f ( x )  at all nearby points. A 
function f ( x )  is said to have a relative minimum at x = x, if f ( x , )  “ f ( x )  for all x in some open 
interval containing x,, that is, if the value of f ( x o )  is less than or equal to the values of f ( x )  at 
all nearby points. (See Problem 1.) 

In Fig. 13-1, R(r,  f ( r ) )  is a relative maximum point of the curve since f ( r )  > f ( x )  on any 
sufficiently small neighborhood 0 < Ix - r l <  S. We say that y = f ( x )  has a relative maximum 
value ( = f ( r ) )  when x = r .  In the same figure, T(t ,  f ( t ) )  is a relative minimum point of the curve 
since f ( t )  < f ( x )  on any sufficiently small neighborhood 0 < Ix - tl < 6. We say that y = f ( x )  has 
a relative minimum value ( = f ( t ) )  when x = t .  Note that R joins an arc AR which is rising 
( f ’ ( x )  > 0) and an arc RB which is falling ( f ’ ( x )  < 0), while T joins an arc CT which is falling 
( f ‘ ( x )  < 0) and an arc TU which is rising ( f ’ ( x )  > 0). At S two arcs BS and SC, both of which 
are falling, are joined; S is neither a relative maximum point nor a relative minimum point of 
the curve. 

If f ( x )  is differentiable on a 5 x 5 b and if f ( x )  has a relative maximum (minimum) value at 
x = x, ,  where a < x, < b, then f ’ ( x , )  = 0. For a proof, see Problem 18. 

96 



CHAP. 131 MAXIMUM AND MINIMUM VALUES 97 

FIRST-DERIVATIVE TEST. The following steps can be used to find the relative maximum (or 
minimum) values (hereafter called simply maximum [or minimum] values) of a function f ( x )  
that, together with its first derivative, is continuous. 

1. Solve f ’ ( x )  = 0 for the critical values. 
2. Locate the critical values on the x axis, thereby establishing a number of intervals. 
3. Determine the sign of f ‘ ( x )  on each interval. 
4. Let x increase through each critical value x = x,;  then: 

f ( x )  has a maximum value f ( x o )  if f ’ ( x )  changes from + to - (Fig. 13-2(a)). 

f ( x )  has a minimum value f ( x o )  if f ‘ ( x )  changes from - to + (Fig. 13-2(6)). 

f ( x )  has neither a maximum nor a minimum value at x = x,  if f ’ ( x )  does not 
change sign (Fig. 13-2(c) and ( d ) ) .  

(See Problems 2 to 5.) 
A function f ( x ) ,  necessarily less simple than those of Problems 2 to 5, may have a 

maximum or minimum value f ( x , )  although f ’ ( x , )  does not exist. The values x = xo for which 
f ( x )  is defined but f ’ ( x )  does not exist will also be called critical values for the function. They, 
together with the values for which f ’ ( x )  =0,  are to be used as the critical values in the 
first-derivative test. (See Problems 6 to 8.) 

CONCAVITY. An arc of a curve y = f ( x )  is called concave upward if, at each of its points, the arc 
lies above the tangent at that point. As x increases, f ‘ ( x )  either is of the same sign and 
increasing (as on the interval 6 < x < s of Fig. 13-1) or changes sign from negative to positive 
(as on the interval c < x < U). In either case, the slope f ’ ( x )  is increasing and f ” ( x )  > 0. 

An arc of a curve y = f ( x )  is called concave downward if, at each of its points, the arc lies 
below the tangent at that point. As x increases, f ’ ( x )  either is of the same sign and decreasing 
(as on the interval s < x <  c) or changes sign from positive to negative (as on the interval 
a < x < 6). In either case, the slope f ‘ ( x )  is decreasing and f ” ( x )  < 0. 

A POINT OF INFLECTION is a point at which a curve changes from concave upward to concave 
downward, or vice versa. In Fig. 13-1, the points of inflection are B ,  S, and C. 

A curve y = f ( x )  has one of its points x = xo  as an inflection point if f ” ( x o )  = 0 or is not 
defined and f”(x)  changes sign as x increases through x = xo .  The latter condition may be 
replaced by f’”(x,) # 0 when f”’(xo) exists. (See Problems 9 to 13.) 

SECOND-DERIVATIVE TEST. There is a second, and possibly more useful, test for maxima and 
minima: 

1. Solve f ’ ( x , )  = 0 for the critical values. 
2. For a critical value x = x,: 

f ( x )  has a maximum value f (x , )  if f”(xo)  < 0 (Fig. 13-2(a)). 

f ( x )  has a minimum value f ( x o )  if f”(x,)  > 0 (Fig. 13-2(6)). 

The test fails if f”(x,) = 0 or is not defined (Fig. 13-2(c) and (4). 
In this case, the first-derivative test must be used. 

(See Problems 14 to 16.) 
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Fig. 13-2 

Solved Problems 

1. Locate the maximum or  minimum values of (a )  y = - x 2 ;  ( b )  y = ( x  - 3)2; ( c )  y = m; 
and (d) y = m. 
( a )  y = - x 2  has a relative maximum value ( = O )  when x = 0, since y = 0 when x = 0 and y < 0 when 

X Z O .  
(6) y = ( x  - 3)2 has a relative minimum value ( = O )  when x = 3, since y = 0 when x = 3 and y > O  when 

xz3. 
(c) y = has a relative maximum value (= 5) when x = 0, since y = 5 when x = 0 and y < 5 

when - l < x < l .  
( d )  y = has neither a relative maximum nor a relative minimum value. (Some authors define 

relative maximum (minimum) values so that this function has a relative minimum at x = 4 .  See 
Problem 30.) 

2. Given y = $ x 3 +  $ x 2  - 6 x  +8, find ( a )  the critical points; (b) the intervals on which y is 
increasing and decreasing; and (c) the maximum and minimum values of y. 

(a )  y ’  = x 2  + x - 6 = ( x  + 3 ) ( x  - 2). Setting y’ = 0 gives the critical values x = -3 and 2. The critical 
points are (-3, 8 )  and (2, 3 ) .  
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( b )  When y‘ is positive, y increases; when y’ is negative, y decreases. 
When x <  -3, say x = -4, 
When -3 < x < 2, say x = 0, 
When x > 2, say x = 3, 

y’ = (-)(-) = + , and y is increasing. 
y ’  = (+)(-) = -, and y is decreasing. 
y’ = (+)( +) = +, and y is increasing. 

These results are illustrated by the following diagram (see Fig. 13-3): 

x < - 3  x = - 3  - 3 < x < 2  x = 2  x > 2  

y ’ =  + 
y increases 

y ’  = - 

y decreases 

y ’ =  + 
y increases 

Fig. 13-3 

(c )  We test the critical values x = - 3  and 2 for maxima and minima: 
As x increases through -3, y’ changes sign from + to -; hence at x = -3, y has a maximum 

As x increases through 2, y’ changes sign from - to +; hence at x = 2, y has a minimum 
value 4. 

value 3 .  

3. Given y = x4 + 2x3 - 3x2  - 4x + 4, find (a )  the intervals on which y is increasing and decreas- 
ing, and (6) the maximum and minimum values of y. 

We have y’ = 4x3 + 6 x 2  - 6 x  - 4 = 2(x + 2)(2x + l)(x - 1). Setting y’ = 0 gives the critical values 
x = -2, - $,  and 1. (See Fig. 13-4.) 

Fig. 13-4 

(a )  When x < -2, y ’  = 2(-)(-)(-) = -, and y is decreasing. 
y’ = 2( +)(-)(-) = +, and y is increasing. 
y’ = 2( +)( +)(-) = -, and y is decreasing. 
y’ = 2( +)( +)( +) = +, and y is increasing. 

When - 2 < x <  - t ,  
When -; < x < l ,  
When x > 1, 
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These results are illustrated by the following diagram (see Fig. 13-4): 

x < - 2  x = - 2  - 2 < x < - $  x = - $  - t < x < l  x = l  x > l  

y ‘  = - 

y decreases 
y ’ =  + 

y increases 

y ’  = - 
y decreases 

y ’ =  + 
y increases 

(6) We test the critical values x = -2, - l, and 1 for maxima and minima: 
As x increases through -2, y ‘  changes from - to +; hence at x = -2, y has a minimum value 0. 
As x increases through - i ,  y’ changes from + to -; hence at x = - 4 ,  y has a maximum value 

As x increases through 1, y ’  changes from - to +; hence at x = 1 ,  y has a minimum value 0. 
81 / 16. 

4. Show that the curve y = x3 - 8 has no maximum or minimum value. 

has no maximum or minimum value. 
Setting y ’  = 3x2 = 0 gives the critical value x = 0. But y’ > 0 when x < 0 and when x > 0. Hence y 

The curve has a point of inflection at x = 0. 

for maxima and minima, and locate the intervals on which the 
1 

Examine y = f ( x )  = - 
x - 2  

function is increasing and decreasing. 
5. 

f ’ ( x )  = - ____ Since f(2) is not defined (that is, f ( x )  becomes infinite as x approaches 2), there 

is no critical value. However, x = 2 may be employed to locate intervals on which f ( x )  is increasing and 
decreasing. 

f ‘ ( x )  < 0 for all x # 2. Hence f ( x )  is decreasing on the intervals x < 2 and x > 2. (See Fig. 13-5.) 

( x  - 2)2 * 

Fig. 13-5 Fig. 13-6 

6. Locate the maximum and minimum values of f ( x )  = 2 + x2/3 and the intervals on which the 
function is increasing and decreasing. 

f ’ ( x )  = - The critical value is x = 0, since f ’ ( x )  becomes infinite as x approaches 0. 

When x < 0, f ’ ( x )  = -, and f ( x )  is decreasing. When x > 0, f ‘ ( x )  = +, and f ( x )  is increasing. 
Hence, at x = 0 the function has the minimum value 2. (See Fig. 13-6.) 

3X”j * 

7. Examine y = ~ ~ ’ ~ ( 1  - x)l/’ for maximum and minimum values. 

Here y’ = and the critical values are x = 0, 3 ,  and 1. 

When x<O, y ’ < O .  When O < x <  $ ,  y ’ > O .  When 2 < x < l ,  y ’ < O .  When x > l ,  y ’ < O .  
The function has a minimum value ( = O )  when x = 0 and a maximum value (= &%) when x = 3 .  

x y 4  - 5x) 
3(1 - x ) * ‘ ~  

8. Examine y = 1x1 for maximum and minimum values. 
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The function is everywhere defined and has a derivative for all x except x = 0. (See Problem 11 of 
Chapter 9.) Thus, x = 0 is a critical value. For x < 0, f ‘ ( x )  = - 1;  for x > 0, f ’ ( x )  = + 1.  The function has 
a minimum ( = O )  when x = 0. This result is immediate from a figure. 

9. Examine y = 3x4 - 10x3 - 12x2 + 12x - 7 for concavity and points of inflection. 

We have 

y ‘  = 12x3 - 30x2 - 24x + 12 
y” = 36x2 - 6 0 ~  - 24 = 1 2 ( 3 ~  + l ) ( ~  - 2) 

Set y” = 0 and solve to obtain the possible points of inflection x = - f and 2. Then: 
When x < - f , 
When - f < x <2,  
When x > 2, 

y” = +, and the arc is concave upward. 
y ” =  -, and the arc is concave downward. 
y ” =  +, and the arc is concave upward. 

The points of inflection are (- f , - ) and (2, -63), since y” changes sign at x = - 3 and x = 2 (see Fig. 
13-7). 

Fig. 13-7 

10. Examine y = x4 - 6 x  + 2 for concavity and points of inflection. (See Fig. 13-8.) 

We have y” = 12x2. The possible point of inflection is at x = 0. 
On the intervals x < 0 and x > O ,  y” = +, and the arcs on both sides of x = 0 are concave upward. 

The point (0,2) is not a point of inflection. 

Fig. 13-8 Fig. 13-9 

11. Examine y = 3x + ( x  + 2)3’5 for concavity and points of inflection. (See Fig. 13-9.) 
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- 6  
25(x + 21715 

and y ” =  
3 

Here y ’ = 3 +  
5(x + 2 y 5  

The possible point of inflection is at x = -2.  

concave upward. Hence, (-2, -6) is a point of inflection. 
When x > -2,  y” = - and the arc is concave downward. When x < -2,  y” = + and the arc is 

12. Find the equations of the tangents at the points of inflection of y = f ( x )  = x4 - 6 x 3  + 12x2 - 
8 x .  

A point of inflection exists at x = x, when f”(x,) = 0 and f ’”(x , )  # 0. Here, 

f’(x) = 4x3 - 1 8 ~ ’  + 2 4 ~  - 8 
f”(x)  = 12x2 - 3 6 ~  + 24 = 12(x - l ) (~ - 2) 
f”’(x) = 2 4 ~  - 36 = 12(2x - 3) 

The possible points of inflection are at x = 1 and 2. Since f”’( 1) # 0 and f’”(2) # 0, the points ( 1 ,  - 1) and 
(2,O) are points of inflection. 

At (1, - l), the slope of the tangent is rn = f’( 1) = 2, and its equation is 

y - y ,  =rn(x-x,)  or y + 1 = 2 ( x - 1 )  or y = 2 x - 3  

At (2,0), the slope is f’(2) = 0, and the equation of the tangent is y = 0. 

a - x  

x2  + a 
13. Show that the points of inflection of y = - lie on a straight line, and find its equation. 

Here 
x2  - 2ar - a2 

(x2 + a2)2 
x3 - 3ar’ - 3u2x + a3 

(x2 + a2)3 
y 1  = and y ” =  - 2  

Now x3 - 3ar2 - 3a2x + a3 = 0 when x = - U  and 4 2  5 d); hence the points of inflection are ( - U ,  1 / U ) ,  

( 4 2  + d), (1 - fi) /4a), and ( 4 2  - fi), (1  + fl) /4a). The slope of the line joining any two of these 
points is - 1/4a2, and the equation of the line of inflection points is x + 4a2y = 3a. 

14. Examine f ( x )  = x(  12 - 2 ~ ) ~  for maxima and minima using the second-derivative method. 

Here f ’ ( x )  = 12(x2 - 8x + 12) = 12(x - 2)(x - 6 ) .  Hence, the critical values are x = 2 and 6. 
Also, f”(x) = 12(2x - 8) = 24(x - 4). Because f”(2) < 0, f ( x )  has a maximum value (= 128) at x = 2. 

Because f”(6) > 0, f(x) has a minimum value ( = O )  at x = 6 .  

15. Examine y = x2 + 250/x  for maxima and minima using the second-derivative method. 

250 2(x3 - 125) 
Here y ’  = 2x - - = 

Also, y” = 2 + 3. Because y” > 0 at x = 5, y has a minimum value (= 75) at x = 5 .  

, so the critical value is x = 5. 
XZ X2 

500 
X 

16. Examine y = ( x  - 

2 
y l  = - (x - 2)-1/3 = 

for maximum and minimum values. 

Hence, the critical value is x = 2. 
3 3(x - 2 y 3  * 

becomes infinite as x approaches 2. Hence the second-deriva- 

tive test fails, and we employ the first-derivative method: When x < 2, y ’  = -; when x > 2, y ’  = +. 
Hence y has a relative minimum ( = O )  at x = 2. 

2 y” = - - ( x  - 2)-4/3 = - 
9 qX - 2 y 3  

17. A function f ( x )  is said to be increasing at x = xo if for h > O  and sufficiently small, 
f ( x o  - h )  < f ( x , )  < f ( x o  + h).  Prove: If f ’ ( x o )  > 0, then f ( x )  is increasing at x = x,. 
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18. 

19. 

20. 

f(’0 + - f(’0) > o for sufficiently small 1 ~ x 1  
Ax 

Since lim ’(” + - f ( x o )  = f ’ ( x , )  > 0, we have 
Ax+O Ax 

by Problem 4 of Chapter 8. 
If Ax < 0, then f ( x ,  + Ax) - f (x , )  < 0, and setting Ax = - h yields f ( x o  - h )  < f ( x o ) .  If Ax > 0, say 

Ax = h,  then f ( x o  + h)  > f ( x , ) .  Hence, f (xo  - h)  < f ( x o )  < f ( x ,  + h )  as required in the definition. (See 
Problem 33 for a companion theorem.) 

Prove: If y = f ( x )  is differentiable on a 5 x 5 b and f ( x )  has a relative maximum at x = x,, 
where a < x ,  < b, then f ‘ ( x , )  = 0. 

Since f ( x )  has a relative maximum at x = x,, for every Ax with IAx) sufficiently small we have 

f(xo + Ax) < f(x,) ; SO f(xo + Ax) - f(xo) < 0 
When Ax < 0, 

When Ax > 0, 

Thus, 0 ~ f ’ ( x , )  5 0 and f ’ ( x , )  = 0, as was to be proved. (See Problem 34 for a companion theorem.) 

Prove the second-derivative test for maximum and minimum: If f ( x )  and f ‘ ( x )  are differenti- 
able on a 5 x 5 b, if x = x,  (where a < x, < b) is a critical value forf(x), and if f ” ( x , )  > 0, then 
f ( x )  has a relative minimum value at x = x, .  

Since f ” ( x o )  > 0, f ’ ( x )  is increasing at x = x ,  and there exists an h > 0 such that f ’ ( x ,  - h)  < f ‘ ( x o )  < 
f ’ ( x o  + h). Thus, when x is near to  but less than x,, f ’ ( x )  < f ’ ( x , ) ;  when x is near to but greater than x,, 
f ‘ ( x )  > f ’ ( x , ) .  Now since f ‘ ( x , )  = 0, f ’ ( x )  < 0 when x < x ,  and f ‘ ( x )  > 0 when x > x,. By the First- 
Derivative Test, f ( x )  has a relative minimum at x = x,. (It is left for the reader to consider the 
companion theorem for relative maximum.) 

Consider the problem of locating the point (X, Y)  on the hyperbola x2 - y 2  = 1 nearest a 
given point P(a,  0), where a > 0. We have D 2  = (X - a)’ + Y 2  for the square of the distance 
between the two points and X 2  - Y 2  = 1, since (X, Y) is on the hyperbola. 

Expressing D 2  as a function of X alone, we obtain 

f ( X )  = ( X -  a)2 + X 2  - 1 = 2x2 - 2 u X +  U 2  - 1 

with critical value X = ; U .  

Take U = i .  No point is found, since Y is imaginary for the critical value X = if From a figure, 
however, it is clear that the point on the hyperbola nearest P( a ,  0) is V( l ,  0). The trouble here is that we 
have overlooked the fact that f ( X )  = (X - $)’ + X 2  - 1 is to be minimized subject to the restriction 
X L 1. (Note that this restriction does not arise from f ( X )  itself. The function f ( X ) ,  with X unrestricted, 
has indeed a relative minimum at X = 4 .) On the interval X L 1, f ( X )  has an absolute minimum at the 
endpoint X = 1, but no relative minimum. It is left as an exercise to  examine the cases U = t/z and U = 3. 

Supplementary Problems 

21. Examine each function of Problem 1 and determine the intervals on which it is increasing and 
decreasing. 
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22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

Ans. (a )  increasing x < 0, decreasing x > 0; ( 6 )  increasing x > 3 ,  decreasing x < 3;  ( c )  increasing 
- $ < x < 0, decreasing 0 < x < 5 ; (d) increasing x > 4 

(a )  Show that y = xs + 20x - 6 is an increasing function for all values of x. 
(b) Show that y = 1 - x 3  - x7 is a decreasing function for all values of x. 

Examine each of the following for relative maximum and minimum values, using the first-derivative test. 
(a )  f ( x )  = x 2  + 2x - 3 
(b )  f(x) = 3 + 2x - x 2  
( c )  f(x) = x 3  + 2 x 2  - 4x - 8 

( d )  f(x) = x 3  - 6x2 + 91 - 8 

(4 f(x) = (2 - XI3 

(f) f(x) = (x ’  - 4 Y  

(d f(x) = (x - 4I4(x + 3 ) )  

( h )  f ( x )  = x 3  + 481x 

(i) f ( x )  = ( x  - 1 ) 1 1 3 ( x  + 21213 

Ans. 
Am. 
Ans. 

Ans. 

Ans. 
Ans. 

Ans. 

Am. 

Am. 

x = - 1 yields relative minimum - 4  
x = 1 yields relative maximum 4 
x = 3 yields relative minimum - 9 ; x = - 2 yields 
relative maximum 0 
x = 1 yields relative maximum -4;  x = 3 yields relative 
minimum -8 
neither relative maximum nor relative minimum 
x = 0 yields relative maximum 16; x = 2 2  yields relative 
minimum 0 
x = 0 yields relative maximum 6912; x = 4 yields relative 
minimum 0; x = - 3  yields neither 
x = -2  yields relative maximum -32 ;  x = 2 yields 
relative minimum 32 
x = - 2  yields relative maximum 0; x = 0 yields relative 
minimum -fi; x = 1 yields neither 

Examine the functions of Problem 23(a) to ( f )  for relative maximum and minimum values using the 
second-derivative method. Also determine the points of inflection and the intervals on which the curve is 
concave upward and concave downward. 

Am. (a)  no inflection point, concave upward everywhere 
(b) no inflection point, concave downward everywhere 
(c) inflection point x = - 3 ; concave u p  for x > - 3 ,  concave down for x < - 3 
(d) inflection point x = 2 ;  concave up for x > 2, concave down for x < 2 
(e) inflection point x = 2; concave down for x > 2, concave up for x < 2 
( f )  inflection point x = + 2 f i / 3 ;  concave up for x > 2 f i 1 3  and x < - 2 d / 3 ,  concave down for 

- 2 ~ 1 3  < x < 2 G 1 3  

Show that y = 
u x + b  
cx + d 

has neither a relative maximum nor a relative minimum, if I f $1 # 0. 

Examine y = x 3  - 3px + q for relative maximum and minimum values. 

Ans. minimum = q - 2p3”, maximum = q + 2p3” if p > 0; otherwise neither 

Show that y = ( a ,  - x)‘ + (a ,  - x)*  + . - + (a ,  - x)’ has a relative minimum when 
x =  ( a ,  + a ,  + + a , ) /n .  

Prove: If f ” ( x , )  = 0 and f”’(x,) # 0, then there is a point of inflection at x = x,. 

Prove: If y = ax3 + bx2 + cx + d has two critical points, they are bisected by the point of inflection. If the 
curve has just one critical point, it is the point of inflection. 

A function f ( x )  is said to have an absolute maximum (minimum) value at x = x, provided f ( x , )  is greater 
(less) than or equal to  every other value of the function on its domain of definition. Use graphs to  verify: 
(a )  y = - x 2  has an absolute maximum at x = 0; ( b )  y = ( x  - 3 ) ,  has an absolute minimum ( = O )  at x = 3; 
( c )  y = has an absolute maximum (= 5) at x = 0 and an absolute minimum ( = O )  at x = * 5 12; 
( d )  y = has an absolute minimum ( = O )  at x = 4. 

Examine the following for absolute maximum and minimum values on the given interval only: 
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(a) y =  - x 2  on - 2 < x < 2  Am. 
(b) y = ( x - 3 ) 2 0 n O r x 5 4  Am. 
(c) y = V % Z ? o n  - 2 5 x 5 2  Am. 
(d) y = m o n 4 5 x 5 2 9  Am. 
Note: These are the greatest and least values of Property 8.2 for continuous functions. 

maximum ( = O )  at x = 0 
maximum (=9) at x = 0; minimum ( = O )  at x = 3 
maximum (= 5) at x = 0; minimum (=3) at x = 2 2  
maximum (= 5) at x = 29; minimum (= 0) at x = 4 

32. 

33. 

34. 

35. 

36. 

37. 

Verify: A function f ( x )  is increasing (decreasing) at x = x, if the angle of inclination of the tangent at 
x = x,  to the curve y = f ( x )  is acute (obtuse). 

Prove the companion theorem of Problem 17 for a decreasing function: If f ’ ( x , ) < O ,  then f ( x )  is 
decreasing at x,. 

State and prove the companion theorem of Problem 18 for a relative minimum: If y = f ( x )  is 
differentiable on a 5 x 5 b and f ( x )  has a relative minimum at x = x, ,  where a < x, < b, then f ‘ ( x , )  = 0. 

Examine 2x2 - 4xy + 3y2 - 8x + 8 y  - 1 = 0 for maximum and minimum points. 

Am. 

An electric current, when flowing in a circular coil of radius r ,  exerts a force F = 

magnet located a distance x above the center of the coil. Show that F is maximum when x = i r .  

maximum at (5,3);  minimum at (-1, -3) 

on a small 
kx 

(x2 + r2)5’2  

The work done by a voltaic cell of constant electromotive force E and constant internal resistance r in 
passing a steady current through an external resistance R is proportional to E 2 R / ( r  + R)2.  Show that the 
work done is maximum when R = r .  
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Applied Problems Involving Maxima and Minima 

18/Z 

PROBLEMS INVOLVING MAXIMA AND MINIMA. In simpler applications, it is rarely necessary 
to rigorously prove that a certain critical value yields a relative maximum or minimum. The 
correct determination can usually be made by virtue of an intuitive understanding of the 
problem. However, it is generally easy to justify such a determination with the first-derivative 
test or the second-derivative test. 

A relative maximum or minimum may also be an absolute maximum or  minimum (that is, 
the greatest or smallest value) of a function. For a continuous functionf(x) on a closed interval 
[a ,  b], there must exist an absolute maximum and an absolute minimum, and a systematic 
procedure for finding them is available. Find all the critical values c , ,  c 2 ,  . . . , c ,  for the 
function in [ a ,  b ] ,  and then calculate f ( x )  for each of the arguments c , ,  c 2 ,  . . . , c,, and for the 
endpoints a and b.  The largest of these values is the absolute maximum, and the least of these 
values is the absolute minimum, of the function on [ a ,  b ] .  

Solved Problems 

1. Divide the number 120 into two parts such that the product P of one part and the square of 
the other is a maximum. 

Let x be one part, and 120 - x the other part. Then P = (120 - x)x2 ,  and 0 I x 5 120. 
Since dP/dx = 3x(80 - x), the critical values are x = 0 and x = 80. Now P ( 0 )  = 0, P(80) = 256,000, 

and P( 120) = 0; hence the maximum value of P occurs when x = 80. The required parts are 80 and 40. 

2. A sheet of paper for a poster is to be 18 ft2 in area. The margins at the top and bottom are to 
be 9 in wide, and at the sides 6 in. What should be the dimensions of the sheet to maximize 
the printed area? 

Let x be one dimension of the sheet, in feet. Then 18/x is the other dimension. (See Fig. 14-1.) The 
1s 3 ' 

only restriction on x is that x > 0. The printed area (in square feet) is A = (x - I)(  x - 2). and 
dA 18 3 - = - - -  

d2A 36 
dr X 

dx x2 2 '  
Solving dAildx = 0 yields the critical value x = 2 G .  Since 7 = - 7 is negative when x = 2 f l ,  the 

second-derivative test tells us that A has a relative maximum at that value. Since 2 f l  is the onfy critical 
value, A must achieve an absofute maximum at x = 2V3. (Why?) Thus, one side is 2V3 ft, and the other 
is 1 8 / ( 2 f i )  = 3V3 ft. 

Fig. 14-2 

106 
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3. At 9 A.M. ship B is 65 mi due east of another ship A.  Ship B is then sailing due west at 
10 mi/h, and A is sailing due south at 15 mi/h. If they continue on their respective courses, 
when will they be nearest one another, and how near? (See Fig. 14-2.) 

Let A ,  and B, be the positions of the ships at 9 A.M., and A ,  and B ,  be their positions t hours later. 

The distance D between the ships is given by D 2  = (15t)’ + (65 - lot)’. Then - = 
d D  dt 

dr 

The distance covered in t hours by A is 15t miles; by B ,  10t miles. 

D *  
Solving - = 0 gives the critical value t = 2. Since D > 0 and 3 2 9  - 650 is positive to  the right of t = 2 
and negative to the left of t = 2,  the first-derivative test tells us that t = 2 yields a relative minimum for 
D. Since t = 2 is the only critical value, that relative minimum is an absolute minimum. 

gives D = 1 5 m  mi. Hence, the ships are nearest at 
1 1  A.M., at which time they are 1 5 m  mi apart. 

d D  325t -650 

Putting t = 2 in, D 2  = (159’ + (65 - 

4. A cylindrical container with circular base is to hold 64 in3. Find its dimensions so that the 
amount (surface area) of metal required is a minimum when the container is (a) an open cup 
and (b) a closed can. 

Let r and h be,  respectively, the radius of the base and the height in inches, A the amount of metal, 
and V the volume of the container. 
( a )  Here V =  nr2h = 64, and A = 27rrh + 7rr2. To express A as a function of one variable, we solve for h 

in the first relation (because it is easier) and substitute in the second, obtaining 

d A  - 128 2(7rr’ - 64) A = 27rr + vr’  = 128 + n r 2  and - - - - + 2 7 r r =  
7rr r dr r r2 

and the critical value is r = 4 / h .  Then h = 64/.rrr2 = 4 / k .  Thus, r = h = 4 / k  in. 
Now d A  ldr > 0 to the right of the critical value, and d A  ldr < 0 to the left of the critical value. 

So, by the first-derivative test, we have a relative minimum. Since there is no other critical value, 
that relative minimum is an absolute minimum. 

(6) Here again V =  7rr2h = 64, but A = 27rrh + 27rr2 = 2.rrr(64/7rr2) + 2 v r 2  = 128/r + 2.rrr2. Hence, 

4( 7rr3 - 32) + 47rr = 
d A  - 128 
dr r2 r2 
- _ - -  

and the critical value is r = m. Then h = 64/?rr2 = 4 w r .  Thus, h = 2r = 4% in. That we 
have found an absolute minimum can be shown as in part (a). 

5. The total cost of producing x radio sets per day is $( i x 2  + 35x + 25) ,  and the price per set at 
which they may be sold is $(50- i x ) .  
(a) What should be the daily output to obtain a maximum total profit? 
(b) Show that the cost of producing a set is a relative minimum at that output. 

(a )  The profit on the sale of x sets per day is P = x(50 - 4x) - ( a x 2  + 35x + 25). Then - = 15 - - ; 
solving dP/dx = 0 gives the critical value x = 10. 

Since d2P/dX2 = - $ < O ,  the second-derivative test shows that we have found a relative 
maximum. Since x = 10 is the only critical value, the relative maximum is an absolute maximum. 
Thus, the daily output that maximizes profit is 10 sets per day. 

- i x  + 35 + -. Then - = - - 7; solving 

Since 7 = - > 0 when x = 10, we have found a relative minimum. Since there is only one 

dP 3x 
dx 2 

$ x 2 + 3 5 x + 2 5  - 1 25 dC 1 25 
(6) The cost of producing a set is C =  

X X dx 4 x 
dCldx = 0 gives the critical value x = 10. 

d2C 50 
dx x 3  

critical value, this must be an absolute minimum. 

6. The cost of fuel to run a locomotive is proportional to the square of the speed and is $25/h for 
a speed of 25 mi/h. Other costs amount to $100/h, regardless of the speed. Find the speed 
that minimizes the cost per mile. 
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Let v = required speed, and C = total cost per mile. The fuel cost per hour is kv2,  where the 
constant k is to be determined. When U = 25 mi/h, k v 2  = 625k = 25; hence k = A .  

cost in$/h - v 2 / 2 5 +  100 U 100 - - -  - + -  
25 U 

C (in $/mi) = 
speed in mi/h U 

and - dC = - - - loo = - 50)(u -t 50) .  Since U > 0, the only relevant critical value is U = 50. 
dv 25 u2 25v2 
Because d 2 C / d v 2  is positive to the right of U =50 and negative to the left of U =50, the 

first-derivative test tells us that C assumes a relative minimum at U = 50. Since U = 50 is the only positive 
critical number, the most economical speed is 50 mi/h. 

7. A man in a rowboat at P in Fig. 14-3, 5 mi from the nearest point A on a straight shore, 
wishes to reach a point B, 6 mi from A along the shore, in the shortest time. Where should he 
land if he can row 2 mi/h and walk 4 mi/h? 

P 

Fig. 14-3 

Let C be the point between A and B at which the man lands, and let AC = x. 

The distance rowed is PC = m, and the rowing time required is t ,  = - = 
distance 
speed 2 .  

The distance walked is CB = 6 - x, and the walking time required is t ,  = ( 6  - x)/4. Hknce, the total time 
required is 

1 2 x - V 2 5 + x 2  - X 
t = t ,  + i2  = f v s  + $ ( 6  - x) and - dt - - 

dx 2 v m - 4 -  4 v Z 7  

The critical value, obtained from 2x - 
2.89 mi from A toward B .  (How do we know that this point yields the shortest time?) 

= 0, is x = ;fl- 2.89. Thus, he should land at a point 

8. A given rectangular area is to be fenced off in a field that lies along a straight river. If no 
fencing is needed along the river, show that the least amount of fencing will be required when 
the length of the field is twice its width. 

Let x be the length of the field, and y its width. The area of the field is A = xy. The fencing required 
dY dF = 0, d y  = - 1 d F  

is F =  x + 2 y ,  and - = 1 + 2 -. When - 
d A  dr dy dx 
dr dr 

dx dx 2 '  

Also, - = 0 = y + x - .  Then y - f x  = 0, and x = 2y as required. 

To see that F has been minimized, note that - = - - and dY Y2  
d r A  

Now use the second-derivative test and the uniqueness of the critical value. 

9. Find the dimensions of the right circular cone of minimum volume V that can be cir- 
cumscribed about a sphere of radius 8 in. 
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Let x = radius of base of cone, and y + 8 = altitude of cone (Fig. 14-4). From similar right triangles 
A B C  and A E D ,  we have 

x -  - Y + 8  or x =  2 64(Y + 812 - - 64(Y + 8) 

s- lJ j7?i  y 2  - 64 Y - 8  
Also , 

The pertinent critical value is y = 24. Then the altitude of the cone is y + 8 = 32 in, and the radius of the 
base is x = 8 f i  in. (How do we know that the volume has been minimized?) 

10. Find the dimensions of the rectangle of maximum area A that can be inscribed in the portion 
of the parabola y 2  = 4px intercepted by the line x = a. 

Let PBB’P’ in Fig. 14-5 be the rectangle, and (x, y )  the coordinates of P. Then 

d A  = 2 a - -  3Y2 A = 2y(a - x) = 2y 
dY 2P 

Solving d A l d y  = 0 yields the critical value y = d m .  The dimensions of the rectangle are 2 y  = :G 
and a - x = a - y214p = 2 ~ 1 3 .  

Since 7 = - - y < 0 ,  the second-derivative test and the uniqueness of the critical value ensure 
d% 3 
dv P 

that we have found-the maximum area. 

11. Find the height of the right circular cylinder of maximum volume V that can be inscribed in a 
sphere of radius R .  (See Fig. 14-6.) 

Let r be the radius of the base, and 2h the height, of the cylinder. From the geometry, V =  27rr2h 
and r2  + h2 = R2. Then 

dh 
dr + 2rh)  and 2r + 2 h  - = O  dr 

so - = 27r - - + 2rh . When V is a maximum, dVldr = 0, from From the last relation, - = - - 

which r2 = 2h2. 
Then R 2  = r2  + h2 = 2h2 + h2, so that h = R I G  and the height of the cylinder is 2 h  = 2 R I G .  The 

second-derivative test can be used to verify that we have found a maximum value of V.  

( 2  ) d h  r dV 
dr h’  dr 

12. A wall of a building is to be braced by a beam which must pass over a parallel wall 10 ft high 
and 8 ft from the building. Find the length L of the shortest beam that can be used. 



110 APPLIED PROBLEMS INVOLVING MAXIMA A N D  MINIMA [CHAP. 14 

Let x be the distance from the foot of the beam to the foot of the parallel wall, and y the distance 
from the ground to the top of the beam, in feet. (See Fig. 14-7.) Then L = v m .  Also, from 

similar triangles, - = - , s o y =  
y x + 8  1O(x + 8) 
10 x X 

. Then 

L =  

- dL 
dx 
-- 

d(x  + 8)’ + 1OO(x + 8)2 - x + 8 
- 

X2 X 

x[(x’ + + X(X + 8)(x2 + l O O ) ~ ” ’ ]  - (X + 8)(x2 + - x3 - 800 
- 

X2 X 2 V X - E  

The relevant critical value is x = m. The length of the shortest beam is 

2m + $4mi3m + 100 = (rn + 4)3’2 ft 
2 m  

The first-derivative test guarantees that we really have found the shortest length. 

Supplementary Problems 

13. The sum of two positive numbers is 20. Find the numbers (a) if their product is a maximum; (b )  if the 
sum of their squares is a minimum; (c) if the product of the square of one and the cube of the other is a 
maximum. Ans. (a)  10, 10; ( b )  10, 10; (c) 8, 12 

14. The product of two positive number is 16. Find the numbers (a) if their sum is least; (6) if the sum of 
one and the square of the other is least. Ans. (a) 4, 4; (6) 8, 2 

15. An open rectangular box with square ends is to be built to  hold 6400 ft3 at a cost of $0.75/ft2 for the base 
and $0.25/ft2 for the sides. Find the most economical dimensions. Ans. 20 X 20 X 16 ft 

16. A wall 8 ft high is 3g ft from a house. Find the shortest ladder that will reach from the ground to the 
house when leaning over the wall. Ans. 152 ft 

17. A company offers the following schedule of charges: $30 per thousand for orders of 50,000 or  less, with 
the charge per thousand decreased by 37iC for each thousand above 50,000. Find the order size that 
makes the company’s receipts a maximum. Ans. 65,000 

18. Find the equation of the line through the point (3 ,4)  which cuts from the first quadrant a triangle of 
minimum area. Ans. 4x + 3y - 24 = 0 

19. At what first-quadrant point on the parabola y = 4 - x2 does the tangent, together with the coordinate 
axes, determine a triangle of minimum area. Ans. ( 2 d / 3 ,  8/3)  
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20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

Find the minimum distance from the point (4,2) to the parabola y2 = 8 x .  Am. 2 f i  units 

A tangent is drawn to the ellipse x2/25 + y2/16 = 1 so that the part intercepted by the coordinate axes is a 
minimum. Show that its length is 9 units. 

A rectangle is inscribed in the ellipse x2/400 + y2/225 = 1 with its sides parallel to the axes of the ellipse. 
Find the dimensions of the rectangle of (a )  maximum area and (6) maximum perimeter which can be so 
inscribed. Am. (a)  2 0 f i  X 1 5 f i ;  (6) 32 X 18 

Find the radius R of the right circular cone of maximum volume that can be inscribed in a sphere of 
radius r. Am. R = $ r e  

A right circular cylinder is inscribed in a right circular cone of radius r .  Find the radius R of the cylinder 
(a )  if its volume is a maximum; (6) if its lateral area is a maximum. 

Am. (a )  R = $ r ;  ( b )  R = $r 

Show that a conical tent of given capacity will require the least amount of material when its height is fi 
times the radius of the base. 

Show that the equilateral triangle of altitude 3r is the isosceles triangle of least area circumscribing a 
circle of radius r. 

Determine the dimensions of the right circular cylinder of maximum lateral surface that can be inscribed 
in a sphere of radius 8 in. Am. h = 2r = 8 f i  in 

Investigate the possibility of inscribing a right circular cylinder of maximum total area in a right circular 
cone of radius r and height h. Ans. if h > 2r, radius of cylinder = $ h r / ( h  - r) 



Chapter 15 

Rectilinear and Circular Motion 

RECTILINEAR MOTION. The motion of a particle P along a straight line is completely described 
by the equation s = f(t), where t is time and s is the directed distance of P from a fixed point 0 
in its path. 

The velocity of P at time t is U = ds/dt. If U > 0, then P is moving in the direction of 
increasing s. If U < 0, then P is moving in the direction of decreasing s. 

The speed of P is the absolute value 1 0 1  of its velocity. 

du d2s 
The acceleration of P at time t is a = - = - If a > 0, then U is increasing; if a < 0, then U 

dt dt2 * 

If U and a have the same sign, the speed of P is increasing. If U and a have opposite signs, 
is decreasing. 

the speed of P is decreasing. (See Problems 1 to 5.) 

CIRCULAR MOTION. The motion of a particle P along a circle is completely described by the 
equation 8 = f(t), where 8 is the central angle (in radians) swept over in time t by a line joining 
P to the center of the circle. 

The angular velocity of P at time t is o = d8ldt. 
d o  d28 

The angular acceleration of P at time t is a = - = - dt dt2 * 
If a = constant for all t ,  then P moves with constant angular acceleration. If a = 0 for all t, 

then P moves with constant angular velocity. (See Problem 6.) 

Solved Problems 

In the following problems on straight-line motion, distance s is in feet and time t is in seconds. 

1. A body moves along a straight line according to the law s = i t 3  - 2t. Determine its velocity 
and acceleration at the end of 2 seconds. 

ds 3 
dt 2 
du 
dt 

U = - = - t 2  - 2; hence, when t = 2, U = i(2)2 - 2 = 4 ftlsec. 

a = - = 3t; hence, when t = 2, a = 3(2) = 6 ft/sec2. 

2. The path of a particle moving in a straight line is given by s = t 3  - 6t2 + 9t + 4. 
( a )  Find s and a when U = 0. 
(b) Find s and U when a = 0. 
( c )  When is s increasing? 
( d )  When is U increasing? 
( e )  When does the direction of motion change? 

ds dv 
dt dt 

U = - = 3 t 2 -  12r + 9 = 3(t  - l ) ( t  - 3) U = - = 6(t - 2) We have 

112 
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(a )  When U =0,  t =  1 and 3. When t =  1, s = 8  and a =  -6. When t = 3 ,  s = 4  and a = 6 .  
(b) When a = 0 ,  t = 2 .  At t = 2 ,  s = 6  and u = - 3 .  
(c )  s is increasing when U > O ,  that is, when t < 1 and t > 3. 
(d) U is increasing when a > 0 ,  that is, when t > 2 .  
(e) The direction of motion changes when U = 0 and a # 0. From (a )  the direction changes when t = 1 

and t = 3. 

3. A body moves along a horizontal line according to s = f(t) = t3 - 9t2 + 24t. 
(a)  When is s increasing, and when is it decreasing? 
(b) When is U increasing, and when is it decreasing? 
(c) When is the speed of the body increasing, and when is it decreasing? 
(d) Find the total distance traveled in the first 5 seconds of motion. 

ds du 
dt dt 

U =  - =3t2 -18 t+24=3( t -2 ) ( t -4 )  ~ = - = 6 ( t - 3 )  We have 

s is increasing when U > 0, that is, when t < 2 and t > 4. 
s is decreasing when U < 0, that is, when 2 < t <4. 
U is increasing when a > O ,  that is, when t > 3. 
U is decreasing when a < O ,  that is, when t < 3. 
The speed is increasing when U and a have the same sign, and decreasing when U and a have opposite 
signs. Since U may change sign when t = 2 and t = 4 while a may change sign at t = 3, their signs are 
to be compared on the intervals t < 2 ,  2 <  t < 3 ,  3 <  t < 4 ,  and t > 4 :  
On the interval t <  2, U > 0 and a < 0; the speed is decreasing. 
On the interval 2 < t < 3, U < 0 and a < O ;  the speed is increasing. 
On the interval 3 < t < 4, U < 0 and a > 0; the speed is decreasing. 
On the interval t > 4, U > 0 and a > 0; the speed is increasing. 
When t = 0, s = 0 and the body is at 0. The initial motion is to the right (U > 0) for the first 2 
seconds; when t = 2, the body is s = f(2) = 20 ft  from 0. 

During the next 2 seconds, it moves to the left, after which it is s =f(4) = 16 ft from 0. 
It then moves to the right, and after 5 seconds of motion in all, it is s = f(5) = 20 ft from 0. The 

total distance traveled is 20 + 4 + 4 = 28 ft  (see Fig. 15-1.) 

0 m 

4. A particle moves in a horizontal line according to s = f(t) = t4 - 6t3 + 12t2 - 10t + 3. 
When is the speed increasing, and when decreasing? 
When does the direction of motion change? 
Find the total distance traveled in the first 3 seconds of motion. 

Here 
du 

dt dt 
U = dr = 4t3 - 18t2 + 24t - 10 = 2(t - 1)'(2t - 5) U = - = 12(t - l)( t  - 2) 

U may change sign when t = 1 and t = 2.5; a may change sign when t = 1 and t = 2. 
On the interval t < 1, U < 0 and a > 0; the speed is decreasing. 
On the interval 1 < t < 2, U < 0 and a < 0; the speed is increasing. 
On the interval 2 < t < 2.5, U < 0 and a > 0; the speed is decreasing. 
On the interval t > 2.5, U > 0 and a > 0; the speed is increasing. 
The direction of motion changes at t = 2.5, since U = 0 but a # 0 there; it does not change at t = 1, 
since U does not change sign as t increases through t = 1. Note that when t = 1, U = 0 and a = 0, SO 

that no information is available. 
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(c) When t = 0, s = 3 and the particle is 3 ft to the right of 0. The motion is to the left for the first 2.5 

f t  to the right. The total distance traveled is 
seconds, after which the particle is $ f t  to the left of 0. 

3 +  fi + = f t  (see Fig. 15-2). 
When t =  3, s = O ;  the particle has moved 

I ------- .) I- 

27/16 

Fig. 15-2 

5. A stone, pro’ected vertically upward with initial velocity 112 ft/sec, moves according to 
s = 112t - 16t , where s is the distance from the starting point. Compute ( a )  the velocity and 
acceleration when t = 3 and when t = 4, and (6) the greatest height reached. (c) When will its 
height be 96 ft? 

We have U = ds/dt = 112 - 32t and a = du/dt = -32. 
( a )  At t = 3, U = 16 and a = -32. The stone is rising at 16 ft/sec. 

At t = 4, U = - 16 and a = -32. The stone is falling at 16 ft/sec. 
(6) At the highest point of the motion, U = O .  Solving U = O  = 112 - 32t yields t = 3.5. At this time, 

s = 196 ft. 
(c) Letting 96= 112t- 16t2 yields t 2  -7t + 6 =0,  from which t =  1 and 6. At the end of 1 second of 

motion the stone is at a height of 96 ft  and is rising, since U > O .  At the end of 6 seconds it is at the 
same height but is falling since U < 0. 

2’ 

6. A particle rotates counterclockwise from rest according to 8 = t3/50 - t, where 8 is in radians 
and t in seconds. Calculate the angular displacement 8, the angular velocity o, and the angular 
acceleration a! at the end of 10 seconds. 

Supplementary Problems 

7. A particle moves in a straight line according to s = t 3  - 6t2 + 9t, the units being feet and seconds. Locate 
the particle with respect to its initial position (t  = 0) at 0, find its direction and velocity, and determine 
whether its speed is increasing or decreasing when (a )  t = 4 ,  (6) t = $,  ( c )  t = t ,  (d) t = 4. 

Am. (a) 9 ft to the right of 0; moving to the right with U = ft/sec; decreasing 
(6) 8 ft to the right of 0; moving to the left with U = - f ftlsec; increasing 
(c) ft to the right of 0; moving to the left with U = - $ ftlsec; decreasing 
(d) 4 ft  to the right of 0; moving to the right with U = 9 ft/sec; increasing 

8. The distance of a locomotive from a fixed point on a straight track at time t is given by s = 

3t4 - 44t3 + 144t2. When is it in reverse? Am. 3 < t < 8 

9. Examine, as in Problem 2, each of the following straight-line motions: (a )  s = t 3  - 9t2 + 241; (b )  
s = t 3  - 3t2 + 3t + 3; (c) s = 2t3 - 12t2 + 18t - 5 ;  (d) s = 3t4 - 28t3 + 90t2 - 108t. 

Ans. (a) stops at t = 2 and t = 4 with change of direction 
(6) stops at t = 1 without change of direction 
(c) stops at t = 1 and t = 3 with change of direction 
(d) stops at t = 1 with, and t = 3 without, change of direction 



CHAP. 151 RECTILINEAR AND CIRCULAR MOTION 115 

10. 

11. 

12. 

13. 

A body moves vertically up from the earth according to s = 64t - 16t2. Show that it has lost one-half its 
velocity in its first 48 ft  of rise. 

A ball is thrown vertically upward from the edge of a roof in such a manner that it eventually falls to the 
street 112 ft  below. If it moves so that its distance s from the roof at time t is given by s = 96t - 16t2, find 
(a )  the position of the ball, its velocity, and the direction of motion when t = 2, and (6) its velocity when 
it strikes the street. (s is in feet, and t in seconds.) 

Am. (a) 240 ft above the street, 32 ft/sec upward; (6) -128 ft/sec 

A wheel turns through an angle 8 radians in time t seconds so that 8 = 128t - 12t2. Find the angular 
velocity and acceleration at the end of 3 sec. Am. o = 56 radlsec; a = -24 rad/sec2 

Examine Problems 2 and 9 to conclude that stops with reversal of direction occur at values of t for which 
s =f ( t )  has a maximum or minimum value while stops without reversal of direction occur at inflection 
points. 



Chapter 16 

RELATED RATES. If a quantity x is a function of time t ,  the time rate of change of x is given by 
dxldt. 

When two or more quantities, all functions of t, are related by an equation, the relation 
between their rates of change may be obtained by differentiating both sides of the equation. 

Solved Problems 

1. Gas is escaping from a spherical balloon at the rate of 2 ft3/min. How fast is the surface area 
shrinking when the radius is 12 ft? 

At time t the sphere has radius r ,  volume V =  +7rr3, and surface S = 47rr2. Then 

dV dr dS dr dS 2 dV 2 1 
3 - = 4 7 r r 2 -  and - = 8 7 r r -  dt r dt 12 dt dt dt dt . so - = - - = - (-2) = - - ft2/min 

2. Water is running out of a conical funnel at the rate of 1 in3/sec. If the radius of the base of the 
funnel is 4 in and the altitude is 8 in, find the rate at which the water level is dropping when it 
is 2 in from the top. 

Let r be the radius and h the height of the surface of the water at time t, and V the volume of water 
in the cone (see Fig. 16-1). By similar triangles, r / 4 =  h / 8  or r = i h .  Also 

dV 1 dh 
- nh2 - . so dt 

1 1 
3 12 dt 4 

V =  - Tr2h = - 7rh3 

When dV/dt = - 1 and h = 8 - 2 = 6, then dh/dt  = - 1 /97r idsec.  

3. Sand falling from a chute forms a conical pile whose altitude is always equal to $ the radius of 
the base. (a)  How fast is the volume increasing when the radius of the base is 3 ft and is 
increasing at the rate of 3 in/min? (b) How fast is the radius iacreasing when it is 6 ft and the 
volume is increasing at the rate of 24 ft3/min? 

Let r be the radius of the base, and h the height of the pile at time t. Then 

dV 4 dr - - Tr2  - 1 4 3  

3 9 dt 3 dt and V =  - 7rr2h= - 7rr . So - - 4 
3 

h = - r  

116 
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(a) When r = 3 and dr/dt  = a , dV/dt = 37r ft3/min. 
(6) When r = 6 and W / d t  = 24, dr/dt = 1 /27r ft/min. 

4. Ship A is sailing due south at 16 mi/h, and ship B ,  32 miles south of A ,  is sailing due east at 
12 mi/h. (a) At what rate are they approaching or separating at the end of 1 h? ( 6 )  At the end 
of 2 h? (c) When do they cease to approach each other, and how far apart are they at that 
time? 

Let A ,  and B, be the initial positions of the ships, and A ,  and B, their positions r hours later. Let D 
be the distance between them t hours later. Then (see Fig. 16-2) 

dt 
d D  400t-512 - 

D 
D 2  = (32 - 16t)’ + (12t)’ and - - 

( a )  When t =  1 ,  D =20 and dD/d t=  -5.6. They are approaching at 5.6 mi/h. 
(6) When t = 2,  D = 24 and dD/dt  = 12. They are separating at 12 mi/h. 
(c) They cease to approach each other when dD/dt  = 0, that is, when t = 512/400 = 1.28 h, at which 

time they are D = 19.2 mi apart. 

N 

Bo 

Fig. 16-2 

5. Two parallel sides of a rectangle are being lengthened at the rate of 2 in/sec, while the other 
two sides are shortened in such a way that the figure remains a rectangle with constant area 
A = 50 in2. What is the rate of change of the perimeter P when the length of an increasing side 
is (a)  5 in? ( 6 )  10 in? (c) What are the dimensions when the perimeter ceases to decrease? 

Let x be the length of the sides that are being lengthened, and y the length of  the other sides, at 
time t .  Then 

d A  dy dr 
dr dt dt 

= x  - + y  - = o  dP 
P = 2 ( x + y )  dt = 2 ( $  + 2) A = x y = 5 0  - 

(a) When x = 5, y = 10 and dx/dt  = 2. Then 

dY 5 - + lO(2) = 0 , So d y  = -4  and dp = 2(2 - 4 )  = -4  in/sec (decreasing) 
dt dt dt 

( 6 )  When x = 10, y = 5 and dxldt = 2. Then 

dP 
- = 2(2 - 1 )  = 2 inlsec (increasing) 
dt 

dy - - 1 and dY 10 - + 5 ( 2 ) = 0 .  SO - - 
dt dt 

(c) The perimeter will cease to decrease when dP/dt = 0, that is, when dy/d t  = -dx/dt  = -2. Then 
x ( -  2 )  + y (2 )  = 0, and the rectangle is a square of side x = y = 5 f i  in. 

6. The radius of a sphere is r in time tsec. Find the radius when the rates of increase of the 
surface area and the radius are numerically equal. 

dS dr dS dr 
The surface area of the sphere is S = 47rr2 so - = 87rr - When - = - 8 n r  = 1 and the radius 

dt dt * dt dt’ 
is r = 1 / 8 ~  in. 
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7. A weight W is attached to a rope 50 ft long that passes over a pulley at point P, 20 ft above the 
ground. The other end of the rope is attached to a truck at a point A,  2 ft above the ground as 
shown in Fig. 16-3. If the truck moves off at the rate of 9 ft/sec, how fast is the weight rising 
when it is 6 f t  above the ground? 

P 

Fig. 16-3 

Let x denote the distance the weight has been raised, and y the horizontal distance from point A ,  
where the rope is attached to the truck, to the vertical line passing through the pulley. We must find 
dxldt when dyldt = 9 and x = 6. 

Now 
dy - 3 0 + x  - G?X 

dt y dt 
y’ = (30 + x ) ~  - (18)’ and - 

30+6  dx d x 9  
1 8 f l  d t ’  dt 2 

When x = 6 ,  y = 1 8 ~  and dyldt = 9. Then 9 = - - from which - = - fi ftlsec. 

8. A light L hangs H ft above a street. An object h ft tall at 0, directly under the light, is moved 
in a straight line along the street at U ftlsec. Investigate the velocity V of the tip of the shadow 
on the street after t sec. (See Fig. 16-4.) 

L 

Fig. 16-4 

After t seconds the object has been moved a distance vt. Let y be the distance of the tip of the 
shadow from 0. Then 

y - v t  h Hvt dy Hv 1 and so V =  - = - = - - = -  
dt H - h  l - h l H V  or Y = -  

Y H  
Thus the velocity of the tip of the shadow is proportional to the velocity of the object, the factor of 
proportionality depending upon the ratio h l H .  As h ---* 0, V-* U, while as h 3 H ,  V increases ever more 
rapidly. 
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Supplementary Problems 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

A rectangular trough is 8 f t  long, 2f t  across the top, and 4 ft deep. If water flows in at a rate of 
2 ft’/min, how fast is the surface rising when the water is 1 f t  deep? Ans. ft/min 

A liquid is flowing into a vertical cylindrical tank of radius 6 f t  at the rate of 8 ft3/min. How fast is the 
surface rising? Ans. 2 / 9 r  ft/min 

A man 5 ft tall walks at a rate of 4 ft/sec directly away from a street light that is 20 ft above the street. 
(a )  At what rate is the tip of his shadow moving? (b) At what rate is the length of his shadow 
changing? Ans. ( a )  ft/sec; ( 6 )  $ ft/sec 

A balloon is rising vertically over a point A on the ground at the rate of 15 ftlsec. A point B on the 
ground is level with and 30 ft from A.  When the balloon is 40 ft from A ,  at what rate is its distance from 
B changing? Ans. 12 ft/sec 

A ladder 20ft long leans against a house. Find the rates at which (a) the top of the ladder is moving 
downward if its foot is 12 ft from the house and moving away at a rate of 2 ft/sec and (b) the slope of the 
ladder is decreasing. Ans. (a )  2 ft/sec; (b) per sec 

Water is being withdrawn from a conical reservoir 3 ft in radius and 10 ft deep at 4 ft3/min. How fast is 
the surface falling when the depth of the water is 6 ft? How fast is the radius of this surface 
diminishing? Ans. 100/81r ft/min; 10/27n ft/min 

A barge, whose deck is 10 ft below the level of a dock, is being drawn in by means of a cable attached to 
the deck and passing through a ring on the dock. When the barge is 24 f t  away and approaching the dock 
at Am. & ftlsec ft/sec, how fast is the cable being pulled in? (Neglect any sag in the cable.) 

A boy is flying a kite at a height of 150 ft. If the kite moves horizontally away from the boy at 20 ft/sec, 
how fast is the string being paid out when the kite is 250 ft  from him? Ans. 16 ft/sec 

One train, starting at 11 A.M., travels east at 45 mi/h while another, starting at noon from the same 
point, travels south at 60 mi/h. How fast are they separating at 3 P.M.? Ans. 1 0 5 f i / 2  mi/h 

A light is at the top of a pole 80 ft high. A ball is dropped at the same height from a point 20 ft from the 
light. Assuming that the ball falls according to s = 16t2, how fast is the shadow of the ball moving along 
the ground 1 sec later? Am. 200 ft/sec 

Ship A is 15 mi east of 0 and moving west at 20 mi/h; ship B is 60 mi south of 0 and moving north at 
15 mi/h. (a )  Are they approaching or separating after 1 h and at what rate? ( 6 )  After 3 h? (c) When are 
they nearest one another? 

Am. (a)  approaching, 1 1 5 / a  mi/h; (6) separating, 9 m / 2  mi/h; ( c )  1 h 55 min 

Water, at a rate of 10 ft3/min, is pouring into a leaky cistern whose shape is a cone 16 ft deep and 8 f t  in 
diameter at the top. At the time the water is 12 ft deep, the water level is observed to be rising at 
4 in/min. How fast is the water leaking away? Ans. (10 - 3r) ft3/min 

A solution is passing through a conical filter 24 in deep and 16 in across the top, into a cylindrical vessel 
of diameter 12 in. At what rate is the level of the solution in the cylinder rising if, when the depth of the 
solution in the filter is 12 in, its level is falling at the rate 1 in/min? Ans. $ in/min 



Chapter 17 

Differentiatio~ of Trigonometric Functions 

RADIAN MEASURE. Let s denote the length of an arc AB intercepted by the central angle AOB 
on a circle of radius r ,  and let S denote the area of the sector AOB (see Fig. 17-1). (Ifs is & of 
the circumference, then angle AOB has measure 1"; if s = r ,  angle AOB has measure 1 radian 
(rad). Recall that 1 rad = 180/7r degrees and 1" = 7rfl80 rad. Thus, 0" = 0 rad; 30" = 7r/6 rad; 
45" = m f 4  rad; 180" = 7r rad; and 360" = 27r rad.) 

Suppose LAOB is measured as a degrees; then 
7r 77 

a r  and S =  - 360 arr2 
s = -  

180 
Suppose next that LAOB is measured as 6 radians; then 

s = 6 r  and S = ; e r2  

(17.1)  

( 1  7.2) 

A comparison of (17.1) and (17.2) will make clear one of the advantages of radian measure. 

\ 

Fig. 17-1 Fig. 17-2 

TRIGONOMETRIC FUNCTIONS. Let 6 be any real number. Construct the angle whose measure 
is 6 radians with vertex at the origin of a rectangular coordinate system, and initial side along 
the positive x axis (Fig. 17-2). Take P(x,  y) on the terminal side of the angle a unit distance 
from 0; then sin 6 = y and cos 6 = x .  The domain of definition of both sin 8 and cos 6 is the set 
of real numbers; the range of sin 6 is - 1 9 y 5 1, and the range of cos 6 is - 1 5 x I 1. From 

sin 6 1 
tan 6 = - and sec6= - 

cos 6 cos 6 

2n - 1 
2 For both tan 6 and sec 8 the domain of defi~ition (cos 6 # 0) is 6 # ~f: - m, (n = 1 ,  2, 

3, .  . .). It is left as an exercise for the reader to consider the functions 

cos 6 1 
cot 6 = - and csc6= - 

sin 6 sin 6 
Recall that, if 6 is an acute angle of a right triangle ABC (Fig. 17-3), then 

opposite side BC adjacent side A C  
hypotenuse AB hypotenuse AB adjacent side AC 

= -  tan 8 = - -- opposite side 3C 
cos 6 = - _ -  sin 6 = 

The slope m of a nonvertical line is equal to tan a, where a is the counterclockwise angle 
from the positive x axis to the line. (See Fig. 17-4.) 

120 
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Fig. 17-3 

Y 

Fig. 17-4 

Table 17-1 lists some standard trigonometric identities, and Table 17-2 contains some useful 
values of the trigonometric functions. 

Table 17-1 

sin2 e + cos2 e = 1 
sin (- e) = - sin 8, cos (- 0) = cos 8 
sin (a + p )  = sin a cos p + cos a sin p 
sin (a  - p )  = sin a cos p - cos a sin p 
cos (a + p )  = cos a cos p - sin a sin p 
cos ( a  - p )  = cos a cos p + sin a sin p 
sin 2a = 2 sin a cos a 
cos 2a = cos2 a - sin2 a = 1 - 2 sin2 a = 2 cos2 a - 1 
sin (a + 2 r )  = sin a, cos (a + 2 r )  = cos a 
sin (a + r) = -sin a, cos (a + 7r) = -cos a, tan (a + r) = tan a 

sin (f - a) =cos  a ,  cos (t - a) =sin a 

sin (T - a) =sin a, cos (r - a) = -cos a 
sec2 a = 1 + tan2 a 

tan (a + p )  = 

tan (a - p )  = 

tan a + tan p 
1 - tan a tan p 
tan a - tan p 

1 + tan a tan p 
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Table 17-2 

X sin x cos x tan x 

0 0 1 0 
1 ~ 1 6  1f2 f i l 2  f l l 3  
vl4 m 2  m 2  1 
v13  v 3 1 2  1 I 2  v3 
IT12 1 0 00 

71 0 -1 0 
3 v I 2  -1 0 00 

In Problem 1, we prove that 

sin 8 
lim - - - 1  
e+o 8 

(Had the angle been measured in degrees, the limit would have been ~ / 1 8 0 .  This is another 
reason why radian measure is always used in the calculus.) 

DIFFERENTIATION FORMULAS 
d 
- (sin x) = cos x 
dx 

d 2 

dx 
d 
- (sec x )  = sec x tan x 
dx 

14. 

16. - (tanx)=sec x 

18. 

(See Problems 2 to 23.) 

d 
- (cos x) = -sin x 
dx 

d 2 

dx 
d 

dx 

15. 

17. - (cotx)= -CSC x 

19. - (CSCX) = -CCSCX cot x 

Solved Problems 

sin 6 cos 6 - 1 
1. Prove: (a) lim - - - 1 and (6) lim = 0. 

ejO e 8-0 8 

sin ( - 6 )  - sin 8 sin 8 
(a) Since ~ - - , we need consider only lim, -. In Fig. 17-5, let 8 = LAOB be a small 

-8 e s-n 8 
positive central angle of a circle of radius O A  =-1. Denote by C the foot of the perpendicular 
dropped from B onto O A ,  and by D the intersection of OB and an arc of radius OC. Now 

so that 
Sector COD 5 ACOB 5 sector AOB 

;e cos2 8 5  5 sin 8 cos 8 5 $8 

OC = COB 8 ,  CB = ein e 

Fig. 17-5 
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Dividing by g8 cos 0 > 0, we obtain 

sin 8 1 
COS e 5 - 5- 

8 cos8 

sin 8 sin 8 
11; hence, lim - = 1. Let 8 + 0 + ;  then costl-1, - + l ,  and 11 lim+ - 

1 
cos 8 e-+o 8 840t 8 

COS e - 1 COS e - 1 COS e + 1 
8-0 8 8-0 e  COS^+ 1 
lim ~ - - lim 

COS* e - 1 sin2 8 
= lim = lim - 

8-0 e(C0s 8 + 1) 8-0  COS 8 + 1) 

sin 8 sin 8 - 
lirn ~ - - = - lim - 

8 4 0  8 8-0  COS^+ 1 

d 
dx 

2. Derive: - (sin x )  = cos x .  

Let y = sin x. Then y + Ay = sin (x + Ax) and 

Ay = sin (x + Ax) - sin x = cos x sin Ax + sin x cos Ax - sin x 

= cos x sin Ax + sin x(cos Ax - 1) 

AY sin Ax + sin COS AX - 1) 
Ax Ax 

-- d~ - lim - = lim cos x - dx A x - 0  AX A x - 0  

sin Ax 
= (cosx) lim - + (sin x) lim 

COS AX - 1 
AX-o AX AX-o AX 

= (cos x)( 1) + (sin x)(O) = cos x 

d 
dx 

3. Derive: - (cos x )  = -sin x .  

d 
dx 

4. Derive: - (tan x )  = sec2 x .  

cos x cos x - sin x (- sin x) 
cos2 x 

cos2 x + sin2 x - 1 
-- = sec2 x - - 

cos2 x cos2 x 

In Problems 5 to 12, find the first derivative. 

d d 
di dx y ’  = cos 3x - (3x) - sin 2x - (2x) = 3 cos 3x - 2 sin 2x 5. y = sin 3x + cos 2x: 

y’ = sec2 x2 (x’) = 2x sec* x2 
2 

dr 6. y=tanx : 

2 d 
di y ’  = 2 tan x - (tan x )  = 2 tan x sec2 x 7. y = tan2 x = (tan x )  : 

8. y=cot( l -2X2):  y ’ =  -csc2(1-2x2)-& d (1-2x2)=4xcsc2(1-2x2) 

123 

9. y = sec3 fi = sec3 x ~ ‘ ~ :  
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10. ,I = m e  = (CSC 2e)1’2: 

1 d 1 
2 dx 2 

p i  = - (CSC 2t1)-*‘~ - (CSC 28) = - - (CSC 2e)-1’2 (CSC 28 cot 28)(2) = - m e  cot 28 

d d 
dx dx f ’ ( x )  = x 2  - (sin x) + sin x - (x2) = x2 cos x + 2x sin x 11. f ( x )  = x 2  sin x :  

d d 
x - (cos x) - cos x - ( x )  cos x dx d x -  -x sin x - cos x - 

X 2  X2 
12. f ( x )  = -: f ‘(4 = 

X 

13. Let y = x sin x ;  find y”’. 

y‘ = x cos x + sin x 
y” = x(-sin x) + cosx + cos x = -x  s inx  + 2cos x 
y‘” = -x cos x - sin x - 2 sin x = -x  cos x - 3 sin x 

14. Let y = tan2 (31 - 2); find y”. 

y’ = 2 tan (3x - 2) sec2 (3x - 2) - 3 = 6 tan (3x - 2) sec2 (3x - 2) 
y” = 6 [tan (3x - 2) - 2 sec (3x - 2) * sec (3x - 2) tan (3x - 2) - 3 + sec2 (3x - 2) sec’ (3x - 2) .  3) 

= 36 tan2 (3x - 2) sec’ (3x - 2) + 18 sec4 (3x - 2) 

15. Let y = sin (x + y); find y’. 

cos (x  + y) 
1 - cos (x + y) y ’ = cos ( x  + y) - (1 + y ’) , so that y ’ = 

16. Let sin y + cos x = 1; find y”. 

sin x 
c o s y . y ‘ - s i n x = O .  So y ‘ = -  cos y 

Then 
cos y cos x - sin x (-sin y) ’  y’ - cos x cos y + sin x sin y * y’  

cos x cos y + sin x sin y (sin x )  /(cos y) - cos x cos2 y + sin‘ x sin y 

y” = - 
cos2 y cos2 y 

- - - 
cos2 y COS’ y 

so 

so 

17. Find f’(7r/3), f”(7r/3), and f ” ’ ( ~ / 3 ) ,  given f ( x )  = sin x cos 3 x .  

f’(x) = -3 sin x sin 3x + cos 3x cos x 
= (cos 3x cos x - sin 3x sin x) - 2 sin x sin 3x 
= cos 4x - 2 sin x sin 3x 

f’(7d3) = - 4 - 2(v3/2)(0) = - 4 
f”(x)  = - 4 sin 4x - 2( 3 sin x cos 3x + sin 3x cos x) 

= -4 sin 4x - 2(sin x cos 3x + sin 3x cos x) - 4 sin x-cos 3x 
= -6 sin 4x - 4f(x) 

f ” ( ~ / 3 )  = -6(-*/2) - 4 ( f i / 2 ) ( -  1) = S G  
f’”(x) = - 24 COS 4~ - 4f’(x) . SO f‘“( n/3)  = - 24( - 4 ) - 4( - 1 ) = 14 
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18. 

19. 

20. 

Find the acute angles of intersection of the curves (I ) y = 2 sin2 x and (2) y = cos 2x on the 
interval 0 < x < 2 ~ .  (See Fig. 17-6.) 

IY 

Fig. 17-6 

We solve 2 sin2 x = cos 2x = 1 - 2 sin2 x to obtain n/6,  5n/6,  7n/6,  and l l n / 6  as the abscissas of 

Moreover, y '  = 4 sin x cos x for (I ), and y '  = -2 sin 2x for (2). Hence, at the point r / 6 ,  the curves 

= -fl, the acute angle of intersection is 60". At each of the remaining Since tan 4 = 

the points of intersection. 

have slopes rn, = fi and M, = -fi, respectively. 
fi+fl 

1 - 3  
intersection points, the acute angle of intersection is also 60". 

A rectangular plot of ground has two adjacent sides along Highways 20 and 32. In the plot is a 
small lake, one end of which is 256 ft from Highway 20 and 108 f t  from Highway 32 (see Fig. 
17-7). Find the length of the shortest straight path which cuts across the plot from one 
highway to the other and touches the end of the lake. 

Let s be the length of the path, and 8 the angle it makes with Highway 32. Then 

s = AP + PB = 108 csc 8 + 256 sec 8 

a!.s 
-= -108csc 8 cot 8 + 256sec 8 tan 8 = 
d8 sin' e cos2 e 

- 108 cos3 8 + 256 sin3 8 

Now dsld8 = 0 when - 108 cos3 8 + 256 sin3 8 = 0, or when tan3 8 = 27 /64, and the critical value is 
8 = arctan 3/4. Then s = 108 csc 8 + 256 sec 8 = 108(5/3) + 256(5 /4) = 500 ft. 

B 

Fig. 17-7 

Discuss the curve y = f ( x )  = 4 sin x - 3 cos x on the interval [0,27r]. 

When x = 0, y =f(O) = 4(0) - 3(1) = -3. 
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Setting f ( x )  = 0 gives tan x = 314, and the x-intercepts are x = 0.64 rad and x = 7r + 0.64 = 3.78 rad. 
f ’ ( x )  = 4 cos x + 3 sin x .  Setting f ’ ( x )  = 0 gives tan x = - $, and the critical values are 

f ” ( x )  = - 4  sin x + 3 cos x. Setting f ” ( x )  = 0 gives tan x = 314, and the possible points of inflection 

f”’(x) = - 4  cos x - 3 sin x .  In addition, 

1. 

2 .  
3. 

x = T - 0.93 = 2.21 and x = 27r - 0.93 = 5.35. 

are x = 0.64 and x = 7~ + 0.64 = 3.78. 

When x = 2.21 ,  sinx = 4 / 5  and cosx = -315; then f ” (x )<O,  so x = 2 . 2 1  yields a relative 
maximum of 5. x = 5.35 yields a relative minimum of -5. 
f”’(0.64) # 0 and f”’(3.78) # 0. The points of inflection are (0.64,O) and (3.78,O). 
The curve is concave upward from x = 0 to x = 0.64; concave downward from x = 0.64 to 3.78; 
and concave upward from x = 3.78 to 27r. (See Fig. 17-8.) 

Fig. 17-8 Fig. 17-9 

21. Four bars of lengths a, 6, c, and d are hinged together to form a quadrilateral (Fig. 17-9). 
Show that its area A is greatest when the opposite angles are supplementary. 

Denote by 8 the angle included by the bars of lengths a and b,  by 4 the opposite angle, and by h the 
length of the diagonal opposite these angles. We are required to maximize 

subject to 

A = $ a b  sin 8 + fcd sin 4 

h2 = a’ + b 2  - 2ab cos 8 = c2 + d 2  - 2cd cos 4 
Differentiation with respect to 8 yields, respectively, 

d A  1 1 d 4  d 4  - ab  sin 8 = cd sin 4 - 
d8 2 2 d8 d8 

a b  cos 8 + - cd cos 4 - = 0 and 

We solve for d+/d8 in the second of these equations and substitute in the first to obtain 

ab sin 8 
cd sin 4 ab  cos 8 + cd cos 4 ~ = 0 or sin 4 cos 8 + cos 4 sin 8 = sin (4 + 0 )  = 0 

Then 4 + 8 = 0 or T ,  the first of which is easily rejected. 

22. A bombardier is sighting on a target on the ground directly ahead. If the bomber is flying 2 mi 
above the ground at 240 mi/h, how fast must the sighting instrument be turning when the 
angle between the path of the bomber and the line of sight is 30°? 

We have dxldt = -240 mi/h, 8 = 30°, and x = 2 cot 8 in Fig. 17-10. From the last equation, 

dx do d8 de 3 
dt dt dt dt 2 T  
- = - 2 ~ s ~ ’  8 - or - 240 = - 2 ( 4 )  - so - = 30 rad/h = - degree/sec 

23. A ray of light passes through the air with velocity U, from a point P, a units above the surface 
of a body of water, to some point 0 on the surface and then with velocity U, to a point Q, 6 
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Fig. 17-10 

P I 
240 milhr 

i Q 
Fig. 17-11 

127 

units below the surface (Fig. 17-11). If OP and OQ make angles of 8, and €12 with a 
perpendicular to the surface, show that passage from P to Q is most rapid when sin 8,lsin O2 = 
v, lv,. 

Let t denote the time required for passage from P to Q, and c the distance from A to B ;  then 

a sec 8, b sec 8, 
t = - + -  and c = a tan 8, + b tan 8, 

U1 U 2  

Differentiating with respect to 8, yields 

dt a sec 8, tan 8, b tan 8, sec 8, de2 do2 
del U, U 2  del del 

and 0 = a sec’ 8, + b sec’ 8, - - + - - -  

de2 a sec’ 8, 

d8, b sec2 8, 
From the last equation, - = -- . For t to be a minimum, it is necessary that 

dt a sec 8, tan 8, b sec 8, tan 8, + - =  
do, U, U 2  

from which the required relation follows. 

Supplementary Problems 

sin 2x sin 2x sin ax sin’ 2x 
24. Evaluate: (a) lim - =21im -* , (b) lim -- (c) lim -. 

x+o x r-0 2x x-o sin bx ’ 1-0 x sin’ 3x 

Ans. 

Derive differentiation formula 17, using first (a )  cot U = - and then (b) cot U = L. Also derive 
differentiation formulas 18 and 19. 

(a )  2; (b) alb;  ( c )  8 /9  

cos U 
sin U tan U 

25. 

In Problems 26 to 45, find the derivative dyldu or dpld0. 

26. y = 3sin 2x Am. 6cos2x 27. y = 4 c o s  $x Am. -2sin i x  

28. y = 4 t a n 5 x  Ans. 20 sec’ 5x 29. y =  a cot8x Am. - 2 ~ s ~ ~  8~ 

30. y = 9 s e c  4x Am. 3 sec f x  tan i x  31. y = f csc4x Ans. - csc 4x cot 4x 

32. y = sin x - x cos x + x2 + 4x + 3 Am. x s i n x + 2 x + 4  

33. p = c 8  Ans. (cos 8)/(2=8) 34. y = sin 2/x Am. ( - ~ c o s ~ / x ) / x ’  
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35. y = c o s ( l - x ' )  

y = cos ( 1  - x ) 2  36. 

37. 

N. 

39. 

40. 

y = sin' ( 3 x  - 2 )  

y = sin3 ( 2 x  - 3 )  

y = + tan x sin 2 x  

1 
= (sec26 - 1)3'2 

tan 28 
41* 

p = 1 - cot 28 

Ans. 2x sin ( 1  - x 2 )  

Ans. 3 sin (6x - 4 )  

Ans. - 5 {cos (6x - 9) - COS ( 2 x  - 3 ) )  

Ans. sin2x 

- 3  sec 28 tan 28 
(sec 28 - I ) ' ' ~  

sec2 26 - 4 csc 48 

Ans. 

Ans. 2 
( 1  - cot 2e)2 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

y = x 2  sin x + 2x  cos x - 2 sin x Ans. x 2  cosx 

sin y = cos 2x Am. -2  sin 2xlcos y 

cos 3y = tan 2x Am. - 2  sec2 2x13 sin 3y 

x cos y = sin ( x  + y )  
cos y - cos ( x  + y)  

Ans. 
x sin y + cos ( x  + y) 

d 2x d ' " x  
dt dt2" 

If x = A sin kt + B cos kt for A ,  B, and k constants, show that 7 = - k2x and - = (- l)"k2"x. 

Show: (a) y" + 4y = 0 when y = 3 sin ( 2 x  + 3 ) ;  ( b )  y"' + y" + y '  + y = 0 when y = sin x + 2 cos x .  

Discuss and sketch on the interval 0 d x < 2 7 ~ :  
(a) y = sin 2x 
( d )  y = s i n x ( l + c o s x )  

Ans. 

( 6 )  y = cos2 x - cos x 
( e )  y = 4 cos3 x - 3 cos x 

( c )  y = x - 2 sin x 

( U )  maximum at x = ~ 1 4 ,  57 r /4 ;  minimum at x = 3 ~ 1 4 ,  7 ~ 1 4 ;  inflection point at x = 0, 7r/2, 7r, 

(6) maximum at x = 0, n; minimum at x = ~ 1 3 ,  5 ~ 1 3 ;  inflection point at x = 32"32', 126"23', 

(c) maximum at x = 5 ~ 1 3 ;  minimum at x = n13;  inflection point at x = 0, 7r 
( d )  maximum at x = ~ 1 3 ;  minimum at x = 5 ~ 1 3 ;  inflection point at x = 0, n, 104"29', 255'31' 
(e) maximum at x = 0, 27r /3,  4 ~ 1 3 ;  minimum at x = ~ 1 3 ,  7r, 5 ~ 1 3 ;  inflection point at x = r / 2 ,  

311-12 

233"37', 327'28' 

37r/2,  ~ 1 6 ,  5 ~ 1 6 ,  7 ~ 1 6 ,  l l7r/6 

If the angle of elevation of the sun is 45" and is decreasing at 
level ground by a pole 50 ft tall lengthening? 

rad/h, how fast is the shadow cast on 
Ans. 25 ft/h 

A kite, 120 f t  above the ground, is moving horizontally at the rate of 10 ftlsec. At what rate is the 
inclination of the string to the horizontal diminishing when 240 ft of string are paid out? 

Ans. & radlsec 

A revolving beacon is situated 3600 ft off a straight shore. If the beacon turns at 47r rad/min, how fast 
does the beam sweep along the shore at (a) its nearest point, (6) at a point 4800ft from the nearest 
point? Am. (a) 2407r ftlsec; (b) 20007r13 ftlsec 

Two sides of a triangle are 15 and 20 ft long, respectively. (a) How fast is the third side increasing if the 
angle between the given sides is 60" and is increasing at the rate 2"/sec? (6) How fast is the area 
increasing? Ans. (a) 7 r / a  ftlsec; (6 )  g7r ft2/sec 



Chapter 18 

Differentiation of Inverse Trigonometric Functions 

THE INVERSE TRIGONOMETRIC FUNCTIONS. If x = sin y ,  the inverse function is written 
y = arcsin x .  (An alternative notation is y = sin-' x . )  The domain of arcsin x is - 1 I x I 1, 
which is the range of sin y. The range of arcsin x is the set of real numbers, which is the domain 
of sin y. The domain and range of the remaining inverse trigonometric functions may be 
established in a similar manner. 

The inverse trigonometric functions are multivalued. In order that there be agreement on 
separating the graph into single-valued arcs, we define in Table 18-1 one such arc (called the 
principal branch) for each function. In Fig. 18-1, the principal branches are indicated by a 
thicker curve. 

Table 18-1 

Function Principal Branch 

y = arcsin x - t r s y 5 + . r r  

y = arccos x o s y 5 r  
y = arctan x - : . r r < y < ; T T  

y = arccot x o<y< . r r  
y=arcsecx - r s y < - $ r ,  01y< $IT 

y = arccsc x - . r r < y s - ; r ,  O < y s $ r  

(Y 

y = arcsin x 

DIFFERENTIATION FORMULAS 

d 1 
- (arcsin x )  = - 20. 
dx v F - 7  
d 1 
- (arctan x )  = - 
dx 1 + x 2  

22. 

d 1 
24. - (arcsec x )  = 

dx X V T i  

y = arccos x 

Fig. 18-1 

y = arctan x 

d 1 - (arccos x )  = - - 21. 
dx V F - 7  
d 1 - (arccot x )  = - - 

dx  1 + x 2  
23. 

d 1 - (arccsc x )  = - 25. 
dx  X V T i  

129 
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1. 

Solved Problems 

d 1 d 1 
Derive: (a) - (arcsin x )  = 

dx 
* (b) - (arcsec x )  = 6-7' dx X f i '  

(a )  Let y = arcsin x .  Then x = sin y and 

d d d dY 1 = - ( x ) = -  
dx dx dY dx dx dx (sin y )  = - (sin y )  - = cos y 9 = vx 9 

dY 1 

h I G - 7  
the sign being positive since cos y 2 0 on the interval - i n  5 y I 1 n. Thus, - = - 

(6) Let y = arcsec x .  Then x = sec y and 

d d d dY dY 1 = (x) = (sec y )  = - (sec y )  - = sec y tan y - v~ 3 dY dx d x = x  dx 

the sign being positive since tan y 2 0 on the intervals 0 (r y < $ n  and - n I y < - $T .  Thus, 
d 1 
- (arcsec x )  = dx x G 7 '  

In Problems 2 to 8, find the first derivative. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

1 d 1 - (2x  - 3) = dY - =  
dx V i q i F F j -  v 3 x  - x2 - 2 

y = arcsin (2x - 3): 

y = arccos x2: 

y = arctan 3 x 2 :  
dY 1 d 6 x  

- (3x') = - dx 1 + (3x2)2 dx 1 + 9x4 
-= 

l + x  
f ( x )  = arccot -- 

1 - x '  

1 (1 - x )  - (1 + x ) ( -  1) =-- 1 1 

( 1  - x)' 1 + x2 
f ' ( x )  = - 

1 - x  1 + ( 2 ) *  

f ( x )  = x m  + a2 arcsin : 

1 
y = x arccsc - + V i Z :  

X 

1 
y = a arctan (: tanx): 
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a’ b 
- sec’ x 

1 

sec’x - 1 - - - 
a’ + b2 tan2 x a’ cos’ x + b2 sin2 x 

9. y2  sin x + y = arctan x ;  find y’. 
1 

2yy’sinx + y2 cosx + y’ = - 
1 + x2 

1 - (1 + x 2 ) y 2  cos x 
y’cosx and y ’ =  y’(2y sin x + 1) = - - 1 

1 + x2 
Hence, 

(1 + x2)(2y sin x + 1) 

10. In a circular arena (Fig. 18-2) there is a light at L .  A boy starting from B runs at the rate of 
10 ft/sec toward the center 0. At what rate will his shadow be moving along the side when he 
is halfway from B to O? 

Let P, a point x feet from B, be the position of the boy at time t ;  denote by r the radius of the arena, 
by 8 the angle OLP, and by s the arc intercepted by 8. Then s = r(28), and 8 = arctan OPILO = 
arctan (r - x)/r. Hence, 

When x = i r  and drldt = 10, drldt = - 16 ft/sec. The shadow is moving along the wall at 16 ft/sec. 

B 

Fig. 18-2 Fig. 18-3 

11. The lower edge of a mural, 12 ft high, is 6 ft above an observer’s eyes. Under the assumption 
that the most favorable view is obtained when the angle subtended by the mural at the eye is a 
maximum, at what distance from the wall should the observer stand? 

Let 8 denote the subtended angle, and x the distance from the wall. From Fig. 18-3, tan (0 + 4) = 
181x, tan 4 = 6x, and 

tan (6 + 4) - tan 4 - 1 8 1 ~  - 6 1 ~  - 12x -- 
t a n e = t a n [ ( e + 4 ) - 4 1 =  l + t a n ( @ + + ) t a n +  - l+(lSIx)(6/x) x2+108 

and - de = Then 8 = arctan - 12(-” + lo8) 
The critical value is x = 6 a -  10.4. The 

12x 
x2 + 108 & x4 + 3 6 0 ~ ’  + 11.664’ 

observer should stand 10.4ft in front of the wall. 
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Supplementary Problems 

12. 

In Problems 13 to 20, find dyldx. 

Derive differentiation formulas 21, 22, 23, and 25. 

13. 

15. 

17. 

18. 

19. 

20. 

21. 

22. 

1 
Ans. -- v c - 7  

v G - 7  

14. y = arccos ix 3 
lK-2 

x2 + 9  

y = arcsin 3x Ans. 

3 
y = arctan - 

1 
16. y = arcsin (x - 1) Am.  

3 
Ans. -- 

y = x 2  arccos 2/x 

X X X2 
AnS. ( a 2  - x2)3’2 - arcsin - 

y = (x - u ) V Z F 7  + u2 arcsin 7 

y =  & q 3  

Ans. 2- X - U  

X 8 
Ans. 

x 3 1 P - z  
- 1  + - arcsec - 

Y = T  2 2 

A light is to be placed directly above the center of a circular plot of radius 30 ft, at such a height that the 
edge of the plot will get maximum illumination. Find the height if the intensity at any point on the edge 
is directly proportional to the cosine of the angle of incidence (angle between the ray of light and the 
vertical) and inversely proportional to the square of the distance from the source. (Hint: Let x be the 
required height,y thedistance from the light to a point on theedge, and 8 the angle of incidence. Then - 

) Ans. 1 5 f i f t  
 COS^ - kx 

l = k T -  
y (x’ + 900)3’2 * 

Two ships sail from A at the same time. One sails south at 15 mi/h; the other sails east at 25 mi/h for 1 h 
and then turns north. Find the rate of rotation of the line joining them after 3 h. Ans. $$ rad/h 



Chapter 19 

Differentiation of Exponential 
and Logarithmic Functions 

DEFINE THE NUMBER e by the equation 
h 

h + + m  

Then e also can be represented by lim (1 + k ) l ’ k .  In addition, it can be shown that 
k--0 

1 1  1 
2! 3! n! 

The number e will serve as a base for the natural logarithm function (See Problem 1.) 

2.71828. . . e = l + l +  - + - + . . . + - + . . .  = 

LOGARITHMIC FUNCTIONS. Assume a > 0 and a # 1. If a” = x ,  then define y = log, x .  Another 
definition of log,x will be given in Chapter 40. 

NOTATION. Let In x = log, x .  (Then In x is called the natural logarithm of x.) See also Fig. 19-1. 
Let log x -= log,, x.  
The domain of log, x is x > 0; the range is the set of real numbers. 

y = l n x  

2 0 
y = e‘ 

Fig. 19-1 

2 

0 

DIFFERENTIATION FORMULAS 

d 1 d 1 
dx X dx X 

27. - ( lnx)  = - 26. 

28. - ( a x )  = ax In a ,  a > 0 29. - (ex) = ex 

- (log, x )  = - log, e, a > 0, a # 1 

d d 
dx dx 

(See Problems 2 to 17.) 

LOGARITHMIC DIFFERENTIATION. If a differentiable function y = f ( x )  is the product and/or 
quotient of several factors, the process of differentiation may be simplified by taking the natural 

133 
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logarithm of the function before differentiation. This amounts to using the formula 

(See Problems 18 and 19.) 

BASIC PROPERTIES OF LOGARITHMS 

Property 19.1: log, 1 = 0 (In particular, In 1 = 0.) 

Property 19.2: log, a = 1 (In particular, In e = 1.) 

Property 19.3: log, uu = log, U + log, U 

Property 19.4: log, - = log, U - log, U 

Property 19.5: log, U' = r log, U 

U 

U 

Solved Problems 

1. Verify: 2 <  lim (1 + ;) <3.  
n + + m  

By the binomial theorem, for n a positive integer, 

n(n - l ) ( n  - 2 ) e a . l  
n(;.;l) it)' + 

n(n - l ) (n  - 2 )  
1 . 2 . 3 . . . n  

1 "  1 
( I + - )  = I + n - + - - - -  1 . 2 - 3  

1 
Clearly, for every value of n # 1, (1 + i )n  > 2. Also, if in ( I  ) each difference (1 - --), 

(1 - f ), . . . is replaced by the larger number 1, we have 

1 1  1 
n !  

(1 + r)' < 2 + 2 + % + . . + - 
< 2 + - + - + F + . . . + -  1 1 1  1 (since--<-) 1 1  

2 22 2"-' n !  2"-' 

1 1 1  
< 3  (since + 2' + 2' + . . . +  - 

Hence, 2 < (1 + i)' < 3. 

Let n -+ 00 through positive integer values; then 

1 2 k 1  1 and 

1 1  1 
n + + m  k! 

(1 - i)( 1 - f ) * - . (1 - ;) + 1 - - + l ,  1 - - + 1 , .  . . , n 

This suggests that lim 2.71828. . . . 

d 1 d 1 
dx X dx X 

2. Derive - (log, x )  = - log, e and - (In x )  = - . 
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Let y = log, x .  Then 

y + Ay = log, ( x  + Ax) 

log, ( 1  + $) x + A x  - 
Ay = log, (X + Ax) - log, x = log, - - 

Ax A x  

and 

d 1 
When a = e ,  log, e = log, e = 1 and (In x )  = - .  

X 

In Problems 3 to 9, find the first derivative. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

y = log, (3x’ - 5): 

1 d  2 
-= dy  2 -  - ( x + 3 ) =  - dx x + 3 d x  x + 3  

y = In2 (x + 3): 
d 1 d  2 In (x + 3) 
dx x + 3  dx x + 3  y ’  = 2 In (x + 3) - [In ( x  + 3)] = 2 In (x + 3) - - (x + 3) = 

1 d  3x2 2x 
( x 3  + 2) + 2 - (x’ + 3) = ~ + ~ 

Y - x 3 + 2  dw x + 3  dx x”2 x 2 + 3  
1 d  

I - - -  

= In x4 - In (3x - 4)’ = 4 In x - 2 In (3x - 4): 
x4 

f(x) = In 
(3x - 4)2 

1 d  1 d  4 6  
x dx 3 ~ - 4  dx x 3 x - 4  

f’(x) = 4 - - (x) - 2 - - (3x - 4) = - - - 

y = In sin 3x: 
1 d  cos 3x 

sin3x dx sin 3x 
y ‘  = - - (sin 3x) = 3 - = 3 cot 3x 

1 - -- 1 + 4 (  1 + x2)-Il2(2x) - 1 + x(1 + X z ) y 2  ( 1  + X 2 ) l l 2  y’  = - 
x + (1 + x 2 y 2  x + ( 1  + X2)’I2 ( 1  + x 2 y 2  q g -  

d d 
dx dx 

Derive - ( a x )  = (In a)a’ and - ( e x )  = ex. 

Let y = ax. Then In y = x In a and 

1 dY d~ = y In a = a x  In a d 
- (In y ) =  - - = l n a  or - 
dx Y h  dx 

d 
dx When a = e ,  In a = In e = 1 and we have - ( e x )  = ex. 

In Problems 11 to 15, find the first derivative. 
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11. y =  e- fx:  

d 
dx 

y '  = a3x2(1n a)  - (3x2) = 6xa3x2 In a 3 x 2 .  13. y = a . 

d d 
ak dr y '  = x 2  - (3") + 3" - ( x 2 )  = x23" In 3 + 3"2x = x3"(x In 3 + 2 )  14. y = ~ ~ 3 ~ :  

(eax + e-'")(a)(eux + e - (e"" - ePax)(a)(eax - e - O " )  

- - 
(ea. + e-'")' 

16. Find y", given y = e-x In x .  

e-" - e-" In x = - - y d - e-" 
(In x )  + In x - ( e  ") = - 

d 
dx dx X X 

y '  = e-" - 

17. Find y", given y = e-" sin 3x. 

d d -2" y'  = e - 2 r  - (sin 3x) + sin 3x - (e dx dx 
d d y" = 3eP2* - (cos 3x1 + 3 cos 3 x  - (e-2x) - 2y' 
dx dx 

) = 3e-'" cos 3x - 2ew2" sin 3x = 3e-2x cos 3x - 2y  

= -9e-2"  sin 3x - 6eU2" cos 3x - 2(3eP2" cos 3 x  - 2e-*" sin 3 x )  

(12 cos 3x + 5 sin 3x) - - -e-2" 

In Problems 18 and 19, use logarithmic differentiation to find the first derivative. 

18. = (x2 + 2)'(1 - x3)4 

In y = In ( x 2  + 2 ) 7  1 - x ' ) ~  = 3 In ( x 2  + 2 )  + 4 In ( 1  - x 3 )  

y ' = y  - d [ 3 1 n ( x 2 + 2 ) + 4 1 n ( 1 - x 3 ) ] = ( x 2 + 2 ) 3 ( l - x 3 ) 4 ( ~ - ~  
dx 

= 6 x ( x 2  + 2)2( 1 - x3)3(l  - 4x - 3 x 3 )  

x ( l  - x2)2 
(1 + x y 2  

19. y =  
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y”  > 0 
concave up 

In y = In x + 2 In ( 1  - x ’ )  - 4 In ( 1  + x ’ )  

( 1  - x2)’ 4 x 2 (  1 - x ’ )  x ’ (  1 - x ’ ) ~  y ’  = - - 
( 1 + x 2 ) 1 1 2  ( 1 + x 2 ) 1 ’ 2  ( 1  + x 2 ) 3 ’ 2  

0 

y”  < 0 )’I’ > 0 
concave down 1 concave up 

- ( 1  - 5 x 2  - 4 x 4 ) ( l  - x ’ )  - 
( 1  + x 2 ) 3 i 2  

20. Locate (a )  the relative maximum and minimum points and ( 6 )  the points of inflection of the 
curve y = f ( x )  = x2ex (Fig. 19-2). 

f ’ ( x )  = 2xex + x 2 e x  = xe”(2  + x )  

f ” ( x )  = 2e” + 4xe” + x 2 e x  = e ” ( 2  + 4x + 1’) 

f”’(x) = 6e” + 6xe” + x’e” = e ” ( 6  + 6 x  + x 2 )  

(a )  Solving f ’ ( x )  = 0 gives the critical values x = 0 and x = - 2 .  Then f”(0) > 0; so (0,O) is a relative 

(b )  Solving f ” ( x )  = 0 gives possible points of inflection at x = - 2  k fi. Since f ” ’ ( - 2  - fi) # 0 and 
minimum point. Also, f ” ( - 2 )  < 0; so ( - 2 ,  4 / e 2 )  is a relative maximum point. 

f ” ’ ( - 2  + fi) # 0, the points at x = - 2  2 fl are points of inflection. 

t Y  > -2 - f i  -2  - 2 + f i  

Fig. 19-2 

A 
Fig. 19-3 

- bZr? 
21. Discuss the probability curve y = ae 

is a horizontal asymptote. 

, a > 0 (Fig. 19-3). 

The curve lies entirely above the x axis, since e-b2x’ > 0 for all x .  As x -  2 ~ .  y - 0 ;  hence the x axis 

The first two derivatives are 

and y”  = 2 a b 2 ( 2 b 2 x 2  - 1 ) e - b 2 x 2  y t  = -2ab’xe-b2X2 

When y ’  = 0, x = 0, and when x = 0, y”< 0. Hence the point (0, a )  is a maximum point of the curve. 
When y” = 0, 2b2x’ - 1 = 0, yielding x = & f l / 2 b  as possible points of inflection. We have: 

Hence the points ( t f i 1 2 b .  a e - ’  ’) are points of inflection. 

22. The equilibrium constant K of a balanced chemical reaction changes with the absolute 
temperature T according to K = K,e-!4‘T-T@) , where K O ,  4, and To are constants. Find the 
percentage rate of change of K per degree of change of T.  

d 
The percentage rate of change of K per degree of change of T is given by 7 loo d K  - - 100 ( I n  K ) .  

Then. 

d lOOq 50q 
and 100 - (In K )  = - - = - - % 

1 T - T o  
d T  2 T 2  T’ 

In K = In KO - - 
2 4 7  
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23. Discuss the damped-vibration curve y = f ( t )  = e-" sin 21rt. 

When t = 0, y = 0. The y intercept is thus 0. 
When y = 0, we have sin 27rt = 0 and t = . . . , - 5 ,  -1, - i ,  0, $,  1, $,  . . . . These are the t 

intercepts. 
When t = . . . , - i, - i ,  f ,  :, . . . , we have sin27rt = 1 and y = e-j'. When t = . . . , 4 ,  4 ,  a , 

$ , , . . , we have sin 27rt = - 1 and y = - e-j'. The given curve oscillates between the two curves y = e- j f  
and y = -e-j', touching them at these points, as shown in Fig. 19-4. 

- -  5 - _  1 3  

Fig. 19-4 

Differentiation yields 

y' = f ' ( t )  = e~f'(27.r cos 27rt - 4 sin 2nt) 
y" = ~ ( t )  = e-i'[(f - 47r2) sin 27rt - 27r cos 2vt1 

When y' = 0, then 27r cos 2n t  - 9 sin 27rt = 0; that is, tan 27rt = 47r. If t = = 0.237 is the smallest 
positive-angle satisfying this relation, then t = . . . , 6 - 5 , 6 - 1, 6 - i ,  6 ,  6 + i ,  6 + 1, . . . are the 
critical values. 

For n = 0 ,  1, 2 , .  . . ,f"(t? in) andf"  ( 6 ' -  ') have opposite signs, whereas f"( 6 -+ in) and 

f( 6 5 ") have the same sign; hence, the critical values yield alternate maximum and minimum 
points of the,curve. These points are slightly to the left of the points of contact with the curves y = e-Ir  

2 

and y = -e-*'. 
87r 

1 - 1 6 ~ ~ '  
If t = q = 0.475 is the smallest positive angle 27r - When y " = O ,  tan27rt= -- 

114 - 47r2 
satisfying this relation, then t = . . . , q - 1, q - 4 ,  q, q + 1, q + 1,. . . are the possible points of 
inflection. These points, located slightly to the left of the points of intersection of the curve and the t 
axis, are points of inflection. 

24. The equation s = ce-b'sin (kt + e), where c, b, k ,  and 8 are constants, represents damped 
vibratory motion. Show that a = -2bu - (k2  + b2)s ,  where U = h l d t  and a = du/dt.  

ds 
dt 

U = - = ce-bf[- b sin (kt + 0) + k cos (kt + 0)] 

do 
dt 

U = - = ce-b'[(b2 - k 2 )  sin (kt + 0) - 2bk cos (kt + 0)] 

= ce-"{ -26[-b sin (k t  + 0) + k cos (kr + O ) ]  - (k2 + b 2 )  sin (kr + 0)) 

= -2bo - ( k 2  + b2)s 

Supplementary Problems 

In Problems 25 to  35, find dyldx. 

25. y = In (4x - 5) Ans. 4/(4x - 5 )  26. y =ln- Am. xl(x2 -3) 
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27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

y = In 3x” Am. 5ix 

y = In (x2 + x - 1)’ A ~ s .  ( 6 ~  + 3)/(x2 + x - 1) 

y = x - I n  x - x Ans. lnx  

y = In (sec x + tan x) Ans. secx 

y = In (In tan x) 

y = (In x’) /x2 

Am. 2/(sin 2x In tan x) 

Ans. (2 - 4 In x) lx’ 

= 4x5(1n - 4 )  Ans. x4 lnx  

y = x[sin (In x) - cos (In x)] 

y = x In (4 + x’) + 4 arctan 4.x - 2x 

Find the equation of the line tangent to y = In x at any one of its points (xo, y o ) .  Use the y intercept of 
the tangent line to obtain a simple construction for the tangent line. 

Ans. y - y, = (1 /xo)(x - x,) 

Discuss and sketch: y = x2 In x. 

Show that the angle of intersection of the curves y = In (x - 2) and y = x 2  - 4x + 3 at the point (3,O) is 
C$ = arctan f . 

Am. 2 sin (In x) 

Am. l n ( 4 + x 2 )  

Am. minimum at x = 1 /4?; inflection point at x = 1 /e’” 

In Problems 39 to 46, find dy/dx. 

39. 

41. 

43. 

45. 

47. 

48. 

49. 

50. 

51. 

y = eSx Ans. 5eSX 40. 

Y = esin 3x Ans. 3esin 3 x  cos 3x 42. 

y = e-x cos x Am. -e-x(cos x + sin x) 44. 

y = tan’ e3x Ans. 6e’” tan eSx sec2 e3x 46. 

If y = x2ex, show that y’” = (x’ + 6x + 6)e“. 

If y = e-’”(sin 2x + cos 2x), show that y” + 4y’ + 8 y  = 0. 

Discuss and sketch: (a) y = x2e-x and (6) y = x2e-IZ. 

y e.r3 ~ m .  3x2ex3 

y = 3-x2 Ans. - 2 ~ ( 3 - ’ ~  In 3) 

y = arcsin ex ~ n s .  ex/- 

y = er’ A ~ .  e(x+r’ )  

Am. (a) maximum at x = 2; minimum at x = 0; inflection points at x = 2 2 fi 
(6) maximum at x = f 1; minimum at x = 0; inflection points at x = 2 1.51, x = 20.47 

Find the rectangle of maximum area, having one edge along the x axis, under the curve y = epXz. (Hint: 
A = 2xy = 2 ~ e - ~ * ,  where P(x, y) is a vertex of the rectangle on the curve.) Ans. A = 

Show that the curves y = eox and y = eoxcosux are tangent at the points for which x = 2n7r/a 
(n  = 1,2 ,3 ,  . . .), and that the curves y = e-Ox/a2 and y = eox cos ux are mutually perpendicular at the 
same points. 
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52. For the curve y = xe", show (a) (- 1, - l / e )  is a relative minimum point, (6) (-2, -2 /e2)  is a point of 
inflection, and ( c )  the curve is concave downward to the left of the point of inflection, and concave 
upward to the right of it. 

In Problems 53 to 56, use logarithmic differentiation to find dyldx. 

53. y = x "  Am. xx( l  + In x) 

M. y = x2e2x cos 3x Am. x2e2x cos 3x(2/x + 2 - 3 tan 3x) 

-I-  

56. y = x '  ~ m .  e-X*xc-x2(1 /x - 2x In x> 

d" d" (n - l)! 
dx" dx" X 

57. Show ( a )  - (xe") = (x + n)e"; (6) - (x"-' In x) = -. 



Chapter 20 

Differentiation of Hyperbolic Functions 

DEFINITIONS OF HYPERBOLIC FUNCTIONS. For x any real number, except where noted, the 
hyperbolic functions are defined as 

ex + e-* 
X Z O  - ex - e - x  1 

coth x = - - 
2 tanh x ex - e-* ' sinh x = 

ex + e-x  

2 
cosh x = sech x = 

1 
cosh x 

2 
ex + e-' 

- - 

X Z O  
sinhx ex - e-' 1 2 
coshx ex + e-' sinh x ex - e-' ' csch x = - = ~ 

- tanh x = - - 

DIFFERENTIATION FORMULAS 

d 
- (cosh x)  = sinh x 

d 
- (sinh x )  = cosh x 
dx dx 

d d 
- (tanh x )  = sech2 x 
dx dx 

d d 
- (sech x )  = -sech x tanh x 
dx dx 

32. 31. 

33. 

35. 

34. - (coth X )  = -csCh2 x 

36. - (csch X )  = -csch x coth x 

(See Problems 1 to 12.) 

DEFINITIONS OF INVERSE 

sinh-' x = In (x  -t 

cosh-' x = In (x + 

HYPERBOLIC FUNCTIONS 

x + l  m) for all x coth-' x =  In - x - 1 '  x 2 > 1  
I 

1 + V l  - x L  
sech-' x = In , O < X S l  

X 
m), x r l  

l + x  
1 - x '  

tanh-' x =  $ In ~ x2  < 1 
c s c h - ' x = l n ( r + T ) ,  V l  + x 2  x # O  

(Only principal values of cosh-' x and sech-' x are included here.) 

DIFFERENTIATION FORMULAS 

d 1 
- (sinh-' x)  = ~ 37. 
dx v i z  

1 
x2<1  

d 
- (tanh-' x)  = - 39. 
dx 1 - x 2  ' 
d -1 
dx x v s  ' o<x<l 41. - (sech-' x )  = 

d 1 
dx 38. - (cosh-'x)= vG , x > l  

d 1 
- (coth-' X )  = 7 , x 2  > 1 
dx 1 - x  

40. 

- 1  
, X Z O  

d 
42. - (csch-' X )  = 

dx ~x~~ 

(See Problems 13 to 19.) 

141 
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1. 

2. 

Solved Problems 

Prove that cosh2 U - sinh2 U = 1 .  
- sinh’ U = ( T )  eu + e - u  - (F)’ = i ( e z u  + 2 + e - 2 u )  - i ( e z u  - 2 + e - ’ ” )  = 1 

d 
dx  

Derive - (sinh x )  = cosh x .  

d ex - e - x  - ex + e P x  
(7) - - 2 = cosh x 

d 
- (sinh x )  = dx 

In Problems 3 to 10, find dyldx. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

y = sinh 3 x :  

y =cosh i x :  dY d 
- = sinh $ x  - ($x)  = $ sinh $ x  dx dx 

d 9 = sech2 (1 + x’) - (1 + x ’ )  = 2x sech’ (1 + x’) dx dx y = tanh ( 1  + x 2 ) :  

y = x sech x2: 

d d 
= x - (sech x z )  + sech xz - (x) = x( - sech x z  tanh x2)2x + sech x’ 

dx dx dx 
= - 2 x 2  sech xz tanh x 2  + sech xz 

y = csch2 (x’ + 1): 
d 3 = 2 csch (x’ + 1) - [csch (x‘ + 1 )] = 2 csch (x’ + 1)[ - csch ( x 2  + 1 )  coth ( x 2  + 1 )  * 2x1 

dx dx 
= - 4 ~  CSChZ (x’ + 1)  coth (x’ + 1 )  

- dY = $(cosh 2x)2  - $ = ;(cosh 2x - 1 )  = sinh’ x 
dx 

y = a sinh 2 x  - i x :  

y = In tanh 2 x :  = 4 csch 4x 
2 

sinh 2x cosh 2x 
dy = ~ - ( 2  sech’ 2 x )  = dx tanh2x 

X 
Find the coordinates of the minimum point of the catenary y = a cosh -. 

a 
1 1 e x f a  + e - x / a  

a 2 a a  
and f”(x) = - cosh - = - 

eXla  - e - x ’ a  

2 
= 0,  x = 0;  and f”(0) > O .  Hence, the point (0, a)  is the minimum point. When f ’ ( x )  = 

Examine (a )  y = sinh x ,  ( b )  y = cosh x ,  and ( c )  y = tanh x for points of inflection. 
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(a) f ’ ( x )  = cosh x ,  f ” ( x )  = sinh x ,  and f”’(x) = cosh x .  

(6) f ’ ( x )  = sinh x ,  and f”(x) = cosh x # 0 for all values of x .  There is no point of inflection. 
f ” (x )  = sinh x = 0 when x = 0, and f”’(0) # 0. Hence, the point ( 0 , O )  is a point of inflection. 

sinh x 
(c) f ’ ( x )  = sech2 x ,  f ” ( x )  = - 2  sech2 x tanh x = - 2  - and f”’(x) = 

cosh3 x ’ cosh4x * 

4 sinh’ x - 2 

f”(x)  = 0 when x = 0, and f”’(0) # 0. The point (0,O) is a point of inflection. 

13. Derive: (a )  sinh-’ x = In ( x  + m), for all x - 
1 1 + v 1 - x 2  

(b) sech-’ x = cosh-’ - =In , for O < x ~ l  
X X 

(a) Let sinh-’ x = y ;  then x = sinh y = $ ( e Y  - e - y )  or, after multiplication by 2ey,  e2” - 2xe)’ - 1 = 0. 

so cosh y = - .  Hence y = cosh-’ - = sech-’ x .  Also, (6) Let sech-’ x = y ;  then x = sech y = - 

Solving for ey yields e y  = x + m, since e y  > 0. Thus, y = In ( x  + G). 
1 1 1 

cosh y ’ X X 

x = sech y = from which e2’x - 2ey + x = 0. 

, O < X S l .  
1+- 

for y L 0. Thus, y = In 
l + l h - 7  

e y  + e - y ’  
Solving for e y  yields e y  = 

X X 

d 1 
14. Derive - (sinh-’ x )  = ~ 

dx Vi-T-7- 
dY Let y = sinh-’ x .  Then sinh y = x and differentiation yields cosh y - = 1; so dx 

1 - 1 - -=-  dY 1 - 
dx cosh Y vGZ2-y - m 

In Problems 15 to 19, find dyldx. 

dY 1 d 3 - 
6Zi 15. y = sinh-’ 3 x :  & = v F  Z (3x1 = 

x ) 2  + 1 

16. y = c0sh-l ex:  

d 
- (tan t x )  

1-tan2 4x dx 
dY 1 - 17. y = 2 tanh-’ (tan fx): & = 2  

sec2 t x  
(sec’ $ x ) (  5 ) = 2 , \ 5 e C X  

1 
= 2  

1 -tan2 $ x  1-tan zx 

19. y = sech-’ (cos x ) :  sin x 
= sec x 

-1 d - dY = 
dx cosxv-iT& dx cos x v i T &  

- (cos x )  = 

Supplementary Problems 

20. (a) Sketch the curves of y = ex and y = - e - x ,  and average the ordinates of the two curves for various 

(6) Proceed as in ( a ) ,  using y = ex and y = e - x  to obtain the graph of y = cosh x .  
values of x to obtain points on y = sinh x .  Complete the curve. 
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21. For the hyperbola x' - y2 = 1 in Fig. 20-1, show that (a) P(cosh U ,  sinh U) is a point on the hyperbola; 
(6) the tangent line at A intersects the line OP at T(1, tanh U). 

c 

Fig 20- 1 

22. Show: (a) sinh (x + y) = sinh x cosh y + cosh x sinh y 
(6)  cosh (x + y)  = cosh x cosh y + sinh x sinh y 
(c) sinh 2x = 2 sinh x cosh x 
( d )  cosh 2x = cosh' x + sinh' x = 2 cosh' x - 1 = 2 sinh' x + 1 
\ I  

2 tanh x 
1 + tanh2 x 

(e) tanh2x = 

In Problems 23 to 28, find dyldx. 

23. y = sinh $ x  Ans. $cosh  $ x  24. y = cosh' 3x Ans. 3sinh6x 

25. y =  tanh2x Am. 2sech22x 26. y = In cosh x Am. t a n h x  

27. y = arc tan sinh x Am. sechx 28. y = I n m  Am. 2csch4x 

1 
29. Show: (a) If y = a cosh :, then yff = - d-. 

U 
(6) If  y = A cosh bx + B sinh hx, where 6, A ,  and B are constants, then y" = b'y. 

l + u  
1 - U '  

30. Show: ( U )  cosh-' U =In  (U + G), U L 1, and ( b )  t anh- '  U = $ In - U' < 1. 

31. (a) Trace the curve y = sinh-' x by reflecting the curve y = sinh x in the 45" line. 
( 6 )  Trace the principal branch of y = cosh-' x by reflecting the right half of y = cosh x in the 45" line. 

32. Derive differentiation formulas 32 to  36, 38 to 40, and 42. 

In Problems 33 to 36, find dyldx.  

1 
Am. - 

1 34. y = c o s h - '  - 
1 

Ans. - 
IPG X l G - 7  

33. y = s i n h - '  zx 

35. y = tanh-' (sin x) Am. sec x 

Y 
q w  36. x =  a s e c h - '  y_ - d m  Am.  - 
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Parametric Representation of Curves 

PARAMETRIC EQUATIONS. If the coordinates ( x ,  y )  of a point P on a curve are given as 
functions x = f ( u ) ,  y = g(u) of a third variable or parameter U, the equations x = f ( u )  and 
y = g(u) are called parametric equations of the curve. 

EXAMPLE 1: (a) x = cos 8, y = 4 sin’ 8 are parametric equations, with parameter 8, of the parabola 
4x2 + y = 4, since 4x’ + y = 4 cos’ 8 + 4 sin’ e = 4. 
( b )  x = i t ,  y = 4 - t’ is another parametric representation, with parameter t ,  of the same curve. 

(Fig. 21-1(a)), whereas the second represents the entire curve (Fig. 21-1(b)). 
It should be noted that the first set of parametric equations represents only a portion of the parabola 

t =  

( b )  
Fig. 21-1 

EXAMPLE 2: (a) The equations x = r cos 8, y = r sin 8 represent the circle of radius r with center at the 
origin, since x 2  + y’ = r2 cos’ 8 + r’ sin’ 8 =  COS' 8 + sin2 8) = r’. The parameter 8 can be thought of as 
the angle from the positive x axis to the segment from the origin to the point P on the circle (Fig. 21-2). 
( 6 )  The equations x = a + r cos 8, y = b + r sin 8 represent the circle of radius r with center at (a, b), since 
( x  - a)’ + ( y  - 6)’ = r’ cos’ e + r’ sin2 8 =  COS' e + sin’ e )  = r’. 

Y 

Fig. 21-2 

145 
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dyldu 
is given by dy = - THE FIRST DERIVATIVE dx dxldu'  

d2y d dy du 
dx2 du (dx) dx' is given by - = - THE SECOND DERIVATIVE - 

dx2 
d2Y 

Solved Problems 

dY d2Y 1. Find - and 7, given x = 0 - sin 0, y = 1 - cos 0. 
dx dx 

dylde sin 0 d y -  - -- dY - _  dx - 1 -cos8  and - de = s i n e .  So - 
de dx dxlde 1 -cos8  

Also, 

d *Y 2. Find 9 and 7, given x = e' cos t, y = e' sin t. 
dx dx 

dy dyldt sin t +cost  dx 
- = &(cos t - sin t)  - - 
dt dt dx dxldt cos t - sin t 

dY - - = e'(sin t + cos t)  

2 - - s i n t + c o s t  dx - 2 1 - _  Also, 
cos t - sin t ) dt (cos t - sin t )*  er(cos t - sin t) d(cos t - sin t ) 3  

3. Find the equation of the tangent to x = fi, y = t - 1 /<t at the point where t = 4. 

dy Idt 1 
=2*t+ - dY - 

dx dxldt t 
so - -  1 

2 t ~  * 

At t = 4, x = 2, y = 7/2 ,  and rn = dy/dx = 1714. The equation of the tangent is then 
( y - 712) = (17/4)(x - 2) or 17x - 4y = 20. 

- 1 + -  and - - dY d x 1  - 
dt 2~ dt 

4. The position of a particle that is moving along a curve is given at time t by the parametric 
equations x = 2 - 3 cos t ,  y = 3 + 2 sin t, where x and y are measured in feet, and t in seconds. 
Find the time rate and direction of change of ( a )  the abscissa when t = n/3, (b) the ordinate 
when t = 57~13 ,  ( c )  8, the angle of inclination of the tangent, when t = 2 ~ 1 3 .  (See Fig. 21-3.) 

t =  

Fig. 21-3 
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dr dY dY 
dt dt dx - = 3 sin t and - = 2 cos t . So tan 8 = - = 3 cot t 

(a )  When t = ~ / 3 ,  dx/dt  = 3 f i / 2 .  The abscissa is increasing at 3 d / 2  ft/sec. 
( 6 )  When t = 57~ /3 ,  dyldt = 2( 4 )  = 1. The ordinate is increasing at the rate 1 ftlsec. 

(c) 8 = arctan ( 3  cot t), and - = = - -  24 The angle de - 6 ~ s ~ ~  t 21r do - 6 ( 2 / D ) '  
dt 9+4cot2 t '  

When t =  - - = 
3 ' dt 9+4(-1/V3)2 31' 

of inclination of the tangent is decreasing at a rate of E rad/sec. 

Supplementary Problems 

In Problems 5 to 9, find ( a )  dyldx and ( b )  d2y/dx2.  

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

x = 2 +  t, y =  1 + t 2  Am. (a )  2t; (b) 2 

x = t + I/?,  y = t + 1 Am. ( U )  t2 / ( t2  - 1); (6) -2t3/(t2 - 1)3 

x = 2 sin t, y = cos 2r 

x = cos3 8, y = sin3 e 

x = a(cos 4 + 4 sin b), y = a(sin 4 - 4 cos 4) 

Find the slope of the curve x = e-' cos 2t, y = e-2r sin 2t at the point t = 0. 

Find the rectangular coordinates of the highest point of the curve x = 96t, y = 96t - 16t2. (Hint: Find t 
for maximum y . )  Am. (288,144) 

Find the equation of the tangent and the normal to the curve (a) x = 3e', y = 5e-' at t = 0; 
( b )  x = a cos4 0, y = a sin4 e at e = + T.  

Ans. (a )  -2sin t ;  (6) -1 

Am. (a)  -tan 8 ;  (6) 1 /(3 cos4 8 sin 0) 

Ans. (a )  tan 4; ( 6 )  l l ( u 4  cos3 4) 

Am. -2 

Am. ( U )  5x + 3y  - 30 = 0, 3x - 5y + 16 = 0; (b) 2x + 2y - U = 0, x - y = 0 

Find the equation of the tangent at any point P ( x ,  y) of the curve x = U cos3 t ,  y = a sin3 t .  Show that the 
length of the segment of the tangent intercepted by the coordinate axes is a. 

Ans. 

For the curve x = t 2  - 1, y = t3  - t, locate the points where the tangent line is ( a )  horizontal and ( 6 )  
vertical. Show that at the point where the curve crosses itself, the two tangents are mutually 
perpendicular. Am. (a)  t = + G / 3 ;  (b) t = 0 

x sin t + y cos t = :a  sin 2t 
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0 

Curvature 

X - 
0 

DERIVATIVE OF ARC LENGTH. Let y = f ( x )  be a function having a continuous first derivative. 
Let A (see Fig. 22-1) be a fixed point on the graph, and denote by s the arc length measured 
from A to any other point on the curve. Let P ( x ,  y )  be an arbitrary point, and Q(x + Ax, y + 
A y )  a neighboring point on the curve. Denote by As the arc length from P to Q. The rate of 
change of s (= AP)  per unit change in x and its rate of change per unit change in y are given 
respectively by 

- =  ds lim k=k\ii.i- 2 ,  lim k=kJm 
dx ~ x - 0  A x  dy AFO Ay 

The plus or minus sign is to be taken in the first formula according as s increases or decreases as 
x increases, and in the second formula according as s increases or decreases as y increases. 

When a curve is given by the parametric equations x = f (u ) ,  y = g(u),  the rate of change of 
2 dr 

du 
s with respect to U is given by - = 2 d( $ ) 2  + (2)  . Here the plus or minus sign is to be 
taken according as s increases or decreases as U increases. 

To avoid the repetition of ambiguous signs, we shall assume hereafter that direction on 
each arc has been established so that the derivative of arc length will be positive. (See Problems 
1 to 5.) 

I Y  i’ 
A 

CURVATURE. The curvature K of a curve y = f ( x ) ,  at any 

Y 

X - 

Fig. 22-2 

point P on it, is the rate of change in 
direction (i.e., of the angle of inclination T of the tangent line at P) per unit of arc length s. 
(See Fig. 22-2.) Thus, 

- d2x/dy‘  
or K = (22.1 ) 

d r  AT d 2y ldx2 
ds As--0 AS [ l  + ( d y / d ~ ) ~ ] ” ~  [ l  + ( d ~ / d y ) ~ ] ~ ’ ~  

K =  - = Iim - = 

From the first of these formulas, it is clear that K is positive when P is on an arc that is concave 
upward, and negative when P is on an arc that is concave downward. 

K is sometimes defined so as to be positive, that is, as only the numerical values given by 
(22.1 ). With this latter definition, the sign of K in the answers below should be ignored. 

THE RADIUS OF CURVATURE R for a point P on a curve is given by R = 11 lKI ,  provided K # 0. 

148 
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THE CIRCLE OF CURVATURE or osculating circle of a curve at a point P on it is the circle of 

To construct the circle of curvature: On the concave side of the curve, construct the normal 
radius R lying on the concave side of the curve and tangent to it at P (Fig. 22-3). 

at P, and on it lay off PC = R. The point C is the center of the required circle. 

Fig. 22-3 

THE CENTER OF CURVATURE for a point P(x, y )  of a curve is the center C of the circle of 
curvature at P. The coordinates ( a ,  p )  of the center of curvature are given by 

""1+(g)2] dx 1 + (2)' 

or by 

THE EVOLUTE of a curve is the locus of the centers of curvature of the given curve. (See Problems 
6 to 13.) 

Solved Problems 

2 

1. Derive ( $ ) 2  = 1 + (2) . 
Refer to Fig. 22-1. On the curve y = f ( x ) ,  where f ( x )  has a continuous derivative, let s denote the 

arc length from a fixed point A to a variable point P(x ,  y). Denote by As the arc length from P to a 
neighboring point Q(x + Ax,  y + A y )  of the curve, and by PQ by the length of the chord joining P and 

As As P Q  
' *  Ax P Q  Ax o w - = - -  and, since (PQ)' = (Ax)' + (Ay)2,  

As arc P Q  
PQ chord PQ As Q approaches P along the curve, Ax-,O, A y - 0 ,  and - = 

latter, see Problem 22 of Chapter 47.) Then 

-+ 1. (For a proof of the 
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2. Find dsldx at P ( x ,  y) on the parabola y = 3x2. 

v l  + (6x)’  

3. Find dsldx and dsldy at P ( x ,  y) on the ellipse x2 + 4y2 = 8. 
x d x  

and - = - b. Then Since 2x + 8y - = 0 ,  dy = - - dY 
dx dx 4y dy x 

X’ X *  + 1 6 ~ ’  3 2 - 3 ~ ’  ds = d a  
and - - -- 

32 - 4 ~ ’  dx 32 - 4x2 

16y’ x 2  + 16y2 - 2 + 3y’ 
and -- 

X’ 2 - y‘ 

4. Find dsld8 at P ( 8 )  on the curve x = sec 8, y = tan 8. 

5. The coordinates (x, y) in feet of a moving particle P are given by x = cos t - 1, y = 2 sin t + 1, 
where t is the time in seconds. At what rate is P moving along the curve when ( a )  t = 5n /6 ,  
( b )  t = 5 n l 3 ,  and (c) P is moving at its fastest and slowest? 

= J(%)’ + vsin2 t + 4cos’ t = vI+ 3cos’ t 
dt 

( a )  When t = 51~16, dsldt = v m  = m12 ftlsec. 
(6) When t = 51~13, h l d t  = q m  = f l 1 2  ftlsec. 

ds dS - 3 cos t sin t 
(c) Let S = - = vl + 3cos’ t. Then - = 

dt dt 
. Solving dSldt = 0 gives the critical values 

When t = 0 and IT, the rate dsldt = v m  = 2 ftlsec is fastest. When t = ~ 1 2  and 3 ~ 1 2 ,  the 

S 
t = 0 ,  ~ 1 2 ,  IT, 31~12. 

rate dsltit = d m  = 1 ftlsec is slowest. The curve is shown in Fig. 22-4. 

Fig. 22-4 

6. Find the curvature of the parabola y 2  = 12x at the points (a )  (3,6); (6) (i, -3); ( c )  (0,O). 
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d2y 1 - 1 1 6  ~ 

( U )  At ( 3 ’ 6 ) :  1 + ( $?!)2 = 2 and 7 = - - so K = - = - - dx 6 ’  23/2  24 .-. . 

d2y 4 413 4 f i  
( b )  At ( a ,  - 3 ) :  1 + ($ )2  = 5  and 7 = -, so K =  - = - 

(C) At (0, O ) ,  dY 6 ($1 dy’ 6 ’  6 ’  

d r 3  5 3 ’ 1 2  75 * 

d2x 1 1 dx Y is undefined. But - = - = 0, 1 + - 1 1 ,  - = - and K = - - 

7. Find the curvature of the cycloid x = 6 - sin 6, y = 1 - cos 6 at the highest point of an arch 
(see Fig. 22-5). 

dyld8 = sin 8, so that the critical value on the 
interval is x = T.  Since d 2 y / d 0 2  = cos 8 < 0 when 8 = 7r, the point 8 = 7r is a relative maximum point and 
is the highest point of the curve on the interval. 

To find the highest point on the interval 0 < x < 27r: 

To find the curvature, 

- = i - c ~ s e  - 
do dx 1 -cos8 
dr :=sine -=- dy sin 8 1 

At 8 = 7r, dyldx = 0 ,  d 2 y l d x 2  = - i, and K = - a .  

Fig. 22-5 Fig. 22-6 

8. Find the curvature of the cissoid y2(2  - x )  = x 3  at the point (1 , l ) .  (See Fig. 22-6). 

Differentiating the given equation implicitly with respect to x ,  we obtain 

- y 2  + (2 - x)2yy‘ = 3x2 

-2yy’  + ( 2  - X ) ~ Y Y ‘ ’  + ( 2  - ~ ) 2 (  Y ’ ) ~  - 2yy‘ = 6~ 

(1 ) 

(2) and 

From ( I ) ,  for x = y = 1, -1 + 2y’  = 3 and y ‘  = 2 .  Similarly, from (Z), for x = y = 1 and y’  = 2, we find 
y ” =  3 .  Then K = 3 / ( 1 +  4)3’2 = 3 f i I 2 5 .  

9. Find the point of greatest curvature on the curve y = In x .  

d2y 1 
and - - -- 

- X  d K  - 2x2 - 1 
and - - 

( 1  + x 2 ) 3 / 2  di (1 + x 2 y i 2  
so K =  - - = -  dY 1 

d i x  dx2 x 2  - 
The critical value is thus x = 1 l f i .  The required point is (1  /a, - 4 In 2 ) .  

10. Find the coordinates of the center of curvature C of the curve y = f ( x )  at a point P ( x ,  y) at 
which y ’  # 0. (See Fig. 22-3.) 

The center of curvature C(a ,  p )  lies (1)  on the normal line at P and (2) at a distance R from P 
measured toward the concave side of the curve. These conditions give, respectively, 
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1 [1 + (Yr)213 
Y ( Y r r ) 2  

p - y = - - ;  ( a - X )  and ( a - ~ ) ’ + ( ~ - y ) ~ = R ~ =  

From the first, a - x = - y r ( p  - y ) ;  substituting in the second yields 

1 + ( y ‘ y  
or p - y = -+ ~ 

(1 + (Y’) ’ ] ’  
Y 

To determine the correct sign, note that when the curve is concave upward y”  > 0 and, since C then lies 
above P, p - y > 0. Thus, the proper sign in this case is +. (You should show that the sign is also + 
when y” < 0.) Thus, 

11. Find the equation of the circle of curvature of 2xy + x + y = 4 at the point (1, 1). 

Differentiating yields 2y + 2xy’ + 1 + y ’  = 0. At (1,  l ) ,  y ’  = - 1 and 1 + (y ’ ) ’  = 2. 
Differentiating again yields 4y’ + 2xy” + y” = 0. At (1,  1). y” = $. Then 

The required equation is (x  - a)’ + ( y - p)’ = R 2  or (x  - )’ + ( y  - :)‘ = 5 .  

12. Find the equation of the evolute of the parabola y’ = 12x. 

At P(x, y ) :  

Then 

and 

= x +  
rn( 1 + 31x) 

a = x -  

The equations a = 3x + 6 ,  P = -y3/36 may be regarded as parametric equations of the evolute with 
x and y ,  connected by the equation of the parabola, as parameters. However, it is relatively simple in 
this problem to eliminate the parameters. Thus, x = (a - 6 ) / 3 ,  y = -m, and substituting in the 
equation of the parabola, we have 

( 3 6 p ) 2 ’ 3  = 4(a - 6 )  or 81p2 = 4(a  - 6)3 

The parabola and its evolute are shown in Fig. 22-7. 

Fig. 22-7 Fig. 22-8 

13. Find the equation of the evolute of the curve x = cos 8 + 8 sin 8, y = sin 8 - 8 cos 8. 
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At P ( x ,  y ) :  

CURVATURE 153 

Then 

and 

dY d2y sec‘ 8 - sec3 8 - -  d~ - 8 s i n 8  - = t a n 8  - = - - - 
d8 d8 dx dx2 8 ~ 0 ~ 8  8 
d x - e c o s e  - -  

tan e sec2 e 
a = x -  

(sec3 e ) i e  
sec2 e 

’ = Y +  (sec30)/0 

= x - 8 sin 8 = COS 8 

= y + 8 COS 8 = sin 8 

and a = cos 8, p = sin 8 are parametric equations of the evolute (see Fig. 22-8).  

Supplementary Problems 

In Problems 14 to 16, find dsldx and dsldy. 

14. x 2  + y 2  =25  Ans. h l d x  = 5 I=, dsldy = 5 Id- 

15. y2 = x 3  Ans. dsldx = i m ,  dsldy = d - 1 3 ~ “ ~  

16. x 2 / 3  + y 2 / 3  = a 2 / 3  Ans. dsldx = ( u / x ) ” ~ ,  h l d y  = ( ~ l y ) ” ~  

In Problems 17 to 19, find dsldx. 

17. 6xy = x 4  + 3  Ans. dsldx = (x4 + 1 ) / 2 x 2  

18. 2 7 ~ ~ ’  = 4(x - Ans. dsldx = v(x + 2a) /3a  

19. y = a cosh xla Ans. dsldx = cosh x l a  

20. 

In Problems 21 to 24 find dsldt. 

For the curve x = f ( u ) ,  y = g(u) ,  derive ( h l d u ) 2  = (dx/du)2 + (dy/du)2. 

21. 

23. 

25. 

26. 

27. 

28. 

22. x = cos t ,  y = sin t Ans. 1 x = t2, y = t 3  Ans. t m  

x = 2 cos t ,  y = 3 sin t ~ m .  V4 + 5 COS’ t 24. x = cos3 t ,  y = sin3 t Am. $ sin2t 

Use dyldx = tan r to obtain dxlds = cos r, dylds = sin r. 

dr dr dx Y”  
dr dx ds ( 1  + ( y 9 2 ) 3 / 2 ’  

Use r = arctan (2) to obtain K =  - = - - = 

Find the curvature of each curve at the given points. 
( a )  y = x 3 / 3  a t x = O , x = I , x = - 2  
( c )  y = sin x at x = 0, x = $ 7 ~  

Ans. 

( b )  x2 = 4uy at x = 0, x = 2u 
( d )  y = e-x2 at x = 0 

( a )  0, f i / 2 ,  - 4 m 1 2 8 9 ;  (6) 1 /2a ,  f i l 8 a ;  (c )  0 ,  - 1 ;  ( d )  - 2  

Show that (a )  the curvature of a straight line is zero and (6) the curvature of a circle is numerically the 
reciprocal of its radius. 



154 CURVATURE [CHAP. 22 

29. Find the points of maximum curvature of (a )  y = ex, ( b )  y = x 3 / 3 .  

Ans. (a )  x = 4 In 4 ; (6) x = 1 I@ 

30. Find the radius of curvature of ( a )  x3 + xy2 - 6y2 = 0 at (3 ,3) ;  (6) x = a sech-’ y l a  - v w  at ( x ,  y);  
( c )  x = 2a tan 8, y = a tan’ 8; ( d )  x = a cos4 8, y = a sin4 8. 

Ans. ( a )  5 f i ;  ( b )  a l / w / [ y l ;  ( c )  2a )sec3 8); ( d )  2a(sin4 8 + cos4 8)3’2 

31. Find the center of curvature of (a )  Problem 30(a); (b) y =sin x at a maximum point. 

Ans. (U) C(-7,8); ( 6 )  C($n,O) 

32. Find the equation of the circle of curvature of the parabola y 2  = 12x at the points (0,O) and (3 ,6) .  

Ans. ( x  - 6)’ + y’ = 36; (x - 15)2 + ( y  + 6)2 = 288 

33. Find the equation of the evolute of (a)  b2x2 + u2y2 = a2b2; ( b )  x2’3 + y 2 ’ 3  = a213; (c )  x = 2 cos t + cos 2t, 
y = 2 sin t + sin 2f. 

Ans. ( a )  ( ~ a ) ~ ’ ~  + (6p)2/3 = (a2 - b 2 ) 2 / 3 ;  (6) (a + p)”’ + ( a  - p)”’ = 2a213; 
( c )  a = 4 ( 2  cos t - cos 2t ) ,  p = f ( 2  sin t - sin 2 t )  



Chapter 23 

Plane Vectors 

SCALARS AND VECTORS. Quantities such as time, temperature, and speed, which have mag- 
nitude only, are called scalar quantities or scalars. Scalars, being merely numbers, obey all the 
laws of ordinary algebra; for example, 5 sec + 3 sec = 8 sec. 

Quantities such as force, velocity, acceleration, and momentum, which have both mag- 
nitude and direction, are called vector quantities or vectors. Vectors are represented geometri- 
cally by directed line segments (arrows). The direction of the arrow (the angle which it makes 
with some fixed line of the plane) is the direction of the vector, and the length of the arrow (in 
terms of a chosen unit of measure) represents the magnitude of the vector. Scalars will be 
denoted here by letters a, b, c, . . . in ordinary type; vectors will be denoted in bold type by 
letters a, b, c, . . . or OP (see Fig. 23-l(a)). The magnitude of a vector a or OP will be denoted 
lal or IOPl. 

P 
B 

a = b  0 
P 

Two vectors a and b are called equal (a = b) if they have the same magnitude and the same 
direction. A vector whose magnitude is that of a but whose direction is opposite that of a is 
defined as the negative of a and is denoted -a. 

If a is a vector and k is a scalar, then ka is a vector whose direction is that of a and whose 
magnitude is k times that of a if k is positive, but whose direction is opposite that of a and 
whose magnitude is lkl times that of a if k is negative. 

Unless indicated otherwise, a given vector has no fixed position in the plane and so may be 
moved under parallel displacement at will. In particular, if a and b are two vectors (Fig. 
23-1(6)), they may be placed so as to have a common initial or beginning point P (Fig. 23-l(c)) 
or so that the initial point of b coincides with the terminal or end point of a (Fig. 23-l(d)). 

We also assume a zero vector 0 with magnitude 0 and no direction. 

SUM AND DIFFERENCE OF TWO VECTORS. If a and b are the vectors of Fig. 23-l(b), their 

1, By placing the vectors as in Fig. 23-l(c) and completing the parallelogram P A Q B  of 
Fig. 23-2(a). The vector PQ is the required sum. 

2. By placing the vectors as in Fig. 23-l(d) and completing the triangle PAB of Fig. 
23-2(b). Here, the vector PB is the required sum. 

It follows from Fig. 23-2(6) that three vectors may be displaced to form a triangle provided 

If a and b are the vectors of Fig. 23-l(b), their difference a - b is found in either of two 

sum or resultant a + b is found in either of two ways: 

one of them is either the sum or the negative of the sum of the other two. 

ways: 
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156 PLANE VECTORS [CHAP. 23 

1. 
2. 

From the relation a - b = a + (- b) as in Fig. 23-2(c). 
By placing the vectors as in Fig. 23-l(c) and completing the triangle. In Fig. 23-2(d), 
the vector BA = a - b. 

If a, b, and c are vectors and k is a scalar, then 

Property 23.1 (commutative law): 

Property 23.2 (associative law): 

Property 23.3 (distributive law): 

(See Problems 1 to 4.) 

a + b = b + a 

a + (b + c) = (a + b) + c 

k(a + b) = ka + kb 

COMPONENTS OF A VECTOR. In Fig. 23-3(a), let a = PQ be a given vector, and let P M  and PN 
be any two other lines (directions) through P. Construct the parallelogram PAQB. Now 

a = P A + P B  

and a is said to be resolved in the directions PM and PN. We shall call PA and PB the vector 
components of a in the pair of directions PM and P N .  

Fig. 23-3 

Consider next the vector a in a rectangular coordinate system (Fig. 23-3(6)) having equal 
units of measure on the two axes. Denote by i the vector from (0,O) to (1,0), and by j the 
vector from (0,O) to (0 , l ) .  The direction of i is that of the positive x axis, the direction of j is 
that of the positive y axis, and both are unit vectors, that is, vectors of magnitude 1. 

From the initial point P and the terminal point Q of a, drop perpendiculars to the x axis 
meeting it  in M and N, respectively, and to the y axis meeting it in S and T, respectively. Now 
MN = a, i ,  with a ,  positive, and ST = a2j, with a, negative. Then MN = RQ = a, i ,  ST = PR = 

a,j, and 

a = a , i  + a2j (23.1 ) 
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We shall call a , i  and a,j the vector components of a (the pair of directions need not be 
mentioned), and the  scalars a ,  and a ,  the scalar components or x and y components or simply 
components of a. Note that the zero vector 0 = Oi + O j .  

Let the direction of a be given by the angle 8, for 0 I 8 < 2n, measured counterclockwise 
from the positive x axis to the vector. Then 

lal= qm (23.2) 

tan 8 = a J a ,  (23.3) and 

with the quadrant of 8 being determined by 

a ,  = lal cos 8 a2 = lal sin 8 

If a = a l i  + a,j and b = b , i  + b , j ,  then 

Property 23.4: a = b if and only if a ,  = b, and u2 = 6, 

Property 23.5: ka = ka,i  + kn,j 

Property 23.6: a + b = ( a ,  + b,) i  + (a2 + 6,)j 

Property 23.7: a - b = (a ,  - b,) i  + (az - b,)j 

(See Problem 5 . )  

SCALAR OR DOT PRODUCT. The scalar or dot product of two vectors a and b is defined by 

a b = IaI lbl cos 8 (23.4) 

where 8 is the smaller angle between the two vectors when they are drawn with a common 
initial point (see Fig. 23-4). We also let a 0 = 0 a = 0. 

From (23 .4)  we have 

Property 23.8 (commutative law): 

Property 23.9: a - a = lal lal = \a\’ and lal = C a  

a b = b * a 

Property 23.10: a - b = 0 if a = 0 or  b = 0 or a is perpendicular to b 

Property 23.11: i * i = j * j =  1 and i . j = O  

Property 23.12: a * b = ( a , i + a J ) * ( b , i +  b 2 j ) = a , b l  +a,b ,  

Property 23.13 (distributive law): a * (b  + c) = a - b + a c 

Property 23.14: ( a +  b ) . ( c + d ) = a * c + a * d + b - c + b . d  

B 

Fig. 23-4 Fig. 23-5 

SCALAR AND VECTOR PROJECTIONS. In ( 2 3 . l ) ,  the scalar a ,  may be called the scalar 
projection of a on any vector whose direction is that of the positive x axis, while the vector a , i  
may be called the vector projection of a on any vector whose direction is that of the positive x 
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b b 
axis. In Problem 7, the scalar projection a - and the vector projection (a ”) 

lbl lbl Of a 
vector a on another vector b are found. (Note that when b has the direction of the positive x 

axis, then - = i . )  

There follows 

b 

lbl 

Property 23.15: a b is the product of the length of a and the scalar projection of b on a, or the product 
of the length of b and the scalar projection of a on b. (See Fig. 23-5.) 

(See Problems 8 and 9.) 

DIFFERENTIATION OF VECTORS. Let the curve of Fig. 23-6 be given by the parametric 
equations x = f(u) and y = g(u).  The vector 

r = x i  + yj = if(u) + jg (u )  

joining the origin to the point P ( x ,  y) of the curve is called the position vector or radius vector 
of P. (Hereinafter, the letter r will be used exclusively to denote position vectors; thus, 
a = 3i + 4j is a “free” vector, while r = 3i + 4j is the vector joining the origin to P(3,4).) 

Fig. 23-6 

The derivative of r with respect to U is given by 

dr dx dy 
- = -  i + - j  du du du (23.5) 

Let s denote the arc length measured from a fixed point PO of the curve so that s increases 
with U .  If T is the angle that drldu makes with the positive x axis, then 

d~ = slope of curve at P tanT=--- dxldu dx 
dyldu - 

Moreover, drldu is a vector of magnitude 

1 dI- I = t;i ”)’ + ( q2 = !g 
du du du 

whose direction is that of the tangent to the curve at P. It is customary to show this vector with 
P as initial point. 

If now the scalar variable U is the length of arc s, (23.5) becomes 

(23 .6)  
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The direction of t is T as before, while its magnitude is V(dx /ds) *  + (dy/ds)* = 1. Thus, 
t = drlds is the unit tangent to the curve at P. 

Since t is a unit vector, t and dtldr are perpendicular (see Problem 11). Denote by n a unit 
vector at P having the direction of dtlds. As P moves along the curve shown in Fig. 23-7, the 
magnitude of t remains constant; hence, d t l h  measures the rate of change of the direction of t. 
Thus, the magnitude of dtlds at P is the numerical value of the curvature at P, that is, 
(dtldsl= IKI, and 

dt 
- = lKln 
d S  

(See Problems 10 to 13.) 

(23.7) 

Fig. 23-7 

Solved Problems 

1. Prove a + b = b + a. 

From Fig. 23-8, a + b = PQ = b + a. 

Fig. 23-8 

2. Prove (a + b) + c = a + (b + c) 

Fig. 23-9 

From Fig. 23-9, PC = PB + BC = (a + b, + c. Also, PC = PA + AC = a + (b  + c). 

3. Let a, b, and c be three vectors issuing from P such that their endpoints A ,  B ,  C lie on a line 
as shown in Fig. 23-10. If C divides BA in the ratio x :  y where x + y = 1, show that 
c =  xa + yb. 
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Fig. 23-10 Fig. 23-11 

c = PB + BC = b + x(a- b) = x a +  (1 - x)b= xa+  yb 

For example, if C bisects BA, then c = $ (a + b) and BC = $(a - b). 

4. Prove: The diagonals of a parallelogram bisect each other. 

Let the diagonals intersect at Q, as in Fig. 23-11. Since PB = PQ + QB = PQ - BQ, there are 
positive numbers x and v such that b = x(a + b) - y(a - b) = ( x  - y)a + ( x  + y)b. Then x + y = 1 and 
x - y = 0. Solving for x and y yields x = y = $ ,  and Q is the midpoint of each diagonal. 

5. For the vectors a = 3 i + 4 j  and b = 2 i -  j, find the magnitude and direction of (a )  a and b, 
(6) a + b, ( c )  b - a. 

( U )  For a = 3i + 4j: ]a1 = fm = = 5; tan 6 = u2/uI = $ and cos 6 = u,/lal = 3 ;  then 6 is a 
first quadrant angle and is 53'8'. 
For b = 2i - j :  lbl = 

5 I-, 6 = 30"58'. 

258'41'. 

= l6; tan 8 = - 1 and cos 8 = 2 / f i ;  8 = 360" - 26'34' = 333"26'. 
(6) a + b = (3i + 4j) + (2i - j )  = 5i + 3j. Then ]a + b) = = a. Since tan 8 = and cos 8 = 

(c) b - a = ( 2 i - j ) - ( 3 i + 4 j ) =  - i -5j .  Then / b - a l = a .  Since t a n 6 = 5  and cost)= -l/V%, 8 =  

6. Prove: The median to the base of an isosceles triangle is perpendicular to the base. (In Fig. 
23-12, lal = lbl.) 

From Problem 3, since m bisects the base, 

Then 

m =  ; (a+ b) 

m . ( b - a ) =  i ( a + b ) * ( b - a )  

= $(a.  b - a - a  + b .  b - boa) = $(b. b - sea) = 0 

as was to be proved. 

Fig. 23-12 Fig. 23-13 
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7. 

8. 

9. 

10. 

11. 

12. 

13. 

Resolve a vector a into components a, and a,, respectively parallel and perpendicular to b. 

In Fig. 23-13, we have a = a,  + a,, a,  = cb, and a, b = 0. These relations yield 

a * b  
a , = a - a ,  = a - c b  and a , * b = ( a - c b ) * b = a . b - c l b l ’ = O  or c = -  

lbl’ 

a - b  a - b  
Thus, a, = cb = 7 b and a2 = a - cb = a - 7 b. 

lbl lbl 

( ,El) & is the vector projection of The scalar a - is the scalar projection of a on b; the vector a - 
b 

lbl 
a on b. 

Resolve a = 4i + 3j into components a, and a,, parallel and perpendicular to b = 3i + j. 
a - b  1 2 + 3  3 

From Problem 7, c = 7 = 10 = 2.  Then a,  = cb = pi + $ j  and a, = a  - a, = - 4i + $j. 
lbl 

Find the work done in moving an object along a vector a =3i + 4j if the force applied is 
b = 2 i + j .  

Work done = (magnitude of b in the direction of a)(distance moved) 
= (lbl cos @)]a1 =boa = (2i + j )*(3 i  + 4j) = 10 

d da db 
du du du 

If a = if,(u) + jf2(u) and b = igl(u) + jg,(u),  show that - (a- b) = - b + a -  -. 

By Property 23.12, a * b = ( i f ,  +jf,)-(ig, +jg2)=f,g,  + f 2 g , .  Then 

d (f; - df,(u)) 
du - (a*b) =fk +fdI + f k 2  + f 2 &  du 

= (fig, +fk,) + (f&I +f,gl) 
da db 

= (if; + j f l )  (ig, + jg,) + (if, + jf,) - (igl + jgi) = - b + a - du du 

If a = if,(u) + jf,(u) is of constant magnitude, show that a and daldu are perpendicular. 

d 
du 

Since lal is constant, a - a  = constant # 0, and we obtain, by Problem 10, - (a-a)  = 

da da da da da 
- * a  + a *  - = 2a- - = 0. Then a -  - = 0 so that a and - are perpendicular. 
du du du du du 

radius drawn to P. 
Thus (as a geometric example), the tangent to a circle at one of its points P is perpendicular to the 

Given r = i cos2 8 + j sin2 8, find t. 

Hence 

Given x = a cos3 8, y = a sin3 8, find t and n when 8 = in. 
We have r = ai cos3 8 + aj sin3 8. Then 

dr ds dr 
- = -3ai cos’ 8 sin 8 + 3 4  sin’ 8 cos 8 
d0 

and - de - - l z l = 3 a s i n 8 c o s 8  
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Hence dr de - - i c o s 8 + j s i n e  
dr t = - = - - -  
ds d8 ds 

and 
dt d8 1 1 
-= (isin 8 + jcos 8 )  - = - i + ~ j a5 ds 3acos8  3as in8  

1 1 d t f l f i  dt 2 1 d t -  1 1 
f i i + z j ,  ; i ; : = s i + - j .  l K l = l ~ l = -  and n=---- IKI ds G i + W  At 8 = f v :  t = - -  

3a 3a ' 

14. Show that the vector a = ai + bj is perpendicular to the line ax + b y  + c = 0. 

ax, + by,  + c = 0. Subtracting the first from the second yields 
Let Pl (x l ,  y , )  and P2(x2 ,  y 2 )  be two distinct points on the line. Then ax, + b y ,  + c = 0 and 

4 x 2  - X I )  + N Y 2  - Y,) = 0 
4 x 2  - x,) + W Y ,  - Y A = (ai + bj) [(x, - xl)i  + ( Y ,  - Y ,111 Now 

= a Pl P2 

By (1 ), the left side is zero. Thus, a is perpendicular (normal) to the line. 

15. Use vector methods to find: 
(a) The equation of the line through P 1 ( 2 ,  3) and perpendicular to the line x + 2y  + 5 = 0 
( 6 )  The equation of the line through P1(2, 3) and P2(5 ,  - 1) 

Take P ( x ,  y )  to be any other point on the required line. 

(a )  By Problem 14, the vector a = i + 2j is normal to x + 2y + 5 = 0. Then PIP = (x - 2)i + ( y  - 3)j is 
parallel to a if 

(x - 2)i + ( y - 3)j = k(i + 2j) (k a scalar) 

Equating components, we have x - 2 = k and y - 3 = 2k. Eliminating k, we obtain the required 
equation as y - 3 = 2(x - 2) or 2x - y - 1 = 0. 

( 6 )  We have PIP = (x - 2)i + ( y  - 3)j and PlP2 = 3i - 4j 

Now a = 4i + 3j is perpendicular to PIP2 and, hence, to PIP. Thus, we may write 

0 = a - P , P =  (4i + 3j).[(x - 2)i + ( y  - 3)j] or 4x + 3y - 17 = 0 

16. Use vector methods to find the distance of the point P , ( 2 , 3 )  from the line 3x + 4 y  - 12 = 0. 

At any convenient point on the line, say A(4,0), construct the vector a = 3i + 4j perpendicular to 
the line. The required distance is d = lAPII cos 8 in Fig. 23-14. Now a -  AP, = lal IAP,) cos 8 = lal d ;  hence 

a-AP,  (3 i+4j )*( -2 i+3j )  - - 6 + 1 2  6 d = -  - _-- - -  - 
lal 5 5 5 

Fig. 23-14 
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Supplementary Problems 

17. Given the vectors a, b, c in Fig. 23-15, construct (a) 2a; ( 6 )  -3b; (c )  a + B ;  ( d )  a + b - c ;  ( e )  
a - 2b + 3c. 

Fig. 23-15 Fig. 23-16 

18. Prove: The line joining the midpoints of two sides of a triangle is parallel to and one-half the length of 
the third side. (See Fig. 23-16.) 

19. If a, b, c, d are consecutive sides of a quadrilateral (see Fig. 23-17), show that a + b + c + d = 0. (Hint: 
Let P and Q be two nonconsecutive vertices.) Express PQ in two ways. 

Fig. 23-17 Fig. 23-18 Fig. 23-19 

20. Prove: If the midpoints of the consecutive sides of any quadrilateral are joined, the resulting 
quadrilateral is a parallelogram. (See Fig. 23-18.) 

21. Using Fig. 23-19, in which lal = lbl is the radius of a circle, prove that the angle inscribed in a semicircle 
is a right angle. 

22. Find the length of each of the following vectors and the angle it makes with the positive x axis: (a) i + j; 
(6) - i  + j; (c) i + f i j ;  ( d )  i - f i j .  

Ans. (U) fl, 8 = T ;  (6) a, 8 = 3 d 4 ;  (c) 2, 8 = d 3 ;  ( d )  2, 8 = 5 ~ / 3  

23. Prove: If U is obtained by rotating the unit vector i counterclockwise about the origin through the angle 
8, then u = i cos 8 + j sin 8. 

24. Use the law of cosines for triangles to obtain a .  b = Ial lbl cos 8 = i(la12 + lbl' - ]cl'). 

25. Write each of the following vectors in the form ai + 6j: 
(a) The vector joining the origin to P(2, -3) 
(c) The vector joining P2(4, 2) to P,(2,3) 
(e) The vector having magnitude 6 and direction 120" 

Am. 

(6) The vector joining P,(2,3) to P2(4,2) 
(d) The unit vector in the direction of 3i + 4j 

(a) 2i - 3j; (6) 2i - j; (c )  -2i + j; ( d )  $ i  + Sj; ( e )  -3i + 3 f l j  

26. Using vector methods, derive the formula for the distance between P l ( x , ,  y , )  and P 2 ( x 2 ,  y 2 ) .  
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27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

Given O(0, 0), A(3, l ) ,  and B(1,5) as vertices of the parallelogram OAPB, find the coordinates of P. 

Am. (4,6) 

( a )  Find k so that a = 3i - 2j and b = i + kj are perpendicular. 
(6) Write a vector perpendicular to a = 2i + 5j. 

Prove Properties 23.8 to 23.15. 

Find the vector projection and scalar projection of b on a, given: ( a )  a = i - 2j and b = - 3i + j; 
(6) a = 2i + 3j and b = 1Oi + 2j. Am. (a) - i  + 2j, - G; (6) 4i + 6j, 2 m  

Prove: Three vectors a, b, c will, after parallel displacement, form a triangle provided ( a )  one of them is 
the sum of the other two or (6) a + b + c = 0. 

Show that a = 3i - 6j, b = 4i + 2j, and c = -7i + 4j are the sides of the right triangle. Verify that the 
midpoint of the hypotenuse is equidistant from the vertices. 

Find the unit tangent vector t = dr /ds ,  given: (a) r = 4icos8 + 4jsin8; (6) r = eei + Lej; 

(a) Find n for the curve of Problem 33(a). 
(6) Find n for the curve of Problem 33(c). 
( c )  Find t and n given x = cos 8 + 8 sin 8, y = sin 8 - 8 cos 8. 

j; ( c )  t = i c o s O + j s i n @ ,  n =  - i s i n @ + j c o s 8  
- 28 1 

mi+ v-i-zi? 
Am. (a) - i cos@- j s in8 ;  (b) 



Chapter 24 

Curvilinear Motion 

VELOCITY IN CURVILINEAR MOTION. Consider a point P ( x ,  y) moving along a curve with the 

r = i x + j y  (24.1 ) 

equations x = f(t), y = g ( t ) ,  where t is time. By differentiating the position vector 

with respect to t, we obtain the velocity vector 

dr  dx dy 
dt dt dt 

v = -  = i -  + j - = iu, + ju , ,  (24.2)  

where U, = dxldt and U,, = dyldt .  
The magnitude of v is called the speed and is given by 

The direction of v at P is along the tangent to the path at P, as shown in Fig. 24-1. If T denotes 
the direction of v (the angle between v and the positive x axis), then tan T = u , / u , ,  with the 
quadrant being determined by U, = Ivl cos r and U, = IvI sin T. 

Fig. 24-1 I 

Y 

Fig. 24-2 

ACCELERATION IN CURVILINEAR MOTION. Differentiating (24.2)  with respect to t, we 
obtain the acceleration vector 

d v  d2r d2x d 2 y  
dt dt2 dt2 dt2 

+ j - = ia, +jay  a =  - = (24 .3)  

where a, = d2x/d t2  and ay = d2y/d t2 .  The magnitude of a is given by 

lal= = vm 
The direction 4 of a is given by tan 4 = ay/ax, with the quadrant being determined by 
a, = lal cos 4 and a, = lal sin 4. (See Fig. 24-2.) 

In Problems I to 3, two methods of evaluating v and a are offered. One uses the position vector 
(24.2),  the velocity vector (24.2), and the acceleration vector (24.3). This solution requires a 
parametric representation of the path. The other and more popular method makes use only of the .Y 
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and y components of these vectors; a parametric representation of the path is not necessary. The two 
techniques are, of course, basically the same. 

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION. By (23.6),  

dr  dr  ds ds v = - = - -  = t -  
dt h dt dt 

Then 
dv d2s dt ds d2s dt  ds 
dt dt2 dt dt dt2 ds (z) a = - = t - + - - = t - + -  

d2s 

(24.4) 

(24.5) 

by (23.7).  

Denoting the components by a, and a,,, respectively, we have, for their magnitudes 
Equation (24.5) resolves the acceleration vector at P along the tangent and normal there. 

(dsldt)’ lv12 
lanl = ~ = - and 

R R 

where R is the radius of curvature of the path at P. (See Fig. 24-3.) 
we have Since 1.1’ = af + a:, = a, + a,,, 2 2  

as a second means for determining Ia,,l. (See Problems 4 to 8.) 

Fig. 24-3 

Solved Problems 

1. Discuss the motion given by the equations x = cos 27rt, y = 3 sin 27rt. Find the magnitude and 
direction of the velocity and acceleration vectors when (a) t = 

The motion is along the ellipse 9 x 2  + y2 = 9. Beginning (at t = 0) at ( 1 ,  0), the moving point 
traverses the curve counterclockwise. 

and (6) t = $ .  
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First solution : 

(a )  At t = & :  

CURVILINEAR MOTION 

r =ix + j y  = icos27rt + 3j sin 27rt 

v = - = iv, + ju, = -27ri sin 27rt + 67rj cos 27rt 

a = - = ia, + j a y  = -41r2i cos 27rt - 1277’j sin 2lrt 

dr 
dt 
dv 
dt 

v = - f l 7 r i  + 37rj and a = -27r2i - 6V37r2j 
Ivl = V F T  = I/(- v37r)2 + (37$ = 2v37r 
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lal= = I / ( - ~ T ~ ) ~  + ( -6f i7r2)?  = 4V77~’ 

(b) At t = 5 :  v = f i l r i  - 37rj and a = 27r2i + 6fin’j 

1 57r 
Ivl= 2V37r,  tan 7 = -V3cos 7 = - ; so 7 = - 3 

2 

lal = 4 f i 7 r 2  , 
1 

2 v 7  
tan 4 = 3 f i  cos 4 = - ; SO 4 = 79’6’ 

Second solution ; 

du d 2x 
dt dt2 

x = cos 27rt U, = - = -27r sin 27rt a, = - = -47r2 cos 2 n t  

d 2Y a Y = - dt2 = -127r’sin 27rt y = 3 sin 27rt U, = = 67r cos 27rt 

(a )  At t = a :  U, = U, = 37r IVI = vm = 2 f i 7 r  

(b) At t = f : U, = V 3 7 r  U, = -37r IVI = 2V3n 

51r 
t a n ~ = - f l ,  C O S T = $ ;  SO T = -  3 

a, = 21r’ U, = 6f l l r ’  (a1 = 4v77r2 

so 4 = 79”6’ 
1 

tan 4 = W3, cos 4 = - 
2 w  

2. A point travels counterclockwise about the circle x2  + y 2  = 625 at the rate Ivl = 15. Find T,  lal, 
and 4 at (a )  the point (20,15) and (b) the point (5, - 1 O d ) .  Refer to Fig. 24-4. 

First solution; We have 
IvI’ = U,’ + U: = 225 

and, by differentiation with respect to t, 
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Fig. 24-4 

From x' + y' = 625, we obtain by repeated differentiation 

and 
or 

x u ,  + yu,, = 0 
xa, + uf + ya, + uzy = 0 

XU, + YU,, = - 225 

Solving ( I )  and (3) simultaneously, we have 

u , = + : y  

Solving (2) and ( 4 )  simultaneously, we have 

2 2 5 ~ ~  
a, = ~ 

Y U ,  - xu, 

( 3  

( 4 )  

( a )  From Fig. 24-4, U, < O  at (20, 15). From ( 5 ) ,  ux = -9; from ( 3 ) ,  U, = 12. Then tan T = - :, 
cos 7 = - ;, and 7 = 126'52'. From ( 6 ) ,  a, = - ; from ( 4 ) ,  ay  = - 9 ; hence lal = 9. Then tan + = 
f , cos 4 = - $ ,  and # = 216'52'. 

(6) From the figure, ux  > 0 at (5, - 1 0 1 6 ) .  From ( 5 ) ,  U, = 6 G ;  from ( 3 ) ,  U, = 3. Then tan T = fl/ 12, 
sin 7 = 4, and T = 11'32'. From (6), a, = - g ;  from ( 4 ) ,  a,, = 18d6/5; hence lal = 9. Then tan 4 = 
- 2 G .  cos + = - 5 ,  and + = 101'32'. 

Second solution: Using the parametric equations x = 25 cos 8, y = 25 sin 8, we have at P ( x ,  y)  

r = 25i cos 8 + 25j sin 4 

v = - = (-25i sin 8 + 25j cos 8) - = - 15i sin 8 + 15j COS 8 
dr d8 
dr dt 

dv d8 
dt dt 

a =  - =(-15icos8-15jsin8) - = -9 icos8-9 js in8  

since Iv( = 15 is equivalent to a constant angular speed of dO/dt = 4 .  
(a) At the point (20, 15), sin 6 = 4 and cos 8 = $ .  Thus, 

C O S T = - ?  * v = -9i + 12j, tan 7 = - 4 , , SO 7 = 126'52' 
a = - ~ i -  T J ,  2 7 -  ( a ( = 9 ,  t a n + = : ,  c o s # = - : ;  SO $=216"52' 

(b) At the point (5, - l O f i ) ,  sin 8 = - &f6 and cos 8 = 5 .  Thus, 

v = 6 G i + 3 j ,  t a n ~ = d 6 / 1 2 ,  C O S T =  $16; so ~=11 '32 '  

, l a l = 9 ,  t a n + =  - 2 G ,  cos+ = - 4 ; SO 4 = 101'32' a = - ? ' +  ! $ a j  
5 1  
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3. A particle moves on the first-quadrant arc of x2 = 8y so that U, = 2. Find IvI, r,  lal, and 4 at 
the point (4 ,2) .  

First solution: Differentiating x’ = 8y twice with respect to t and using U, = 2, we have 

2xu, = 8u, = 16 or xu, = 8 and xa, + U: = 0 
8 

At (4 ,2) :  U, = - = 2 V ,  Ivl = 2 f i ,  tan 7 = 1 ,  cos T = ifi; so 7 = :T 
X 

a , = - 1 ,  a y = O ,  l a l = l ,  t a n 4 = 0 ,  c o s 4 = - 1 ;  so 4 = ~  

Second solution: Using the parametric equations x = 48, y = 28’, we have 

d8 d8 
v = 4i - + 4j8 - 

dt dt 
r = 4i8 + 2je’ and 

d8 d8 1 
Since U, = 48 - = 2 and - = - we have 

dt dt 28’ 
7 1 

~ = ~ i + 2 j  and e 
At the point (4,2),  8 = 1. Then 

v = 2 i + 2 j ,  I v I = ~ f i ,  t a n ~ = 1 ,  C O S T =  iC2; so T =  i n  
a = - i ,  J a ( = 1 ,  t a n 4 = 0 ,  c o s + = - 1 ;  so + = T  

4. Find the magnitudes of the tangential and normal components of acceleration for the motion 
x = e‘ cos t ,  y = e‘ sin t at any time t .  

We have r = ix + j y  = ie‘ cos t + je‘ sin t 
v = ie‘(cos t - sin t)  + je‘(sin t + cos t )  

a = -2ie‘sin t + 2je‘ cos t 

ds d’s 
dt Idt 1 Then lal = 2e‘. Also, - = IvI = f i e ’  and la,l = 7 = f i e ’ .  Finally, la,l = vm = f i e ‘ .  

5. A particle moves from left to right along the parabola y = x 2  with constant speed 5. Find the 
magnitude of the tangential and normal components of the acceleration at (1,l) .  

d’s 
Since the speed is constant, la,l = 1 
At (1, l ) , y ’ = Z x = 2  andy”=2 .  The radius of curvature at (1, 1) is then R =  

1 = 0. 
[l + ( y ’ ) y  - 5 v 3  -- 

2 .  I Y“ l  lvl’ Hence (a,/ = - = 2V3. 
R 

6 .  The centrifugal force F exerted by a moving particle of weight W (both in pounds) at a point 

in its path is F = - la,l. Find the centrifugal force exerted by a particle, weighing 5 lb, at the 

ends of the major and minor axes as it traverses the elliptical path x = 20 cos t ,  y = 15 sin t ,  the 
measurements being in feet and seconds. Use g = 32 ft/sec2 

W 

g 

We have r = 20i cos t + 15j sin t 
v = -20i sin t + 15j cos t 
a =  -2Oicost- 15jsint 

ds d’s - 175 sin t cos t - = Ivl= d400 sin’ t + 225 cos’ t 
dt dt2 d400 sin’ t + 225 cos’ t 

At the ends of the major axis (t = 0 or t = T ) :  

- - Then 
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At the ends of the minor axis ( t  = 7r/2 or t = 3 ~ 1 2 ) :  

5 75 
lal = 15 la,l = 0 la,l = 15 F = - 32 15 = - 32 lb 

7. Assuming the equations of motion of a projectile to be x = u,t cos J/, y = u,t sin J/ - f gt’, 
where U, is the initial velocity, J/ is the angle of projection, g = 32 ft/sec2, and x and y are 
measured in feet and t in seconds, find: (a )  the equation of motion in rectangular coordinates; 
( 6 )  the range; (c) the angle of projection for maximum range; and ( d )  the speed and direction 
of the projectile after 5 sec of flight if uo = 500 ft/sec and J/ = 45”. (See Fig. 24-5.) 

Fig. 24-5 

X 
(a) We solve the first of the equations for t = ____ and substitute in the second: 

U,, cos JI 

(b)  Solving y = u,,t sin JI - gt2 = 0 for t ,  we get t = 0 and t = (2u0 sin J I ) /g .  For the latter, we have 

2v sin 4 - u:sin2+ 
- ~ Range = x = U,, cos JI 

g g 

dx 2uic0s2JI 
( c )  For x a maximum, - = 

( d )  For U,, = 500 and JI = v,  x = 2 5 0 f l t  and y = 2 5 0 f l t  - 16t’. Then U, = 2 5 0 d  and U,, = 2 5 0 f l -  

= 0; hence cos 2JI = 0 and JI = a T. 
dJI g 

32t. 
When t = 5, U, = 2 5 0 f l  and U, = 2 5 0 G  - 160. Then 

U 
tan T = = 0.5475 . So T = 28’42’ and Ivl = d m  = 403 ft/sec 

U, 

8. A point P moves on a circle x = rcos p, y = r sin p with constant speed U. Show that, if the 
radius vector to P moves with angular velocity o and angular acceleration a, (a)  U = ro and 
(b) a = r m .  

dP dp = -rw sin /3 U, = -rsin p - and U, = r cos p - = r o  cos p 
dr (4  dt 

du 4 d o  a = 2 = sin p - + rcos p - = - r o 2  sin p + ra cos p 
dt dt dt 
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Supplementary Problems 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Find the magnitude and direction of velocity and acceleration at time t, given 
(a) x = e', y = e2' - 4e' + 3; at t = o 
(6) x = 2 - t ,  y = 2t3 - t ;  at t = 1 
(c) x = cos 3t, y = sin t; at t = f n 
( d )  x = e' cos t, y = e' sin t ;  at t = 0 

Ans. (a )  Ivl = fi, T = 296'34'; lal = 1, 4 = 0 
Am. (6) Ivl = a, 7 = 101'19'; lal = 12, 4 = i n  
Am. ( c )  Ivl = fi, T = 161'34'; lal = fi, 4 = 353'40' 
Am. ( d )  Ivl =fi, 7 =  fn; lal=2, 4 = $T  

A particle moves on the first-quadrant arc of the parabola y 2  = 12x with U, = 15. Find U,, IvI, and T ;  and 

Ans. 

a,, a,, lal, and 4 at (396). 

U, = 15, Ivl = l S f i ,  T = a T ;  a, = 0, a,, = -75 /2, lal = 7512, 4 = 3 n / 2  

A particle moves along the curve y = x3/3 with U, = 2 at all times. Find the magnitude and direction of 
the velocity and acceleration when x = 3. Ans. Ivl = 2 m ,  T = 83'40'; lal = 24, 4 = i.n 

A particle moves around a circle of radius 6f t  at the constant speed of 4 ft/sec. Determine the 
magnitude of its acceleration at any position. Am. la,l = 0, lal = la,l = 8 /3  ft/secz 

Find the magnitude and direction of the velocity and acceleration, and the magnitudes of the tangential 
and normal components of acceleration at time t, for the motion 
(a) x = 3t, y = 9t - 3t2; at t = 2 
(6) x = cos t + t sin t, y = sin t - t cos t; at t = 1. 

Am. (a) Ivl = 3 f i ,  T = 7 ~ 1 4 ;  lal = 6, 4 = 3n/2;  la,l = la,l = 3 f i  
(6) Iv) = 1, T = 1; lal = fl, 4 = 102'18'; la,l = la,l = 1 

A particle moves along the curve y = i x 2  - 4 In x so that x = i f 2 ,  for t > 0. Find U,, U,,,, Ivl, and T ;  a,, U, , .  

lal, and 4; la,l and la,l when t = 1. 

Ans. U, = 1, U,, = 0, Ivl = 1, T = 0; a, = 1, a,, = 2, lal = fi, 4 = 63'26'; la,l = 1, la,l = 2 

A particle moves along the path y = 2x - x 2  with U, = 4 at all times. Find the magnitudes of the 
tangential and normal components of acceleration at the position (a) (1, 1) and (6) (2,O). 

Ans. (a)  la,l = 0, la,l = 32; (6 )  la,l = 6 4 / f i ,  la,l= 3 2 1 f l  

If a particle moves on a circle according to the equations x = r cos of, y = r sin w t ,  show that its speed is 
wr .  

Prove that if a particle moves with constant speed, then its velocity and acceleration vectors are 
perpendicular; and, conversely, prove that if its velocity and acceleration vectors are perpendicular, then 
its speed is constant. 
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Polar Coordinates 

THE POSITION OF A POINT P in a given plane, relative to a fixed point 0 of the plane, may be 
described by giving the projections of the vector OP on two mutually perpendicular lines of the 
plane through 0. This, in essence, is the rectangular coordinate system. Its position may also be 
described by giving the directed distance p = O P  and the angle 8 which OP makes with a fixed 
half-line O X  through 0. This is the polar coordinate system (Fig. 25-l), in which point 0 is 
called the pole.  

To each number pair ( p ,  0)  there corresponds one and only one point, The converse is 
not true; for example, the point P in the figure may be described as ( p ,  8 t 2nn)  and 
( - p ,  8 t ( 2 n  + 1)n), where n is any positive integer including 0. In particular, the polar 
coordinates of the pole may be given as (0, 8) with 8 perfectly arbitrary. 

The curve whose equation in polar coordinates is p = f(8) or F( p ,  8 )  = 0 consists of the 
totality of distinct points ( p ,  8) that satisfy the equation. 

Fig. 25-1 Fig. 25-2 

THE ANGLE J, from the radius vector O P  to the tangent PT to a curve, at a point P( p,  8) on it,  is 
given by 

P dP tan (I, = p - = 7 where p'  = - 
dP P d6, 

Tan q9 plays a role in polar coordinates somewhat similar to that of the slope of the tangent in 
rectangular coordinates. (See Problems 1 to 3.) 

THE ANGLE OF INCLINATION T of the tangent to a curve at a point P ( p ,  0)  on it is given by 

p cos 8 + p l  sin 8 
- p  sin 8 + cos 8 

tan T = 

(See Problems 4 to 10.) 

THE POINTS OF INTERSECTION of two curves whose equations are p = fi(8) and p = f,(8) may 
frequently be found by solving 

(2.5.1 ) 

EXAMPLE 1: Find the points of intersection of p = 1 + sin 8 and p = 5 - 3 sin 8. 

intersection, 
Setting 1 + sin 8 = 5 - 3 sin 8, we have sin 8 = 1. Then 8 = i.rr and (2,  f ~ )  is the  only point of 

172 
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Since a point may be represented by more than one pair of polar coordinates, the 
intersection of two curves may contain points for which no single pair of polar coordinates 
satisfies (25.1 ). 

EXAMPLE 2: Find the points of intersection of p = 2 sin 28 and p = 1. Solution of the equation 
2sin28 = 1 yields sin28 = and 8 = 72/12, 572/12, 1 3 ~ / 1 2 ,  1 7 ~ / 1 2 .  We have found four points of 
intersection: (1, 7r/12), (1,572/12), (1,13n/12), and (1, 1 7 ~ / 1 2 ) .  

But the circle p = 1 also can be represented as p = - 1. Now solving 2 sin 28 = - 1, we obtain 
t9 = 772/ 12, 11 T /  12, 1 9 d  12, 2372/ 12 and the four additional points of intersection (- 1,772/ 12), 
(-1,1172/12), ( - 1 , 1 9 ~ / 1 2 ) ,  ( - 1 , 2 3 ~ / 1 2 ) .  

When the pole is a point of intersection, it may not appear among the solutions of (25.1 ). 
The pole is a point of intersection provided there are values of 8, say 8, and 8?, such that 
f l ( O 1 )  = 0 and f2(o2> = 0. 

EXAMPLE 3: 
From the equation sin 8 = cos 8, we obtain the point of intersection (+a, 72). The curves are, 

however, circles passing through the pole. But the pole is not obtained as a point of intersection from 
sin 8 = cos 8, since on p = sin 8 it has coordinate (0,O) whereas on p = cos 8 it has coordinate (0, f n). 

Find the points of intersection of p = sin 8 and p = cos 8. 

EXAMPLE 4: Find the points of intersection of p = cos 28 and p = cos 8. 
Setting cos 28 = 2 cos2 8 - 1 = cos 8, we find (cos 8 - 1)(2 cos 8 + 1) = 0. 
Then 8 = 0, 2 ~ / 3 ,  472/3, and we have as points of intersection (1, 0), (- f , 2 ~ / 3 ) ,  (- i ,  472/3). The 

pole is also a point of intersection. 

THE ANGLE OF INTERSECTION 4 of two curves at a common point P(p, 8), not the pole, is 
given by 

tan - tan t+9* 
1 + tan +, tan 

tan + = 

where 
curves at P (Fig. 25-3). 

and qb2 are the angles from the radius vecor OP to the respective tangents to the 

C¶ 

Fig. 25-3 

The procedure for finding + here is similar to that in the case of curves given in rectangular 
coordinates; the use of the tangents of the angles from the radius vector to the tangent instead 
of the slopes of the tangents is a matter of convenience in computing. 

EXAMPLE 5. Find the (acute) angles of intersection of p = cos 8 and p = cos 28. 

tan +, = -cot 8; for p =cos 28, tan t / ~ ~  = - $ cot 28. 
The points of intersection were found in Example 4. We also need $, and &: For p =cos 8, 
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At the pole: On p = cos 8, the pole is given by 8 = n12; on p = cos 28, the pole is given by 8 = n14 

At the point ( 1 , O ) :  tan 

At the point (- $ ,  2 ~ 1 3 ) :  tan 

By symmetry, this is also the acute angle of intersection at the point (- $ ,  4n/3) .  

and 3 ~ 1 4 .  Thus, at the pole there are two intersections, the acute angle being n / 4  for each. 
= -cot 0 = 03 and tan +2 = m. Then (1/, = +2 = n12 and 4 = 0. 

1 - 116 
f l 1 3  + f i l 6  = 3fl15 

= V 3 1 3  and tan +2 = - f l / 6 .  Then tan 4 = 

and the acute angle of intersection is 4 = 46”6’. 

(See Problems 11 to 13.) 

THE DERIVATIVE OF ARC LENGTH is given by &/do = fm, where p’  = dp/d8, and with 
the understanding that s increases as 8 increases. (See Problems 14 to 16.) 

THE CURVATURE of a curve is given by K = p 2  + 2(p’)2 - ”” . (See Problems 17 to 19.) 
b2 + (P’)*I3’* 

CURVILINEAR MOTION. Suppose as in Fig. 25-4, a particle P moves along a curve whose 
equation is given in polar coordinates as p =f(8). If the curve is represented parametrically as 

x = p cos 8 = g ( 8 )  y = p sin 8 = h ( 8 )  

then the position vector of P becomes 

r = OP = xi + y j  = pi cos 8 + pj sin 8 = p( i cos 8 + j sin 8) 

and the motion may be studied as in Chapter 24. 

I Fig. 25-4 

An alternative procedure is to express r and, thus, v and a in terms of unit vectors along 
and perpendicular to the radius vector of P. For this purpose, we define the unit vector 

U, = i c o s 8 + j s i n 8  

along r in the direction of increasing p, and the unit vector 

U, = - i  sin 8 + j cos 8 

perpendicular to r and in the direction of increasing 8. An easy calculation yields 

d8 
dt 

--U - du, and - - 
- -  du, du, d8 d8 
dt d8 dt - dt dt 

_ - _ -  

From r = pu, 
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we obtain, in Problem 20, 

dr d8 
dt p dt 

dv 

v =  - = U ’ + pue dt = v,u, + UeU, 

and 

= upup + UeU, 

Here U, = dpldt and U, = p d8ldt are, respectively, the components of v along and perpendicu- 

= dt2 - p( x) and ue = p - + 2 - - are the correspond- lar to the radius vector, and up 

ing components of a. (See Problem 21.) 

d2p d8 d28 dp d8 
dt2 dt dt 

Solved Problems 

1. Derive tan t,b = p deldp, where t,b is the angle measured from the radius vector OP of a point 
P(p, 8) on the curve of equation p =f(8) to the tangent PT. 

In Fig. 25-5, Q(p + Ap, 8 + Ae) is a point on the curve near P. From the right triangle PSQ, 

sin A0 
p sin A0 - pTi -  - p sin A 8  - s p  - - - SP 

SQ O Q - O S  p + A p - p c o ~ A O  p(l-cosAe)+Ap l - c o s h e  A p  + -  
he A e  

tan A = - = 

Now as Q-, P along the curve, A8+0, OQ+ OP, PQ+ PT,  and L A - ,  L+. 

AS Ae+O, - s i n A e + ~  and 
1 - cos A e  

Ae 
+ O  (see Chapter 17). Thus, 

A@-0 dplde -’ dp 
A e  

P de 
tan + = lim tan A = - - 

0 

Fig. 25-5 

In Problems 2 and 3, find tan $ for the given curve at the given point. 

2. p = 2 +cos 8; 8 = ~ 1 3 .  (See Fig. 25-6.) 

7r 1 5  fl P 5 
2 2 ’  p ’  v3 A t e = - : p = 2 + - = -  p ’ = - s i n e = - -  , and t a n + =  - = -- 3 
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T 

2 

Fig. 25-6 Fig. 25-7 

p COS 8 + p f  sin 8 
- p  sin 8 + p f  cos 6 ’  

4. Derive tan T = 

From Fig. 25-5, T = + + 6 and 

d6 sin 8 
p - + -  

dp cos6 
1 - tan + tan 6 de sin 6 

1 - p - -  
dp cos6 

tan 7 = tan ($ + 6 )  = tan + +  tan8 - - 

dP p cos 8 + - sin 6 
do - p cos 6 + p’ sin 6 - - I 

- p  sin 8 + p ’  cos 6 * cos 6 - p sin 6 
d6 

5. Show that if p = f(8) passes through the pole and 8, is such that f(8,) = 0, then the direction of 
the tangent to the curve at the pole (0, 8,) is 8,. (See Fig. 25-8.) 

Fig. 25-8 

At (0, O , ) ,  p = 0 and p ’  = f’(6,). I f  p ’  # 0, then 

p cos 6 + p’  sin 6 - 0 + f’(6,) sin 6, 
- p  sin 6 + p’  cos 6 0 + f’(6,) cos 6, 

= tan 8, tan T = - 

If p ’  = 0, 
f’(6) sin 8 

8-8, f’(6) cos 8 
tan T = lim = tan 6, 

In Problems 6 to 8, find the slope of the given curve at the given point. 

6. p = 1 - cos 8; 8 = d 2 .  (See Fig. 25-9.) 
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Fig. 25-9 Fig. 25-10 

At 8 = n12:  sin 8 = 1 ,  cos 8 = 0, p = 1 ,  p '  =sin 8 = 1 ,  and 

= - 1  p c o s 8 + p ' s i n 8  - 1 . 0 +  1 . 1  
-ps inO+p 'cos8  - 1 . 1 + 1 - 0  

tan T = - 

7. p = cos 38; pole. (See Fig. 25-10.) 

t a n 7 =  l l f i ,  m, and - l / f i .  
When p = 0, cos 38 = 0. Then 38 = 7~12,  3 ~ 1 2 ,  5 n / 2 ,  and 8 = n16,  n / 2 ,  5 ~ 1 6 .  By Problem 5 ,  

At 8 = n13:  sin 8 = f l 1 2 ,  cos 8 = 4,  p = 3 a / n ,  and p'  = - a l e 2  = -9aIn'. Then 

pcos8 + p ' s ine  - 
-p sin 8 + p'  cos 8 

x - 3 V 3  
V37~ + 3 

- -____ tan T = 

9. Investigate p = 1 + sin 8 for horizontal and vertical tangents. (See Fig. 25-11.) 

Fig. 25-11 

(1 + sin 8) COS 8 + cos 8 sin 8 - - cosO(1 +2s in8)  
(sin 8 + 1)(2 sin 8 - 1 )  

tan T = - 
- ( 1  + sin 0) sin 8 + cos2 8 

We set cos 8 ( l  + 2 sin 8) = 0 and solve, obtaining 8 = n12,  3 ~ 1 2 ,  7 ~ 1 6 ,  and 117~16. We also set 

For 8 = n12:  There is a horizontal tangent at ( 2 ,  ~ 1 2 ) .  
For 8 = 7 n 1 6  and l l n / 6 :  There are horizontal tangents at ( 1 / 2 , 7 n / 6 )  and ( 1 / 2 , l l n / 6 ) .  
For 8 = n16 and 5 ~ 1 6 :  There are vertical tangents at (312, n / 6 )  and ( 3 / 2 , 5 n / 6 ) .  
For 8 = 3 ~ 1 2 :  By Problem 5 ,  there is a vertical tangent at the pole. 

(sin 8 + 1)(2 sin 8 - 1) = 0 and solve, obtaining 8 = 3 ~ 1 2 ,  n16,  and 5 ~ 1 6 .  
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10. Show that the angle that the radius vector to any point of the cardioid p = a(1 - cos 0)  makes 
with the curve is one-half that which the radius vector makes with the polar axis. 

At any point P ( p ,  8) on the cardioid, p ’  = a sin 8 and 

p 1 - cos8  1 1 
p ‘  s in8  2 

t a n $ = - = -  = t a n - 8 ;  so J I = j 8  

In Problems 11 to 13, find the angles of intersection of the given pair of curves. 

11. 

12. 

13. 

p = 3 COS 8, p = 1 + COS 8. (See Fig. 25-12.) 

Fig. 25-12 

Solve 3 cos 8 = 1 + cos 8 for the points of intersection, obtaining (3/2, 7r/3) and (3/2,5n/3). The 
curves also intersect at the pole. 

For p = 3 cos 8: 

For p = 1 + cos 8: 

p’  = -3 sin 8 

p’  = -sin 8 and tan JI, = -- 

and tan JIl = -cot 8 

1 + COS e 
sin 0 

At 8 = v /3 ,  tan JIl = - l/G, tan J12 = -fl, and tan 4 = l/G. The acute angle of intersection at 

At the pole, either a diagram or the result of Problem 5 shows that the curves are orthogonal. 
(3/2, 7r/3) and, by symmetry, at (3/2,5n/3) is n / 6 .  

p = sec2 i ~ ,  p = 3 csc2 48. 

Solve sec’ 48 = 3 csc2 i8 for the points of intersection, obtaining (4,27r/3) and (4,47r/3). 

For p =sec2 $8: p ’  = sec2 $8 tan and tan ((II = cot $8 
For p = 3 csc’ 48: p‘ = -3 csc2 $8 cot $ 0  

curves are orthogonal at 8 = 4n/3.  

and 

At 8 = 2 ~ 1 3 ,  tan JI, = l/*, tan J12 = -fi, and d, = 47r; the curves are orthogonal. Likewise, the 

tan cl/, = -tan $ 8  

p = sin 28, p = cos 8. (See Fig. 25-13.) 

The curves intersect at the points ( f i / 2 ,  n / 6 )  and ( - f l / 2 , 5 7 r / 6 )  and the pole. 

For p = sin 28: 
For p = cos 8: 

p ’  = 2 cos 26 and tan JIl = tan 28 
p’  = -sin 8 and tan J12 = -cot 8 

At 8 = 7r/6, tan JI, = f i / 2 ,  tan J12 = -a, and tan 4 = - 3 f i .  The acute angle of intersection at 
the point ( V 3 / 2 ,  7r/6) is 4 = arctan 3 f l =  79’6’. Similarly, at 8 = 5 ~ / 6 ,  tan JI, = - - f l / 2 ,  tan J12 = fl, 
and the angle of intersection is a r c t an3f i .  

At the pole, the angles of intersection are 0” and n / 2 .  

In Problems 14 to 16, find &/do at the point P(p, 8). 
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Y 

Fig. 25-13 

14. 

15. 

16. 

17. 

18. 

p = COS 28. 

p ’ =  -2sin28 and de = I,/= = ~ c o s 2  20 + 4 sin2 20 = V‘I + 3 sin2 28 

p( i  + COS e )  = 4. 

Differentiation yields - p  sin 8 + p’(1 + cos 8) = 0. Then 

p = sin3 $e. (AISO evaluate h i d e  at e = in.) 
p’=s in2  i8cos $8 and - ds = v s i n 6  i 8  +sin4 f8cos’  f 8  =sin2 $8  

d8 

At 8 = S T ,  dsld8 = sin2 i7r = $. 

p 2  + 2 ( p ’ ) 2  - pp” 

[ P 2 + ( P  ) 1 Derive K = I 2 312 ‘ 

By definition, K = d71ds. Now 7 = 8 + + and 

P (1 + g) where + = arctan 7 - = -  + - = - + - - = -  d7 do d+ d8 dJI d8 do 
a3 ds a3 ds d o h  cis P 

Also, 

Let p = 2 + sin 8. Find the curvature at the point P( p, 6 ) .  

p 2  + 2( P ‘ ) ~  - pp” - (2 + sin 8)’ + 2 cos2 8 + (sin 8)(2 + sin 8) - 6( 1 + sin 8) K =  - - 
( 5  + 4 sin e)3’2 [ P 2 +  ( P 1 ) 2 1 3 ’ 2  [(2 + sin e)* + cos2 e]3/2 
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19. Let p( 1 - cos 9) = 1. Find the curvature at 9 = 7 ~ / 2  and at 8 = 47~/3.  

-sin 8 -COS e 2sin2 e e 
so K =sin3 - 

2 
p ’  = and p ” =  + 

(1 - COS e)’ (1 - COS e)’ (1 -COS e)’ 
At e = ~ 1 2 ,  K = (1 /.\/z)’ = V?/4; at 8 = 4 ~ 1 3 ,  K = ( ~ 3 1 2 ) ~  = 3 f l / 8 .  

20. From r = pup,  derive formulas for v and a in terms,of U, and U,. 

Differentiation yields 

dr dp du, de v = - = u  - + p - =  dt dt dt up $ +Pu@ dt 

and 

21. A particle moves counterclockwise along p = 4 sin 26 with de/dr = $ rad/sec. (a) Express v 
and a in terms of U, and U,. (b) Find Ivl and lal when 8 = v/6.  

We have r = 4 s i n 2 8 u p  * = 8 c o s 2 8  - de =4cos28 - d ’P = -4sin28 
dt dt dt2 

v 3 1  1 v 3  v 3 5  
2 2 2 2 2 2 

(6) At 8 = ~ 1 6 ,  U, = - i + - j and U, = - - i + - j .  Then v = - i + - j and Ivl = fi; 
1 9 .  a = - - I - j and tat= m / 2 .  4 4 

Supplementary Problems 

In Problems 22 to 25, find tan 4 for the given curve at the given points. 

22. p = 3 - s i n O a t  e = O ,  8 = 3 ~ / 4  Am. -3 ;3VT-1  

23. p = U( 1 - cos 0) at 8 = d 4 ,  e = 3 d 2  

p(1 - COS 9 )  = a at 8 = d 3 ,  8 = 5 d 4  

Am. f i - l ; - l  

A ~ s .  - a I 3 ;  1 + fi 24. 

25. p 2  = 4sin28 at 8 = 5 ~ 1 1 2 ,  8 = 2 d 3  Am. - 1 I f i ;  fl 

In Problems 26 to 29, find tan r for the given curve at the given point. 

26. p = 2 +sin 8 at 8 = ~ / 6  Ans. - 3 G  27. p 2 = 9 c o s 2 9  at 8 =  ~ 1 6  Am. 0 

28. p = sin3 (813) at e = R I ~  Ans. --fl 29. 2p(l  -sin 8) = 3 at 0 = n14 ATIS. 1 + fl 
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30. Investigate p = sin 20 for horizontal and vertical tangents. 

Ans. horizontal tangents at 0 = 0, T, 54'44', 125'16', 234'44', 305'16'; vertical tangents at 0 = ~ 1 2 ,  
3 7 1 2 ,  35'16', 144'44', 215'16', 324'44' 

In Problems 31 to 33, find the acute angles of intersection of each pair of curves. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

p = sin 0, p = sin 20 Am. 4 = 79'6' at 0 = 713 and 5 ~ 1 3 ;  4 = 0 at the pole 

p = fi sin 0, p 2  = cos 20 Ans. 4 = ~ 1 3  at 0 = ~ 1 6 ,  5 ~ 1 6 ;  4 = ~ 1 4  at the pole 

p 2  = 16 sin 20, p 2  = 4 csc 20 Ans. 4 = ~ 1 3  at each intersection 

Show that each pair of curves intersects at right angles at all points of intersection. 
(a) p = 4 cos 0, p = 4 sin 0 (6) p = ee, p = e-@ 
( c )  p 2  cos 20 = 4, p 2  sin 20 = 9 ( d )  p = 1 + COS 6, p = 1 - COS 6 

Find the angle of intersection of the tangents to p = 2 - 4 sin 0 at the pole. Ans. 2 ~ 1 3  

Find the curvature of each of these curves at P(p,  0): (a) p = e@; (6) p = sin 0; (c) p z  = 4 cos 20; 
( d )  p = 3 sin 0 + 4 cos 0. 

Ans. ( a )  l l ( f i e ' ) ;  (6) 2; ( c )  3-6; ( d )  215 

Let p = f ( O )  be the polar equation of a curve, and let s be the arc length along the curve. Using 

x = p cos 0, y = p sin 0 and recalling that ( d s ) 2  = ( - d x ) 2  + ( * ) 2 ,  derive (@)' = p' + ( P ' ) ~ .  
d0 d0 d0 

- 
d0 

Find &Id0 for each of the following, assuming s increases in the direction of increasing 0: 
(a) p = a cos 0; (b) p = a( 1 + cos 0); (c) p = COS 20. 

Ans. (a) a ;  ( b )  a d 2  + 2 cos 0; (c) ql + 3 sin' 20 

Suppose a particle moves along a curve p = f(0) with its position at any time t given by p = g ( t ) ,  
0 = h ( t ) .  

(a )  Multiply the relation obtained in Problem 37 by (f)Z to obtain u2 = ( $ ) 2  = p 2 (  $)' + ( s)2. 
P do 1 dP obtain sin $ = - - and cos $ = - -. d0 dOldt 

( 6 )  From tan $ = p  - = p  ___ 
dp dp ld t '  U dt U dt 

du d0 du d0 
Show that =U, - and = - U  - 

dt dt dt d t '  

A particle moves counterclockwise about the cardioid p = 4( 1 + cos 0) with dOldt = ~ 1 6  radlsec. 
Express v and a in terms of U, and U,. 

Ans. 
2T 2T n2 2 T 2  
3 3 9 9 

v =  -- up sin 0 + - u,(l +cost)); a =  -- u,(l + 2 c o s O )  - - U, sin 0 

A particle moves counterclockwise on p = 8 cos 8 with a constant speed of 4 unitslsec. Express v and a in 
terms of up and U,. Ans. v = -4u, sin 0 + 4u, cos 0; a = -4up cos 0 - 41, sin 0 

If a particle of mass m moves along a path under a force F which is always directed toward the origin, we 

have F =  ma or a = - F, so that a, = 0. Show that when a, = 0, then p 2  - = k,  a constant, and the 
radius vector sweeps over area at a constant rate. 

1 d0 
m dt 

k' 1 
with a, = 0. Show that up = - - - where k is defined in Problem 

2 
A particle moves along p = ~ 

1 - cos 0 
43. 

2 p2'  
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In Problems 45 to 48, find all points of intersection of the given equations. 

45. p = 3 cos 8, p = 3 sin 8 Am. ( O , O ) ,  ( 3 f i / 2 ,  n /4 )  

4. 

47. p = e, p = T Am. ( T ,  T ) ,  ( - T ,  - v )  

p = COS e, p = 1 - COS e Am. ( O , O ) ,  (1/2, n /3 ) ,  (1/2, - ~ / 3 )  

) for n = o ,  1,2 ,3 ,4 ,5  
v2 (2n+  l ) T  

4. p = sin 28, p = cos 2e ~ m .  (0, o ) ,  (2, 

[CHAP. 25 



Chapter 26 

The Law of the Mean 

ROLLE’S THEOREM. If f ( x )  is continuous on the interval a 5 x 5 b, if f ( a )  = f ( b )  = 0, and if f ’ ( x )  
exists everywhere on the interval except possibly at the endpoints, then f ’ ( x )  = 0 for at least 
one value of x ,  say x = x, ,  between a and b.  

Geometrically, this means that if a continuous curve intersects the x axis at x = a and x = b, 
and has a tangent at every point between a and b, then there is at least one point x = x,, 
between a and b where the tangent is parallel to the x axis. (See Fig. 26-1. For a proof, see 
Problem 11.) 

Fig. 26-1 

a Z O  b 

Fig. 26-2 

Corollary: If f ( x )  satisfies the conditions of Rolle’s theorem, except that f ( a )  = f ( b )  # 0, 

(See Fig. 26-2 and Problems 1 and 2.) 
then f ’ ( x )  = 0 for at least one value of x ,  say x = x,,  between a and b. 

THE LAW OF THE MEAN. If f ( x )  is continuous on the interval a 5 x I b, and if f ’ ( x )  exists 
everywhere on the interval except possibly at the endpoints, then there is at least one value of 
x ,  say x = x,,  between a and b such that 

Geometrically, this means that if P ,  and P2 are two points of a continuous curve that has a 
tangent at each intervening point, then there exists at least one point of the curve between P ,  
and P,  at which the slope of the curve is equal to the slope of P , P 2 .  (See Fig. 26-3. For a proof 
see Problem 12.) 

The law of the mean may be put in several useful forms. The first is obtained by 
multiplication by b - a: 

(26.1 ) f ( b )  = f ( a )  + ( b  - a ) f ’ ( x o )  for some xo  between a and b 

A simple change of letter yields 

f ( x )  = f ( a )  + ( x  - a ) f ’ ( x , )  for some x ,  between a and x (26.2) 

It is clear from Fig. 26-4 that xo  = a + 9(b - a)  for some 9 such that 0 < 8 < 1. With this 
replacement, (26.1 ) takes the form 

(26.3) f(6) = f ( a )  + (b  - a ) f ’ [ a  + 9(b - a)]  for some 9 such that 0 < 9 < 1 

183 
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THE LAW OF THE MEAN 

a 2 0  b 

[CHAP. 26 

I i 1 
I i b 0 a 2 0  

Fig. 26-4 

Letting 6 - a = h ,  we can rewrite (26.3) as 

f(a + h )  = f ( a )  + h f ' ( a  + Oh) for some 8 such that 0 < O < 1 (26.4) 

Finally, if we let a = x and h = Ax, (26.4) becomes 

f ( x  + A x )  = f(x) + Ax f ' ( x  + 8 Ax) for some 8 such that 0 < 8 < 1 (26.5) 

(See Problems 3 to 9.) 

GENERALIZED LAW OF THE MEAN. If f ( x )  and g ( x )  are continuous on the interval a 5 x 5 6, 
and if f ' ( x )  and g'(x) exist and g ' (x )  Z 0 everywhere on the interval except possibly at the 
endpoints, then there exists at least 

For the case g ( x )  = x ,  this becomes 

EXTENDED LAW OF THE MEAN. If 

the law of the mean 

f ( x )  and its first n - 
interval a 5 x 5 6, and if f""(x )  exists everywhere on 

(For a proof, see Problem 13.) 

1 derivatives are continuous on the 
the interval except possibly at the 

endpoints, then there is at least one value of x, say x = x o ,  between a and 6 such that 

f '(4 ( b - ~ ) + - ( b - ~ ) * + . . *  f "(4 
J'(4 =f (4  + 2! 

(26.6) f'""'(a) (6 - 
+ 

+ f 'n)(x") ( b  - 
( n  - l)! n! 

(For a proof, see Problem 15.) 
When b is replaced with the variable x, (26.6) becomes 

f '(4 ( X - a ) + - ( x - a ) 2 + . . .  f "(4 
2! f(x) = f (4  + 

n - 1 )  

+ 
(n - I)! n! 

for some x o  between a and x 
When U is replaced with 0, (26.7) becomes 

f '" ' (x( , )  Xn 

(26.8) 
+- f '(0) + f"(0) x2 + .  . . + f ( n - l ) ( o )  x n - l  

f ( x >  =f(O) + -fj-- 2!  (n - l)! n!  

(26.7) 

for some x o  between 0 and x 
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Solved Problems 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Find the value of xo prescribed in Rolle’s theorem for f ( x )  = x 3  - 12x on the interval 
0 5 X 5 2 I B .  

f ’ ( x )  = 3x2 - 12 = 0 when x = 5 2 ;  then x ,  = 2 in the prescribed value. 

x2 - 4x x2 - 4x 
and (b) f ( x )  = - 3 

x + 2  * 

Does Rolle’s theorem apply to the functions ( a )  f ( x )  = - 
x - 2  

(a)  f ( x )  = 0 when x = 0 ,4 .  Since f ( x )  is discontinuous at x = 2, a point on the interval 0 I x 5 4, the 
theorem does not apply. 

(b) f ( x )  = 0 when x = 0 ,4 .  Here f ( x )  is discontinuous at x = - 2, a point not on the interval 0 5 x 5 4. 
Moreover, f ’ ( x )  = (x’ + 4x - 8)/(x + 2)* exists everywhere except at x = -2. Hence, the theorem 
applies and x, = 2 ( f i  - l ) ,  the positive root of x2 + 4x - 8 = 0. 

Find the value of xo  prescribed by the law of the mean, givenf(x) = 3 x 2  + 4x 4 3, a = 1, b = 3. 

Using (26.1 ) with f ( a )  = f( 1) = 4, f ( b )  = f(3) = 36, f ’ ( x , )  = 6x0 + 4, and b - a = 2, we have 36 = 
4 + 2(x,, + 4) = 12x, + 12 and x ,  = 2. 

Use the law of the mean to approximate%. 

Let f ( x )  =%, a = 64, and b = 65, and apply (26. l ) ,  obtaining 
65 - 64 f(65) = f(64) + ~ 64 < x,) < 65 

6 x i i 6  ’ 

Since x, ,  is not known, take x,  = 64; then approximately,= =m+ 1 / ( 6 m )  = 2 + 1/192 = 2.00521. 

A circular hole 4 in in diameter and 1 ft deep in a metal block is rebored to increase the 
diameter to 4.12 in. Estimate the amount of metal removed. 

The volume of a circular hole of radius x in and depth 12 in is given by V =  f ( x )  = 1 2 7 ~ ~ ~ .  We are to 
estimate f(2.06) -f(2). By the law of the mean, 

f(2.06) - f(2) = O.06f’(x0) = 0.06(247~~, )  , 2 < X ,  < 2.06 

Take x ,  = 2; then, approximately, f(2.06) -f(2) = 0 .06(24~) (2 )  = 2 . 8 8 ~  in3. 

Apply the law of the mean to y = f ( x ) ,  a = x ,  b = x + Ax with all conditions satisfied to show 
that Ay = f’(x) Ax approximately. 

We have Ay = f(x + Ax) - f(x) = ( X  + AX - x ) f ’ ( x , )  , x < X ,  < x + AX 

Take x,  = x ;  then approximately Ay = f ’ ( x )  A x .  

Use the law of the mean to show sin x < x for x > 0. 

Since sin x I 1 ,  obviously sin x < x when x > 1. For 0 5 x 5 1,  take f ( x )  = sin x with a = 0 and apply 
(26.2 ): 

Now on this interval cos x ,  < 1 so x cos x, < x; hence, sin x < x. 

sin x = sin 0 + x cos x, = x cos x, , 0 < x, < x 

X 
Use the law of the mean to show - < l n ( l + x ) < x  for - l < x < O  and for x > O .  

l + x  



186 THE LAW OF THE MEAN [CHAP. 26 

Apply (26.4) with f(x) = In x, a = 1, and h = x: 

1 
o a < i  ln(1 + x ) = l n  1 + x  - = 

>- When x > 0, 1 < 1 + Ox < 1 + x; hence, 1 > - 

and x >  - > - When - l < x < O ,  1 > 1 + 0 x > l + x ;  hence, l<---<---- 

< x  and l n ( l + x ) = L  < x ;  also, - >- and In ( I  + x )  = In each case, - 

i + e x  i + e x ’  

X X 
and x > - >- 1 1 

i + e x  i + x  i + e x  i + i  
1 1 X X 

i + e x  i + x  i + e x  i + x *  
X X X 

i + ex i + e x  i + x  1 + ex 
X X X >- Hence, - < l n ( l  + x ) < x  when - 1  < x < O  and when x>O. 

i + e x  i + x *  l + x  

9. Use the law of the mean to show < 1 + $x for - 1 < x < 0 and for x > 0. 

Take f ( x )  = VX and use (26.4) with a = 1 and h = x :  

o < e < i  X 
V i T i  = 1 + 2 v m ,  7 

X 
When x>O, =<m and when - l < x < O ,  =>- and 

X X 2 m ’ m ;  

2 m > m *  X X 
>1+-  Multiplying the outer inequality by > 

2 m  2 G ’  
In each case, = 1 + 

0, wehave l + x > ~ + ~ x o r ~ < l + ) x .  

10. Find a value x, as prescribed by the generalized law of the mean, given f ( x )  = 3x + 2  and 
g ( x ) = x z + l ,  1 5 x 5 4 .  

We are to find x ,  so that 

Then 2x, ,  = 5 and x, ,  = :. 

11. Prove Rolle’s theorem: If f ( x )  is continuous on the interval a 5 x 5 6, if f (a )  = f(6) = 0,  and if 
f ’ ( x )  exists everywhere on the interval except possibly at the endpoints, then f ’ ( x )  = 0 for at 
least one value of x, say x = x,, between a and 6. 

If f(x) = 0 throughout the interval, then alsof’(x) = 0 and the theorem is proved. Otherwise, if f(x) 
is positive (negative) somewhere on the interval, it has a relative maximum (minimum) at some x = x,, 
a < x,, < b (see Property 8.2), and f ’ ( x , , )  = 0. 

12. Prove the law of the mean: If f ( x )  is continuous on the interval a I x 5 6, and if f ’ ( x )  exists 
everywhere on the interval except possibly at the endpoints, then there is a value of x, say 

x = x,, between a and 6 such that = f I @ , ) -  

f ( 4  - f(a) 
b - a  

Refer to Fig. 26-3. The equation of the secant line P I P z  is y = f ( b )  + K(x - b) where K = 

f ( b )  - f ( a )  . At any point x on the interval a < x < 6 ,  the vertical distance from the secant line to the 

curve is F ( x )  = f(x) - f ( b )  - K ( x  - b). Now F(x) satisfies the conditions of Rolle’s theorem (check this); 
hence, F’ (x)  = f’(x) - K = 0 for some x = x,, between a and b. Thus, 

b - *U  

f ( 4  - f (4  K = f’(x,) = 
b - a  

as was to be proved. 
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13. Prove the generalized law of the mean: If f ( x )  and g(x)  are continuous on the interval 
a I x I b ,  and if f ’ ( x )  and g’ (x )  exist and g’ (x)  # 0 everywhere on the interval except possibly 
at the endpoints, then there exists at least one value of x ,  say x = x, ,  between a and b such 

Suppose g(b)  = g ( a ) ;  then by the corollary to Rolle’s theorem, g ’ ( x )  = 0 for some x between a and 

Now set f ( b )  = K, a constant, and form the function F(x)  = f ( x )  - f ( b )  - K [  g(x)  - g ( b ) J .  

This function satisfies the conditions of Rolle’s theorem (check this), so that F ’ ( x )  = f ‘ ( x )  - Kg’ (x )  = 0 
for at least one value of x ,  say x = x, ,  between a and b. Thus, 

b. But this is contrary to the hypothesis; thus g(b )  f g(a ) .  

g ( b )  - g ( 4  

as was to be proved. 

14. A curve y = f ( x )  is concave upward on a < x < b if, for any arc P Q  of the curve in that 
interval, the curve lies below the chord PQ; and it is concave downward if it lies above all 
such chords. Prove: If f ( x )  and f ’ ( x )  are continuous on a I x I b ,  and if f ’ ( x )  has the same 
sign on a < x < b ,  then 

1. 
2. 

The equation of the chord PQ joining P(a,  f(a)) and Q(b, f ( b ) )  is y =f(a) + ( x  - a )  

f ( x )  is concave upward on a < x < b when f”(x) > 0. 
f ( x )  is concave downward on a < x < b when f ” ( x )  < 0. 

f (b)  - f (4  
b - a  * 

Let A and B be points on the arc and chord, respectively, having abscissa x = c, where a < c < 6 (Fig. 
26-5). The corresponding ordinates are f(c) and 

f(b)  - f (4  = (6 - c)f(a) + ( c  - a)f(b) 
f (4  + ( c  - 4 6 - a  6 - a  

I I 
I I 

a C b 

I 
I 

I 
I I X 

I 
C b 

I 

Fig. 26-5 

We first must prove f(c)< (b  - c) f (a)  i- (‘ - a) f (b )  when f ” ( x )  > 0. By the law of the mean, 

f ( b ) - f ( c )  = f ’ ( q ) ,  where q is between c and b. f(c) - f(a) = f‘( t ) ,  where 5 is between a and c, and 

Since f”(x) > 0 on a < x < b, f ‘ ( x )  is an increasing function on the interval and f‘( c )  <f’(q). Thus 

f(c) - f(a) < f ( b )  - f(c) , from which it follows that 

6 - a  

b - c  c - a  

c - a  b - c  

(b  - c)f(a) + ( c  - 4fW 
b - a  f(c) < 

as required. 
The proof of the second part is left as an exercise for the reader. 
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15. Prove: If f ( x )  and its first (n - 1) derivatives are continuous on the interval a 5 x 5 6, and if 
f '"'(x)  exists everywhere on the interval except possibly at the endpoints, then there is a value 
of x ,  say x = x, ,  between a and 6 such that 

fw f'""'(a) (6 - 
f(6) = f(a) + f* (6 - a )  + - (6 - a)* + + 

n! 2! ( n  - l)! 

For the case n = 1, this becomes the law of the mean. The following proof parallels that of Problem 
12. Let K be defined by 

and consider 

Now F(a)  = 0 by ( I  ), and F(6) = 0. By Rolle's theorem, there exists an x = x , ,  where a < x o  < b ,  such 
that 

Then K = f'"'O, n !  and ( 1 )  becomes 

f "(4 f '" - %) ( b  - a)" -~ I +- f'"'(x0) ( b  - a),t 
f(6) =f(a) + fT (6 - a)  + - (6 - a)' + . - .  + _____ 2! ( n  - l)! n !  

Supplementary Problems 

16. Find a value for xo  as prescribed by Rolle's theorem, given: 
(a)  f ( x )  = x 2  - 4x + 3, 1 5 x 5 3 
(b) f ( x )  = sin x ,  0 5 x 5 T 

(c) f ( x )  = cos x ,  7r12 < x < 3 d 2  

Am. x , = 2  
Ans. x,, = +T 

Ans. x ,  = n 

17. Find a value for x ,  as prescribed by the law of the mean, given: 
(a) y = x 3 ,  0 5 x 5 6  Ans. x,=2* 
(6) y = ax2 + bx + c,  X I  4 x 5 x ,  

(c) y = In x ,  1 ~x 5 2e 

Ans. 
2e - 1 

Ans. x ,  = ~ 

1+1n2  

x,, = i ( x ,  + x , )  

18. Use the law of the mean to approximate (a) fl; (6) (3.001)'; (c) 11999. 

Ans. ( a )  3.875, (6) 27.027, (c) 0.001001 

19. Use the law of the mean to prove (a) t a n x > x ,  O < x <  $T; (6) 
(c) x < arcsin x < - v g ,  O < x < l .  

< arctan x < x ,  x > O ;  
X 1 + x 2  

20. Show that I f ( x )  -f(xl)l  I Ix - x , I ,  x ,  being any number, when (a )  f ( x )  = sin x ;  (6) f ( x )  = cos x .  
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21. 

22. 

23. 

24. 

25. 

26. 

Use the law of the mean to prove: 
(a )  If f ’ ( x )  = 0 everywhere on the interval a I x I 6, then f ( x )  = f(a) = c ,  a constant, everywhere on the 

(6) On a given interval a 5 x I 6, f ( x )  increases as x increases if f ’ ( x )  > 0 throughout the interval. (Hint: 
interval. 

Let x ,  < x ,  be two points on the interval; then f ( x , )  = f ( x , )  + ( x ,  - xi)f’(xl l ) ,  x i  <I,, < x ? . )  

Use the theorem of Problem 21(a) to prove: Iff(x) and g(x) are different but f ‘ ( x )  = g ‘ ( x )  throughout an 
interval, then f ( x )  - g ( x )  = c # 0, a constant, on the interval. 

Prove: If f ( x )  is a polynomial of degree n and f ( x )  = 0 has n simple real roots, then f ’ ( x )  = 0 has exactly 
n - 1 simple real roots. 

Show that x’ + p x  + q = 0 has ( a )  one real root if p > 0, and (6) three real roots if 4p” + 27q’ < 0. 

Find a value x , ,  as prescribed by the generalized law of the mean, given: 
( U )  f(x) = X’ + 2x - 3, g ( x )  = x 2  - 4~ + 6; U = 0, 6 = 1 
(6) f ( x )  = sin x ,  g ( x )  =cos x ;  a = n / 6 ,  6 = 7r/3. 

Ans. f 
Ans. arr 

Use (26.8) to show: 
(a)  sin x can be approximated by x with allowable error 0.005 for x <0.31. (Hint: For n = 3, 

( 6 )  sin x can be approximated by x - x 3 / 6  with allowable error 0.OOOOS for x < 0.359. 
sin x = x - i x 3  cos x o .  Set Ix3 cos x,,I I $, Ix’l < 0.005.) 



Chapter 27 

Indeterminate Forms 

THE DERIVATIVE of a differentiable function f ( x )  is defined as 

(27.1 ) 

Since the limit of both the numerator and the denominator of the fraction is zero, it is 
customary to call (27.1 ) indeterminate of the type 010. Other examples are found in Problem 6 
of Chapter 7. 

Similarly, it is customary to call lim - (see Problem 7 of Chapter 7) indeterminate of 
the type m / a .  These symbols O / O ,  m / a ,  and others (0.00, m - - ,  O’, a’, and 1-) to be 
introduced later must not be taken literally; they are merely convenient labels for distinguishing 
types of behavior at certain limits. 

3 x - 2  
9x + 7 

INDETERMINATE TYPE O / O ;  L’HOSPITAL’S RULE. If a is a number, if f ( x )  and g(x) are 
differentiable and g(x)  # 0 for all x on some interval 0 < Ix - a1 < 6, and if lim f ( x )  = 0 and 

lim g(x) = 0, then, when lim f’O exists or is infinite, 
x-a 

x-a X’U g‘(x) 

lim = lim f 7 ‘W (L’Hospital’s rule) 
x-a g(x) X-+a g (x) 

xJ - 81 
EXAMPLE 1: lim ____ is indeterminate of type O/O.  Because 

r 4 3  X - 3  

(See Problems 1 to 7.) 
Note: L’Hospital’s rule remains valid when lirn is replaced by the one-sided limits lirn or 

x-a + 

x - + a  

lim- . 
x-+a 

INDETERMINATE TYPE - / C O .  The conclusion of I’Hospital’s rule is unchanged if one or both of 
the following changes are made in the hypotheses: 

1. 
2. 

“lim f ( x )  = 0 and lirn g(x) = 0” is replaced by “lim f ( x )  = 00 and 
“a is a number” is replaced by “a = +-, - m, or 30’’ and “0 < Ix - a1 < 6”  is replaced 
by “ ( X I  > M.” 

g(x) = 03.” 
x - + a  x-a x+a 

X 2  
lirn 7 is indeterminate of type m / m .  Then I’Hospital’s rule gives EXAMPLE 2: 

x - + r  e 

X 2  2x  2 
lim 7 = lirn - = lim - = O  

r - t z  e ex x - + x  ex 

(See Problems 9 to 11.) 

190 
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INDETERMINATE TYPES 0 and - 00. These may be handled by first transforming to one of 
the types 0/0 or m/m. For example: 

X 2  
lirn x2ePx is of type 0 . m  but lim 7 is of type m/00 

x - + m  x - + m  e 

x - sin x 
is of type - 00 but lim ( ) is of type 010 

x-0 X-o x sin x 

(See Problems 13 to 16.) 

INDETERMINATE TYPES Oo, mo, and 1”. If lirn y is one of these types, then lirn (In y) is of the type 
0.00. c 

EXAMPLE 3: Evaluate lim (sec’ 2x)‘Ot2 ”. 
x-0 3 In sec 2x 

This is of the type 1“. Let y = (sec’ 2x)‘01* 3 x ;  then In y = cot’ 3x In sec3 2x = and lirn In y is tan‘ 3x X A O  

of the type O/O. L’Hospital’s rule gives 

3 In sec 2x 6 tan 2x tan 2x 
lim = lim = lim ~ 

X-0 tan’ 3x X-0 6 tan 3x sec’ 3x 1 4 0  tan 3x 

since lim sec’ 3x = 1, and the last limit above is of the type O/O.  L’Hospital’s rule now gives 
x - 0  

Since lim In y = , lim y = lim (sec3 2x)cof2 3 x  = e2/’. 
x-0 x - 0  x-0 

(See Problems 17 to 19.) 

Solved Problems 

1. Prove 1’Hospital’s rule: If a is a number, if f ( x )  and g ( x )  are differentiable and g(x)  # 0 for all 
x on some interval 0 < Ix - a1 < 6, and if lim f ( x )  = 0 and lim g ( x )  = 0, then 

x - a  x - a  

When 6 is replaced by x in the generalized law of the mean (Chapter 26)’ we have, since 
f(4 = g ( 4  = 0, 

where xo is between U and x. Now xo+ U as x--, a; hence, 

x 2 + x - 6  
2. Evaluate lim 

x-2 x 2 - 4  ’ 

When x-2, both numerator and denominator approach 0. Hence the rule applies, and 
x 2 + x - 6  - 2 x + 1 - 5  - lim - - - lim 

x-2 x‘-4 x-+’ 2x 4 ’  



192 INDETERMINATE FORMS [CHAP. 27 

x + sin 2x 
3. Evaluate lirn 

x - o  x - sin 2x * 

When x + O ,  both numerator and denominator approach 0. Hence the rule applies, and 
x + sin 2x 1 + 2 c o s 2 x  - 1 + 2  - - = -3. lim = lim x - - - o ~ - s i n 2 x  x-.o 1-2cos2x  1 - 2  

ex - 1 
4. Evaluate lim 7. 

x - 0  x 

ex 
x+o x2 x+o 2x 

- lim - = CO. 
ex - 1 

L'Hospital's rule gives lirn - - 

ex + e-x - x2 - 2 
5. Evaluate lim 2 .  

x-0 s in2x-x  

When x - 0 ,  both numerator and denominator approach 0. Hence the rule applies and 

ex + e - ' - x z  - 2  

Since the resulting function is indeterminate of the type 010, we apply the rule to it: 

ex - e-x - 2x 
lim = Iim 
x-o s in2x-x2  x+o s in2x-2x  

e' -+ ePx  - xz  - 2 e X - e - " - 2 x  ex + e-' - 2 
lim = lim = lim 
X A o  sin2 x - x 2  x--ro sin 2x - 2x x+o 2 cos 2x - 2 

Again, the resulting function is indeterminate of the type 010. With the understanding that each equality 
is justified, we obtain, in succession, 

e x + e - " - x 2 - 2  ex - e-' - 2x - ex + e-x - 2 
lim = lim - lirn 
x - 0  sin'x- xz x-.o sin 2x - 2x x--ro 2 cos 2 x  - 2 

1 
4 

= - -  
ex - e - x  ex + edX 

= x+o lim -4 sin 2x = x-.*o lim -8 COS 2x 

3x2 - 2x - 1 6~ - 2 6 = lim - - 
x-2  6~ - 6 

3 2  x - x  - x - 2  
6. Criticize: lim = lim - lirn - = 1. 

x-2 x3 - 3x2 + 3x - 2 x+2 3x2 - 6x + 3 x-2 6 

The given function is indeterminate of the type O/O,  and the rule applies. But the resulting function 
is not indeterminate (the limit is 7/3) ;  hence, the succeeding applications of the rule are not justified. 
This is a fairly common error. 

x 3 - x 2 - x + 1  3 x 2 - 2 x - 1  6 ~ - 2  
x-1 x 3 - 2 x 2 + x  3 x 2 - 4 x +  1 6 ~ - 4  

--- - 2. - - 7. Criticize: lirn - 

x 3  - x 2  - x + l  6~ - 2 

limit is correct does not justify the series of incorrect statements in obtaining it. 

3xz - 2x - 1 
The correct statement is lim = lim = lirn - = 2. The fact that the 

x + l  x 3  -2x2 + x x-.l 3x2 - 4x +*l x-1 6 x  7 4 

sin x 
8. Evaluate lirn - 

x - n +  m' 
sinx - cos x 

= lim+ 2(x - T)"' cos x = o lim+ - - 
x-.rn vF=3 J!:+ $ ( x  - T)-"z X-77 

Here the approach must be from the right, since otherwise ( x  - T)"* is imaginary. 

In x 
9. Evaluate lirn -. 

X'+" x 
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When x- +m, both numerator and denominator approach + m .  Then 1’Hospital’s rule gives 
In x 1 /x 

lim - = lim - = 0. 
x + + m  x x - + + m  1 

In sin x 
10. Evaluate lim - 

x-,o+ In tan x * 

In sin x cos x/sin x 
lim+ - - - lim 

x40 lntanx x+o+ sec’xltanx x+o+ 
= lim cos2x= 1 

cot x 
11. Evaluate lim - 

x - 4  cot 2 x  * 

We have 
csc2 x CSC’ x cot x - lim - = lim 

cot x 
lim - - 
r+O cot 2x x - 4  2 csc2 2x x - 0  4 csc2 2x cot 2x 

Here each application of the rule results in an indeterminate form of the type m/m. Instead, we try a 
trigonometric substitution : 

cot x tan i x  2 sec’ 2x 
lim - - - lim - - - lim ~ = 2 
x-o cot2x x+o tanx x-o sec’x 

f(4 - L .  12. Let lirn f ( x )  = 0 and lirn g(x)  = 0. Prove: If lirn ’(@ = L ,  then lirn - - 
x + + m  X + + m  x - + m  g ( x )  x-+m g(x)  

f(”Y) Then Let x = 1 /y. As x- +a, y-0’ and lirn fO = lim+ - 
x-+a g(x) y-0 g(l /y)’  

13. Evaluate lirn ( x 2  In x ) .  
x+o+ 

In x 
As x’-,O+, x2-  0 and In x- - W .  Then - has an indeterminate limit of type m / a .  

1 lx2 
In x 

1 /x - lim ( - j x 2 ) = 0  1 lim (x’lnx) = lim - - - lim+ - - 
x+o+ x+o+ 1/x2 x - 0  -2/x3 x - o +  

In Problems 14 to 16, evaluate the leftmost limit. 

14. 

15. 

16. 

17. 

2 1 - tan x -sec x 
x - + m l 4  x+m14 cos 2 x  x - n i 4  -2  sin 2 x  
lim (1 - tan x )  sec 2x = lim = lim = 1  

1 -cos x sin x 
x-0  x-0  s inx  X-o cosx 
lirn (csc x - cot x )  = lim = lim - = O  

Evaluate lirn x1’(’-’) . (This is of the type lw.) 
x+ 1 
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In x 0 
has an indeterminate limit of type -. The rule gives 

0 Let y = x * ' ( ~ - ' ) .  Then In y = - x - 1  
In x 1 lx 

x+l  x - 1  x-1 1 , 
- lim - = 1 lim In y = lim - - 

I+ 1 

Since In y - ,  1 as x-, 1, it must be that y +  e as x +  1. Thus the required limit is e. 

18. Evaluate lirn (tan x)'OS x. (This is of type WO.) 
x-++7T- 

In tan x 00 
Let y = (tan x)'OS Then In y = cos x In tan x = - has a limit of type 00. The rule gives 

sec x 

In tan x sec2 xltan x cos x 
X + & -  .+j,,- secx x+t,,- secx tanx x4j,,- sin2 x 

lim In y = lim - = lim = lim - = O  

Since In y + 0 as x + 1 T -, y + 1. Thus, the required limit is 1. 

19. Evaluate lim xSinX. (This is of type 09) 
x+o+ 

In x 00 
Let y = xS'" x .  Then In y = sin x In x = - has an indeterminate limit of type 00. csc x 

In x 1 Ix sin2 x 2 sin x cos x 
= O  = lim -- lim In y = lim - = hm+ -csc cot x-o+ x-o+ cscx x-80 x40+ -x cos x x+o+ x sin x - cos x 

- lim 

Since In y + 0 as x + O', y --., 1. Thus, the required limit is 1. 

vG-7 
20. Evaluate lirn 

x + + m  x 

V K 2  lim ~. . . X - lim -= vG-7 
By repeated application of 1'Hospital's rule, lirn - - 

x-+m x x + + m d s  x - + m  x 

x- + 00 Obviously, the rule is of no help here. However, we have lirn - = 
x + + a  x 

21. The current in a coil containing a resistance R,  an inductance L ,  and a constant electromotive 

force E at time t is given by i = - (1 - e-R''L) .  Obtain a suitable formula to be used when R 
is very small. 

E 
R 

E(1 - e - R ' ' L )  = lim E - - R r I L  - Et 
R R+O L L '  lim i = lim 

R-0 R+O 

Supplementary Problems 

In Problems 22 to 63, evaluate the limit on the left to obtain the result on the right. 

X' - 256 
22. lim - = 256 

x 4 4  x - 4  

x2 -3x 1 24. lim - = - 
x - 3  x2 - 9  2 

x4 - 256 23. lirn - = 32 
x 4 4  x2 - 16 

ex - e2 25. lim -- - e2 
x 4 2  x - 2  
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26. 

28. 

30. 

32. 

34. 

36. 

38. 

40. 

42. 

44. 

46. 

48. 

50. 

52. 

54. 

56. 

58. 

60. 

62. 

63. 

xex 
lim - - - -1 
x+o 1 - e x  

In (2 + x )  
lim = 1  

x+-1  x + l  

= 4  
e2x - e-2x 

lim 
x+o sinx 

2 arc tan x - x 
lim = 1  
x-o 2x - arc sin x 

lncosx  1 
2 

- - -  lim - - 
x+o x 2  

In x 
lim - = O  

x + + =  fi 

5 x  + 2 In x 
x + + =  x + 3 l n x  
lim = 5  

In cot x 
lim - = O  

ecsc2x 

lim (ex - 1) cos x = 1 
x+o 

l i m x c s c x = l  
x+o 

lim e-tan sec2 x = o 
X - J W -  

lim (sec3 x - tan3 x )  = 00 

X + j W  

lim x x  = 1 
x+o+ 

lim (ex + 3 ~ ) " ~  = e4 
x+o 

lim (sin x - cos x ) ~ ~ ~  = 1 /e 
X + J W  

lim Xtan 4 - x  - - 2 / w  - e  
x--. 1 

27. 

29. 

31. 

33. 

35. 

37. 

39. 

41. 

43. 

45. 

47. 

49. 

51. 

53. 

55. 

57. 

59. 

61. 

e x - 1  1 
*+o tan2x 2 

cosx -  1 1 lim = -  
x-0 cos2.Y-1 4 

lim - = - 

1n2 
8" - 2" lim - = - 

x-0 4x 2 

4 
In sec 2 x  

lim - = 
x+o lnsecx 

cos2x-cosx  3 
2 

lim 
x-0 sin2 x 

csc6x - 1 
lim - - - 
.+jW csc2x 3 

= - -  

x4 + x 2  
= O  lim - 

lim ex +3x3 - 1 

x + + m  ex + 1 

x++ m 4ex + 2x2 - 4 

lim x2ex = O  
x+ - 0 

lim csc 7rx In x = - l / ~  
x+ 1 

lim ( x  - arcsin x )  csc3 x = - t 
x+o 

iim (cos x)' " = 1 
x+o 

lim (tan x)'OS = 1 
X ' i W -  

lim (1 + l/x)" = e 
x++ m 

= O  1 - ex = 1; (6) lim 7 2" = O ;  (c) lirn - e-3'x 
ex 

x-o+ x2  3" x 4 +  m 
lim 

x-+o 1 + x x+o In (1 - x )  
eX(1 - e x )  = lim 

('1 ! ! (1 + x )  ln (1 - x )  

in5 lnlooo x 
= 0; (6) lim 7 (a) lim - 

x + + -  x x++oc x 2  
= O  



Chapter 28 

Differentials 

DIFFERENTIALS. For the function y = f ( x ) ,  we define the following: 

dx, called the differential of x ,  given by the relation dx = Ax 
dy, called the differential of y,  given by the relation dy = f ’ ( x )  dx 

1. 
2. 

The differential of the independent variable is, by definition, equal to the increment of the 
variable. But the differential of the dependent variable is not equal to the increment of that 
variable. See Fig. 28-1. 

2 

0 

Fig. 28-1 Fig. 28-2 

EXAMPLE 1 : When y = x’, d y  = 2x dr while A y  = ( x  + Ax)’ - x’ = 2x Ax + (Ax)’ = 2x dr + (dr)’. A 
geometric interpretation is given in Fig. 28-2, where you can see that Ay and d y  differ by the small square 
of area (dx)’. 

THE DIFFERENTIAL dy may be found by using the definition dy = f ’ ( x )  dx or by means of rules 
obtained readily from the rules for finding derivatives. Some of these are: 

d(c)  = 0 d(cu) = c du d(uu) = U du -+ U du 

du 
d(ln U) = - 

U du - U du 
d(sin U) = cos U du 

U 

EXAMPLE 2: Find dy for each of the following: 
( a )  y = X’ + 4 ~ ’  - 5 x  + 6 

d y  = d ( x 3 )  + 4 4 ~ ’ )  - d ( 5 x )  + 4 6 )  = (3x2 + 8 x  - 5 )  dr 
( 6 )  y = ( 2 x 3  + 5)3’2 

d y  = 5 p x 3  + 5 y 2  4 2 x 3  + 5 )  = ; ( 2 x 3  + 5)1/2(6x2 dr) = g x 2 ( z x 3  + 51112 dx 

(See Problems 1 to 5 . )  

APPROXIMATIONS BY DIFFERENTIALS. If dx = Ax is relatively small when compared with x, 
dy is a fairly good approximation of Ay.  

196 
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EXAMPLE 3: Take y = x’ + x + 1, and let x change from x = 2 to x = 2.01. The actual change in y is 
Ay = [(2.01)’ + 2.01 + 11 - (2’ + 2 + 1) = 0.0501. The approximate change in y, obtained by taking x = 2 
and dx = 0.01, is dy = f ’ ( x )  dx = (2x + 1) dx = [2(2) + 110.01 = 0.05 

(See Problems 6 to 10.) 

APPROXIMATIONS OF ROOTS OF EQUATIONS. Let x = x ,  be a fairly close approximation of a 
root r of the equation y = f ( x )  = 0, and let f ( x , )  = y ,  # 0. Then y ,  differs from 0 by a small 
amount. Now if x ,  were changed to r ,  the corresponding change in f ( x , )  would be Ay, = - y ,  . 
An approximation of this change in x ,  is given by f ’ ( x , )  d x ,  = - y ,  or d x ,  = - - . Thus, a 

second and better approximation of the root r is 
f ‘ (x1)  

Y1 f ( x 1 )  
f Y X 1 )  

f’@) = X I  - - x2 = x ,  + dx, = x1 - - 

f ( x 2 )  A third approximation is x ,  = x ,  + dx, = x ,  - f ’ ( x 2 )  - 9 and so on. 

Fig. 28-3 

When x ,  is not a sufficiently close approximation of a root, it will be found that x2 differs 
materially from x , .  While at times the process of finding these approximations is self-correcting, 
it is often simpler to make a new first approximation. (See Problems 11 and 12.) 

Solved Problems 

1. Find dy for each of the following: 

x 3  + 2 x  + 1 
(4 Y = x 2  + 3  : 

(x’ + 3) d(x3 + 2x + 1) - (x’ + 2x + 1) d(x2 + 3) 
dy = 

(x’ + 3)’ 

dx (x’ + 3)(3x2 + 2) dx - ( x 3  + 2x + 1 ) ( 2 ~ )  dx - x4 + 7 ~ ’  - 2x + 6 - - - 
(x‘ + 3)’ ( x 2  + 3)’ 

( b )  y = cos2 2x + sin 3 x :  

dy = 2 cos 2x d(cos 2x) + d(sin 3x) = (2 cos 2x)( - 2 sin 2x dr) + 3 cos 3x dr 
= - 4  sin 2x cos 2x dx + 3 cos 3x dx = (-2 sin 4x + 3 cos 3x) dr 
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) d x  m ( c )  y = e3x + arcsin 2 x :  dy = (3e” + 

In Problems 2 to 5, use differentials to obtain d y l d x .  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

x y  + x - 2 y  = 5 

We have d(xy) + d ( x )  - d(2y) = 4 5 )  or x dy + y dr + dx - 2 dy = 0 

Then ( ~ - 2 ) d y + ( y + l ) d r = O  and *=-* dr x - 2  

x3y2 - 2x2y  + 3 ~ y ’  - 8xy  = 6 

Here 2x’y dy + 3x2y2 dx - 2x2 dy - 4xy dx + 6xy dy + 3y2 dr - 8x dy - 8y dx = 0 

so 

Here 

dY - 8y - 3y2 + 4xy - 3x2y2 - _  
dx 2x’y - 2x2 + 6xy - 8x 

x = 3 cos 0 - cos 30, y = 3 sin 8 - sin 30 

COS e - COS 38 9 = 
dx = (-3sin 8 + 3sin30)  dy = (3cose - 3cos3e) de 

-sin 8 + sin 38 

Use differentials to approximate (a )  m, (6 )  sin 60’1’. 

dx. Take x = 125 = 5 3  and dx = - 1. Then dy = ( a )  For y = x ” ~ ,  dy = - 

(6) For x = 60” and dx = 1’ = 0.0003 rad, y = sin x = G / 2  = 0.86603 and dy = cos x dr = $(0.0003) = 

-1 
(- 1) = 75 = 

1 
3( 125)2’3 

1 
3x2I3 

-0.0133 and, approximately, 

0.00015. Then, approximately, sin 60’1’ = y + dy = 0.86603 + 0.00015 = 0.86618. 

= y + dy  = 5 - 0.0133 = 4.9867. 

Compute A y ,  d y ,  and A y  - dy, given y = i x 2  + 3 x ,  x = 2 ,  and dx = 0.5. 

Ay = [ (2.5)2 + 3(2.5)] - [ 4 (2)2 + 3(2)] = 2.625 
dy = (x + 3) dx = (2 + 3)(0.5) = 2.5 

Ay - dy = 2.625 - 2.5 = 0.125 

Find the approximate change in the volume V of a cube of side x in caused by increasing the 
sides by 1%. 

V =  x3 and dV= 3x2 dx. When dx = O.Olx, d V =  3x2(0.01x) = 0 . 0 3 ~ ~  in3. 

Find the approximate weight of an 8-ft length of copper tubing if the inside diameter is 1 in 
and the thickness is 118 in. The specific weight of copper is 550 lb/ft3. 

First find the change in volume when the radius r =  & ft is changed by d r =  & ft: 

1 1  9T 

24 96 144 
V =  8 r r 2  

This is the volume of copper. Its weight is 550(~/144) = 12 lb. 

dV= 167rrdr = 1 6 ~  - - = - ft3 
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10. 

11. 

12. 

13. 

14. 

For what values of x may h be used in place of m, if the error must be less than 0.001? 
When y = x115 and Q'J = 1, dy = $x-4/5 & = - :: - 4 ' 5  

If x - ~ ' ~  < IOW,, then x - ~ ' ~  < 5( 10-') and x -  < 5'( lO- " ) ) .  
1oI6 10, 

If x - ~  < l o p 5 ) (  then x4 > and x > ~ = 752.1. m 
Approximate the (real) roots of x3 + 2 x  - 5 = 0 or x3 = 5 - 2x. 

On the same axes, construct the graphs of y = x3 and y = 5 - 2x. The abscissas of the points of 
intersection of the curves are the roots of the given equation. From the graph, it may be seen that there 
is one root whose approximate value is x, = 1.3. 

A second approximation of this root is 

The division above is carried out to yield two decimal places, since there is one zero immediately 
following the decimal point. This is in accord with a theorem: If in a division, k zeros immediately follow 
the decimal point in the quotient, the division can be carried out to yield 2k decimal places. 

A third and fourth approximation are 

x,= x, - - f(x3) - - 1.3283 - 0.000 031 14 = 1.328 268 86 
f (x3) 

Approximate the roots of 2 cos x - x2  = 0. 

- 1. (Note that if r is one root, then - r  is the other.) 
The curves y = 2 cos x and y = x 2  intersect in two points whose abscissas are approximately 1 and 

2(0*5403) - = 1 + 0.02 = 1.02. =1+  

= 1.02 + = 1.02 + 0.0017 = 1.0217. Thus, to four 

2 cos 1 - 1 
2(0.8415) + 2 -2s in1 -2  

2 cos (1.02) - (1.02), 0 0064 
-2sin(1.02) -2(1.02) 3.7442 

Using x, = 1 yields x, = 1 - 

Then x3 = 1.02 - 

decimal places, the roots are 1.0217 and -1.0217. 

Supplementary Problems 

Find dy for each of the following: 
(a) y = (5 -x)3 Ans. -3(5 - x)' dx (b) y = e4x2 Ans. 8xe4x2 dx 

dx x cos x - sin x 
2 (c) y = (sin x)/x Am. 

- 2 -  

vGi7 dx 
(e) y = arccos 2x A m .  

Find dyldu as in Problems 2 to 5: 

2Y(Y2 + 3 4  (a) 2xy3 + 3x2y = 1 Ans. - 
3x(2y2 + x) 

2x + y  
X x -2y 

( c )  arctan 2 = In (x2 + y2) Ans. - 

(d) y = cos bxz Am. -2bx sin bx2 dx 
2 dx 

sin 2x 
(f)  y =In tan x Am. - 

cos (x - y) - y 
cos (x - y) + x 

(6) xy = sin (x - y) Am. 

( d )  x2 In y + y2 In x = 2 
(2x2 In y + y2)y 
(2y2 In x + x2)x 

Am. - 
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15. 

16. 

17. 

18. 

19. 

U). 

21. 

22. 

23. 

24. 

Use differentials to approximate ( a )  m, (6) m, (c) cos 59", and ( d )  tan 44". 

Ans. (a) 2.03125; (6) 3.99688; (c) 0.5151; ( d )  0.9651 

Use differentials to approximate the change in (a) x3 as x changes from 5 to 5.01; (6) 1 / x  as x changes 
from 1 to 0.98. Am. ( a )  0.75; ( 6 )  0.02 

A circular plate expands under the influence of heat so that its radius increases from 5 in to 5.06 in. Find 
the approximate increase in area. Ans. 0 . 6 ~  = 1.88 in2 

A sphere of ice of radius 10 in shrinks to radius 9.8 in. Approximate the decrease in ( a )  volume and (6) 
surface area. Ans. (a) 80n in3; (6) 1 6 ~  in2 

The velocity (U ft/sec) attained by a body falling freely a distance h ft from rest is given by U = m. 
Find the error in U due to an error of 0.5 ft when h is measured as 100 ft. Am. 0.2 ft/sec 

If an aviator flies around the world at a distance 2 mi above the equator, how many more miles will he 
travel than a person who travels along the equator? Am. 12.6 mi 

The radius of a circle is to be measured and its area computed. If the radius can be measured to 0.001 in 
and the area must be accurate to 0.1 in2, find the maximum radius for which this process can be 
used. Am. approximately 16 in 

If p V =  20 and p is measured as 5 k 0.02, find V. Ans. V =  4 T 0.016 

If F = 1 / r 2  and F is measured as 4 2 0.05. find r .  Ans. 0.5 7 0.003 

Find the change in the total surface of a right circular cone when (a) the radius remains constant while 
the altitude changes by a small amount; (6) the altitude remains constant while the radius changes by a 

small amount. 
h2 + 2r2 

r2  + h 
Ans. (a )  rrrh d h / m ;  (6) T [  v- + 2r] dr 

25. Find, to four decimal places, ( a )  the real root of x 3  + 3x + 1 = 0; (6) the smallest root of ePx =sin x ;  
(c) the root of x 2  + In x = 2; ( d )  the root of x - cos x = 0. 

Ans. (a) -0.3222; (6) 0.5885; (c) 1.3141; ( d )  0.7391 



Chapter 29 

Curve Tracing 

SYMMETRY. A curve is symmetric with respect to 

1. The x axis, if its equation is unchanged when y is replaced by - y  
2. The y axis, if its equation is unchanged when x is replaced by - x  
3. The origin, if its equation is unchanged when x is replaced by - x  and y by - y  

simultaneously . 
4. The line y = x ,  if its equation is unchanged when x and y are interchanged 

INTERCEPTS. The x intercepts are obtained by setting y = 0 in the equation for the curve and 
solving for x .  The y intercepts are obtained by setting x = 0 and solving for y .  

EXTENT. The horizontal extent of a curve is given by the range of x ,  for example, the intervals of x 

A point ( x o ,  y o )  is called an isolated point of a curve if its coordinates satisfy the equation 
for which the curve exists. The vertical extent is given by the range of y .  

of the curve while those of no other nearby point do. 

ASYMPTOTES. An asymptote of a curve is a line that comes arbitrarily close to the curve as the 
curve recedes indefinitely away from the origin (that is, as the abscissa or ordinate of the curve 
approaches infinity). 

The maximum and minimum points, points of inflection, and concavity of a curve are 
discussed in Chapter 13. 

Solved Problems 

1. Discuss and sketch the curve y’( 1 + x )  = x2( 1 - x). (See Fig. 29-1.) 

x 2 ( 1  - x )  
We may write the equation of the curve as y 2  = 

Symmetry: The curve is symmetric with respect to the x axis. 
Intercepts: The x intercepts are x = 0 and x = 1 .  The y intercept is y = 0. 
Extent: For x = 1 ,  y = 0. For x = - 1 ,  there is no point on the curve. For other values of x ,  y 2  must 

be positive so 1 + x and 1 - x must have the same sign; hence, for points on the curve, x is restricted to 

l + x  * 

- l < x < l .  Thus, - l < ~ ~ l .  

l + x  
X Z (  1 - x )  

Asymptotes: y 2  = . Hence, y + 00 as x+ - 1 .  Thus, x = - 1 is a vertical asymptote. 

Maximum and minimum points, etc.: The curve consists of two branches y = ____ V 3 - E  
X V - i T i  and 

’ - .  For the first of these, y=-G 
- dY = 1 - x - x 2  d2Y - x - 2  

and - - 
dx ( 1  + x ) 3 / 2 ( 1  - x)1/2 dx2 ( 1  + x ) ~ ’ ~ (  1 - x ) 3 / 2  

) is a 
- 1 + G  ( - l + G ) l m T  

2 ’  2 
The critical values are x = 1 and ( - 1  + f i ) / 2 .  The point ( 

20 1 
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( I I 

Y 

1/'(1+ 2)  = z'(1- 2)  

Fig. 29-1 

X 

\ 

Fig. 29-2 

maximum point. There is no point of inflection. The branch is concave downward. By symmetry, there is 

a minimum point at 

y =  - x .  

), and the second branch is concave upward. 
1 + v 3  ( - l + f l ) r n  

( - 2  ' 2 
The curve passes through the origin twice. The tangent lines at the origin are the lines y = x and 

2. Discuss and sketch the curve y 3  - x2(6  - x )  = 0. (See Fig. 29-2.) 

We may write the equation of the curve as y' = x 2 ( 6  - x )  = 6 x 2  - x'. 
Symmetry: There is no symmetry. 
Intercepts: The x intercepts are x = 0 and x = 6. The y intercept is y = 0. y is negative when and only 

Extent: The curve is defined for all x .  As x + + m, y 3 - 00; as x + - 00, y --* + 00. Hence, there is no 
when x > 6. 

h n A m n - t - 1  n c . r m . . r t f i t a  
llUl J L U l J l n J  ( I 3 ~ l l l ~ L U L C .  

- 8  
The 4 - x  d 2Y and = x 4 / 3 ( 6  - x)s/3 ' 

dY 
dr P 3 ( 6  - x ) 2 / 3  

Maximum and minimum points, etc.: We have - = 

critical values are x = 0, x = 4, and x = 6. When x = 0, y = O.'Since y > 0 to the left and right of the 
origin, (0,O) yields relative minimum. 

The point (4, m) is a relative maximum point by the second-derivative text. The point (6 ,O)  is a 
point of inflection, the curve being concave downward to the the left of ( 6 , O )  and concave upward to the 
right. 

Asymptotes: There are no horizontal or vertical asymptotes. There is an oblique asymptote 
y = m + 6. To find m and 6, we expand (mx + 6)' to obtain m3x3 + 3m26x2 + 3m62x + 63 and set the 
two leading coefficients, m' and 3m26, equal to the corresponding coefficients of - x 3  + 6x2. This gives 
m3 = - 1 and 3m26 = 6. Hence, m = - 1 and 6 = 2, and the asymptote (on the right and left) is the line 
y = - x + 2 .  

3. Discuss and sketch the curve yz(x  - 1) - x 3  = 0. (See Fig. 29-3.) 

x 3  
x - 1 '  

We may write the equation as y 2  = - 
Extent: Clearly, the origin is on the graph. At other points, the left side y 2  must be positive, and 

therefore x' and x - 1 must have the same sign. Hence, x > 1 or x I 0. 
Symmetry: The curve is symmetric with respect to the x axis. 
Intercepts: The only intercepts are x = 0 and y = 0. - . -  

X 1 
x - 1 '  dx 2 Maxirnup and minimum points, etc.: For the branch y = xJ- we have = - ( 2 x  - 3 ) .  

The critical values are x = 0 and 3 / 2 .  The point ( 3 / 2 ,  3 f l / 2 )  is 
X d2Y 3 [-I and = 4[x(x - 1)51"2 * 

a minimum point. There i i n o  point bf inflection. The branch is concave upward. By symmetry, there is a 

maximum point ( 3 / 2 ,  - 3 f l / 2 )  on the branch y = - x d x  and that branch is concave downward. 
x - 1 '  
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b [  z 
I’ 

g*(x - 1 ) - xa = 0 

Fig. 29-3 

g*(z’- 4) = 2‘ 

Fig. 29-4 

Asymptotes: There is a vertical asymptote x = 1. Since y-* 30 as x -  00, there is no horizontal 
x 3  

x - 1 ’  
asymptote. To find oblique asymptotes y = m + b ,  we set (m + b)’ = - obtaining 

(m’ - l)x’ + (2mb - m’)x2 + (6’ - 2mb)x  - 6’ = 0 

Setting m’ - 1 = 0 and 2mb - m2 = 0,  we obtain m = * 1, b = * 1 / 2 m .  Thus, the asymptotes are 
y = x + $ a n d y = - x - $ .  

4. Discuss and sketch the curve y2(x2  - 4) = x4. (See Fig. 29-4.) 

Symmetry: The curve is symmetric with respect to the coordinate axes and the origin. 
Intercepts: The intercepts are x = 0 and y = 0. 
Extent: The curve exists for x 2  > 4,  that is, for x > 2 or x < -2 ,  plus the isolated point (0,O). 

7 

x -  dy x 3  - 8 x  
Maximum and minimum points, etc.: For the portion y = ~ x > 2,  we have - = V F - 7  dr (x’ - 4 ) 3 ’ 2  

and 7 d2y  = 4x2 + 32 
The critical value is x = 2 a .  The portion is concave upward, and ( 2 a ,  4 )  is a ak ( x 2  - 4 F 2 ‘  

relative minimum’point. By symmetry, there is a relative minimum point at ( - 2 V 2 , 4 ) ,  and relative 
maximum points at ( 2 a ,  -4 )  and ( - 2 f i ,  -4) .  

Asymptotes: The lines x = 2 and x = -2  are vertical asymptotes. For the oblique asymptotes, we 
replace y with mu + b to obtain 

(m’ - l)x4 + 2mbx3 + (b’ - 4m2)x2  - 8mbx - 46’ = 0 

Solving simultaneously m’ - 1 = 0 and m b  = 0, we obtain m = 1, b = 0 and m = - 1 ,  b = 0. The 
equations of the oblique asymptotes are thus y = x and y = - x .  They intersect the curve at the origin. 

5. Discuss and sketch the curve ( x  + 3) (x2  + y ’ )  = 4. (See Fig. 29-5.) 

dY 3 = - (‘ + 2) (x  + + fl)(x + - fi). When x = -2 ,  y = 0 and - has the indeterminate form o d r  ( x  + 3)2Y dx 
- But if we let x = X -  2 and y = Y, the equation becomes Y 2 ( X  + 1) + X 3  - 3X’ = 0. 
0 ’  

Symmetry: The curve is symmetric with respect to the x axis. 
Intercepts: The intercepts are X = 0, X = 3, and Y = 0. 
Extent: The curve is defined on the interval - 1 < X 5 3 and for all values of Y .  

Maximum and minimum points, etc.: For the branch Y = 
x r x  
rn’ 

- 12 3 - x 2  d’Y - and - - dY - - -  
dX ( 3  - x)”’(x + I)~’’ d X 2  ( 3  - X)3’2(X + 1)5’2 
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(z 4- 3)(z’+ 2’) = 4 

Fig. 29-5 

The critical values are X = fl and 3. The point (fi, m) is a maximum point. The branch is 
concave downward. 

By symmetry, (fi, m) is a minimum point on the other branch, which is concave upward. 
Asymptotes: The line X = - 1 is a vertical asymptote. For the oblique asymptotes, replace Y with 

In the original coordinates, (fl - 2, m) is a maximum point and (fi - 2, --) is a 
mX + 6 to obtain ( m 2  + l ) X 3  + - - * = 0. There are no oblique asymptotes. Why? 

minimum point. The line x = -3 is a vertical asymptote. 

In x 
6 .  Discuss and sketch the curve y = -. (See Fig. 29-6.) 

X 

Symmetry: There is no symmetry. 
Intercepts: The only intercept is x = 1. 
Extent: the curve is defined for x > 0. 

dy 1 - I n x  d2y  2 l n x - 3  
and - = . Hence, the Maximum and minimum points, etc.: We have - = ~ 

dx2 x3 dx x2 
critical Doint is ( e ,  l / e ) .  At that point, d2y/dx2 = - l / e 3  CO; so we have a relative maximum. 

Thire is a point ofinflection ;or 2 In x ‘= 3, that is, at (e3’2, 3/2e3’2). The curve is concave downward 

Asymptotes: The y axis is a vertical asymptote, since - + --oo as x+O’. By I’Hospital’s rule, 

for 0 < x < e3’2 and concave upward for x > e3’*. 

In x X 
- + O  as x+ + 33. Hence, the positive x axis is a horizontal asymptote. 

In x 

X 

Fig. 29-6 
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Supplementary Problems 

In Problems 7 to 38, discuss and sketch the curve. 

7. 
10. 
13. 
16. 
19. 
22. 
25. 
28. 
31. 
34. 
37. 

(X - 2)(x - 6 ) y  = 2 ~ ’  
xy = (x’ - 9)’ 
y 2  = x(x2 - 4) 
(x’ - 2x - 3)y’ = 2x + 3 
y2 = 4x2(4 - x ’ )  
y 3  = x2(3  - x )  

(x’ + y2)3 = 4x2y2 
y 2  = x(x  - 3)’ 
x3y3 = ( x  - 3)’ 

(X - 6)y2 = X’(X - 4) 

y = e’lx 

8. 
11. 
14. 
17. 
20. 
23. 
26. 
29. 
32. 
35. 
38. 

4 3  - x’ )y  = 1 
2xy = ( x 2  - 1)’ 
y 2  = (x’ - 1)(x2 - 4) 
x(x  - l ) y  = x 2  - 4 
y2 = 5x4 + 4x5 
( x 2  - 1iy3  = x 2  

y4 - 4xy2 = x4 
y 2  = x(x  - 213 

y = p 3  - x 5 I 3  

(x’ - 1 6 ) ~ ’  = x3(x - 2 )  

y = x l n x  

9. 
12. 
15. 
18. 
21. 
24. 
27. 
30. 
33. 
36. 

(1 x 2 ) y  = x4 

xy = x 2 + 3 x + 2  
( x  + l)(x + 4)’y’ = x ( x 2  - 4) 

( x  - 3 ) y 3  = x4 

(x’ + y2)3 = 4xy(x2 - y’) 
3 y 4  = x(x2 - 9 ) 3  

x(; - 4)y = x 2  - 6 

y3 = ~ ’ ( 8  - x’) 

(x’ + y’)’ = 8xy 

y = l l x  - In x 



Chapter 30 

Fundamental Integration Formulas 

IF F(x)  IS A FUNCTION whose derivative F ' ( x )  = f ( x )  on a certain interval of the x axis, then F(x) is 
called an antiderivative or indefinite integral of f ( x ) .  The indefinite integral of a given function is 
not unique; for example, x', x' + 5, and x' - 4 are all indefinite integrals of f ( x )  = 2 x ,  since 
d d d 
- ( x ' )  = - (x' + 5 )  = - (x' - 4) = 2 x .  All indefinite integrals of f ( x )  = 2 x  are then included 
dx dx dx 
in F ( x )  = x2  + C, where C, called the constant of integration, is an arbitrary constant. 

f ( x )  dx is used to indicate the indefinite integral of f ( x ) .  Thus we write 

2 x  dx = x' + C. In the expression f ( x )  dx,  the function f ( x )  is called the integrand. I The I I 

FUNDAMENTAL INTEGRATION FORMULAS. A number of the formulas below follow immedi- 
ately from the standard differentiation formulas of earlier chapters, while others may be 
checked by differentiation. Formula 25, for example, may be checked by showing that 

1 
A- ( dx 2 "  a a 

<Q + 2 a' arcsin 5 + c) = V- 
Absolute value signs appear in certain of the formulas. For example, for formula 5 we write 

= In 1x1 + C instead of I: 
I : = l n x + C f o r x > O  and I $ = In ( - x )  + c for x < 0 

and for formula 10 we have tan x dx = In lsec x (  + C instead of I 
I tan x dx = In sec x + c for all x such that sec x 2 1 

tan x dx = In (-sec x) + C for all x such that sec x I - 1 I and 

7. ex dx = ex + c 

6. I a ' d x = G + C ,  ax a > O , a # l  

8. I s i n x d x =  - c o s x +  C 

206 



CHAP. 301 FUNDAMENTAL INTEGRATION FORMULAS 207 

9. I c o s x d x = s i n x +  c 10. I 
11. I c o t x d x = l n l s i n x l +  c 12. I 
13. I csc x dx = In lcsc x - cot XI + C 14. 

15. I c s c 2 x d x =  -co tx+ C 16. 

17. l c s c x c o t x d x =  -cscx+ C 18. 

19. 
dx 1 X 

a I = arctan - + c 20. I 
22. I 
24. I dx 

= l n ( x + m ) + C  

1 d n '  1 X 
25. I m d x = - x  2 a - x  + - a 2 a r c s i n - + C  2 a 

tan x dx = In lsec X I  + C 

sec x dx = In lsec x + tan X I  + C 

sec2 x dx = tan x + c 

sec x tan x dx  = sec x + C 

X 
= arcsin - + C 

dx  
d Z - 7  a 

dx 1 X 

X v F - 7  a a 
= - arcsec - + C 

26. I ~ d r = i x ~ + i a 2 l n ( x + ~ ) + C  

THE METHOD OF SUBSTITUTION. To evaluate an antiderivative I f ( x )  dx, it is often useful to 

replace x with a new variable U by means of a substitution x = g ( u ) ,  dx = g ' ( u )  du. The equation 

is valid. After finding the right side of (30.1), we replace U with g - ' ( x ) ;  that is, we obtain the 
d I du result in terms of x .  To verify (30.1), observe that, if F(x)  = 

d dx 
- F(x)  - = f ( x ) g ' ( u )  = f (  g (u) )g ' (u) .  Hence, F(x)  = dx du 

f ( x )  dx, then - F ( x )  = 

f (  g (u) )g ' (u)  du, which is (30.1 ). 

EXAMPLE 1: To evaluate 
we obtain 

( x  + 3)11 dw, replace x + 3 with U ;  that is, let x = U - 3. Then dr = du, and 

(X + 3)" dx = U" du = &U'* + C = A(x + 3)" + C 

QUICK INTEGRATION BY INSPECTION. Two simple formulas enable us to find antiderivatives 
almost immediately. The first is 

(30.2) 
1 

r + l  I g' (x) [g(x) ] '  dx = - [g(x) ] '+ '  + C r # - 1 
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d 1  
dx r + l  

This formula is justified by noting that - { - [ g ( x ) ] “ l }  = g ’ ( x ) [  g(x)] ‘ .  

EXAMPLE 2: ( 0 )  I 
( 6 )  I X- dx = I (2x)(x2 + 3)”’  dx = - - ( x 2  + 3)”2] + c = - [v=l3 + c 

(In x ) ~  1 1 
& = - (In x)2 & = - (In 4 3  + c 

l [  13 1 
X 

1 
2 312 3 

The second quick integration formula is 

I dx = In lg(x)l  + C 

d g ’ W  
dx g ( x )  

This formula is justified by noting that - (In lg(x)I) = -. 

EXAMPLE 3: ( 0 )  I cot x dx = I - dr = In lsin X I  + c cos x 
sin x 

X 2  3x2 1 I x 3  - dx = - In ( x 3  - 51 + C 
( b ) I - - - - d ~ = ~  x3 - 5 - 3 

Solved Problems 

In Problems 1 to 8, evaluate the indefinite integral at the left. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

(30.3) 

+ 3 x + c  
( ( 2 x ’ - 5 x + 3 ) & = 2  x 2 d x - 5  x & + 3  dx=--- 2x3 5x2 I I 1 3 2  

I ( 3 s  + J)2 dr = (9s2 + 24s + 16) ds = 9( 4s3) + 24( is2) + 16s + C = 3s3 + 12s2 + 16s + C 1 
1 1 4 d x =  ( x  + 5 - 4 x - 2 ) d x =  - x2 + 5 x -  4x-’ + c= 5 x 2 + 5 x +  - + c I x 3  + :2 - I 2 - 1  

8 x 2  dx x 2  dx 
Evaluate ( a )  I (x’ + 2 ) * ( 3 x 2 )  d x ,  ( b )  I (x’ + 2)1’2x2 d x ,  ( c )  

I \  

by means of (30.2). 
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10. 

11. 

( a )  I (x’ + 2)’(3x2) dx = f (x’ + 2)’ + C 

1 4  4 
3 3  9 

( d )  Iqm X 2  dr = 
( x 3  + 2)-114(3~2) dr = - - ( x 3  + 21314 + c = - ( x 3  + 21314 + c 

All four integrals can also be evaluated by making the substitution U = x 3  + 2, du = 3x2 dx. 

Evaluate 1 3x- dx .  

Formula (30.2) yields 

I 3 x l 6 % ? d x = 3 ( - a ) ( c l - 2  ”/’ (-44 du = - ;$(I - 2x2)3/2 + c 
- - - ;(I - 2x2)3/2 + c 

We could also use the substitution U = 1 - 2x2, du = -4x dx. 

( x  + 3) dx 
(x’ + 6 x y 3  ’ 

Evaluate 

Formula (30.2) yields 

1 3  I (’ + 3, dx = 1 I (x’ + 6x)-’/’(2x + 6) dx = - - (x’ + 6~) ’ ”  + C 
( x ’ +  6X)l/’ 2 2 2  

3 
4 

= - (x’ + 64’’’ + c 
We could also use the substitution U = x 2  + 6x, du = (2x + 6) dr. 

In Problems 12 to 15, evaluate the indefinite integral on the left. 

2 312 - - - 6 ( 1 - 2 x )  + c  

X 2  
+ l + C ’ = -  + C  

X 2  
+ C l = =  

(x + 1)2 x + l  x + l  
x’ + 2x 1 1 

15. I dx = [ 1 - -1 dr = x + - 

FORMULAS 5 TO 7 

16. Evaluate dxlx .  
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dx 17. Evaluate I x+2' using (30.3). 

I = In Ix + 2) + C. We also could use formula 5 and the substitution U = x + 2 ,  du = dx. 

using (30.3 ) . 18. Evaluate I - ak 
2 ~ - 3 '  

& ' In 12x - 31 + C. Another method is to make the substitution U = 2x - 3 ,  

d u = 2 & .  

In Problems 19 to 27, evaluate the integral at the left. 

1 
2 h a  

a y 2  &) = - - + c 23. I 

( e x  + 'I4 + C, where U = ex + 1 and du = ex dx, or I (ex + I)'& dx = I u3 du = - + C = ~ 

I (ex + l)'e" dx = (ex + 1)' d(ex + 1) = ~ 

u4 
4 4 

26. 

(ex + + c I 4 

= x - ln( l  + e x )  + C 

The absolute-value sign is not needed here because 1 + e - x  > O  for all values of x. 

FORMULAS 8 TO 17 

In Problems 28 to 47, evaluate the integral at the left. 

28. I s in  $ x & = 2 / ( s i n  $ x ) ( t  dx)= -2cos ;x+ C 
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29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

I cos 3x dx = f (cos 3 x ) ( 3  dx) = f sin 3 x  + C I 
+ C  

sin3 x 
sin2 x(cos x dx) = - sin2 x cos x dx = I I 3 

-sin x dx 
J t a n x c i x = I g c i x = - J  cosx = -In lcos xl + C = In lsec xl + C 

I tan 2x dx = 4 (tan 2x)(2 dx) = 4 In [sec 2x1 + C I 

sec x(sec x + tan x )  sec x tan x + sec' x 
dx = In lsec x + tan xl + C 

sec x + tan x d x = l  secx + tanx 
/sec x ci.x = I 

tan 2ax 
sec' 2ax dx = - (sec' 2crx)(2a = - + C  I 2a ' I  2a 

dx = (tan x + 1) dx = In lsec xl + x + C I I sin z0; 7 x 

I - = I tan y sec y dy = sec y + c 

I ( 1  + tan x)' ci.x = (1  + 2 tan x + tan2 x )  d~ = (sec' x + 2 tan x )  d~ I I 
= tan x + 2 In lsec X I  + C 

e x  cos e x  d~ = (cos e x ) ( e x  = sin e x  + c I 
+ C  

2x 

e3 'OS 2x(-6 sin 2x &) = - - e3 
sin 2x dx = - - 

6 'I 6 

1 - cos x 1 - cos x 
2 dr = sin x 

dx = (ac2 x -cot x cscx) dx 

= - c o t x + c s c x + C  

(tan 2x + sec 2 ~ ) ~  dx = (tan' 2x + 2 tan 2x sec 2x + sec2 2x) dx I 
= I (2sec22x + 2 tan2x sec2x - 1)  dx = tan2x + sec2x - x + c 

(sec' ju ) (  4 du) 
= In ltan $ul + C 

/ c s c u d u = I  - du =I 
sin u 2sin ;U cos ;U tan $U 
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45. 

46. 

47. 
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I sec x tan x dx = 1 I (sec x tan x)(b dx) 1 
a +  bsecx  b a + 6 sec x b 

= - In la + b sec X I  + C 

1 1 
2 2 = - In (2 sin2 x )  + C' = - (In 2 + 2 In lsin XI) + C' = In Jsin X I  + c 

FORMULAS 18 TO 20 

In Problems 48 to 72, evaluate the integral at the left. 

48. 

50. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61. 

I = arcsin x + c 49. I i-$-p = arctan x + c 

X 
- arcsin - + C 

dr ak \ xdz = arcsec x + c 51* I-- 2 

X dx arctan - + c I g = 3  3 

1 4x 
5 

= - arcsin - + C 
4dx dx 

dr 2 d r  1 2x 
3 

= - arctan - + C 

x dx 2xdx - 1  1 X 2  v3 x 2 v 3  + 5 arctan - + C =  - arctan - v3 6 3 

1 1 1 
2 X 

= - arcsec x2 + c = - arccos + c 

x + 2  
+ C  v7 = arcsin - 

dx I 4 ( x + 2 )  2 

e" du = arctan e x  + c dx \m=Im 
d x = ( ( 3 ~ - 4 +  - 3x2 ) dx = 2 - 4x + 4 arctan x + C 

x2 + 1 
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62. 

63. 

64. 

65. 

66. 

67. 

68, 

69. 

70. 

71. 

72. 

sec x tan x dx 2 sec x 
= 1 I 2 sec x tan x dx 1 

= g arctan - + C  
9 + 4 sec2 x 2 32 + (2 sec x12 3 

(x + 3) dx - x dx dx + 3 arcsin x + c 

dx 
x 2  + 9  3 3 

= In (x2 + 9) - - 7 arctan X - + c 

y 2  + 1Oy + 30 =I dy dY dY = 
(y2+10y+25)+5  =I ( y + q 2 + 5  

l/3 ( Y  + 5 ) f i  
5 

- arctan 
5 

+ C  

x - 4  
6 

+ C  
dr 

36 - (X - 4) I vF = arcsin - - - dx dx 
v 2 0  + 8x - x2 = I v36  - (x2 - 8x + 16) 

2x + 1 
+ C  = 3 arctan - 

3 
1 2dx 

dr 1 ( 2 ~ - 4 ) + 6  (2x - 4, dx 
dx = 1 

2 + 3 I x2 - 4x + 8 x 2 - 4 x + 8  

x - 2  
+ C  = - In (x2 - 4x + 8) + - arctan - 1 3 dx 

I dx = - dx = - 
2 x 2 - 4 x + 8  

x + l  
xz - 4x + 8 

+ 3 /  ( ~ - 2 ) ~ + 4  2 2 2 

The absolute-value sign is not needed here because x2 - 4x + 8 > 0 for all values of x. 

x + 6  
- I vF = arcsin - 

8 
+ C  

dx - dx dx 1 q28 - 12x - x2 = I v 6 4  - (x2 + 12x + 36) 64 - (X + 6) 

d x = - -  1q 5 - x + 3  4x - x2 2 'I v 5 - 4 x - x 2  

- 2 ~ - 4  dx 

= - ~ 5  - 4x - x2 + arcsin x+2 + c 
3 

dx 1 
dx = - 

(18x - 12) + 39 
9 9x2-  12x+8 I 18x + 27 I 9x2?L:+8 dx = f I 9x2 - 12x + 8 

18x - 12 d x + ? \  dx 
3 (3x -2 )2+4  

3x - 2  
+ C  

1 13 
= - In (9x' - 12x + 8) + - arctan - 

9 18 2 

dr Iq4 x + 2  &=-!I - 2 x - 4  & = - -  1 ( -2x+4) -8  

x - x  2 -  2 1  v G - 7  
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FORMULAS 21 TO 24 

In Problems 73 to 89, evaluate the integral at the left. 

73. 

75. 

77. 

79. 

80. 

81. 

82. 

83. 

84. 

85. 

86. 

87. 

88. 

74. Js= d x 1  j i n  1% 

, / F = l n ( x + m ) + C  dx 78. I z = I n l x + d  dx 

dx 1 x - 2  d x 1  
1 2 - - 4  - - I n  I x + 2 I + c  - 76. 1 3  = 6 In 1% 

x + I  

’ In (2x + VGTG) + c 

dz 

1 3 x - 4  
16 = - 24 in 1- 3 ~ + 4  1 + c 

4 d ~  =-lnl----(+c 1 5 + 4 y  
25-(4y)’ 40 5 - 4 y  

+ c  

+ C  

- 
! - 1 ( + c  

1 
4 

= - In )4x2 - 111 - - 

ds 
q m -  dx = - 2x + 2 d x + \  ‘I 2 x + 4  x + 2  

2 l I x 2 + 2 x - 3  

= d x ?  + 2x - 3 t In Ix + 1 + d x ‘  + 2x - 31 + C 
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dr & = - -  
4x2 + 4x - 3 

89. I 
= - 1 1 n , 4 ~ 2 + 4 x - 3 1 + - l n / - - - - I + ~  5 2 x - 1  

8 16 2 x + 3  

FORMULAS 25 TO 27 

In Problems 90 to 95, evaluate the integral at the left. 

1 25 X 
dx = 2 x- + - arcsin - + C 2 5 90. 1 

x + l  x + l  
94. \d I T  2 3 - 2x - x2 + 2 arcsin - + C  2 3 - 2x - xz dx = 4 - ( x  + 1)2 dr = - d 

95. I I/4x2 - 4~ + 5 dx = 

Supplementary Problems 

In Problems 96 to 200, evaluate the integral at the left. 

96. 1 (4x3 + 3x2 + 2x + 5 )  & = x4 + x3 + x 2  + 5x + c 

97. / ( 3  - 2 ~  - x4) dr = 3 x  - x 2  - +x’ + C 

98. 1 ( 2 - 3 x + x 3 ) d x = 2 x -  ; x ’ +  + x 4 + C  

99. J ( x 2  - 1)’ dx = x 5 / 5  - 2x3/3 + x + C 
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100. 

101. 

103. 

105. 

107. 

109. 

111. 

113. 

115. 

117. 

119. 

121. 

123. 

125. 

127. 

129. 

131. 

133. 

135. 

137. 

139. 

/(a + x)3 dx = a (a + x)4 + c 

- -~ + c  dr 
lo4* 1m - 2(x-1)’ 

106. I V m d x  = $(3x - 

108. 

+ C 

/ (2x2 + 3)’I3x dx = &(2x2 + 3)4’3 + C 

110. J (x’ - l ) x  dx = i ( x2  - 1)’ + c 

112. (x3 + 3)x2 dx = B(x3 + 3)’ + c 

& = 2 V m + c  

(x - 1)’x dx = i x 4  - f x 3  + $X2 + c I 
IT3 1 + y y dy = t ( l  + y4)312 + C 

+ c  dY I = 2(2-y)‘ 
114. 

116. \ ( l  -x3)’ dx= x - 4x4 + 4x7 + C + c  x d x  - I p q  - - 4(x2 + 4)’ 

J(1 -X3)’Xdx = ;x2 - ;x5 + gxLl + c 

( x 2  - x)4(2x - 1) dr = f(X2 - 4 5  + c 

3 
122* (a + bx)’” 26 

dx 
= - (a f 6x)2’3 + c 

124. fi (3 - 5x) dx = 2x3/2(1- x) + c 

dx 
126. / x-l = In Ix - 11 + C 

3x dx 
128. = In (x’ + 2) + C 

130. 
x - 1  x+l d~ = x  -21n ~x + 11 + c 

dx 1 I = 3 In 13x + 11 + C 

x + l  1 
2 

dx = - In (x’ + 2x + 2) + c 
132* I x2 + 2x + 2 

1 aSX 
+ C  a4x dx = - - 

4 l n a  
134. \ 

(er + 1)’ dx = $e2x + 2e” + x + C 



CHAP. 301 FUNDAMENTAL INTEGRATION FORMULAS 217 

141. I (ex + 1)2ex dx = $ ( e x  + c 

dx 
147. \ = In C(x2l3 + l ) ,  C > O  

149. \ cos f x  dx = 2 sin i x  + C 

151. csc2 2x dx = - 4 cot 2x + C 

153. I t a n ' x d x = t a n x - x +  C 

155. I csc 3x dx = 5 In lcsc 3x - cot 3x1 + C 

157. \ (cos x - sin x)' dx = x + 4 cos 2 x  + C 

159. I sin3 x cos x dx = f sin4 x + C 

\ tanS x sec2 x dx = i tan6 x + C 161. 

dx 
1 - sin i x  

= 2(tan i x  + sec i x )  + C 163. / 
dx 1 

165. I 1 + sec ax a 
= x + - (cot ar - csc ax) + c 

sec' 3 x  1 
3 167. / dx = - In Itan 3x1 + C 

169. I etan 2 x  sec2 2x dx = $etan 2x + C 

171. I dx = arcsin xf i+C - 
5 

X f i  

5 
- arcsec - + C 

dx 

e', dx 1 - - arctan eZx + c 

3x 
2 

- arctan - + c 177- - 6 

= - arcsin (2 tan x )  + C 
1 - 4 t a n 2 x  2 

142. I e2*+3 e2' d x =  - 1 1n(e2" +3)  + C 
2 

ex - 1 
14.  I e"+l cix = In ( e x  + 1)' - x + c 

c>o = In 
dx 

148. [sin 2x dx = - cos 2 x  + C 

/sec 3x tan 3x dx = j sec 3x + c 

I x sec2 x 2  dx = 4 tan x' + C 

150. 

152. 

154. 

156. I b sec ax tan ax dx = - sec ax + C 

158. /sin ax cos ax dx = - sin2 ax + C 

tan i x  dx = 2 In /sec 4x1 + C 

b 
a 

1 
2a 

cos2 ax + C' = - - cos2ax + C" 
1 - - - -  

2a 4a 

160. I cos4 x sin x dx = - 5 cos5 x + c 

162. \ Cot4 3x csc2 3x dx = - Cot5 3x + c 

1 - cos 3x 
1 + cos 3x 3 sin 3x + C  

1 X 

2 
x x  

166. sec2 - tan - dx = - U tan2 - + C 
a a  

secS x 1 
168. I - dx = - sec4 x + C 

csc x 4 

170. I e2 sln 3+ cos 3x + C  
= i e2 sln 3 x  

xf i+C 
d x v 3  

172. 

174. I ex dx 

g = 7 arctan - 

= arcsin ex + C 

1 3x 
2 

5 

= - arcsin - + C 
dx 

1 sin2 4x 
dx = - arctan - + C  12 3 

178. 
9 + sin4 4x 

arcsin In x 3 / *  + c dx 1 
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181. 

183. 

184. 

185. 

186. 

187. 

189. 

191. 

193. 

194. 

195. 

1%. 

197. 

198. 

199. 

200. 
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cos2xdx fi sin 2x 
- arctan - 

s in22x+8  8 2 v 7  + c  
-- fi arctan x f i  + c 182. 1 1 

3 2 
& = - x 3 - x + -  

x + 3  
+ C  = In (x’ + 6x + 13) - - arctan - 9 dx 

x2 +6x  + 13 x’ + 6 x +  13 x2 + 6x + 13 2 2 

3x - 2 
+ C  = - In (3x2 - 4x + 3) - - arctan - 1 v3 dx -I 15 v3 I 3 x 2 - 4 x + 3  9x2-  I Z X + ~  6 

(x - 1) dr ( 6 ~  - 4) dx 

x - 3  
+ C  = -627  + 6x - x2 + 3 arcsin - 6 

x dx 1 q 2 7  + 6x - x2 

+ C  

+ C  

q + c  
2x + 3 

-l+c 3x + 5 
3x - 5 

8 3x 
3 4 1 d 3 -  dx = x ~ i i ~ ~  + - arcsin - + c 

I 6 x 2  - 2x - 3 dr = 4(x - 1)dx’ - 2x - 3 - 2 In lx - 1 + d x 2  - 2x - 31 + C 

1 6 1 2  + 4x - x2 dx = $(x -2)612 + 4x - x2 + 8arcsin a(x - 2) + C 
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Integration by Parts 

INTEGRATION BY PARTS. When U and v are differentiable functions of x ,  

d (uv)  = U dv + U du 

and / U dv = uv - / v du (31.1) 

When (31.1 ) is to be used in a required integration, the given integral must be separated into 
two parts, one part being U and the other part, together with dx ,  being dv.  (For this reason, 
integration by use of (31.1) is called integration by parts.) Two general rules can be stated: 

or U dv = d(uv)  - U du 

1. The part selected as dv must be readily integrable. 

2. I U du must not be more complex than / U dv.  

EXAMPLE 1: Find I x3exz dx. 
Take U = x 2  and du = ex2x dx; then du = 2x dx and U = !ex ' .  Now by (32.2 ), 

x3ex2 dx = fX2exz - x exz = 1x2 ex2 - ;ex2 + c I I 
EXAMPLE 2: Find I In ( x 2  + 2) dx. 

Take U = In (x' + 2) and du = dx; then du = - 2x dx and U = x .  By (32.1 ), 
x 2  + 2  

X 
= x In ( x 2  + 2) - 2x + 2 f l a r c t a n  - + C v2 

(See Problems 1 to 10.) 

REDUCTION FORMULAS. The labor involved in successive applications of integration by parts to 
evaluate an integral (see Problem 9) may be materially reduced by the use of reduction 
formulas. In general, a reduction formula yields a new integral of the same form as the original 
but with an exponent increased or reduced. A reduction formula succeeds if ultimately it 
produces an integral that can be evaluated. Among the reduction formulas are: 

x(a2  * x2)" 2ma2 + - 
2 m + 1  2 m + 1  

t x2)m-l d x ,  m + -112  (a2  * x2)" dx  = (31.3) 

x ( x 2  - a2lm 2ma2 
2 m + 1  2 m + 1  

- - I(..- a2)"-' d x ,  m #  -112 / (x' - a')" dx = (31.5) 

219 
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sinm - 'x cos x 
sinmx dx = - I rn 

cosrn - 'x sin x 
C O P X  dx = + I rn 

sinm + ' x  cosn - ' x  
r n + n  

I sinmx cosnx dx = 

sinm-'x cosn+'x rn - 1 
rn+n m + n  

= -  + - J sinm-zx cosnx dx , m # - n  

x m  
COS bx + - I xm- '  cos bx dx 

b 
x m  sin bx dx = - - 

b 

rn I x m - 1  sin bx dx x m  cos bx dx = - sin bx - - I b b 
X m  

(31.7) 

(31.8) 

(31.9) 

(31.10) 

(31.11) 

(See Problem 11.) 

Solved Problems 

1. Find x sin x dx. I 
We have three choices: (a )  U = x sin x, du = dr; (6) U = sin x, du = x dr; (c) U = x, du = sin x dx. 

( a )  Let U = x sin x, du = dx. Then du = (sin x + x cos x) dx, U = x, and 

x sin x dr = x - x sin x - x(sin x + x cos x) dx I I 
The resulting integral is not as simple as the original, and this choice is discarded. 

( b )  Let U = sin x, dv = x dx. Then du = cos x dx, U = +x2, and 

x sin x dx = $xz sin x - 

The resulting integral is not as simple as the original, and this choice too is discarded. 

$x2 cos x dx I I 
(c) Let U = x ,  du = sin x dr. Then du = dx, U = -cos x ,  and 

x s i n x d r =  -xcosx -  - c o s x d x =  - x c o s x + s i n x +  C I I 
2. Find xex dx. I 

Let U = x, du = ex dr. Then du = dr, u = ex, and 

I xex dx = xex - I e x  dr = xex - e x  + c 

3. Find x 2  In x dx. 

dr x3 
X 3 

I 
Let u = l n x ,  d u = x 2 d x .  Then d u =  -, U =  -, and 

x 3  1 
x2 d x =  - l n x -  - x 3 +  c l n x -  - I 3 3 'I 3 9 

x 3  
x 2 1 n x d x = - l n x -  
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4. Find 1 x - d ~ .  

221 

Let U = x ,  du = dx. Then du = dx, u = $(  1 + x)~’’, and 

Ix . / iT ;dx = + 4 3 ’ ’  - 3 /(l+ x ) 3 ’ 2  dx = $ X ( l +  X y ”  - &(l+ x r 2  + c 

5. Find arcsinxdx. 

dx q g ,  U = x ,  and 

I 
Let U = arcsin x ,  du = d x .  Then du = - 

arcsin x dx = x arcsin x - - x d x  - x a r c s i n x + m +  - c I 1- 
6. Find sin2 x d x .  I 

Let U = sin x, du =sin x dx.  Then du =cos x d x ,  U = -cos x, and 

Is in’x dx = -sinx cosx + cos2 x dx = -sin x cosx + (1 -sin2 x )  dx I I 
I I  = - 1  sin2x+ dx- sin’xdx 

sin’ x dx = $ x  - f sin 2 x  + c I 2 sin’ x dx = - 4 sin 2 x  + x + C‘ and I Hence 

7. Find sec3xdx.  I 
Let U = sec x ,  du = sec’ x dx.  Then du = sec x tan x d x ,  u = tan x, and 

sec3 x dx = sec x tan x - sec x tan’ x dx = sec x tan x - sec x(sec‘ x - 1) dx I I I 
= sec x tan x - sec3 x dx + sec x dx I I 

2 sec3 x dx = sec x tan x + sec x dx = sec x tan x + In lsec x + tan XI  + C’ I Then 

and sec3 x dx = 1 {sec x tan x + In /sec x + tan X I }  + C 

8. Find x 2  sinxdx.  I 
Let U = x2, du = sin x d x .  Then du = 2x dx, U = -cos x ,  and 

I x2 sin x o!x = -x2 cos x + 2 x cos x dx I 
For the resulting integral, let U = x and dv =cos x dx. Then du = dx, U = sin x ,  and 

x 2  sin x dx = - x 2  cos x + 2 = -x’ cos x + zx sin x + z cos x + c I 
9. Find x3e2x dx.  I 
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Let U = x', du = e" dx. Then du = 3x2 dx, U = te". and 

x - ) e z l  dx = 1 ' x  3 e 2 r  - { j x2eeZ 'dx  

For the resulting integral, let U = x' and dv = e21 dx. Then du = 2x dx, U = :e'.', and 

I 
For the resulting integral, let U = x and dv = e2* dx. Then du = dx, U = fe2x, and 

I x3e2x dx = fx'e2x - :x2eZr  + ;( $xe" - f I eZX dx) = ix3ezx - 3 .,x ' e + :xezx - ;e2= + c 

x 2 ( a 2  2 x2)" ' - '  d x  
x' d x  i (a' 2 X')"' 

10. Find reduction formulas for ( a )  

- + 1  
( a )  Take U = x. du = 

dx 
(a' + 2)" ' . then du = dx, U = and 

(2m - 2)(a2 * x ' ) ~ - '  ' 

x 2 d x  - dx 

5 1  
2m 

(b) Take U = x ,  du = x(a' 2 x')"-' dx;  then du = dx, U = - (a' + x')", and 

ll. Find: ( a )  I +x2)512 dx and (b)  ( 9  + x ' ) ~ "  d x .  

(a) Since (31.2) reduces the exponent in the denominator by 1, we use this formula twice to obtain 

2 x  
+ C  

X - - dx - - X + ' \  dx I ( 1  + x2)"' 3( 1 + x')"' 3 ( 1  + x2)3'2 3( 1 + x ' ) " ~  + 3 ( 1  + x2) '  ' 
(b) Using (31.3). we obtain 

j (9 + ' dx = $ ~ ( 9  + x*)"* + 7 I ( 9  + x2)'" dx 

= t x ( 9  + x')"' + 7 [ x (9  + x')"' + 9 In (x  + m)] + C 

sinm-' x cos x m - 1 
12. Derive reduction formula (31.7): sin"' x d x  = - + - J sin"'-2 x d x .  I m m 

We use integration by parts: Let U = sin"-' x and dv =sin x dx ;  then du = (m - 1)  sin" x 
cos x dx, U = -cos x ,  and 

Is in '"  x dx = -cos x sinm-' x + ( m  - 1 )  sin"-' xcoszx  dx I 
- - -cos x sin"-' x + ( m  - 1 )  J (sin"-' x ) ( l -  sin2 x )  dx 

I I = -cos x sinm-' x + (m - 1) sinm-' x dx - ( m  - 1) sin" x dx 

Hence, 

and division by m yields (31.7). 

m I s i n " x d x  = -cosxsin"-' x + ( m  - 1 )  I x d x  
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Supplementary Problems 

In Problems 13 to 29 and 32 t o  40 evaluate the indefinite integral at left. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

I x cos x dx = x sin x + cos x + c 

I x sec2 3x a!x = i x  tan 3x - 6 lnlsec 3x1 + c 

I arccos 2x dx = x arccos 2x - f~ + c 

arctan x d~ = x arctan x - In IGZ + c 

x 2 d E  dr = - & (1 - x ) ~ ’ ~ (  15x2 + 12x + 8 )  + C 

xe” dx ex 
+ C  

1 x arctan x d~ = 4 (x2 + 1 )  arctan x - 4x + c 

x’e-3”dx = - ge-3x(x’ + 2 3x + 3) + c I 
j s in’x  cix = - 3 cos3 x -sin2 xcosx  + c 

x3 sin x dr = - x 3  cos x + 3x2 sin x + 6 x  cos x - 6 sin x + C 

x G!X 2 ( b ~  - 2~)- + 

36‘ 

2 - ( 3 ~ ’ - 4 ~ + 8 ) G +  C m - 15 

x arcsin x2 d~ = 1x2 arcsin x2 + 4- + c 

sin x sin 3x dx = Q sin 3x cos x - sin x cos 3x + C I 
J sin (in x )  dx = fx(sin In x - cos ln x )  + c 

eax(b sin bx + a cos bx) 
a2 + b2 

I eax cos bx ak = + C  

eax(a sin bx - b cos bx) 
a2 + b2 

eax sin bx dr = + C  

Problem lO(a) to. obtain (31.2). 

10(b) to obtain (31.3). 

. 

( 6 )  Write 1 (a’ k x ’ ) ~  dr = a2 I (a2 2 x2)”’-’  dr k x’(a’ -+ x ’ ) ~ - ’  dx and use the result of Problem 

Derive reduction formulas (31.4) to (31.11). 

du x (5 -3x2 )  +--lnj--j+C 3 l + x  !-= 8(1-x’) ’  16 1 - x  
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33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

d x -  X \ (4  + x2)3'2 - 4(4 + x 2 y 2  + 

( 4  - x2)"' dx = $x(10 - x 2 ) m  + 6 arcsin $x + C 

sin4 x dr = i x  - sin x cos x - a sin3 x cos x + c I 
\ cos' x dx = &, ( 3  cos4 x + 4 cos' x + 8) sin x + C 

sin3 x cos' x cix = - cos3 x (sin2 x + f ) + C I 
A n  alternative procedure for some of the more tedious problems of this section can be found by noting (see 

Problem 9) that in 

( 1  ) x3e'" dx = $ x 3 p 2 "  - $x2e2" + $xe2" - ie2" + C 1 

I x3e2" dx = Ax3e2" + Bx2e2x + h e 2 '  + Ee2" + C 

the terms on the right, apart from the coefficients, are the different terms obtained by repeated differentiations 
of the integrand x3e2". Thus, we may write at once 

(2 ) 

and from it obtain by differentiation 

x3e2" = 2Ax3e2" + ( 3 A  + 2B)x'e'" + ( 2 B  + 2D)xe'" + (D + 2E)e'" 

Equating coefficients, we have 

2 A = 1  3 A + 2 B = O  2 B + 2 D = O  D + 2 E = O  

so that A = , B = - $ A  = - $ ,  D = - B  = a ,  E = - 5 D = - 5 .  Substituting for A,  B, D, E in (Z), we obtain 

f ( x )  h whenever repeated differentiation of f ( x )  yields only a This procedure may be used for finding I ( 1  ) *  

finite number of different terms. 

41. 

42. 

43. 

44. 

Find 

Find 

Find 

Find 

\ e2x cos 3x dx = +je2"(3 sin 3x + 2 cos 3x) + c, using 

\ e'" cos 3x dx = Ae'" sin 3x + Be'" cos 3x + C 

J e3"(2 sin 4x - 5 cos 4x1 cix = he3"(- 14 sin 4x - 23 cos 4x) + C, using 

1 e3"(2 sin 4x - 5 cos 4x) dx = Ae3" sin 4x + Be3" cos 4x + C 

\ sin 3x cos 2x dx = - (2  sin 3x sin 2x + 3 cos 3x cos 2x)  + C ,  using 

I s i n  3x cos 2x dr = A sin 3x sin 2x + B c o s 3 ~  cos 2x + D cos 3x sin 2x + E sin 3x cos 2x + C 

e3" I 250 
I e3*x2 sin x dr = - [25x2(3 sin x - cos x )  - lOx(4 sin x - 3 cos x )  + 9 sin x - 13 cos x]  + C. 
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Trigonometric Integrals 

THE FOLLOWING IDENTITIES are employed to find some of the trigonometric integrals of this 
chapter: 

I .  1 + tan2 x = sec2 x 
3. 1 + cot2 x = csc2 x 4. sin2 x = f ( 1  - cos2x) 
5 .  sin x cos x = f sin 2x 
7. sin x sin y = 1 [cos ( x  - y) - cos ( x  + y)] 
9. c o s x c o s y =  $[cos(x-y)+cos(x+y) l  10. 1 -cosx=2s in2  f x  

11. 1 * sin x = 1 2  cos (+?r - x )  

sin2 x + cos2 x = 1 

cos2 x = 1 (1 + cos 2x) 
sin x cos y = $[sin ( x  - y) + sin ( x  + y)] 

1 + cos x = 2 cos2 4x 

2. 

6. 
8. 

12. 

TWO SPECIAL SUBSTITUTION RULES are useful in a few simple cases: 

1. For sinm x cosn x dx:  If m is odd, substitute U = cos x .  If n is odd, substitute U = sin x .  

2. For !tan"xsec"xdx: If n is even, substitute U = tanx. If m is odd, substitute 

I 
U = sec x .  

Solved Problems 

SINES AND COSINES 

In Problems 1 to 17, evaluate the integral at the left. 

1. 

2. 

3. 

4. 

I sin3 x dx = sin2 x sin x 

This solution is equivalent to  using the substitution U = cos x ,  du = -sin x uk, as follows: 

= (1 - cos2 x )  sin x d~ = -cos x + 4 cos3 x + c I I 
I I 

I 
sin3 xcix = - (1 - U') du = -U + f u 3  + C =  - c o s x  + f cos3 x + c 

I cos5 x a!.r = cos4 x cos x dx = I ( 1 -  sin2 x)' cos x cix 

= I cos x ci.x - 2 sin2 x cos x d~ + sin4 x cos x d~ 

= sin x - 3 sin3 x + 4 sin' x + c 
I I 

This amounts to  the use of the substitution U = sin x .  We have also used (30.2). 

225 
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5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

I s i n z x c o s > x & =  sinZxcosZxcosxdx= sinZx(1 -sin’x)cosxdx I I 
= I sin’ x cos x dx - sin4 x cos x d~ = 4 sin’ x - 4 sins x + c I 

I cos4 2x sin3 2x d~ = cos4 2x sin2 2x sin 2x t i x  = cos4 2x (1 - cos2 2x1 sin 2x tix I I 
= I cos4 2x sin 2x dx - cos6 2x sin 2x dx = - & cos5 2x + cos7 2x + C I 

I sin3 3x cos5 3x dx = I (1 - cos2 3x1 cos5 3x sin 3x dx 

= I cos5 3x sin 3x dx - cos’ 3x sin 3x dx = - & cos6 3x + & cos’ 3x + C I 
or I sin3 3x cos’ 3x dx = sin’ 3x (1 - sin2 3x12 cos 3x dx I 

= I sin3 32 cos 3x c ix  - 2 sins 3x cos 3x cix + sin7 3x cos 3x dx 

= 

I 
sin‘ 3x - 4 sin6 3x + & sin’ 3x + C 

X X X 
!cos3 3 cix =I ( 1  - sin2 : )cos  5 ci.x = 3sin - 3 -sin3 - 3 + c 

I sin‘ x d~ = (sin2 x)’ dx = j (1 - cos 2x12 

3 

I 
= a dx - : I cos2x  dx + f Icos’2x dx 

= t I dx - t /cos 2x dx + i I ( 1  + cos 4x) dx 

- 1  - ax - a sin 2x + %x + $ sin 4x + C = i x  - a sin 2x + & sin 4x + C 

I sin4 3x cos2 3x dx = (sin’ 3x cos‘ 3x) sin’ 3x dx = sin‘ 6x (1 - cos 6x) dx I I 
I = i I sin2 6x dx - 

= $ ~ ( l - c o s l 2 x ) d x -  ~ I s i n ’ 6 x c o s 6 x d x  

= $x - & sin 12x - &, sin3 6x + C 

sin’ 6x cos 6x dx 

I sin 3x sin 2x = 

= 4 sin x - & sin 5 x  + C 

t [cos (3x - 2x) - cos (3x + 2x)l A = 4 (cos x - cos 5x1 I I 
13. I sin 3x cos 5x dx = 5 [sin (3x - 5x) + sin (3x + Sx)] dx = f cos 2x - cos 8x + C I 
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14. ~ c o s 4 x c o s 2 x d r =  4 I (cos2x+cos6x)dx= $sin2x+ & s i n 6 x + C  

16. I (1 + cos 3 ~ ) ~ ’ ~  dx = 2 f i  I cos3 $ x  dx = 2 f i  I (1 - sin2 ; x )  cos $ x  dr 

= 2V? ( 3  sin 2 x  - f sin3 $ x )  + c 

V? - --- In lcsc( +.rr - x )  -cot ( i n  - x) l  + C 

TANGENTS, SECANTS, COTANGENTS, COSECANTS 

Evaluate the integral at the left. 

18. 

19. 

20. 

21. 

22. 

23. 

I tan4 x dr = I tan2 x tan2 x dx = tan2 x (sec’ x - 1) = tan2 x sec2 x t i x  - tan2 x I I I 
= tan2 x sec2 x d~ - I (sec2 x - 1) = 5 tan3 x - tan x + x + c 

I tan5 x d~ = tan3 x tan2 x 

= / tan’ x sec2 x 

= 

- I tan3 x d~ = I tan3 x sec2 x d~ - tan x (sec’ x - 1) d~ 

tan3 x (sec’ x - 1) d~ I 
I 

= $ tan4 x - tan2 x + In lsec X I  + c 

/ sec4 2x d~ = I sec2 2x sec2 2x = sec2 2x (1 + tan2 2x) d~ I 
= sec2 2x d~ + I tan2 2x sec2 2x cix = t tan 2x + tan3 2x + c 

tan3 3x sec4 3x ctx = tan3 3x (1 + tan2 3x1 sec2 3x & 

= / tan3 3x sec2 3x d~ + tan5 3x sec2 3x = tan4 3x + A tan6 3x + c I 
I tan2 x sec3 x = I (sec’ x - 1) sec3 x & = / sec5 x a!x - / sec3 x d~ 

= $ sec3 x tan x - sec x tan x - & In lsec x + tan xl + C (integrating by parts) 

/ tan3 2x sec3 2x = / (tan2 2x sec2 2x)(sec 2x tan 2x 
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U. I cot’ 2x dx = cot 2x (cscz 2x - 1) dr = - a cot2 2x + t In lcsc 2x1 + c I 
25. I cot4 3x dx = cot2 3x (m2 3x - 1) dr = cot’ 3x cscz 3x dx - cot2 3x dr I I I 

I = I Cot2 3x csc’ 3x dx - (csc2 3 1  - 1) dr = - ; Cot’ 3x + 5 cot 3x + + c 

26. I w6 x dx = cscz x( 1 + Cot2 dr = cS2 x dx + 2 Cot2 x csc2 x dx + Cot* x cx2  x dr I I I I 
= -cot x - 3 cot3 x - f COP x + c 

27. I cot 3x csc4 3x dr = I cot 3x (1 + cot’ 3x) csc’ 3x dr 

= /cot 3x csc2 3x dx + cot’ 3x csc2 3x dx = - ; cot’ 3x - cot‘ 3x + c I 

Supplementary Problems 

In Problems 29 to 56, evaluate the integral at the left. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

\ c o s ‘ x d x = i x + f s i n 2 x + ~  

I s i n 3 2 x d x = : c o s ’ 2 x - f c o s 2 x + C  

I sin4 2x dx = i x  - & sin 4x + & sin 8x + C 

] cos4 t x  = ax + 4 sin x + k sin 2x + c 

sin’ x dx = 4 COS’ x - 3 cos5 x + COS’ x - cos x + c 

cos’ j x  dx = & x  + f sin x + 

I 
\ sin zx - & sin’ x + c 

I sin2 x cos5 x dx = 3 sin3 x - 3 sin’ x + f sin7 x + c 

I sin3 x cos2 x dr = i cos5 x - f cos3 x + c 

/sin3 x cos3 x dx = t cos32x - cos2x + c 
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38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

51. 

53. 

55. 

57. 

J sin4xcos4xdx= &(3x-sin4x+ Q sin8x)+ C 

sin 2x cos 4x dx = i cos 2x - & cos 6 x  + C I 
J sin 5 x  sin x dx = Q sin 4x - & sin 6 x  + c 

cos3 x dx 1 
1 - sin x 2 

= sin x + - sin2 x + c 

3 
dx = - - 

5 

I 
x + C 

1 
3 

dx = csc x - - C S C ~  x + C 

I x(c0s3 x 2  - sin3 x ’ )  dx = &(sin x 2  + cos x2)(4 + sin 2x2) + C 

I tan3 x dx = 4 tan2 x + In [cos X I  + C 

Itan33xsec3xdx= t sec33x- sec3x+ c 

I tan312 x sec4 x d~ = tan’/* x + 8 tang/* x + c 

tan4 x sec4 x dx = 4 tan’ x + 5 tan’ x + C 50. 1 I 
I cot3 x dx = - 4 cot2 x - In (sin xl + C 52. I 

Use integration by parts to derive the reduction formulas 

and 

csc4 2x dx = - 5 cot 2x - cot3 2 x  + C 

cot3 x 
dx= -sinx-cscx+ C csc x 

t a n x ~ d x = 2 d E E +  C 

I secm-2 u du 
m - 2  

secm-2 U tan U + - secm U du = - 
m - 1  I m - 1  

1 

I cscm-2 U du 
m - 2  I m - 1  m - 1  

cscm-* U cot U + - 1 
C S C ~  U du = - - 

Use the reduction formulas of Problem 57 to evaluate the left-hand integral in 

58. I sec3 x dx = 4 sec x tan x + 4 In lsec x + tan xl + C 

I csc5 x dx = - i csc3 x cot x - 5 csc x cot x + In lcsc x - cot x~ + c 

I sec6 x dx = 4 sec4 x tan x + A sec2 x tan x + 6 tan x + c = + tan’ x + 3 tan3 x + 

59. 

60. 

1 

Problems 58 to 60. 

tan x + C 
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Trigonometric Substitutions 

SOME INTEGRATIONS may be simplified with the following substitutions: 

1 .  
2. 
3. 

If an integrand contains m, substitute x = a sin z. 
If an integrand contains m, substitute x = a tan z. 

If an integrand contains m, substitute x = a sec z. 

More generally, an integrand that contains one of the forms v m ,  (m, or 
I/= but no other irrational factor may be transformed into another involving trig- 
onometric functions of a new variable as follows: 

For USe To obtain 

a- = a cos z 

a s  = a sec z 

a 
x = - sin z 

b 
a 

x = - tan z 
b 

Vx-m 
lmT-P7 

a G Z Z  = a tan z 
a 

x = - sec z 
b 

m2-7 

In each case, integration yields an expression in the variable z. The corresponding expression in 
the original variable may be obtained by the use of a right triangle as shown in the solved 
problems that follow. 

Solved Problems 

dx 
l* Find x 2 d x  

Let x = 2 tan z ,  
2 sec z ,  and 

r 

so that x and z are related as in Fig. 33-1. Then dx: = 2 sec2 z dz and = 

ciz = - 
4 

sinM2 z cos z dz 
l \  I x 2 v g  = I (4 tan2 z)(2 sec z )  4 tan2 z 

dx 2sec2 z dz = 1 \ sec z 

v 4 + x 2  + +c=-- 1 - _ - -  
4 sin z 4x 

2 

Fig. 33-1 

4 

Fig. 33-2 

230 
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x2 
d z  dx. 2. Find I 

Let x = 2 sec 2, so that x and z are related as in Fig. 33-2. Then dx = 2 sec z tan z dz and 
-= 2 tan z ,  and 

(2 sec z tan z dz) = 4 sec3 z dz I 4 sec2 z 

= 2 sec z tan z + 2 In [sec z + tan zI + C’ 

= ~ ~ I L ~ + ~ I ~ I ~ + V F T ~ + C  

3. Find I v9-4x2 dx . 
X 

Let x = 2 sin z (see Fig. 33-3); then dx = i cos z d z  and = 3 cos 2, and 

dx 1 - sin’ z I sin z 
3cosz 3 cos2 z 

sin z 
dx = 1 ( 2  cos z d*) = 3 I 7 dz  = 3 

= 3 I csc z dz - 3 sin z dz = 3 In lcsc z - cot z~ + 3 cos z + C’ ‘I 

Fig. 33-3 Fig. 33-4 

dx 

Let x = $ tan z (see Fig. 33-4); then dx = 3 sec2 z dz and = 3 sec 2, and 

1 
3 

csc z dz  = - In lcsc z - cot Z I  + C’ 
5 sec2 z dz  

= - 1 In I y - 3 1 + c  
3 

dx. 
(16 - 9 ~ ~ ) ~ ’ ~  

5. Find I x 6  

Let x = 4 sin z (see Fig. 33-5); then dx = 4 cos z d z  and = 4 cos z, and I (16 - 9 ~ ~ ) ~ ”  dx = I (64 COS3 Z)( 4 COS Z d z )  
dz = 243 I Cot4 z csc2 2 dz  

X6 % sin6 z 16 

243 (16 - 9 ~ ’ ) ~ ’ ’  + 

= - - 1 ( 1 6 - 9 ~ ’ ) ” ~  + 

80 80 243x5 80 x5 
cot5 z + c = - - 243 -- - - 
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Fig. 33-5 

3 5  

x 2  dx x 2  dx 
6. 

Find / d7 = / x - x  V i q F i y  

Fig. 33-6 

Let x - 1 = sin z (see Fig. 33-6); then dx = cos z dz and v 2 x  - x2  = cos z, and 

cos z dz  = ( 1  + sin z ) ~  dz = + 2 sin z - - cos 22 d z  I I(5 2 l )  
x2  dx ( 1  + sin 2)' 

3 1 3 1 
2 4 2 

= - z - 2 cos z - - sin 22 + c = - arcsin (x - 1) - 2 V G 7  - 2 (x - 1 )I/= + c 
3 1 
2 

= - arcsin (x - 1) - 5 ( x  + 3 > V Z T ?  + c 

dx dx 
7' 

Find / (4x2 - 24x + 27)3'2 = / [4(x - 3)2 - 9]"*. 

Let x - 3 = 2 sec z (see Fig. 33-7); then G!X = sec z tan z dz and q 4 x 2  - 24x + 27 = 3 tan z ,  and 

2 sec z tan z dz 

27 tan3 z 

1 
18 

= - \sin-' z cos z dz 
dx I (4x2 - 24x + 27)3'2 = I 

1 x - 3  

9 d4x '  - 24x + 27 
csc z + c= - - + C  

1 
18 

- - - -  

Fig. 33-7 

Supplementary Problems 

In Problems 8 to 22, integrate to obtain the given result. 



10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

x3 
+ C  

x 2 d x  - - I (4 - x2)”’ 12(4 - x2)”’ 

+ C  dx lG-7 
l x 2 q g  = -- 9x 

+ 8 In Ix + -1 + C x z d x  1 I r = j x  x -16 

= In (x - 2 + V x Z  - 4x + 13) + C dx I d x 2  - 4x + 13 

- x - 2  - dr I (4x-x2)3’2 4 q s  + 

X X 
+ C  

1 _ -  54 arctan - + dx 
3 18(9+x2) 
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f this chapter. In Problems 23 and 24, integrate by parts and apply the m 

23. x arcsin x dx = a ( 2 2  - 1) arcsin x + a x e  + C 

thod 

233 

B. J x arccos x dx = a(2x’ - 1) arccos x - i x m  + c 
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Integration by Partial Fractions 

A POLYNOMIAL IN x is a function of the form a,x" + a,x"-' + * * * + a , - ,x  + a, ,  where the a's are 
constants, a, # 0, and n ,  called the degree of the polynomial, is a nonnegative integer. 

If two polynomials of the same degree are equal for all values of the variable, then the 
coefficients of the like powers of the variable in the two polynomials are equal. 

Every polynomial with real coefficients can be expressed (at least, theoretically) as a 
product of real linear factors of the form ax + b and real irreducible quadratic factors of the 
form ux2 + bx + c.  (A polynomial of degree 1 or greater is said to be irreducible if it cannot be 
factored into polynomials of lower degree.) By the quadratic formula, ax' + bx + c is irreduc- 
ible if and only if b2 - 4ac < 0. (In that case, the roots of ax' + bx + c = 0 are not real.) 

EXAMPLE 1: (a )  x' - x + 1 is irreducible, since (-1)' - 4(1)(1) = -3 < O .  

( 6 )  x2 - x - 1 is not irreducible, since (- 1)' - 4( 1)(- 1) = 5 > 0. In fact, x' - x - 1 = (x - =) 2 1 - V 3  

A FUNCTION F ( x )  = f ( x )  l g ( x ) ,  where f ( x )  and g(x) are polynomials, is called a rational fraction. 
If the degree of f ( x )  is less than the degree of g ( x ) ,  F(x)  is called proper; otherwise, F(x)  is 

An improper rational ffaction can be expressed as the sum of a polynomial and a proper 
called improper. 

X =  X 
rational fraction. Thus, - = x - - 

x 2  + 1 x 2 + 1 '  
Every proper rational fraction can be expressed (at least, theoretically) as a sum of simpler 

fractions (partial fractions) whose denominators are of the form (ax + b)" and (ux' + bx + c)", 
n being a positive integer. Four cases, depending upon the nature of the factors of the 
denominator, arise. 

CASE I: DISTINCT LINEAR FACTORS. To each linear factor ax + b occurring once in the 
denominator of a proper rational fraction, there corresponds a single partial fraction of the 

where A is a constant to be determined. (See Problems 1 and 2.) form - 
A 

a x + b '  

CASE 11: REPEATED LINEAR FACTORS. To each linear factor ax + b occurring n times in the 
denominator of a proper rational fraction, there corresponds a sum of n partial fractions of the 
form 

+ . . . +  An 
(ax + 6)" 

+ 
QX + b ( a x +  b)' 

where the A's are constants to be determined. (See Problems 3 and 4.) 

CASE 111: DISTINCT QUADRATIC FACTORS. To each irreducible quadratic factor ax2 + bx + c 
occurring once in the denominator of a proper rational fraction, there corresponds a single 

partial fraction of the form where A and B are constants to be determined. (See 
Problems 5 and 6.) 

A x +  B 
QX' + bx + c '  

234 
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CASE IV: REPEATED QUADRATIC FACTORS. To each irreducible quadratic factor ax’ + bx + c 
occurring n times in the denominator of a proper rational fraction, there corresponds a sum of n 
partial fractions of the form 

A , x +  B ,  A , x +  B, A n x +  B ,  + + * a . +  

ax’ + bx -+ c (ax’ -+ bx + c)’ (a2 + bx + c)” 

where the A’s and B’s are constants to be determined. (See Problems 7 and 8.) 

Solved Problems 

dx: 
1. Find I G. 

Clearing of 
A 

We factor the denominator into ( x  - 2)(x + 2 )  and write 7 - - + - 
x - 4  x - 2  x + 2 ’  

- 1 

fractions yields 

or 
1 = A(x + 2) + B(x - 2) 
1 = ( A  + B ) x  + (2A - 2 B )  

We can determine the constants by either of two methods. 
General method: Equate coefficients of like powers of x in (2) and solve simultaneously for the 

constants. Thus, A + B = O  and 2A - 2 B  = 1; A = f and B = - f .  
Short method: Substitute in (1) the values x = 2 and x = - 2  to obtain 1 = 4A and 1 = - 4 B ;  then 

A = f and B = - f , as before. (Note that the values of x used are those for which the denominators of 
the partial fractions become 0.) 

1 1 
5 5 

Then By either method, we have ~ = - - - 1 
x 2 - 4  x - 2  x + 2 ‘  

ak dx a k 1  1 1 x - 2  
InIx-21- - l n I x + 2 ( +  C =  -In - 

1 2 - 4  --=‘/--‘I-=- 4 x - 2  4 x + 2  4 4 4 l x + 2 / t C  

( X + l ) d x  
x 3  + X’ - 6~ ’ 

2. Find I 
and x + l  = - + - + -  4 B  Factoring yields x 3  + x2 - 6x = x(x  - 2)(x + 3). Then 

x 3 + x 2 - 6 x  x X - 2  x + 3  

x + 1 = A(x - 2 ) ( ~  + 3) + Bx(x  + 3) + CX(X - 2) 
x + 1 = ( A  + B + C)x2 + ( A  + 3B -2C)x - 6A 

General method: We solve simultaneously the system of equations 

A + B + C = O  A + 3 B - 2 C = 1  - 6 A = 1  

to obtain A = - i ,  B =  A ,  and C =  - &.  

A = - 1/6, 3 = 10B or B = 3/10, and -2  = 15C or C = -2/15. 
Short method: We substitute in (1) the values x = 0, x = 2 ,  and x = -3  to obtain 1 = -6A or 

By either method, 

I x 3  + X *  - 6x 

lX - 2 y 0  
+ C  

3 2 
In 1x1 + - In Ix - 21 - - In Ix + 31 + C = In 

1 
6 10 15 1x1”‘Ix + 3(*/15 

= - -  
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(3x + 5 )  dx 
x - x  - x + l ’  

3. Find / 
and +-+- B A - -- 3x + 5 

x3 - x’ - x + 1 = (x + l)(x - 1)2. Hence, 
x 3 - x 2 - x + 1  x + l  x - 1  (x-l)? 

3~ + 5 = A(x - 1)’ + B(x  + l)(x - 1) + C(X + 1) 
For x = - 1, 2 = 4A and A = i .  For x = 1, 8 = 2C and C = 4.  To determine the remaining constant, we 
use any other value of x, say x = 0; for x = 0, 5 = A - B + C and B = - i .  Thus, 

3x + 5 l d x l d x  dx 
dx = - I - - - - + 4 I 

x3 - x 2  - x + 1 2 x + l  2 x-1 

4 1 x + l  
x - 1  2 x-1 1 1 + c = - -  + - In 1-1 + c = - In Ix + 11 - - In I X  - 1 1  - - 

2 2 x-1 

I 
4 3  x - x  - x - 1  

4. Find / dx.  
x - x  

The integrand is an improper fraction. By division, 

x + l  x + l  xj  - x 3  - x  - 1 

x3 - x2 
= x - - = x -  

x2(x - 1) x3 - x’ 

We write x + l  - _ -  A +-I.+- and obtain 
x2(x-1)  x x x - 1  

x + 1 = AX(X - 1) + B(x - 1) + CX’ 

For x = O ,  1 = - B  and B = -1. For x = 1, 2 = C. For x = 2 ,  3 = 2 A  + B + 4C and A = -2. Thus, 

x3 + x2 + + 2 
dx  . 

x 4  + 3x2 + 2 
5. Find / 

x 3 + x 2 + x + 2  - A ~ + B  C ~ + D  
x 4 + 3 x 2 + 2  x2+1 +- 

-- and obtain x‘ + 3x‘ + 2 = (x’ + l)(x2 + 2). we write 

x‘ + x’ + x + 2 = (Ax + B ) ( x 2  + 2)  + (Cx + D)(x’ + 1) 
= ( A  + C)x3 + ( B  + D ) x 2  + (2A + C)x + (2B + D) 

Hence A + C = 1, B + D = 1,  2A + C = 1, and 2B + D = 2. Solving simultaneously yields A = 0, B = 1, 
C =  1, D = 0. Thus, 

x3 + x2 + + 2  dx x dx 1 
dx = I + I = arctan x + - In (x’ + 2) + C 

x4 + 3x2 + 2 2 

x 2  dx 
6. Solve the equation / = k dt ,  which occurs in physical chemistry. 

Then 
B C x + D  +-+- A 

we write A- = - 
a 4 - x 4  a - x  a + x  u 2 + x 2 ’  

X’ = A(u + x)(a2 + x’) + B(u - x)(u’ + x’) + (CX + D ) ( u  - X ) ( U  + X) 

For x = a , a‘ = 4Aa3 and A = 1 /4a. For x = - a, a2 = 4Ba3 and B = 1 /4a. For x = 0, 0 = Aa3 + Ba3 + 
Da’ = u2 /2  + Da’ and D = - i .  For x = 2a, 4a2 = 15Aa3 - 5Ba3 - 6Cu3 - 3Da2 and C = 0. Thus, 
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so that 

INTEGRATION BY PARTIAL FRACTIONS 

1 1 1 X 

4a 4a 2a U 
- - -  - In ( a  - x (  + - In J a  + x i -  - arctan - + C 

X 
arctan - + c 

x 5  - xJ + 4x3 - 4x2 + 8~ - 4 
dx . 

( x 2  + 2))  
7. Find 

X’ - X‘ + 4 ~ ’  - 4 ~ ’  + 8~ - 4 - AX + B CX + D EX + F 
-- +-+- Then 

(x2  + q3 x’ + 2 (x’ + 2)’ (x2  + 2)3 - We write 

from 

8. Find 

x5 - x4 + 4x3 - 4 ~ ’  + 8~ - 4 = (Ax + B ) ( x 2  + 2)’ + (CX + D)(x’ + 2 )  + EX + F 

= A x 5  + Bx4 + ( 4 A  + C ) x 3  + ( 4 B  + D)x’  + ( 4 A  + 2C + E ) x  

+ ( 4 B  + 2 D  + F )  

which A = 1, B = - 1,  C = 0,  D = 0,  E = 4, F = 0. Thus the given integral is equal to 

2x’ + 3  dx.  I (x’ + 1)* 

2 x 2 + 3  A x + B  C x + D  
We write ~ = - +- Then 

(x’ + 1)2 x2  + 1 (x2  + 1)2 - 
2x2 + 3 = ( A x  + B)(x’ + 1 )  + Cx + D = A x 3  + Bx’ + (A + C ) x  + ( B  + D) 

€ r o m w h i c h A = O , B = 2 , A + C = O ,  B + D = 3 . T h u s A = O ,  B = 2 ,  C = O ,  D = l  and 

2x2 + 3 2 dx dx 

For the second integral on the right, let x = tan z .  Then 

1 1  
cos2 z dz = - z + - sin 22 + C 

sec4 z 2 4  
dx 

+ C  + C = - arctan x + - dx = 2 arctan x + - arctan x + - 2x2 + 3 1 + X  5 i x  
and 2 x2  + 1 2 x’ + 1 

Supplementary Problems 

In Problems 9 to 27, evaluate the integral at the left. 

x dx 1 
x 2 - 3 x - 4  5 

= - In I(x + l ) ( x  - 4141 + c 11. I 
1 x + l  

x 2 + 7 x + 6  5 ~ + 6  
= - In 1-1 + c dx 

10. / 

237 

x’ + 3x - 4 
X’ - 2~ - 8 

dx = x + In ( ( x  + 2)(x  - 4)41 + C 12. \ 
+ c  - In Ix - 21 - - 

x - 2  
x 2  - 3x - 1 I x l /2(x  + 2 y 2  1 + x dx 

dx = In 
13* I x3 + x 2  - 2x x - 1  
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15. 

16. 

17. 

18. 

19. 

20, 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

x 
dx 

dx 
= In 

INTEGRATION BY PARTIAL FRACTIONS 

+ c  =-;x -3~-In(l-x)~--+------ 
1 2  4 

1 - x  2(1-x)2 L 

X 

GTi + C  

x3 + x 2  + x + 3 
(x' + l)(X' + 3) 

x4 - 2x' + 3x' - x + 3 

dx = In 1L53 + arctan x + c 

1 X 

I 
dx = - x2 + In I x'-2x2+3x 2 l d x '  - 2x + 3 

- In (x2 + 1) + - + c  
xz + 1 

2x' dx 

+ c  dx = In (x2 + 4) + - arctan j x + - 2x' + X I  + 4 1 1 

X"X-1 1 1 

x4 + 8 - 2  - x2 + 2x + 1 
(x' + x)(x' + 1) 

I (x2 + 4)z 2 x2 + 4  

I (x2 + 1)2 

I (x + 1)' I - -  I 
dx = In IPZ - 5 arctan x - 5 (z) + c 

x 2  + 1 

2x - 1 
+ C  + 3 arctan ~ d3 

x3 - xz + x 3 2 
+ 

dx = In 

I x3 + X ?  - 5~ + 15 5 x + l  X 
dx = In d x 2  + 2x + 3 -t- - arctan - - fi arctan - + c 

(x' + 5)(x' + 2x + 3) fl v7 v3 
x 2 + 1  + c  

+In dx = x 2 + x + 2  x 2 + 1  x z t x + 2  -- X' + 7x5 + 1 5 ~ '  + 32x' + 2 3 ~ '  + 2 5 ~  - 3 
(x2 + x + 2)'(x2 + 1)' 

1 I 
sin x dx ViT-GZ I cos x ( 1  + cosz x) = I n  I cosx 

(2 + tan' 8) sec2 6 de 
= In 1 1  + tan 8 

( H i n t :  Let ex = u.) 

+ C ( H i n t :  Let cosx = u . )  

2 tan 8 - 1 
+ C  

2 
v3 v3 + - arctan 

[CHAP. 34 



Chapter 35 

Miscellaneous Substitutions 

IF AN INTEGRAND IS RATIONAL except for a radical of the form 

1. m, then the substitution ax + b = zn will replace it with a rational integrand. 
2. q-, then the substitution q + px  + x2 = (2 - x)’ will replace it with a rational 

integrand. v- = ~ ( C Y  + x ) ( p  - x ) ,  then the substitution q + px - x 2  = (a + x) ’z2 or 
q + px  - x2 = ( p  - x)’z’ will replace it with a rational integrand. 

3. 

(See Problems 1 to 5 . )  

THE SUBSTITUTION x = 2 arctan z will replace any rational function of sin x and cos x with a 
rational function of z, since 

22 1 - 2’ 2 dz 
cos x = - and & =  - 

1 + 2’ sin x = - 
1 + z2 1+ z2  

(The first and second of these relations are obtained from Fig. 35-1, and the third by 
differentiating x = 2 arctan z.) After integrating, use z = tan l x  to return to the original 
variable. (See Problems 6 to 10.) 

1 - z2 

Fig. 35-1 

EFFECTIVE SUBSTITUTIONS are often suggested by the form of the integrand. (See Problems 11 
and 12.) 

Solved Problems 

dx 
1. Find I x v = .  

Let 1 - x = z2. Then x = 1 - z2, dx = -22 dz, and 

dx 
2* 

Find I (x - 2 ) V Z T  

239 
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Let x + 2 = z‘. Then x = z2 - 2, dx = 22 dz, and 

dx  - 22 dz = 2 J A  = 1 In 1-1 2 - 2  + c= I (x - 2 ) m  - I z(z2 - 4) z 2 - 4  2 2 + 2  

Let x = z4. Then dx = 4z3 dz and 

dx 4z3 dz 1 
dz = 4 1  ( 2  + 1 + x) dz 

= 4 ( t z 2  + z + In Iz - 11) + C = 2 v ‘ Z  + 4 k +  In(&- 1)4 + C 

dx 
4. Find \ 

X G G T i ’  

Let x 2  + x + 2 = (z - x)’. Then 

z 2  - 2  
1 +2z  

x=-  2(z2 + z + 2) dz dx= 
(1 + 2z)2 

2(z2  + z + 2) 

q m =  z 2 + Z + 2  
1 + 22 

and (1+2z)2 dz= 
z 2 - 2  z 2 + z + 2  

+ C  

1 + 2 2  1 + 2 z  

x dx 
( 5  - 4x - x 2 ) 3 ’ 2  * 

5. Find I 
Let 5 - 4x - x2 = ( 5  + x ) ( l -  x) = (1 - x)’z2. Then 

z2  - 5  122 dz 62 
x = -  dx = - d G c 7  = (1 - x)z = - 

1 + z2 (1 + z2)2 1 + z2 

and 

z2 - 5  122 -~ 
x dx 1 + z2 (1 + Z2)* d z = L / ( l - $ ) d z  / ( 5  - 4x - x2)”’ = 1 216z3 18 

5 - 2x 
+ C  

1 
18 

= - ( 2  + ;) + c = 
9d5 - 4x - x2 

In Problems 6 to 10, evaluate the integral at the left. 

2 dz 
1 + z2 dz 

= In l z l  - In 11 + z (  + C dx 

1+--- 
6. I 1 + sin x - cos x 

1 + z 2  1 + z 2  
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2 dz  

MISCELLANEOUS SUBSTITUTIONS 24 1 

2 f l  arctan z f i  + c dx 1 + z 2  2 dz  

3 - 2 7  
’’ 1 3 - 2 ~ 0 ~ ~  

l + z  

= * arctan (fi tan 4x1 + c 
5 

2 d z  

9. 
Z 

arctan - + C 
1 + z2 dz  2 

v3 z +  ~ 

1 + Z 2  

1 -- - 2 f l  arctan (y tan x )  + c 
3 

2 dz  
- -  f dx f 1 + z 2  f 

1 + Z‘ 

5 tan 4x + 4 
+ C  

2 z + ;  2 

5 3 
= 3 arctan 7 + C = - arctan 

3 

11. Use the substitution 1 - x 3  = z2 to find I x s m  dx.  

The substitution yields x 3  = 1 - z’, 3x2 dx = -22 d z ,  and 

/ x ’ ~ d x = / x 3 ~ ( x 2 d x ) = / ( l - z 2 ) z ( - $ ~ d z ) =  -: I ( l - - z 2 ) z 2  dz  

= - - 2 (- z3 - 5)  + C =  - - 2 (1 - ~ ~ ) ~ / ~ ( 2  + 3x3)  + C 
3 3  45 

z 

The substitution yields dx = - d z / z 2 ,  = m / z ,  and 

- /  dz\ 

Let z - 1 = s’. Then 

-1 Z -  d z  = -1 (s’ + l)(s)(2~ ds) = -2(  + g )  + C 

dx 
13. Find I x1 /2  + x 1 / 3  * 
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Let U = x116, so that x = u6, dr = 6u5 du, xl/’ = u3, and xl” = U*. Then we obtain 

6u5 du u3 ) d u = 6 ( 5  U’-- - 1 u ’ + u - l n ~ u + l ~ ) + C  (- = 6 (  u+l d u = 6 ( ( u ’ -  U +  1-  - u + l  2 

Supplementary Problems 

In Problems 14 to 39, evaluate the integral at the left. 

14. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

27. 

29. 

31. 

32. 

33. 

2x - 1 
5 

= arcsin - + C  
fix 

(4x - x2)3/2 + f i x = -  I 7  6x3 

= 2(x + 1)”’ - 4(x + 1)1’4 + 4 In (1 + ( x  + 1)1/4) + C 
fix I (x + 1)1/2 + (x + 1 y  

2 tan t x  + 1 
v3 + C  

fix 2 ( = 3 arctan 

1 1 - 2 s i n x  dr =-In1 3 t a n t x - Z + \ / 5 l + c  

= I In I tan t x  + I + c 
I 3 + E i n x  4 t a n i x + 3  

1 5 + E i n x  = -  2 

fl t a n j x - 2 - V 3  

5 tan t x  + 3 
4 

+ C  arctan 
1 

= In 11 + tan 4x1 + C 
dr I l + s i n x + c o s x  

I s i n f i h =  - 2 f i c o s f i + z s i n f i +  c 

I 
I 

30* I 

= In (tan $x - 11 + C 
dr 

sin x - cos x - 1 

1 + C  
s inxdr  fl ( t a n 2 $ x + 3 - 2 f i  

1 + sin‘ x 4 tan’ $ x  + 3 + 2 f i  

arctan (fi tan j x )  + c 2-cosx d3 

= - In 

-- -- dr 

1 - x  + C (Hint: Let x = l /z . )  - -arcsin - 
2x 

- dr 
xl/3x2 + 2x - 1 

dr = ex - 3 In (ex + 1) + C (Hint: Let ex + 1 = 2.) 
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34. 

35. 

36. 

37. 

38. 

39. 

sin x cos x dr = cosx +In (1 - cosx) + C (Hint: Let cosx = 2.) I 1 - cos x 

dx + C (Hint: Let x = 2/2.) 
4x 

1 1  2 
= - -  + - arctan - + C 

dx I x2(4+x2) 4x 8 X 

+ C (Hint: Let U = x””.) 
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Integration of Hyperbolic Functions 

INTEGRATION FORMULAS. The following formulas are direct consequences of the differentia- 
tion formulas of Chapter 20. 

28. I sinh x dx = cosh x + C 29. I cosh x dx = sinh x + C 

30. I tanh x dx = In cosh x + C 

32. / sech2 x dx = tanh x + C 

31. I coth x dx = In (sinh xl + C 

33. 1 csch2 x dx = -coth x + C 

34. I sech x tanh x dx = -sech x + C 35. / csch x coth x dx = -csch x + C 

= sinh-' 5 + C 
dx 

a 

38. / - = - t a n h - ' - + C ,  dx 1 X x 2 < a z  
a - x  a a 

dx 1 
39. I - = - - coth-' + C , x2 > u2 

x 2 2  - a  a a 

Solved Problems 

In Problems 1 to 13, evaluate the integral at the left. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

\ sinh +x  dx = 2 sinh i x  d( ix) = 2 cosh $x + C I 
\ cosh 2x dr = 4 /cosh 2x d(2x) = $ sinh 2 x  + C 

\ sech' (2x - 1) dr = $ \sech2 (2x - 1) d(2x - 1 )  = 4 tanh ( 2 x  - 1) + C 

I csch 3x coth 3x dr = csch 3x coth 3x d(3x) = - 4 csch 3x + C ;I 
cosh x cosh x dr = arctan (sinh x )  + C 1 \ sech x dr = \ 

\ s i n h Z x ~ x = i ( ( c o s h 2 r - l ) d r =  f s inh2x-  $ x + C  

I tanh2 2x dr = I (1 - sech' 2x) dr = x - 4 tanh 2x + C 

244 
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8. 

9. 

10. 

11. 

12. 

14. 

15. 

\ cosh3 $ x  dx = ( 1  + sinh' $ x )  cosh $x  dx = 2 sinh $x  + 3 sinh3 $ x  + C I 
sech4 x dx = (1 - tanh2 x )  sech2 x dx = tanh x - f tanh' x + C I 

I e x c o s h x d x = I e x ~ d x = ~ ( ( e 2 ' + 1 ) ~ = -  ex + e - I  1 e2*+  - X + C  1 
4 2 

ex - e-x 1 
x sinh x dx = x - dx = I xex dx - - I xe-' dx I I 2  2 

= x cosh x - sinh x + C 

Find dx.  

Let x = 2 sinh z. Then dr = 2 cosh z dz, fi = 2 cosh z, and 

[m dx = 4 I c o s h '  z dz = 2 (cosh22 + 1) dz = sinh2z + 2.2 + C I 
= 2 sinh 2 cosh z + 2r + C = fx- + 2 sinh-' i x  + C 

dx 
Find I xqjT-y2' 

Let x = sech z.  Then dx = -sech z tanh z dz,  1 - x2 = tanh z ,  and 

sech tanh 
dz = - dz = - z  + C = -sech-' x + C I x d s  = -I sech z tanh z 

Supplementary Problems 

In Problems 16 to 39, evaluate the integral at the left. 

16. sinh 3x dx = 4 cosh 3x + C 17. 

18. I coth sx dx = f In lsinh $ X I  + C 19. 

[cosh ax dx = 4 sinh ax + C 

csch' ( 1 + 3x) dx = - f coth ( 1 + 3x) + C 

20. I sech 2x tanh 2x dx = - 1 sech 2 x  + C 21. 
cosh x - 1 

+ C  
cosh x + 1 

I csch x dr = InJ 

22. I cosh' $ x  dx = i(sinh x + x )  + C 23. 

24. sinh3 x dx = 5 cosh3 x - cosh x + C 25. 

I coth' 3x dr = x - f coth 3x + C 

I ex sinh x dx = $ e 2 x  - f x  + C 
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26. I ezx cosh x dx = ;e3" + $8 + C 27. \ x cosh x dx = x sinh x - cosh x + C 

28. I x2 sinh x dx = (x' + 2) cosh x - 2x sinh x + C 

29. \ sinh3 x cosh' x dx = cosh' x - 5 cosh3 x + C 

30. \ sinh x In cosh' x dx = cosh x (In cosh' x - 2) + C 

4 
coth-' - x +  C 

3 
dx 

X 
35. ( l / n d x =  d m -  c0sh-l x_ 3 + C 

+ C  
x - 1  =sinh-' - 

4 
dx I d x '  - 2x + 17 

36. =-I  coth-' ( x +  ;) + C 
dx 

37* I 4 x 2 +  1 2 x + 5  4 

X X dx = sinh-' x - - G7+c 
X 

39. dx=sinh- '  - - X2 

v z 4 + c  



Chapter 37 

Applications of Indefinite Integrals 

WHEN THE EQUATION y = f ( x )  of a curve is known, the slope m at any point P ( x ,  y )  on it is given 
by m = f ’ ( x ) .  Conversely, when the slope of a curve at a point P ( x ,  y )  on it is given by 
rn = dy/dx  = f ’ ( x ) ,  a family of curves, y = f ( x )  + C ,  may be found by integration. To single out 
a particular curve of the family, it is necessary to assign or to determine a particular value of C .  
This may be done by prescribing that the curve pass through a given point. (See Problems 1 to 
4.1 

AN EQUATION s = f ( t ) ,  where s is the distance at time t of a body from a fixed point in its 
(straight-line) path, completely defines the motion of the body. The velocity and acceleration at 
time t are given by 

ds dv d2s 
dt dt dt2 

U = -  = f ’ ( t )  and a = - = - = f ” ( t )  

Conversely, if the velocity (or acceleration) is known at time t ,  together with the position (or 
position and velocity) at some given instant, usually at t = 0, the equation of motion may be 
obtained. (See Problems 7 to 10.) 

Solved Problems 

1. Find the equation of the family of curves whose slope at any point is equal to the negative of 
twice the abscissa of the point. Find the curve of the family which passes through the point 

We are given that d y l d x  = -2x. Then dy = -2x d x ,  from which I dy = I - 2x d x ,  and y = - x 2  + C. 

Setting x = 1 and y = 1 in the equation of the family yields 1 = - 1 + C or C = 2. The equation of the 

(191). 

This is the equation of a family of parabolas. 

curve passing through the point ( 1 , l )  is then y = -x2 + 2. 

2. Find the equation of the family of curves whose slope at any point P ( x ,  y )  is m = 3 . ~ ~ 1 ’ .  Find 
the equation of the curve of the family which passes through the point (0,8). 

dY dY 
dx Y 

Since rn = - = 3 x 2 y ,  we have - = 3x2 dx. Then In y = x3 + C = x3 + In c and y = cex3.  

When x = 0 and y = 8, then 8 = ceo = c. The equation of the required curve is y = 8eX3. 

3. A t  every point of a certain curve, y ” =  x2 - 1. Find the equation of the curve if it passes 
through the point ( 1 , l )  and is there tangent to the line x + 12y = 13. 

d 2 y  d d x3 
Here 7 = - ( y ’ )  = x2 - 1. Then I - ( y ’ )  dx =I (x2 - 1) dx and y ’  = - - x + C,. 

At (1, l) ,  the slope y ’  of the curve equals the slope - 
dx dx dx 3 

of the line. Then - = f - 1 + C,, from 
which C,  = & .  Hence y ’  = d y / d x  = f x 3  - x + A, and integration yields 
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At (1,  l ) ,  1 = - f + 6 + C2 and C2 = 2 .  The required equation is y = :zx4 - i x 2  + l x  12 + 6 

4. The family of orthogonal trajectories of a given system of curves is another system of curves, 
each of which cuts every curve of the given system at right angles. Find the equations of the 
orthogonal trajectories of the family of hyperbolas x2 - y 2  = c .  

At any point P ( x ,  y ) ,  the slope of the hyperbola through the point is given by rn, = x l y ,  and the 
slope of the orthogonal trajectory through P is given by rn, = d y / k  = - y / x .  Then 

,( f = -1 dx so that In I y l  -In 1x1 + In C' or lxyi = C' 
X 

The required equation is xy = 2 C '  or, simply, xy  = C. 

5. A certain quantity q increases at a rate proportional to itself. If q = 25 when t = 0 and q = 75 
when t = 2, find q when t = 6. 

Since dq/dt = k 4 ,  we have dqlq = k dt. Integration yields In 4 = kt + In c or 4 = ce"'. 
When t = 0, q = 25 = ce'; hence, c = 25 and 4 = 25ek'. 
When t = 2, 4 = 25e'" = 75; then e2" = 3 = e'"' . So k = 0.55 and q = 25e0 55f. 
Finally, when t = 6, 4 = 25e" 55r = 25e3 = 25(e' ' ) 3  = 25(27) = 675. 

6 .  A substance is being transformed into another at a rate proportional to the untransformed 
amount. If the original amount is 50 and is 25 when t = 3, when will & of the substance remain 
un t ransformed? 

Let q represent the amount transformed in time t. Then dqldt = k(50 - q), from which 

-- dq - k dt SO that In (50 - 4) = - k t  + In c or 50 - 4 = ce k' 
50- q 

When t = 0, 4 = 0 and c = 50; thus 50 - q = 50eKkr. 
When t = 3, 50 - q = 25 = 50e-3k;  then e-3k = 0.5 = k = 0.23, and 50 - q = 50 - e-0'23r. 

When the untransformed amount is 5, 50e-0.23r = 5; then e-' 23r = 0.1 = e-2 .30  and t = 10. 

7. A ball is rolled over a level lawn with initial velocity 25 ft/sec. Due to friction, the velocity 
decreases at the rate of 6 ft/sec2. How far will the ball roll? 

Here dvldt = -6. So U = -6t + C,. When t = 0, U = 25; hence C, = 25 and U = -6t + 25. 
Since U = ds/dt = -6t + 25, integration yields s = -3t2 + 2% + C,. When t = 0, s = 0; hence C,  = 0 

When U = 0, f = ; hence, the ball rolls for 9 sec before coming to rest. In that time it rolls a 
and s = -31' + 2%. 

distance s = - 3( )' + 25( ) = - $ + = ft .  

8. A stone is thrown straight down from a stationary balloon, 10,OOO ft above the ground, with a 
speed of 48ft/sec. Locate the stone and find its speed 20sec later. 

Take the upward direction as positive. When the stone leaves the balloon, it has acceleration 
a = du /dr = - 32 f t  /sec2 and velocity v = - 32t + C,. 

When t = 0, U = -48; hence C, = -48. Then U = ds/dt = -32t - 48 and s = - 16t2 - 48t + C, .  
When t = 0, s = 10,OOO; hence C, = 10,000 and s = - 16t2 - 48t + 10,000. 
When t=20 ,  

s = - 16(20)' - 48(20) + 10,OOO = 2640 and U = -32(20) - 48 = -688 

After 20 sec, the stone is 2640 ft above the ground and its speed is 688 ftlsec. 
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9. A ball is dropped from a balloon that is 640ft above the ground and rising at the rate of 
48ft/sec. Find ( a )  the greatest distance above the ground attained by the ball, (6) the time 
the ball is in the air, and (c) the speed of the ball when it strikes the ground. 

Take the upward direction as positive. Then a = du/dt = -32 ft/sec2 and U = -32t + C,. 
When t = 0, U = 48; hence C, = 48. Then U = h / d t  = -32t + 48 and s = - 16t’ + 48t + C, .  When 

and s = - 16( 5)’ + 48( 5 )  + 640 = 676. The greatest height attained by the ball is 
t = 0, s = 640; hence C2 = 640 and s = - 16t2 + 48t + 640. 
(a) When U = 0, t = 

(b) When s = 0, - 16t’ + 48t + 640 = 0 and t = -5, 8. The ball is in the air for 8 sec. 
(c) When t = 8, U = -32(8) + 48 = -208. The ball strikes the ground with speed 208 ft/sec. 

676 ft. 

10. The velocity with which water will flow from a small orifice in a tank, at a depth h ft below the 
surface, is 0 . 6 m  ft/sec, where g = 32 ft/sec2. Find the time required to empty an upright 
cylindrical tank of height 5 ft and radius 1 ft through a round 1-in hole in the bottom. 

Let h be the depth of the water at time t. The water flowing out in time dr generates a cylinder of 
height U dt ft ,  radius 1 /24 ft, and volume r (  1 /24)2 U dt = 0.6n( 1 / 2 4 ) ’ m  dt ft3. 

Let -dh represent the corresponding drop in the surface level. The loss in volume is - n( 1)’ dh ft3. 
Then 0.6r(  1 /24) ’ (8G dt )  = - T dh, or dt = - (120 dh) /G and t = - 2 4 0 f i  + C. 

At t = 0, h = 5 and C = 2 4 0 f i ;  thus t = - 2 4 0 f l +  2 4 0 f i .  
When the tank is empty, h = 0 and t = 2 4 0 f i  sec = 9 min, approximately. 

Supplementary Problems 

11. Find the equation of the family of curves having the given slope, and the equation of the curve of the 
family which passes through the given point, in each of the following: 
(a) rn =4x; (1,5) 
( d )  rn = 1/x2; (1,2) 

( b )  rn = VT; (9,18) 
(e) rn = x/y; (4,2) 

(c l  rn = (x - 113; (3,o) 
(f) rn = x2/y3; (3,2) 

( g )  m = 2ylx; (2,8) 

Ans. 

( h )  rn = xy / ( l  + x’); (3,5) 

(a) y = 2x2 + C, y = 2x2 + 3; ( 6 )  3y = 2 ~ ~ ’ ~  + C ,  3y = 2 ~ ~ ’ ~ ;  ( c )  4y = (x - 1)4 + C, 4y = 

( ~ - 1 ) ~ - 1 6 ;  ( d )  x y = C x - l ,  x y = 3 x - 1 ;  (e) x 2 - y ’ = C ,  x 2 - y 2 = 1 2 ;  (f) 3 y 4 = 4 x 3 + C ,  
3y4 = 4x3 - 60; ( g )  y = CX’, y = 2x2; ( h )  y2  = C( 1 + x’), 2y2 = 5( 1 + x’) 

12. (a) For a certain curve, y”= 2. Find its equation given that it passes through P(2,6) with slope 

(b) For a certain curve, y” = 6x - 8. Find its equation given that it passes through P(1,O) with slope 
10. Am. y = x 2  +6x - 10 

4. Am. y = x 3  - 4x2 + 9~ - 6 

13. A particle moves along a straight line from the origin (at t = 0 )  with the given velocity U. Find the 
distance the particle moves during the interval between the two given times t. 
(a) u = 4 t + 1 ;  0, 4 
( d )  U = fi + 5; 4, 9 

( 6 )  U =6 t+3 ;  1, 3 
( e )  U = 2t - 2; 0, 5 

( c )  U = 3r’ + 2t; 2, 4 
(f) U = r 2  - 3t + 2; 0, 4 

Ans. (a) 36; ( b )  30; ( c )  68; ( d )  37$; ( e )  17; (f) 55 

14. Find the equation of the family of orthogonal trajectories of the system of parabolas y2 = 2x + C. 
Ans. y = Ce-” 
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15. A particle moves in a straight line from the origin (at t = 0) with given initial velocity U, and acceleration 
a. Find s at time t .  
( U )  ~ = 3 2 ,  ~ , = 2  ( 6 )  U = - 3 2 ;  ~ , = 9 6  (c) a = 1 2 t 2 + 6 t ;  ~ , , = - 3  ( d )  a = 1 /<r; U” = 4 

16. A car is slowing down at the rate 0.8 ftlsec’. How far will the car move before it stops if its speed is 
initially 15 mi/hr? Ans. 302; ft 

17. A particle is projected vertically upward from a point 112 ft above the ground with initial velocity 
96 ft/sec. (a) How fast is it moving when it is 240 ft above the ground? ( 6 )  When will it reach the highest 
point in its path? ( c )  At what speed will it strike the ground? 

Ans. (a) 32 ft/sec; (6) after 3 sec; (c) 128 ft/sec 

18. A block of ice slides down a chute with acceleration 4 ft/sec2. The chute is 60 ft long, and the ice reaches 
the bottom in 5 sec. What are the initial velocity of the ice and the velocity when it is 20 ft from the 
bottom of the chute? Am. 2 ft/sec; 18 ft/sec 

19. What constant acceleration is required (a) to move a particle 50 ft in 5 sec; (6) to slow a particle from a 
velocity of 45 ft/sec to a dead stop in 15 ft? Am. (a) 4 ftlsec’; (6) -67$ ft/sec2 

20. The bacteria in a certain culture increase according to dN/dt  = 0.25N. If originally N = 200, find N when 
t = 8 .  Ans. 1478 



Chapter 38 

The Definite Integral 

THE DEFINITE INTEGRAL. Let a s x I b be an interval on which a given function f ( x )  is 
continuous. Divide the interval into n subintervals h , ,  h,, . . . , h, by the insertion of n - 1 
points tl, t,, . . . , (,-1, where a < tl < & < < t,-l < b, and relabel a as to and b as 6,. 
Denote the length of the subinterval h,  by Alx = 6, - to, of h, by A,x = 5, - (,, . . . , of h, by 
A,x = (,, - (,-,. (This is done in Fig. 38-1. The lengths are directed distances, each being 
positive in view of the above inequality.) On each subinterval select a point (x, on the 
subinterval h ,  , x2 on h,, . . . , x, on h,) and form the sum 

n 

each term being the product of the length of a subinterval and the value of the function at the 
selected point on that subinterval. Denote by A,, the length of the longest subinterval appearing 
in (38.1 ). Now let the number of subintervals increase indefinitely in such a manner that 
A, - 0. (One way of doing this would be to bisect each of the original subintervals, then bisect 
each of these, and so on.) Then 

n 

(38.2) 

exists and is the same for all methods of subdividing the interval a I x I b, so long as the 
condition A, + 0 is met, and for all choices of the points x k  in the resulting subintervals. 

a XI 2, z k  2. b 
I 1 1 1  1 I I I I 
I I A i z  I AzX I AI& I Amx I 
0 €0 €1 €2 t k - 1  t k  In- 1 €n 

Fig. 38-1 

A proof of this theorem is beyond the scope of this book. In Problems 1 to 3 the limit is 
evaluated for selected functions f ( x ) .  It must be understood, however, that for an arbitrary 
function this procedure is too difficult to attempt. Moreover, to succeed in the evaluations 
made here, it is necessary to prescribe some relation among the lengths of the subintervals (we 
take them all of equal length) and to follow some pattern in choosing a point on each 
subinterval (for example, choose the left-hand endpoint or the right-hand endpoint or the 
midpoint of each subinterval). 

By agreement, we write 

f ( x )  dx = lim S, = lim f ( x , ) A , x  
k = l  n++m n++m 

The symbol f ( x )  dx is read “the definite integral of f ( x ) ,  with respect to x, from x = a to 

x = b.” The function f ( x )  is called the integrand; a and b are called, respectively, the lower and 
upper limits of integration. (See Problems 1 to 3.) 

dx when a < b. The other cases are taken care of by the following 
definitions: 

(38.3) 

25 1 
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If a < b, then Jba f ( x )  dx = -& f ( x )  dx (38.4) 

PROPERTIES OF DEFINITE INTEGRALS. If f ( x )  and g(x )  are continuous on the interval of 
integration a I x 5 b,  then 

Property 38.1: cf(x) dr = c f ( x )  h, for any constant c 

(For a proof, see Problem 4.) 

Property 38.2: [ [ f ( x )  -+ g(x)J dx = [ f (x )  dr * 

Property 38.3: 1.' f ( x )  dr + I" f ( x )  dx = 

g(x)  dr 

f ( x )  dr , for a < c < 6 

Property 38.4 (first mean-value theorem): f ( x )  dx = (6 - a ) f ( x , )  for at least one value x = x ,  
between a and 6. 

(For a proof, see Problem 5.) 

d 
du 

Property 38.5: If F(u) = f ( x )  d x ,  then - F(u) =f(u)  

(For a proof, see Problem 6.) 

FWNDAMENTAL THEOREM OF INTEGRAL CALCULUS. If f ( x )  is continuous on the interval 
a I x 5 b, and if F(x)  is any indefinite integral of f ( x ) ,  then 

b 

f ( x )  dx = F(x)la = F(b) - F(a) 

(For a proof, see Problem 7.) 

EXAMPLE 1: ( a )  Take f ( x )  = c, a constant, and F ( x )  = c x ;  then rb  c dx = cxlb = c(6 - a) .  
J a  10 

25 - o =  - 
2 '  

(6) Take f ( x )  = x and F(x)  = $ x 2 ;  then 

= 20. 1 1 - - (c) Take f ( x )  = x 3  and F(x)  = $x4; then x 3  dx = - x41r = 

These results should be compared with those of Problems 1 to 3. The reader can show that any indefinite 
61 4 4 

integral of f ( x )  may be used by redoing ( c )  with F ( x )  = $x4 + C .  

(See Problems 8 to 20.) 

THE THEOREM OF BLISS. If f ( x )  and g(x) are continuous on the interval a IX I b, if the 
interval is divided into subintervals as before, and if two points are selected in each subinterval 
(that is, xk and xk in the kth subinterval), then 

We note first that the theorem is true if the points x k  and x k  are identical. The force of the 
theorem is that when the points of each pair are distinct, the result is the same as if they were 
coincident. An intuitive feeling for the validity of the theorem follows from writing 
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n n n 

c f ( X k  ) g ( X ,  1 Akx = c f ( X k  M X k )  A k X  + c f ( X k  )[ d X k )  - &k )I A k X  
k =  1 k = l  k =  1 

and noting that as n+ +m (that is, as A k x + O )  x k  and Xk must become more nearly identical 
and, since g(x) is continuous, g ( X k )  - g ( x k )  must then go to zero. 

In evaluating definite integrals directly from the definition, we sometimes make use of the 
following summation formulas: 

n(n + 1 )  2 k = 1 + 2 + . . . + n = - - - - -  
k = l  2 

n(n + 1)(2n + 1)  k2  = l 2  + 2* + . . . + n2 = 
k = l  6 

n(n+ 1) 
k 3 = l 3 + Z 3 +  . . .  + n 3 = [  ] 

k =  1 

(38.5) 

(38.6) 

(38.7) 

These formulas can be proved by mathematical induction. 

Solved Problems 

In Problems 1 to 3, evaluate the integral by setting up Sn and obtaining the limit as n-, +W. 

1. [ c dx = c(6 - a), c constant 

integrand is f ( x )  = c ,  then f ( x k )  = c for any choice of the point x ,  on the kth subinterval, and 
Let the interval a 5 x 5 b be divided into n equal subintervals of length A x  = (b - a ) / n .  Since the 

Hence c dx = ,:mm S ,  = n-+ lim x c(b - a)  = c(b - a)  

Let the interval 0 5 x 5 5 be divided into n equal subintervals of length A x  = 5 / n .  Take the points x ,  
as the right-hand endpoints of the subintervals; that is, x ,  = A x ,  x ,  = 2 A x ,  . . . , x ,  = n A x ,  as shown in 
Fig. 38-2. Then 

S , = i  f ( X k ) A k X =  2 ( k A x ) a * = ( I + 2 + - ~ ~ + n ) ( A x ) ’ = - - - - ( - - )  n(n + 1) 5 =y 25 (I+:) 
k = l  k = l  2 

and 

Xn-1 Zn 0 2 1  XI 21, 

I I l I l  I I I 15 
IAxlAxl I I IAxI 

€0 € I  €2 €3 €4 [k-1 [k In-2  In-1 €n 

Fig. 38-2 
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3. l x 3  d x = 2 0  

Let the interval 1 5 x I 3 be divided into n subintervals of length Ax = 2/n.  
First merhod: Take the points x ,  as the left-hand endpoints of the subintervals, as in Fig. 38-3; that 

is, x ,  = 1, x 2  = 1 + Ax, . . . , x, = 1 + (n - 1) Ax. Then 
n 

S,, = f ( x k )  A,n = x i  Ax + x i  Ax + . * - + x i  Ax 
k = l  

= (1 + (1 + Ax)' + (1 + ~ A x ) ~  + * * + [ l  + (n - l)Ax]'} Ax 
= {n + 3[1 + 2 + * - * + (n - l ) ]  Ax + 3[12 + 22 + - - - + (n - 1)2](Ax)z 

+ [l" + 2' + . - .  + (n - 1)3](Ax)3} Ax 

and 

XI xn 2 3  x k  xk+l Xn 3 
I1 I I 
1 Ax I Ax I Ax I 1 Ax I I l l  

€0 €1 €2 €3 €k-1 [k Ell-1 In 

Fig. 38-3 

Second method: Take the points x k  as the midpoints of the subintervals, as in Fig. 38-4; that is, 

2n - 1 
x , = 1  + f Ax, x 2 = 1  + $ A x , .  . . , ~ , , = 1  + ___ 2 Ax. Then 

2n - A x ) ~ ]  Ax S,, = [ ( I  + Ax)' + (1 + Ax)' + . . .  + ( I  + 1 3 

= { [ 1 + 3( :) Ax + 3( k)2(Ax)2 + ( ;)'(AX)~] + [ 1 + 3(g)(Ax) + 3( :)2(Ax)2 + (i) '(Ax)'] + . * - 

and 

1 2 1  Xn 3G3 x k  X n  3 
I l l  I I l l  

Ax 1 Ax I Ax I I I l l  
€n-1 E,  !o €1 €2 €3 t k - I  €k 

Fig. 38-4 

b 

4. Prove: cf (x)  dx = c 1 f ( x )  dx. 

For a proper subdivision of the interval a 5 x 5 6 and any choice of points on the subintervals, 



CHAP. 381 THE DEFINITE INTEGRAL 255 

n n 

Then 

5. Prove the first mean-valye theorem of the integral calculus: If f ( x )  is continuous on the 

interval a I x I b, then f ( x )  dx = ( b  - a)f(xo) for at least one value x = x ,  between a and 
b. 

The theorem is true, by Example l(a), when f ( x )  = c, a constant. Otherwise, let m be the absolute 
minimum value, and M be the absolute maximum value, of f ( x )  on the interval a I x I b. For any 
proper subdivision of the interval and any choice of the points x k  on the subintervals, 

2 m 
k = l  k = l  k = l  

< 2 f ( x k )  A k X  < $ M A k X  

Now when n-, +m, we have 

1.6 m dx c1.6 f ( x )  dx <l M dx 

which, by Problem 1, becomes 

m(b - U )  c f(x) dx < M(b - U )  

Then 
1 

b - a  

1 
b - a  

so that - 1." f ( x )  dx = N, where N is some number between m and M. Now since f ( x )  is continuous 

on the interval a I x 5 b, it must, by Property 8.1, take on at least once every value from m to M. 
Hence, there must be a value of x ,  say x = x,, such that f ( x , )  = N .  Then 

f ( x )  dx = N = f ( x , )  and b - a  

d 
du 

6. Prove: If F(u) = f ( x )  dx, then - F(u) = f ( u ) .  

We have 

By Properties 38.3 and 38.4, this becomes 

where U < U, < U + Au. Then 

F(u + A u )  - F(u)  
= lim f (u , )  = f ( u )  

F(u + Au)  - F(u) dF 
Au du A ~ + O  Au Au-0 

=f(u , )  and - = lim 

since uo+ U as Au+ 0. 
This property is most frequently stated as: 

If F ( x )  = [ f ( x )  dx, then F ' ( x )  = f ( x )  . 

The use of the letter U above was merely an attempt to avoid the possibility of confusing the roles of the 
several x's. Note carefully in (1 ) that F(x)  is a function of the upper limit x of integration and not of the 
dummy letter x in f ( x )  dx. In other words, the property might also be stated as: 



256 THE DEFINITE INTEGRAL [CHAP. 38 

If F(x)  = fax f(t) dt, then F ‘ ( x )  = f ( x )  . 

It follows from ( 1  ) that F ( x )  is simply an indefinite integral of f ( x ) .  

7. Prove: If f ( x )  is continuous on the interval a I x 5 6 ,  and if F(x)  is any indefinite integral of 
f(x), then 

f ( x )  dx = F(b) - F(a) 

Use the last statement in Problem 6 to write f ( x )  dx = F ( x )  + C .  When the upper limit of 16 
integration is x = a, we have 

1 f ( x )  dx = 0 = F(a)  + c so c = +(a) 

Tben f ( x )  dx  = F ( x )  - F(a) ,  and when the upper limit of integration is x = 6 ,  we have, as required, 

f ( .r)  dx = F ( 6 )  - F(a). 

In Problems 8 to 17, use the fundamental theorem of integral calculus to evaluate the integral at the 
left. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

2 d x  1 1 * 1 1  1 1 
= [ j  arctan 5 

- [ - (- j -)I = 4 = 2 4 - -  

Find I: xy dx when x = 6 cos 8, y = 2 sin 8. 
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We shall express x ,  y,  and dx in the integral in terms of the parameter 8 and do, change the limits of 
integration to corresponding values of the parameter, and evaluate the resulting integral. We have, 
immediately, dx  = -6 sin 8 do. Also, when x = 6 cos 8 = 6, then 8 = 0; and when x = 6 cos 8 = 3, then 
8 = ~ 1 3 .  Hence 

xy dx = (6 cos 8)(2 sin 8)(-6 sin 8) d e  = -72 /:,3 sin2 8 COS 8 d8 

= [ -24 sin3 8]“,, = -24[0 - ( f i / 2 ) ’ ]  = 9 f l  

d0 
5 + 4 ~ 0 s  e’  19. Find 

2 d z  
1 + z2  

5 + 4 COS e The substitution 8 = 2 arctan z (Fig. 38-5) yields 

1 1 L  

determine the z limits of integration, note that when 8 = 0, z = 0; when 8 = 2 ~ 1 3 ,  arctan z = ~ / 3  and 
z = V3. Then 

0 9  
d 8  

Fig. 38-5 

dx 
1 - sin x * 

20. Find 6”;’ 
2 d z  

The substitution 2 d r  When x = O ,  
dx 

22 
1-- 

1 + z2 

x = 2 arctan z yields 

arctan z = 0 and z = 0; when x = ~ 1 3 ,  arctan z = 7r/6 and z = G/3. Then 

- 2 = f l + 1  

Supplementary Problems 

21. Evaluate 

A 2 x , .  . . , Anx.  Note that 2 A,x  = b - U .  

c d x  of Problenm 1 by dividing the interval u i x 5  b into n subintervals of lengths A l x ,  

k = l  

22. Evaluate x d x  of Problem 2 using subintervals of equal length and (a )  choosing the points x ,  as the 
left-hand endpoints of the subintervals; (b) choosing the points x ,  as the midpoints of the subintervals; 
and ( c )  choosing the points x ,  one-third of the way into each subinterval, that is, taking x ,  = 5 A x ,  
x2 = A x , .  . . . 
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23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

Evaluate I’ x2 dx = 21 using subintervals of equal length and choosing the points xk as (a)  the right-hand 
endpoints of the subintervals; (6) the left-hand endpoints of the subintervals; (c) the midpoints of the 
subintervals. 

Using the same choice of sutintervals and point; as in ProFlem 23(a), evaluate xdx and 6’ 
(x2 + x) dx, and verify that 1. [ f ( x )  + g(x)]  dx = 1. f ( x )  dx + 1. g(x) dx. 

Evaluate x2 dx and x2 dr. Compare the sum with the result of Problem 23 to verify that 

[ f ( x )  dx + 1 f(x) dx = f(x) dx for a < c < 6 

- hX Ax 
Evaluate e x d x = e - 1 .  (Hint:  S n =  f: e k A X A x = e A x ( e - 1 ) ~ ,  and lim - - 
lim - is indeterminate of the type O/O.) 

AX+O eAx - 1 

k - 1  n++ m eAx - 1 
Ax 

Prove Properties 38.2 and 38.3. 

Use the fundamental theorem to evaluate each integral: 

(a )  l ( 2  + x) dx = 6 

(c )  Id (3 - 2x + x2) dr = 9 

(e) I’ (1 - u ) f i d u  = - 

( g )  x2(x3 + 1) dx = 8 

( i )  lol x(1- q 2  a?x = 

(6) lo2 (2 - x)’ dx = $ 

( d )  /21 - (1 - C2)t dt = -; 

(f) \ l * m d x  =26 

xdx 

dx - 3  5 d x  
Show that qv =I 

x +16 - 5  m‘ 
t3==2* 

Evaluate ls0 y dx = 3n, given x = 8 - sin 8, y = 1 - COS 8. 

Evaluate Il4 vm dx: = + 4 In 2, given y = $x2 - 3 In x. 
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32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

Use the appropriate reduction formulas (Chapter 31) to establish Wallis' formulas: 

1 . 3 - ( n - 3 ) ( n - l )  7r 

2 * 4 * - * (n - 3)(n - 1) 

- if n is even and > O  
2 - 4 * - . ( n  -2)n 2 

if n is odd and > 1  1 . 3 - . . ( n  - 2 ) n  

- if rn and n are even and > O  
2 . 4 . . . ( r n + n - 2 ) ( r n + n )  2 

1 sin" x dx = [ I 2  cosn x ci.x = 

1 * 3 . . * ( m - 1 ) * 1 . 3 . * * ( n  - 1) T 

if rn is odd and > 1 

2 . 4 . .  . (n - 3)(n - 1) 
if n is odd and > 1  

[ ( m  + l)(m + 3) * - * (rn + n) 
Evaluate each integral: 

cos 2x - 1 1 
cos2x+ 1 4 

(d) Lfi x3exz dx = (e2  + 1) 

d X = - n - l  

3 
4 

l - f i  
d x = 4 1 n - - 1  

sin x dr 1 7 + 3 v 2  3 m l 4  

(e) L 4  cos2 x - 5 cos x + 4 = 3 In m 
x - 1  &=In- 3 - 2 f i + 2 f i - m  

v x 2 - 4 x + 3  4 - f l  

dx n / 3  

= I n G  

(h )  In ( x  + m) du =31n (3 + 2 G )  - 2 f l  

( x + 2 ) d x  1 3 1 
= - I n - +  

8 x (x  -2)* 2 4 5 2 + tan x 

Prove (38.5) to (38.7). 

d 
Prove: [ f(u) du = - f ( x ) .  

d "  
Evaluate 1 sin U du = sin x .  

u2 du = -x2. 
d o  

Evaluate 

u3 du = sin3 x cos x .  
d sin 

Evaluate 

COS U du = 4 COS 4~ - 2~ COS x'. 
d 4x 

Evaluate 



Chapter 39 

Plane Areas by Integration 

AREA AS THE LIMIT OF $ SUM. If f ( x )  isrtcontinuous and nonnegative on the interval a I x I 6, 

the definite integral 1. f (x )  dx = Jiym f ( x k )  d,x can be given a geometric interpretation. 

Let the interval a I x 5 6 be subdivided and points x k  be selected as in the preceding chapter. 
Through each of the endpoints to = a, tl, 5;, . . . , & = 6 erect perpendiculars to the x axis, 
thus dividing into n strips the portion of the plane bounded above by the curve y = f ( x ) ,  below 
by the x axis, and laterally by the abscissas x = a and x = 6. Approximate each strip as a 
rectangle whose base is the lower base of the strip and whose altitude is the ordinate erected at 
the point x k  of the subintepal. The area of the kth a p ~ r o ~ ~ ~ a t i n g  rectangle, shown in Fig* 

39-1, is f ( x , )  A,x. Hence f ( x k )  Akx is simply the sum of the areas of the n approximating 

rectangles. 

k = t  

k = l  

/I 

Fig. 39-1 

The limit of this sum, asb the number of strips is ind~finitely increased in the manner 

prescribed in Chapter 38, is f ( x )  dx; it is also, by de~nition, the area of the portion of the 
plane described above, or, more briefly, the area under the curve from x = a to x = 6. (See 
Problems 1 and 2.) 

Similajly, if x = g( y) is continuous and nonnegative on the interval c 5 y I d, the definite 

integral g( y )  dy  is by definition the area bounded by the curve x = g( y), the y axis, and the 
ordinates y = c and y = d .  (See Problem 3. )  

f ( x )  dx is 
negative, indicating that the area lies below the x axis. Similarly, if x = g ( y )  is continuous and 

nonpositive on the interval c 5 y 5 d, then g( y )  dy is negative, indicating that the area lies 
to the left of the y axis. (See Prublem 4.) 

If y = f ( x )  changes sign on the interval a s x 5 b, or if x = g( y) changes sign on the interval 
c 5 y “: d, then the area “under the curve” is given by the sum of two or more definite 
integrals. (See Problem 5 .) 

1. 

If y = f ( x )  is continuous and nonpositive on the interval a s x s 6, then r 
l 
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AREAS BY INTEGRATION. The steps in setting up a definite integral that yields a required area 
are: 

1. Make a sketch showing the area sought, a representative (kth) strip, and the approx- 
imating rectangle. We shall generally show the representative subinterval of length Ax 
(or A y ) ,  with the point x k  (or y k )  on this subinterval as its midpoint. 
Write the area of the approximating rectangle and the sum for the n rectangles. 
Assume the number of rectangles to increase indefinitely, and apply the fundamental 
theorem of the preceding chapter. 

2. 
3. 

(See Problems 6 to 14.) 

AREAS BETWEEN CURVES. Assume that f ( x )  and g(x) are continuous functions such that 
0 5 g(x) 5 f ( x )  for a 5 x 5 6. Then the area A of the region R between the graphs of y = f ( x )  
and y = g ( x )  and between x = a and x = 6 (see Fig. 39-2) is given by 

b b 

A = f(x> dx - 1. dx = r [f(x) - &)I dx (39.1 ) 

That is, the area A is the different: between the area f ( x )  dx of the region above the x axis 

and below y = f ( x )  and the area g(x)  dx of the region above the x axis and below y = g(x) .  
Formula (39.1 ) holds when one or both of the curves y = f ( x )  and y = g(x) lie partially or 

completely below the x axis, that is, when we assume only that g(x) ~ f ( x )  for a 5 x I b, as in 
Fig. 39-3. 

r 1 

Y 

a 

OI 

b 

Fig. 39-2 

Y 

I Y =&) 

Fig. 39-3 
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Solved Problems 

1. Find the area bounded by the curve y = x2, the x axis, and the ordinates x = 1 and x = 3. 

Figure 39-4 shows the area KLMN sought, a representative strip RSTU, and its approximating 
rectangle RVWU. For this rectangle, the base is A,x ,  the altitude is yk = f ( x , )  = x i ,  and the area is 
x : A k x .  Then 

1 26 
n - +  30 k = L  3 3  

2 

Fig. 39-4 Fig. 39-5 

2. Find the area lying above the x axis and under the parabola y = 4x - x2. 

The given curve crosses the x axis at x = 0 and x = 4 .  When vertical strips are used, these values 
become the limits of integration. For the approximating rectangle shown in Fig. 39-5, the width is A k x ,  
the height is y ,  = 4 x k  - xz, and the area is (4xk - x i )  A k x .  Then 

n 

A = lim (4x ,  - x i )  A k x  = (4x - x ' )  dx = [2x2  - fx ' ] , "  = p square units 
n++m Io4 

With the complete procedure, as given above, always in mind, an abbreviation of the work is 
possible. It will be seen that, aside from the limits of integration, the definite integral can be formulated 
once the area of the approximating rectangle has been set down. 

3. Find the area bounded by the parabola x = 8 + 2 y  - y2, the y axis, and the lines y = - 1 and 

Here we slice the area into horizontal strips. For the approximating rectangle shown in Fig. 39-6, 

y = 3 .  

the width is A y ,  the length is x = 8 + 2 y  - y 2 ,  and the area is (8 + 2 y  - y 2 )  A y .  The required area is 

.=(IL ( 8 + 2 y - y z ) d y =  
213 = - 92 square units 
3 - 1  3 

I 1 J  
I \ I  1-L t 

Fig. 39-6 Fig. 39-7 
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4. Find the area bounded by the parabola y = x 2  - 7 x  + 6, the x axis, and the lines x = 2 and 
x = 6 .  

For the approximating rectangle shown in Fig. 39-7, the width is Ax, the height is - y  = 
- ( x 2  - 7x + 6), and the area is - (x2 - 7x + 6) Ax. The required area is then 

7x’ 56 A = IZ6 - ( x 2  - 7x + 6) dx = - - - - + 6x)] = - square units (: 2 2 3  

5. Find the area between the curve y = x 3  - 6x2  + 8 x  and the x axis. 

area of the approximating rectangle with base on the interval 

area of the portion lying above the x axis is given by 

The curve crosses the x axis at x = 0, x = 2, and x = 4, as shown in Fig. 39-8. For vertical strips, the 
< x < 2 is (x’ - 6x’ + 8x) Ax, and the 

(x’ -6x2  - 8 x )  dx. The area of the s approximating rectangle with base on the 

portion lying below the x axis is given by 

2 < x < 4 is - (x’ - 6x2 + 8x) Ax, and the area of the 

- 6x2 + 8 x )  dx. The required area is, therefore, 

x4 x4 
A = ( x 3  -6x2  + 8 x )  dx + - (x’ - 6 ~ ’  + 8 x )  dx  = [ - - 2 x 3  + 4 x 2 ] l -  [ - 2x3  + 4 x 2 I 4  

4 

= 4 + 4 = 8 square units 

The use of two definite integrals is necessary here, since the integrand changes sign on the interval of 

integration. Failure to note this would have resulted in the incorrect integral (x’ - 6x2 + 8 x )  dx = 0. 

Fig. 39-8 

6 .  Find the area bounded by the parabola x = 4 - y 2  and the y axis. 

The parabola crosses the x axis at the point (4,0), and the y axis at the points (0 ,2)  and (0, -2). 
We shall give two solutions. 

Using horizontal strips: For the approximating rectangle of Fig. 39-9(a), the width is Ay, the length 
is 4 - y’, and the area is (4 - y’) Ay. The limits of integration of the resulting definite integral are y = -2  
and y = 2. However, the area lying below the x axis is equal to that lying above. Hence, we have, for the 
required area, 
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10 

X I 

Fig. 39-9 

Using vertical strips: For the approximating rectangle of Fig. 39-9(6), the width is Ax, the height is 
2y = 2-, and the area is 2- Ax. The limits of integration are x = 0 and x = 4. Hence the 
required area is 

6: 2- dx = [ -  +(4 - x) ’ ’~] ;  = 4 square units 

7. Find the area bounded by the parabola y 2  = 4x and the line y = 2x - 4. 

The line intersects the parabola at the points ( I ,  -2) and (4,4). Fig. 39-10 shows clearly that when 
vertical strips are used, certain strips run from the line to the parabola, and others from one branch of 
the parabola to the other branch; however, when horizontal strips are used, each strip runs from the 
parabola to the line. We give both solutions here to show the superiority of one over the other and to 
indicate that both methods should be considered before beginning to set up a definite integral. 

Fig. 39-10 

Using horizontal strips (Fig. 39-10(a)): For the approximating rectangle of Fig. 39-10(a), the width is 
A y ,  the length is [(value of x of the line) - (value of x of the parabola)] = ( i y + 2) - f y z  = 2 + 5 y - y2, 
and the area is (2 + 5-v - $ y z )  Ay. The required area is 

A = / y 2  (2 + 4 y - 4 y‘) dy = [ 2y + Y 2  - - - Y 3 I i  = 9 square units 
4 12 -2 

Using vertical strips (Fig. 39-lO(6)): Divide the area A into two parts with the line x = 1. For the 
approximating rectangle to the left of this line, the width is Ax, the height (making use of symmetry) is 
2y = 4t3, and the area is 4v‘X Ax. For the approximating rectangle to the right, the width is Ax, the 
height is 2v‘X - (2x - 4) = 2v‘X - 2x + 4, and the area is ( 2 f i  - 2x + 4) Ax. The required area is 

A = 111 4 ~ 5  dx + /,‘ ( 2 f i  - 2x + 4) dx = [ fx3’*]:, + [ ix’” - xz + 4x1; 

= ! + = 9 square units 
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8. 

9. 

10. 

Find the area bounded by the parabolas y = 6x - x2 and y = x2 - 2x. 

The parabolas intersect at the points (0,O) and (4,8). It is readily seen in Fig. 39-11 that vertical 
slicing will yield the simpler solution. 

For the approximating rectangle, the width is Ax, the height is [(value of y of the upper 
boundary) - (value of y of the lower boundary)] = ( 6 x  - x 2 )  - ( x 2  - 21) = 8x - 2x2, and the area is 
( 8 x  - 2 x 2 )  Ax. The required area is 

A = ( 8 x  - 2x2) dr = [4x2 - $x ' ] :  = square units I' 

Fig. 39-11 Fig. 39-12 

Find the area enclosed by the curve y 2  = x2 - x4. 

the portion lying in the first quadrant. 

x v x ,  and the area is x m  Ax. Hence the required area is 

The curve is symmetric with respect to the coordinate axes. Hence the required area is four times 

For the approximating rectangle shown in Fig. 39-12, the width is Ax, the height is y = = 

A = 4 x ~ r g  = [- ~ ( 1 -  x 2 ) 3 ' 2 1 ~  = J square units 

Find the smaller area cut from the circle x2 + y 2  = 25 by the line x = 3. 

Based on Fig. 39-13, 

A = I,'2y dx = 2I,' dr = 2[ I + p arcsin q5 5 3  

= ($ 7~ - 12 - 25 arcsin 

Fig. 39-13 Fig. 39-14 
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11. Find the area common to the circles x 2  + y 2  = 4 and x2  + y 2  = 4x. 

extends from x = 2 - v q  to x = v-’. Then 
The circles intersect in the points (1, +fl). The approximating rectangle shown in Fig. 39-14 

t/s v3 
A = 2 [ v q  - (2 - $i7)] dy = 4 ( V W  - 1) dy 

fi 1 
= 4[; ~3 + 2 arcsin 5 y - y]. = ( y  - 2 ~ 3 )  square units 

12. Find the area of the loop of the curve y 2  = x4(4 + x ) .  (See Fig. 39-15.) 

From the figure, A = 2y dx: = 2 x ’ m  du. Let 4 + x = z2; then 

A=4/ ’ (z2-4) ’z2dz=44 [ - - - + -  $ 8 t 5  162’1’ =- 4096 square units 
3 o 105 

13. Find the area of an arch of the cycloid x = 8 - sin 8, y = 1 - cos 8. 

A single arch is described as 8 varies from 0 to 27r (see Fig. 39-16). Then dx = (1 - cos 8) de and 
e - 2 n  

A = I _ @  ~ d x = ~ w ~ i - ~ ~ ~ e ~ ~ i - ~ ~ ~ e ~ ~ e =  ( 2  - 2 c o s e +  icOs2e)de 

= [ $8  - 2 sin e + sin 281;“ = 37r square units 

Fig. 39-15 Fig. 39-16 Fig. 39-17 

14. Find the area bounded by the curve x = 3 + cos 8, y = 4 sin 8. (See Fig. 39-17.) 

right to left as 8 varies from 0 to in. Hence, 
The boundary of the shaded area in the figure (one-quarter of the required area) is described from 

e = ~ 1 2  

y dx = -4  [I2 (4 sin 8)(-sin 8) d8 = 16 [ ’ 2  sin’ 8 d8 = 8 [ I 2  (1 - COS 28) d8 A = - 4  I-. 
= 8[e - $ sin ze];” = 47r square units 

Supplementary Problems 

15. Find the area bounded by the given curves, or as described. 
( a )  y = x2, y = 0, x = 2, x = 5 ( 6 )  y = x3, y = 0, x = 1, x = 3 
( c )  y = 4x - x2,  y = 0, x = 1, x = 3 
( e )  x = 3y2 - 9, x = 0, y = 0, y = 1 

( d )  x = 1 + y’, x = 10 
( f ) x = y 2 + 4 y ,  x = o  
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( g )  y = 9 - x 2 , y = x + 3  
(i) y = x 2  - 4, y = 8 - 2x2 

(0) xy = 12, y = 0, x = 1,  x = e2 

( h )  y = 2 - x’, y = - x  
( j )  y = x4 - 4x2, y = 4x2 

( p ) y = l / ( l + x ’ ) , y = O ,  x = + 1  

(k) A loop of y 2  = x’(u’ - x’) 
(m)  y = ex, y = e-I, x = 0, x = 2 

(4) y = t a n x ,  x = O ,  x =  f n  
(s) Within the ellipse x = a cos t, y = 6 sin t 
(U) x = a cos3 t, y = a sin3 t 
(w) y = xe-12, y = 0, and the maximum ordinate 
( x )  The two branches of (2x - y)’ = x 3  and x = 4 
( y )  Within y = 25 - x’, 256x = 3y2, 16y = 9x2  

Am. 

(I) The loop of 9ay’ = x ( 3 a  - x)*  
(n) y = ex/a + e-x/a, y = 0, x = + a  

(r) A circular sector of radius r and angle a 
(t) x = 2 COS 8 - COS 28 - 1,  y = 2 sin 8 - sin 28 
(U) First arch of y = e-Ox sin ax 

(all in square units): ( a )  39; (6) 20; (c)  y ;  ( d )  36; ( e )  8 ;  (f) y ;  ( g )  y ;  ( h )  ;; (i) 32; ( j )  
512*/15; ( k )  2a3/3;  ( I )  8 f i a 2 / 5 ;  (m)  (e’ + l / e 2  - 2); ( n )  2a(e - l /e);  (0) 24; ( p )  i7r; (4) 
1 In 2; (r) $ r 2 ;  (s) Tab; ( t )  67r; (U) 37ra2/8; (U) (1 + l /em)/2a; ( w )  t ( l  - l/-; ( x )  y; ( y )  0 

By the average ordinate of the curve y = f ( x )  over the interval a 5 x 5 b is meant the quantity 

area -= 
base 

16. 

17. 

18. 

19. 

6 - a  

Find the average ordinate (a )  of a semicircle of radius; (6) of the parabola y = 4 - x 2  from x = -2 to 
x = 2 .  Am. ( a )  7rr/4; ( 6 )  8 / 3  

(a )  Find the average ordinate of an arch of the cycloid x = a(8 - sin e), y = a(1 - cos 8) with respect to 

(6) Repeat part (a ) ,  with respect to 8. 
X. 

For a freely falling body, s = $ gt2 and U = gt = e. 
(a) Show that the average value of U with respect to t for the interval 0 5 t 5 t ,  is one-half the final 

(6) Show that the average value of U with respect to s for the interval 0 I s 5 s, is two-thirds the final 
velocity. 

velocity . 

Prove that (39. I ) holds when the curves may lie partially or completely below the x axis, as in Fig. 39-3. 



Chapter 40 

Exponential and Logarithmic Functions; 
Exponential Growth and Decay 

THE NATURAL LOGARITHM. A more rigorous definition of the natural logarithm than that 
given in Chapter 19 is based on integration. 

Definition 40.1 : In x = 

Thus, for x > 1, in x is the area under the curve y = 1 / t  between 1 and x, that is, the shaded 
area in Fig. 40-1. 

Y 

1 2 x  I 
Fig. 40-1 

PROPERTIES OF NATURAL LOGARITHMS 

40.1. 

40.3. 

40.5. 

40.7. 

40.9. 

d 1 d 1 
- (In x) = - for x > O  
dx X dx X I dx = In 1x1 + C for x Z 0 

40.2. 

40.4. In 1 = O  

- (In 1x1) = - for x # 0 

In x is an increasing function. 40.6. l n 2 >  
(Hence, if In U = In U ,  then U = u . )  

In uu = In U + In U 

In - = -In U 

U 

U 
40.8. 

40.10. 

In - = ln U - In U 

In ur = r In U for all rational numbers r 
1 
U 

40.11. lim ( lnx )=  +% 40.12. lim (lnx) = --oo 

40.13. 

(See Problems 1 to 6.) 

x+ + 30 X'O+ 

For each real number y ,  there is a unique positive number x such that In x = y. 

DEFINITIONS 

Definition 40.2: e is the unique positive number such that In e = 1. 

268 
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Definition 40.3: Let a be greater than zero, and let x be any real number. Then ax is the unique positive 
number such that In ux = x In a. 

Definition 40.4: Let a be greater than zero. Then log, x = - for x > 0. 
In x 
In a 

PROPERTIES OF ax AND ex 

40.14. a'= 1 40.15. a ' = a  
a" 

40.16. a"+" = a'a" 40.17. a"-" = - 
a" 

40.18. (a")" = a"" 40.19. (ab)" = a"b" 

40.20. In ex = x 40.21. e'" = x 

(See Problems 7 to 9.) 

DERIVATIVES AND INTEGRALS involving a" and e x :  

d 
- (a" )  = (In a)a" 
dx 

(40.1 ) 

(40.2) 
d 
- ( e x )  = ex 
dx I ex dx = ex + C (40.3) 

/ a " d x =  ~ a " +  1 C 

(See Problem 10.) 

(40.4)  

dY EXPONENTIAL GROWTH AND DECAY. Assume that a quantity y varies with time and - = ky 

y = yOek' where y ,  = y ( 0 )  (40.5) 

If k > 0, we say that y grows exponentially with growth constant k .  If k < 0, we say that y decays 
exponentially with decay constant k .  

If a substance decays exponentially with decay constant k ,  then its halflife T is the time 
required for half a given quantity of the substance to disappear, that is, such that y ( T )  = i y o .  
Then 

k T =  -In2 (40.6) 
(See Problems 11 to 14.) 

dt 
for some nonzero constant k .  Then: 

Solved Problems 

1. Prove Properties 40.1 and 40.2. 
d d 
dx dx Property 40.1 follows from the fact that - (In x )  = - ([ 5 dt ) by definition, and that the 

right-hand side is equal to l l x  by Property 38.5. 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

d d 1 d  1 1 
When x < 0, - (In 1x1) = - (In(-x)) = - - ( - x )  = - (- 1)  = - dx dx -X dx -X X 

Prove Property 40.5. 

d 1 
- (In x) = - > 0. Hence, In x is an increasing function. dx X 

Prove In2>  4. 
1 1  1 

For 1 < t < 2 ,  we have - t 2  > - .  Then l n 2 = l  5 d t > f  dt= 2 .  

Prove Property 40.7: In uu = In U + In U. 
d l l d  
dx ax x dx 

We have - (In ar) = - a = - = - (In x ) .  Hence, In ax = In x + C. 
W h e n x = l ,  I n a = I n l + C = O + C = C .  Hence, I n a x = I n x + I n a .  Now l e t u = x a n d v = a ,  and 

Property 40.7 follows. 

Prove Property 40.10: In a' = r In a for rational r .  
d 1 r d  
dx x dx 

We have - (In x ' )  = 7 ( r d - l )  = - = - (r In x ) ,  Hence, In x' = r In x + C. 
When x = 1. this becomes In 1' = In 1 = 0 = r In 1 + C = C. Thus, C = 0 and In x r  = r In x. 

Prove Property 40.11: lim In x = + W .  
X 4 + x I  

Given any positive integer N, choose x = 22N.  Then In x = In 22N = 2N In 2 > N by Property 40.6. 
Since In x is increasing, In x > N for all x 2 22N.  

Prove Properties 40.14 and 40.15. 

By definition, In a') = 0 In a = 0 = In 1. Hence Property 40.14: a' = 1. 
By definition, In a '  = 1 In a = In a.  Hence Property 40.15: a '  = a. 

Prove Property 40.16. 

Hence, a"'" = a"aV. 

In a"+u =(U + v) ln  a = u In a + u In a = I n  a" + In a' =In(a"a") 

Prove Properties 40.20 and 40.21. 

For Property 40.20: In ex = x In e = x * 1 = x .  
For Property 40.21: In ern = In x In e = In x. Hence, e r n  = x .  

d 
dx Assuming that y = a" is differentiable, show that - (a " )  = a" In a.  

Let y = ax. Then In y = In ax = x In a.  Differentiate to obtain 

1 9 = I n  a 
Y dx dx from which - d~ = y In a = a' In a 

Show that, if - dY = ky, then y = y,ek', where y, = y(0). 
dt 

= 0  
e k ' ( d y / d t )  - kyek' - ek'(ky)  - kyek' A L =  - 

dt ( e k ' l  eZk' eZkr  
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12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Hence = C ,  so y = Cekr. Now y ,  = y ( 0 )  = Ceo = C ,  so that y = yoekr.  
ekr 

Prove the relation k T =  -In2 between the decay constant and the halflife T. 

proving the relation. 
By the definition of halflife, y 0 / 2  = y,ekT, or $ = ekT. Then In $ = In ekT = kT. But In 4 = -In 2, 

If 20% of a radioactive substance disappears in one year, find its halflife. Assume exponential 
decay. 

By (40.5), 0 . 8 ~ ~  = y,ek. So 0.8 = ek, from which k = In 0.8 = In $ = In 4 - In 5. Then (40.6) yields 
In 2 In 2 T = - - =  
k In5-In4 '  

If the number of bacteria in a culture grows exponentially with a growth constant of 0.02, with 
time measured in hours, how many bacteria will be present in one hour if there are initially 
1o00? 

From (40.5), y = 1000e0.02 = 1000( 1.0202) = 1020.2 = 1020. 

Supplementary Problems 

Prove Properties 40.8, 40.9, 40.12, and 40.13. 

Prove Properties 40.17 to 40.19. 

Prove the following properties of logarithms to the base a: 
(a )  log, 1 = 0 

( d )  log, U' = r log, U 

(c) log, U = log, U - log, U 

(f) a ' o g u  = X 

(6) log, uu = log, U + log, U 

(e) log, - = -log, U 
1 
U 

Assume that, in a chemical reaction, a certain substance decomposes at a rate proportional to the 
amount present. In 5 hours, an initial quantity of 10,000 grams is reduced to 1O00 grams. How much will 
be left of an initial quantity of 20,000 grams after 15 hours? Ans. 20 grams 

A container with a maximum capacity of 25,000 fruit flies initially contains loo0 fruit flies. If the 

population grows exponentially with a growth constant of - fruit flies per day, in how many days will 
the container be full? Am. 20 days 

In 5 
10 

The halflife of radium is 1690 years. How much will be left of 32 grams of radium after 6760 
years? A m .  2 grams 

A saltwater solution initially contains 5 Ib of salt in 10 gal of fluid. If water flows in at the rate of 
4 gal/min and the mixture flows out at the same rate, how much salt is present after 20 min? 

Ans. dSldt = - 4(S/lO); at t = 20, S = 5 / e  = 1.8395 lb 

Assume that a population grows exponentially and increases at the rate of K% per year. (a )  Find its 
growth constant k. ( 6 )  Approximate k when K = 2 .  

Am. (a) k = In (1 + K/100); (6) k = 0.0198 



Chapter 41 

Volumes of Solids of Revolution 

A SOLID OF REVOLUTION is generated by revolving a plane area about a line, called the axis of 
rotation, in the plane. The volume of a solid of revolution may be found with one of the 
following procedures. 

DISC METHOD. 
plane area. 

1. 

2. 

3. 

This method is useful when the axis of rotation is part of the boundary of the 

Make a sketch showing the area involved, a representative strip perpendicular to the 
axis of rotation, and the approximating rectangle, as in Chapter 39. 
Write the volume of the disc (or cylinder) generated when the approximating rectangle 
is revolved about the axis of rotation, and sum for the n rectangles. 
Assume the number of rectangles to be indefinitely increased, and apply the fundamen- 
tal theorem. 

When the axis of rotation is the x axis and the top of the plane area is given by the curve 
y = f ( x )  between x = a and x = 6 (Fig. 41-1), then the volume V of the solid of revolution is 
given by 

b 

v =  7ry2 dx = 7r I [ f ( x ) ] ’  dx 

Y 

(41.1) 

Fig. 41-1 

Similarly, when the axis of rotation is the y axis and one side of the plane area is given by the 
curve x = g ( y )  between y = c and y = d (Fig. 41-2), then the volume V of the solid of 
revolution is given by 

(41.2) 

(See Problems 1 and 2.) 

272 
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Fig. 41-2 

WASHER METHOD. This method is useful when the axis of rotation is not a part of the boundary 
of the plane area. 

1. 
2 .  

Same as step 1 of the disc method. 
Extend the sides of the approximating rectangle A B C D  to meet the axis of rotation in 
E and F, as in Fig. 41-9. When the approximating rectangle is revolved about the axis 
of rotation, a washer is formed whose volume is the difference between the volumes 
generated by revolving the rectangles EABF and ECDF about the axis. Write the 
difference of the two volumes, and proceed as in step 2 of the disc method. 

3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen- 
tal theorem. 

If the axis of rotation is the x axis, the upper boundary of the plane area is given by 
y = f ( x ) ,  the lower boundary by y = g(x) ,  and the region runs from x = a to x = 6 (Fig. 41-3), 
then the volume V of the solid of revolution is given by 

r b  

Y 

(41 .3)  

Fig. 41-3 
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Similarly, if the axis of rotation is the y axis and the plane area is bounded to the right by 
x = f ( y ) ,  to the left by x = g ( y ) ,  above by y = d, and below by y = c (Fig. 41-4), then the 
volume V is given by 

(41 .4 )  

(See Problems 3 and 4.) 

Y 

d 

c 

Fig. 41-4 

SHELL METHOD 

Make a sketch showing the area involved, a representative strip parallel to the axis of 
rotation, and the approximating rectangle. 
Write the volume (=mean circumference x height x thickness) of the cylindrical shell 
generated when the approximating rectangle is revolved about the axis of rotation, and 
sum for the rz rectangles. 
Assume the number of rectangles to be indefinitely increased, and apply the fundamen- 
tal theorem. 

If the axis of rotation is the y axis and the plane area, in the first quadrant, is bounded 
below by the x axis, above by y = f ( x ) ,  to the left by x = a,  and to the right by x = b (Fig. 41-5), 
then the volume V is given by 

v =  27r [ xy dx = 27r xf(x)  dx (41.5) 

Y 

Fig. 41-5 

Ix 
Fig. 41-6 
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Similarly, if the axis of rotation is the x axis and the plane area, in the first quadrant, is 
bounded to the left by the y axis, to the right by x =f( y ) ,  below by y = c ,  and above by y = d 
(Fig. 41-6), then the volume V is given by 

v= 27T I: xy dy = 27T yf( y) dy (41.6) 

(See Problems 5 to 8.) 

Solved Problems 

1. Find the volume generated by revolving the first-quadrant area bounded by the parabola 
y2 = 8x and its latus rectum ( x  = 2) about the x axis. 

We divide the plane area vertically, as can be seen in Fig. 41-7. When the approximating rectangle is 
revolved about the x axis, a disc whose radius is y ,  whose height is A x ,  and whose volume is 7ry’ Ax is 
generated. The sum of the volumes of n discs, corresponding to the n approximating rectangles, is 
C n y 2  A x ,  and the required volume is 

V =  lab dV= I,” 7ry2 dx = 7r = 16.n cubic units 

2. Find the volume generated by revolving the area bounded by the parabola y 2  = 8 x  and its 
latus rectum ( x  = 2) about the latus rectum. 

We divide the area horizontally, as can be seen in Fig. 41-8. When the approximating rectangle is 
revolved about the latus rectum, it generates a disc whose radius is 2 - x ,  whose height is A y ,  and whose 
volume is 742 - x)’ A y .  The required volume is then 

7r cubic units 
256 
15 

v =  742 - x)2  d y  = 27r (2 - x)2 d y  = 27r (2 - $), dy = - 

3. Find the volume generated by revolving the area bounded by the parabola y 2  = 8x and its 
latus rectum ( x  = 2) about the y axis. 

We divide the area horizontally, as shown in Fig. 41-9. When the approximating rectangle is 
revolved about the y axis, it generates a washer whose volume is the difference between the volumes 
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Ax 

Fig. 41-9 Fig. 41-10 

generated by revolving the rectangle ECDF (of dimensions 2 by Ay) and the rectangle EABF (of 
dimensions x by Ay) about the y axis, that is, ~ ( 2 ) ~  Ay - ~ ( x ) ~  Ay. The required volume is then 

128 
V =  j:4 47r dy - 7rx2 dy = 27r (4  - x 2 )  dy = 27r 

4. Find the volume generated by revolving the area cut off from the parabola y = 4x - x 2  by the 
x axis about the line y = 6. 

We divide the area vertically (Fig. 41-10). The solid generated by revolving the approximating 
rectangle about the line y = 6 is a washer whose volume is 746)’ Ax - 746 - y ) 2  Ax. The required 
volume is then 

V =  n / 0 4 [ ( 6 ) 2 - ( 6 - y ) ’ ] d x = 7 r  

1 4 0 8 ~  
15 

= 7r (48x - 28x2 + 8x3 - x 4 )  dx = ~ cubic units 

5. Justify (41 .5 ) .  

Refer to Fig. 41-11. Suppose the volume in question is generated by revolving about the y axis the 
first-quadrant area under the curve y = f ( x )  from x = a to x = 6. Let this area be divided into n strips, 
and each strip be approximated by a rectangle. When the representative rectangle is revolved about the 
y axis, a cylindrical shell of height y k ,  inner radius ( k - l ,  outer radius ek. and volume 

v ( 6 i  - t : - l ) Y k  

is generated. By the law of the mean for derivatives, 

d sf - 6;-1 = [ (x2) ]x=xk(6k  - 6 k - 1 )  = 2xk  ‘ k X  

where tk- < X k  < 6,. Then (1 ) becomes 

AkV= 21~Xk.k AkX = 27rxk f(Xk) AkX 

and, by the theorem of Bliss, 

Note: If the policy of choosing the points xk as the midpoints of the subintervals, used in the 
preceding chapter, is followed, the theorem of Bliss is not needed. For, by Problem 17(6) of Chapter 26, 
the X,  defined by ( 2 )  is then X k  = :( 5, + tk- = xk. Thus, the volume generated by revolving the n 

n n 

rectangles about the y axis is 2 2nxkf(xk) Akx = g(xk) Akx, of the type (38.1 >. 
k = l  k = l  
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6. Find the volume generated by revolving the area bounded by the parabola y 2  = 8 x  and its 
latus rectum about the latus rectum. Use the shell method. (See Problem 2.) 

We divide the area vertically (Fig. 41-12) and, for convenience, choose the point P so that x is the 
midpoint of the segment AB.  The approximating rectangle has height 2y = 4 f i  and width A x ,  and its 
mean distance from the latus rectum is 2 - x .  When the rectangle is revolved about the latus rectum, the 
volume of the cylindrical shell generated is 2742 - x ) ( 4 f i  A x ) .  The required volume is then 

256 7r 
cubic units V = 8 ~ 7 r ~ ( 2 - x ) ~ d x = 8 ~ a ~ ( 2 x 1 ” - x  312 ) d x =  7 

7. Find the volume of the torus generated by revolving the circle x2 + y 2  = 4 about the line x = 3. 

We shall use the shell method (Fig. 41-13). The approximating rectangle is of height 2y, thickness 
Ax, and mean distance from the axis of revolution 3 - x .  The required volume is then 

V =  27r \:2 2y(3 - x )  dx = 47r (3 - x ) G  dx = 1277 dx - 47r x m  dx 

= [ 127r( + 2 arcsin ?) + (4 - x ~ ) ” ~ ] *  = 247r2 cubic units 2 -2  

Fig. 41-13 Fig. 41-14 

8. Find the volume of the solid generated by revolving about the y axis the area between the first 
arch of the cycloid x = 8 - sin 8, y = 1 - cos 8 and the x axis. Use the shell method. 

From Fig. 41-14, 
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= 2n[ f e z  - 2(e sin e + COS e) + t (  ;e sin 28 + a COS 28) + COS e + sin2 e + f cos3 e]:" 

= 6 n 3  cubic units 

9. Find the volume generated when the plane area bounded by y = -x2 - 3x + 6 and x + y - 3 = 
0 is revolved (a) about x = 3, and (6) about y = 0. 

From Fig. 41-15, 

2 5 6 ~  
(a )  v = 2 ~ / ~ 3 ( y , - y , ) ( 3 - x ) d r = 2 ~ / ~ 3 ( x 3 - x 2 - 9 x + 9 ) d x =  - 3 cubic units 

(b) V =  n /-I3 y: - y', dr = n (x4 + 6x3 - 4x2 - 30x + 27) dr = - cubic units 
1792n 

15 

Fig. 41-15 

Supplementary Problems 

In Problems 10 to 19, find the volume generated by revolving the given plane area about the given 
line, using the disc method. (Answers are in cubic units.) 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Within y = 2x2, y = 0, x = 0, x = 5; about x axis 

Within x 2  - y2 = 16, y = 0, x = 8; about x axis 

Within y = 4x2, x = 0, y = 16; about y axis 

Within y = 4x2, x = 0, y = 16; about y = 16 

Within y2 = x3, y = 0, x = 2; about x axis 

Within y = x3, y = 0, x = 2; about x = 2 

Within y2 = x4( l  - x'); about x axis 

Within 4x2 + 9y2 = 36; about x axis 

Am. 

Am. 

AnS. 

AnS. 

Am. 

Am. 

AnS. 

AnS. 

2500n 

2567713 

32 77 

4O96nl15 

477 

167715 

41~135 

16n 
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18. Within 4x2 + 9y2 = 36, about y axis Ans. 2 4 1 ~  

19. 

In Problems 20 to 26, find the volume generated by revolving the given plane area about the given 
line, using the washer method. (Answers are in cubic units.) 

20. 

21. 

22. 

23. 

24. Within y = x2,  y = 4x - x 2 ;  about x axis Ans. 3 2 1 ~ 1 3  

25. 64 IT I 3 

26. 

In Problems 27 to 32, find the volume generated by revolving the given plane area about the given 
line, using the shell method. (Answers are in cubic units.) 

27. 

28. 

29. 

30. 

31. 

32. 

In Problems 33 to 39, find the volume generated by revolving the given plane area about the given 
line, using any appropriate method. (Answers are in cubic units.) 

Within x = 9 - y2,  between x - y - 7 = 0, x = 0; about y axis Ans. 9631~15  

Within y = 2x2, y = 0, x = 0, x = 5; about y axis 

Within x 2  - y 2  = 16, y = 0, x = 8; about y axis 

Within y = 4x2, x = 0, y = 16; about x axis 

Within y = x3, x = 0, y = 8; about x = 2 

Ans. 6 2 5 1 ~  

Ans. 1 2 8 f i 1 ~  

Ans. 20481~15 

Ans. 1441~15 

Within y = x2, y = 4x - x 2 ;  about y = 6 

Within x = 9 - y2,  x - y - 7 = 0; about x = 4 

A ns . 

Ans. 153 IT I5 

Within y = 2x2, y = 0, x = 0, x = 5; about y axis 

Within y = 2x2, y = 0, x = 0, x = 5; about x = 6 

Within y = x3, y = 0,  x = 2; about y = 8 

Within y = x2, y = 4x - x 2 ;  about x = 5 

Within y = x 2  - 5 x  + 6 ,  y = 0; about y axis 

Within x = 9 - y2 ,  between x - y - 7 = 0,  x = 0; about y = 3 

Am. 625 IT 

Ans. 3 7 5 ~  

Am.  3201~17 

Ans. 6 4 ~ 1 3  

Ans. 5 1 ~ 1 6  

Ans. 369 IT 12 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

Within y = Kx2,  y = 0, x = 0, x = 1 ;  about y axis Ans. 

Within an arch of y = sin 2 x ;  about x axis Ans. :IT' 

Within first arch of y = ex sin x ;  about x axis Ans. 7r(e2" - 1 ) / 8  

Within first arch of y = ex  sin x ;  about y axis Am. 

Within first arch of x = 8 - sin 8, y = 1 - cos 8 ;  about x axis Ans. 57r' 

Within the cardioid x = 2 cos 8 - cos 28 - 1, y = 2 sin 8 - sin 28; about x axis 

Within y = 2x2, 2x - y + 4 = 0; about x = 2 

Obtain the volume of the frustum of a cone whose lower base is of radius R,  upper base is of radius r ,  
and altitude is h. 

T( 1 - 1 Ie) 

I T [ ( I T  - l ) e n  - 11 

Ans. 6 4 1 ~ 1 3  

Am. 2 7 ~  

Am. ; n h ( r 2  + rR + R2) cubic units 



Chapter 42 

Volumes of Solids with Known Cross Sections 

THE VOLUME OF THE SOLID OF REVOLUTION that is generated by revolving about the x axis 
the plane area bounded by the curve y = f ( x ) ,  the x axis, and the lines x = a and x = b is given 

by ~ y ’  dx. The integrand v y 2  = v[f(x)I2 may be interpreted as the area of the cross section 
of the solid made by a plane perpendicular to the x axis and at a distance x units from the 
origin. 

Conversely, assume that the area of a cross section ABC of a solid, made by a plane 
perpendicular to the x axis at a distance x from the origin, can be expressed as a function A(x) 
of x .  Then the volume of the solid is given by 

V = l a  A(x)  dx 
P 

(See Fig. 42-1.) The x coordinates of the points of the solid lie in the interval a 5 x 5 p. 

Fig. 42-1 

Solved Problems 

1. A solid has a circular base of radius 4 units. Find the volume of the solid if every plane section 
perpendicular to a particular fixed diameter is an equilateral triangle. 

Take the circle as in Fig. 42-2, with the fixed diameter on the x axis. The equation of the circle is 
x 2  + y 2  = 16. The cross section ABC of the solid is an equilateral triangle of side 2 y  and area 
A(x)  = f i y 2  = a( 16 - x2). Then 

256 P 

V =  /a A(x)  dx = fi (16 - x 2 )  dx = fi[ 16x - = 3 cubic units 
- 4  

2. A solid has a base in the form of an ellipse with major axis 10 and minor axis 8. Find its 
volume if every section perpendicular to the major axis is an isosceles triangle with altitude 6. 

280 
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X L  yL  
Take the ellipse as in Fig. 42-3, with equation - + - = 1. The section ABC is an isosceles triangle 

25 16 
of base 2y ,  altitude 6 ,  and area A(x) = 6y = 6( :-). Hence, 

dx = 6 0 ~  cubic units 

x2 y 2  
3. Find the volume of the solid cut from the paraboloid - + - = z by the plane z = 10. 

16 25 
Refer to Fig. 42-4. The section of the solid cut by a plane parallel to the plane xOy and at a distance 

2 from the origin is an ellipse of area r x y  = ~ ( 4 f i ) ( 5 f i )  = 20772. Hence 

V =  2 0 7 ~  
10 

z dz = 1 0 0 0 ~  cubic units 

4. Two cuts are made on a circular log of radius 8 inches, the first perpendicular to the axis of the 
log and the second inclined at the angle of 60" with the first. If the two cuts meet on a line 
through the center, find the volume of the wood cut out. 

Refer to Fig. 42-5. Take the origin at the center of the log, the x axis along the intersection of the 
two cuts, and the positive side of the y axis in the face of the first cut. A section of the cut made by a 
plane perpendicular to the x axis is a right triangle having one angle of 60" and the adjacent leg of length 
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y. The other leg is of length f i y ,  and the area of the section is ; f l y 2  = i f i ( 6 4  - x 2 ) .  Then 

V =  +‘3/:8(64-x2)dx=-fiin3 1024 
3 

5. The axes of two circular cylinders of equal radii r intersect at right angles. Find their common 
volume. 

Refer to Fig. 42-6. Let the cylinders have equations x’ + 2’ = r2’and y2 + z2  = r’. A section of the 
solid whose volume is required, as cut by a plane perpendicular to the z axis, is a square of side 
2 x  = 2y = 2- and area 4(r2 - z 2 ) .  Hence 

16r3 
3 

V =  4 ( r 2  - z 2 )  dz = - cubic units 

6. Find the volume of the right cone of height h whose base is an ellipse of major axis 2a and 
minor axis 2b. 

A section of the cone cut by a plane parallel to the base is an ellipse of major axis 2x and minor axis 
2y (Fig. 42-7). From similar triangles, 

y J - 2  
b h  

or 
x - h - z  PD PM PC - PM 

O A  O M  Or ----- a h  O B - O M  
and - - 

n-ab(h - 2)’ 

h2 
. Hence The area of the section is thus n-xy = 

n-ab 1 
3 

( h  - z)’ dz = - n-abh cubic units 

Supplementary Problems 

7. A solid has a circular base of radius 4 units. Find the volume of the solid if every plane perpendicular to 
a fixed diameter (the x axis of Fig. 42-2) is ( a )  a semicircle; ( b )  a square; (c) an isosceles right triangle 
with the hypotenuse in the plane of the base. 

Ans. ( a )  128n-13; ( b )  102413; (c) 25613 cubic units 
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8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

A solid has a base in the form of an ellipse with major axis 10 and minor axis 8. Find its volume if every 
section perpendicular to the major axis is an isosceles right triangle with one leg in the plane of the 
base. Am. 640/3 cubic units 

The base of a solid is the segment of the parabola y 2  = 12x cut off by the latus rectum. A section of the 
solid perpendicular to the axis of the parabola is a square. Find its volume. Am. 216 cubic units 

The base of a solid is the first-quadrant area bounded by the line 4x + 5y = 20 and the coordinate axes. 
Find its volume if every plane section perpendicular to the x axis is a semicircle. 

Ans. 107r/3 cubic units 

The base of a solid is the circle x2 + y2  = 16x, and every plane section perpendicular to the x axis is a 
rectangle whose height is twice the distance of the plane of the section from the origin. Find its 
volume. Am. 1 0 2 4 ~  cubic units 

A horn-shaped solid is generated by moving a circle, having the ends of a diameter on the first-quadrant 
arcs of the parabolas y2  + 8 x  =64 and y2  + 16x=64, parallel to the xz plane. Find the volume 
generated. Ans. 2 5 6 d  15 cubic units 

The vertex of a cone is at (a,  O , O ) ,  and its base is the circle y 2  + t2 - 2by = 0, x = 0. Find its 
volume. Ans. f7rub2 cubic units 

Find the volume of the solid bounded by the paraboloid y2  + 42’ = x and the plane x = 4. 

Am. 47r cubic units 

A barrel has the shape of an ellipsoid of revolution with equal pieces cut from the ends. Find its volume 
if its height is 6 ft, its midsection has radius 3 ft, and its ends have radius 2 ft. Ans. 4 4 ~  ft3 

The section of a certain solid cut by any plane perpendicular to the x axis is a circle with the ends of a 
diameter lying on the parabolas y 2  = 9x and x 2  = 9y .  Find its volume. Ans. 65611r/280 cubic units 

The section of a certain solid cut by any plane perpendicular to the x axis is a square with the ends of a 
diagonal lying on the parabolas y2  = 4x and x2 = 4y. Find its volume. Ans. 144/35 cubic units 

A hole of radius 1 inch is bored through a sphere of radius 3 inches, the axis of the hole being a diameter 
of the sphere. Find the volume of the sphere which remains. Am. 6 4 7 r f i / 3  in3 



Chapter 43 

Centroids of Plane Areas and Solids of Revolution 

THE MASS OF A PHYSICAL BODY is a measure of the quantity of matter in it, whereas the 
volume of the body is a measure of the space it occupies. If the mass per unit volume is the 
same throughout, the body is said to be homogeneous or to have constant density. 

It is highly desirable in physics and mechanics to consider a given mass as concentrated at a 
point, called its center of mass (also, its center of gravity). For a homogeneous body, this point 
coincides with its geometric center or centroid. For example, the center of mass of a 
homogeneous rubber ball coincides with the centroid (center) of the ball considered as a 
geometric solid (a sphere). 

The centroid of a rectangular sheet of paper lies midway between the two surfaces but it 
may well be considered as located on one of the surfaces at the intersection of the diagonals. 
Then the center of mass of a thin sheet coincides with the centroid of the sheet considered as a 
plane area. 

The discussion in this and the next chapter will be limited to plane areas and solids of 
revolution. Other solids, the arc of a curve (a piece of fine homogeneous wire), and 
nonhomogeneous masses will be treated in later chapters. 

THE (FIRST) MOMENT M ,  OF A PLANE AREA with respect to a line L is the product of the area 
and the directed distance of its centroid from the line. The moment of a composite area with 
respect to a line is the sum of the moments of the individual areas with respect to the line. 

The moment of a plane area with respect to a coordinate axis may be found as follows: 

1. Sketch the area, showing a representative strip and the approximating rectangle. 
2. Form the product of the area of the rectangle and the distance of its centroid from the 

axis, and sum for all the rectangles. 
3. Assume the number of rectangles to be indefinitely increased, and apply the fundamen- 

tal theorem. 

(See Problem 2.) 

and y axes, 
For a plane area A having centroid (X, y)  and moments M, and M y  with respect to the x 

A . f = M y  and A y = M ,  

(See Problems 1 to 8.) 

THE (FIRST) MOMENT OF A SOLID of volume V, generated by revolving a plane area about a 
coordinate axis, with respect to the plane through the origin and perpendicular to the axis may 
be found as follows: 

1. 
2. 

Sketch the area, showing a representative strip and the approximating rectangle. 
Form the product of the volume, disc, or shell generated by revolving the rectangle 
about the axis and the distance of the centroid of the rectangle from the plane, and sum 
for all the rectangles. 
Assume the number of rectangles to be indefinitely increased, and apply the fundamen- 
tal theorem. 

3. 

When the area is revolved about the x axis, the centroid (X, f )  is on that axis. If M y .  is the 

284 
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moment of the solid with respect to the plane through the origin and perpendicular to the x 
axis, then 

VX=M,,  and y=O 
Similarly, when the area is revolved about the y axis, the centroid (X, y) is on that axis. If M , ,  
is the moment of the solid with respect to the plane through the origin and perpendicular to the 
y axis, then 

Vy= M,, and X = O  

(See Problems 9 to 12.) 

FIRST THEOREM OF PAPPUS. If a plane area is revolved about an axis in its plane and not 
crossing the area, then the volume of the solid generated is equal to the product of the area and 
the length of the path described by the centroid of the area. (See Problems 13 to 15.) 

Solved Problems 

1. For the plane area shown in Fig. 43-1, find (a) the moments with respect to the coordinate 
axes and ( b )  the coordinates of the centroid (X, g). 
(a) The upper rectangle has area 5 X 2 =  10 units and centroid A(2.5,9). Similarly, the areas and 

centroids of the other rectangles are: 12 units, B(1,5); 2 units, C(2.5,5); 10 units, D(2.5, 1). 
The moments of these rectangles with respect to the x axis are, respectively, 10(9), 12(5), 2(5), 

and lO(1) .  Hence the moment of the figure with respect to the x axis is M ,  = lO(9) + 12(5) + 2(5) + 
lO(1) = 170. 

Similarly, the moment of the figure with respect to the y axis is M ,  = lO(2.5) + 12( 1) + 2(2.5) + 
lO(2.5) = 67. 

(6) The area of the figure is A = 10 + 12 + 2 -k 10 = 34. Since AY = M ,  , 342 = 67 and X = q i ,  Also, since 
Ay = M , ,  34y = 170 and y = 5. Hence the point ( G, 5) is the centroid. 

Fig. 43-1 Fig. 43-2 
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2. Find the moments with respect to the coordinate axes of the plane area in the second quadrant 
bounded by the curve x = y 2  - 9. 

We use the approximating rectangle shown in Fig. 43-2. Its area is - x  A y ,  its centroid is ( i x ,  y ) ,  
and its moment with respect to the x axis is y ( - x  A y ) .  Then 

M , = -  y x d y = -  y ( y 2 - 9 ) d y = ?  JT: I: 
Similarly, the moment of the approximating rectangle with respect to the y axis is ix(-x Ay) and 

3. Determine the centroid of the first-quadrant area bounded by the parabola y = 4 - x2. 

The centroid of the approximating rectangle, shown in Fig. 43-3, is ( x ,  i y ) .  Then its area is 

A = k12 y dx = lj2 (4 - x’) dx = 9 

and M ,  = j-02 $ y ( y  d x )  = $ j-; (4 - x2)’ dx = 

M~” = Io2 x y  dx = I: x(4 - x’) dx = 4 

Hence, X = M,. /A = i, j = M,/A = , and the centroid has coordinates (i , ). 

Fig. 43-3 Fig. 43-4 

4. Find the centroid of the first-quadrant area bounded by the parabola y = x2 and the line y = x. 

The centroid of the approximating rectangle, shown in Fig. 43-4, is (x, i (x + x’)). Then 

A = lo’ (x - x’) dx = 

M ,  = j-o’ i ( x  + x2)(x - x’) dx = M y  = 6’ x(x - x’) dx = 

Hence, X = M , / A  = 4 ,  9 = M,/A = f , and the coordinates of the centroid are ( , f ). 

5. Find the centroid of the area bounded by the parabolas x = yz and x2 = - 8 y .  



CHAP. 431 CENTROIDS OF PLANE AREAS AND SOLIDS OF REVOLUTION 287 

The centroid of the approximating rectangle, shown in Fig. 43-5, is ( x ,  i ( -x2 /8  - VT)). Then 

X2 8 
A = lO4 (- - + fi) dx = 3 

8 

Mx=\04i ( -~ - f i ) ( -~ - f i )dx=-y  X 2  X2 12 

M y = / 0 4 x ( - g  +VT) d x =  7 24 

Hence the centroid is (i, 7) = ( 5 ,  - &). 

0 

X 

Fig. 43-5 Fig. 43-6 

6. Find the centroid of the area under the curve y = 2 sin 3 x  from x = 0 to x = n/3. 

The approximating rectangle, shown in Fig. 43-6, has the centroid ( x ,  l y ) .  Then 

4 r 1 3  A = [ i 3 y d x = [ ’ 3 2 s i n 3 x d r = [ - ~  2 C O S ~ X ] ~  = 3 

2 
My = [I3 xy dx = 2 [ I 3  x sin 3x dx = - ” [  9 sin 3x - 3x cos 3x 1:‘3 = 

The coordinates of the centroid are (My/A,  M x / A )  = ( ~ 1 6 ,  7r/4). 

7. Determine the centroid of the first-quadrant area of the hypocycloid x = a cos3 8, y = a sin3 8. 

By symmetry, X = y. (See Fig. 43-7.) We have 

3 3 1 
8 6 32 

a / 2  

- - - a’[ - 6 sin 40 + - sin3 2 e l 0  = - ra2 

e l m 1 2  

Mx = yx  dy  = 3a3 [ I 2  cos4 e sins e de = 3a3 [ I 2  cos4 e( i  - cos2 e ) 2  sin e de 

2 COS’ e + cos9 e ] m ’ 2  - 24a3 
7 9 o 315 

= -3a3[+ - - -- 

Hence, y = Mx/A = 2 5 6 a / 3 1 5 ~ ,  and the centroid has coordinates ( 2 5 6 a / 3 1 5 ~ ,  2 5 6 a / 3 1 5 ~ ) .  
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a 

0 a 

(r  cos e, r sin 8 )  

Fig. 43-7 Fig. 43-8 

2r sin 8 
38 

8. Show that the centroid of a circular sector of radius r and angle 28 is at a distance - from 
the center of the circle. 

Take the sector so that the centroid lies on the x axis (Fig. 43-8).  By symmetry, the abscissa of the 
required centroid is that of the centroid of the area lying above the x axis bounded by the circle and the 
line y = x tan 0. For this latter sector, 

9. Find the centroid (X, 0) of the solid generated by revolving the area of Problem 3 about the x 
axis. 

We use the approximating rectangle of Problem 3 and the disc method: 

256 7~ 
V =  7~ I,’ y 2  dr = 7~ \02 (4 - x2)’ dx = - 

15 ’ 
32 7~ My, = 7~ \02 xy2  dx = 7~ x(4 - x 2 ) *  ak = - 

\02 3 

and X = M , , / V =  g .  

10. Find the centroid (0, q)  of the solid generated by revolving the area of Problem 3 about the y 
axis. 

We use the approximating rectangle of Problem 3 and the shell method: 

V = 2 7 ~  X Y ~ X = ~ T  x ( 4 - x 2 ) d r = 8 ~  I: I: 
~ ( 4  - x ~ ) ~  ak = - 32 7r 

3 

and 7 = M , t , / V =  4 .  

11. Find the centroid (X, 0) of the solid generated by revolving the area of Problem 4 about the x 
axis. 
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12. 

13. 

14. 

15. 

We use the approximating rectangle of Problem 4 and the disc method: 

7r 
21T and M y z  = 7r x(x2 - x4) dr = - 12 15 v= 7r jol ( x 2  - x4) dx = - 

and X =  M y , I V =  i. 

Find the centroid (0, y) of the solid generated by revolving the area of Problem 4 about the y 
axis. 

We use the approximating rectangle of Problem 4 and the shell method: 

IT ' 1  IT v= 2~ x(x  - x 2 )  dx = - and M,,  = 27r j0 5 ( x  + x ' ) ( x ) ( x  - x 2 )  dx = - I' 6 12 

and = M , , / V =  $ .  

Find the centroid of the area of a semicircle of radius r .  

Take the semicircle as in Fig. 43-9, so that X = 0. The area of the semicircle is $7rr2, the solid 
generated by revolving it about the x axis is a sphere of volume 4 7rr3, and the centroid (0, r) of the area 
describes a circle of radius ~ 7 .  Then, by the first theorem of Pappus, $7rr2 -27ry= $7rr3, from which 
y = 4rl37r. The centroid is at the point (0,4r/37r). 

Iy 

Fig. 43-9 

Find the volume of the torus generated by revolving the circle x 2  + y 2  = 4 about the line x = 3. 
(See Fig. 43-10.) 

The centroid of the disc describes a circle of radius 3. Hence, V =  ~ ( 2 ) ~  - 27r(3) = 247r2 cubic units, 
by the first theorem of Pappus. 

The rectangle of Fig. 43-11 is revolved about (a) the line x = 9, (b) the line y = -5, and (c) 
the line y = - x .  Find the volume generated in each case. 

Y 

,(I 
4 

I -  
ll 
H 

X 

Fig. 43-10 Fig. 43-1 1 
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(a) The centroid (4 ,3 )  of the rectangle describes a circle of radius 5 .  Hence, V = 2(4) - 2n(5 )  = 80n 

( 6 )  The centroid describes a circle of radius 8. Hence, V =  8(16n) = 128n cubic units. 
(c) The centroid describes a circle of radius ( 4  + 3 ) I f i .  Hence, V =  5 6 f i n  cubic units. 

cubic units. 

Supplementary Problems 

In Problems 16 to 26, find the centroid of the given area. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

Between y = x’, y = 9 Am. (0, 9 )  

Between y = 4x - x’, y = 0 Ans. (2,  5 )  

Between y = 4x - x’, y = x Am. ( $ , y )  

Between 3yz = 4(3 - x ) ,  x = 0 Am. ( 4 , O )  

Within x’ = 8y, y = 0, x = 4 Am. (3,  3 )  

Between y = x’, 4y = x 3  Am. (?,%) 

Between xZ  - 8y + 4 = 0,  x’ = 4y, in first quadrant 

First-quadrant area of xz  + y’ = a2 

First-quadrant area of 9x2 + 16y2 = 144 

Right loop of y’ = x4 ( l  - x’) 

First arch of x = 8 - sin 8, y = 1 - cos 8 

Show that the distance of the centroid of a triangle from the base is one-third the altitude. 

Am. ( $  , 3 )  

Am. (4a /3n ,  4 ~ 1 3 7 ~ )  

Am. (16 /3n ,  4 1 4  

Am. (32 /15n,  0 )  

Am. ( w ,  1 )  

In Problems 28 to 38, find the centroid of the solid generated by revolving the given plane area about 
the given line. 

28. Within y = x’, y = 9, x = 0;  about y axis Am. y = 6  

29. Within y = x2, y = 9,  x = 0;  about x axis Am. X =  $ 

30. Within y = 4x - x‘, y = x ;  about x axis Ans. X= f$ 

Am. j7= 27 10 31. 

32. 

Within y = 4x - x‘, y = x ;  about y axis 

Within x’ - y2  = 16, y = 0, x = 8; about x axis Am. X =  4 

33. Within x’ - y2 = 16, y = 0, x = 8 ;  about y axis Am. f = 3v%2 

34. Within (x  - 2)y’ = 4, y = 0, x = 3, x = 5 ;  about x axis Am. X = (2 + 2 In 3)/(ln 3 )  
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35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

Within x2y = 16(4 - y), x = 0, y = 0, x = 4; about y axis Am. j j  = 1 /(In 2) 

First quadrant area bounded by y2 = 12x and its latus rectum; about x axis Am. X = 2  

Area of Problem 36; about y axis Ans. y =  3 

Area of Problem 36; about directrix Am. ? = $  

Prove the first theorem of Pappus. 

Use the first theorem of Pappus to find (a )  the volume of a right circular cone of altitude a and radius of 
base 6; (6) the ring obtained by revolving the ellipse 4(x - 6)2 + 9(y - 5 ) 2  = 36 about the x axis. 

Am. (a)  f7rab2 cubic units; (6) 60n2 cubic units 

For the area A bounded by y = - x 2  - 3x + 6 and x + y - 3 = 0, find (a) its centroid; (6) the volume 
generated when A is revolved about the bounding line. 

v cubic units 
X + y - 3  2 5 6 f i  
v2 15 

A=- Am. ( U )  (-1,2815); (6) 2 ~ r  

For the volume generated by revolving the area A (shaded in Fig. 43-12) about the bounding line L, 
obtain 

Use the formula of Problem 42 to obtain the volume generated by revolving the given area about the 
bounding line if 
(a )  y = - x 2 - 3 x + 6  and L i s x + y - 3 = 0  
(6) y = 2x2 and L is 2x - y + 4 = 0 

Am. (a)  see Problem 41; (6) 162V%/25 cubic units 

Fig. 43-12 



Chapter 44 

Moments of Inertia of Plane Areas 
and Solids of Revolution 

THE MOMENT OF INERTIA I ,  OF A PLANE AREA A with respect to a line L in its plane may be 
found as follows: 

1. 

2. 

3. 

Make a sketch of the area, showing a representative strip parallel to the line and 
showing the approximating rectangle. 
Form the product of the area of the rectangle and the square of the distance of its 
centroid from the line, and sum for all the rectangles. 
Assume the number of rectangles to be indefinitely increased, and apply the fundamen- 
tal theorem. 

(See Problems 1 to 4.) 

THE MOMENT OF INERTIA I ,  OF A SOLID of volume V generated by revolving a plane area 

Make a sketch showing a representative strip parallel to the axis, and showing the 
approximating rectangle. 
Form the product of the volume generated by revolving the rectangle about the axis (a 
shell) and the square of the distance of the centroid of the rectangle from the axis, and 
sum for all the rectangles. 
Assume the number of rectangles to be indefinitely increased, and apply the fundamen- 
tal theorem. 

about a line L in its plane, with respect to line L ,  may be found as follows: 

1. 

2. 

3. 

(See Problems 5 to 8.) 

RADIUS OF GYRATION. The positive number R defined by the relation I, = AR2 in the case of a 
plane area A ,  and by I, = VR2 in the case of a solid of revolution, is called the radius of 
gyration of the area or volume with respect to L. 

PARALLEL-AXIS THEOREM. The moment of inertia of an area, arc length, or volume with 
respect to any axis is equal to the moment of inertia with respect to a parallel axis through the 
centroid plus the product of the area, arc length, or volume and the square of the distance 
between the parallel axes. (See Problems 9 and 10.) 

Solved Problems 

1. Find the moment of inertia of a rectangular area A of dimensions a and 6 with respect to a 
side. 

Take the rectangular area as in Fig. 44-1, and let the side in question be that along the y axis. The 
approximating rectangle has area = b Ax and centroid ( x ,  16). Hence its moment element is x2b Ax. 

292 
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Fig. 44-1 

Then 

Thus the moment of inertia of a rectangular area with respect to a side is one-third the product of the 
area and the square of the length of the other side. 

2. Find the moment of inertia with respect to the y axis of the plane area between the parabola 
y = 9 - x2  and the x axis. Also find the radius of gyration. 

First solution: For the approximating rectangle of Fig. 44-2, A = y Ax and the centroid is (x, i y ) .  
Then 

I" I" 

-3 

Fig. 44-2 Fig. 44-3 

Second solution: For the approximating rectangle of Fig. 44-3, the area is x Ay and the dimension 
perpendicular to the y axis is x .  Hence, from Problem 1, the moment element is f ( x  A y ) x 2 .  Thus, owing 
to symmetry, 

Iy  = 2( 4 x 3  d y )  = 4 (9 - y)3'2 dy = 

r9  r9  

Since I,, = = AR2 and A = 2 x dy = 2 v G  dy = 36, the radius of gyration here is R = J 
3 l f i .  

3. Find the moment of inertia with respect to the y axis of the first-quadrant area bounded by the 
parabola x 2  = 4y and the line y = x .  Find the radius of gyration. 

We use the approximating rectangle of Fig. 44-4, whose area is (x - $x') Ax and whose centroid is 
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Fig. 44-4 Fig. 44-5 

4. Find the moment of inertia with respect to each coordinate axis of the area between the curve 
y = sin x from x = 0 to x = 7~ and the x axis. 

From Fig. 44-5, A = sin x dx = [-cos x ] ;  = 2 and 

I , = L y ’ ( i s i n x d x ) =  $ l l v s i n 3 x d x =  ~ [ - c o s x +  $cos’x],“= $ =  $ A  

1~” = [ x2 sin x dx = [2 cos x + 2x sin x - x 2  COS x ] ;  = (7r’ - 4) = $(T’ - 4)A 

5. Find the moment of inertia with respect to its axis of a right circular cylinder whose height is b 
and whose base has radius a.  

Let the cylinder be generated by revolving the rectangle of dimensions a and b about the y axis as in 
Fig. 44-6. For the approximating rectangle of the figure, the centroid is ( x ,  i b )  and the volume of the 
shell generated by revolving the rectangle about the y axis is AV= 27rbx Ax. Then, since V =  7rba2, 

I y  = 27r x2(bx  dx) = i7rba4 = i7rba2 - a’ = SVa’ La 
Thus the moment of inertia with respect to its axis of a right circular cylinder is equal to one-half the 
product of its volume and the square of its radius. 

6. Find the moment of inertia with respect to its axis of the solid generated by revolving about 
the x axis the area in the first quadrant bounded by the parabola y 2  = 8 x ,  the x axis, and the 
line x = 2. 

First solution: The centroid of the approximating rectangle of Fig. 44-7 is ( 5  ( x  + 2), y), and the 
volume generated by revolving the rectangle about the x axis is 27ry(2 - x )  Ay = 27ry(2 - y2/8) Ay. Then 

Second solution: The volume generated by revolving the approximating rectangle of Fig. 44-8 about 
the x axis is 7ry2 Ax and, by the result of Problem 5 ,  its moment of inertia with respect to the x axis is 
4 y2(7ry2 Ax) = 4 7ry4 Ax. Then 

V= 7r c y2 dx = 87r x d x  = 167r 
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and 

7. Find the moment of inertia with respect to its axis of the solid generated by revolving the area 
of Problem 6 about the y axis. 

The volume generated by revolving the approximating rectangle of Fig. 44-8 about the y axis is 
27rxyAx. Then 

and = 27r Jo2 x2(xy dx)  = 4V27r [ x ” ~  dx = y7r = T V  

8. Find the moment of inertia with respect to its axis of the volume of the sphere generated by 
revolving a circle of radius Y about a fixed diameter. 

Take the circle as in Fig. 44-9, with the fixed diameter along the x axis. The shell method yields 

2x( y dy )  = $7rr3 and I, = 47r y2(xy dy)  = 47r lO7 y 3 d m  dy 

Let y = r sin z ;  then v w  = r cos z and dy = r cos z dz. To change the y limits of integration to z 
limits, consider that when y = 0 then 0 = r sin z ,  so 0 = sin z and z = 0; also, when y = r then r = r sin z ,  
so 1 =sin z and z = 47r.  Now 

1, = 47rr5 [ ‘ 2  sin3 z cos2 z dz = 47rr5 (1 - cos2 z )  cos2 z sin z dz = 67rr5  = gr2V 

lY  y = s  
I 

Fig. 44-9 Fig. 44-10 
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9. Find the moment of inertia of the area of a circle of radius r with respect to a line s units from 
its center. 

Take the center of the circle at the origin (see Fig. 44-10). We find first the moment of inertia of the 
circle with respect to the diameter parallel to the given line as 

Then I ,  = I ,  + As2 = (it-' + s z ) A ,  by the parallel-axis theorem. 

10. The moment of inertia with respect to its axis of the solid generated by revolving an arch of 
y = sin 3x about the x axis is I ,  = .rr2/16 = 3V/8. Find the moment of inertia of the solid with 
respect to the line y = 2. 

By the parallel-axis theorem, I ,  = I ,  + 2 'V= 3V/8 + 4V= 35Vl8. 

Supplemen tar y Problems 

11. Find the moment of inertia of the given plane area with respect to the given line or lines. 
( a )  Within y = 4 - xz, x = 0, y = 0; about x axis, y axis 
(6) Within y = 8x3, y = 0, x = 1; about x axis, y axis 
( c )  Within x' -t y 2  = a'; about a diameter 
( d )  Within y' = 4x, x = 1 ;  about x axis, y axis 
( e )  Within Jx' + 9y' = 36; about x axis, y axis 

Ans. 128A 135; 4 A  15 
Ans. 128A/15; 2Al3  
Ans. a 2 1 4  
Ans. 4 A l 5 ;  3Al7  
Ans. A ;  9 A l 4  

12. Use the results of Problem 1 1  and the parallel-axis theorem to obtain the moment of inertia of the given 
area with respect to the given line: (a )  within y = 4 -  x', y = 0 ,  x = 0, about x = 4; (6) within 
x- + y -  = a-, about a tangent; ( c )  within y 2  = 4x, .r = 1 ,  about x = 1. 

A m .  

7 7 7  

( a )  84A/S;  ( 6 )  5a2A/4; ( c )  10Al7 

13. Find the moment of inertia with respect to its axis of the solid generated by revolving the given plane 
area about the given line: 
( a )  Within y = 4x - x', y = 0; about x axis, y axis (6) Within y' = 8x, x = 2;  about x axis, y axis 
(c) Within Jx' + 9y' = 36; about x axis, y axis ( d )  Within x' + y' = a'; about y = 6, 6 > a 

Ans. ( a )  128W21, 32V/5; ( 6 )  16V/3, 2OV/Y; (c )  8Vl5, 18V/5; ( d )  (6' + :a')V 

14. Use the parallel-axis theorem to obtain the moment of inertia of: (a )  a sphere of radius r about a line 
tangent to i t ;  (6) a right circular cylinder about one of its elements. Ans. (a )  7r'V/S; ( b )  3r2V/2 

15. Prove: The moment of inertia of a plane area with respect to a line L perpendicular to its plane (or with 
respect to the foot of that perpendicular) is equal to the sum of its moments of inertia with respect to any 
two mutually perpendicular lines in the plane and through the foot of L.  

16. Find the polar moment of inertia I,, (the moment of inertia with respect to the origin) of: ( a )  the triaogle 
bounded by y = 2x, y = 0 ,  x = 4; (6) the circle of radius r and center at the origin; ( c )  the circle 
x' - 2rx + y' = 0; ( d )  the area bounded by the line y = x and the parabola y z  = 2x. 

Ans. ( a )  I,, = I ,  + I ,  = 56A/3;  ( 6 )  $r 'A; ( c )  3 r 2 / 2 ;  ( d )  72A/35 



Chapter 45 

0 

t 

Fluid Pressure 

PRESSURE is defined as force per unit area: 

Surface of Liquid 
2 

force acting perpendicular to an area 
= area over which the force is distributed 

The pressure p on a horizontal surface of area A due to a column of fluid of height h resting on 
it is p = wh, where w =weight of fluid per unit of volume. The force on this surface is 
F = pressure x surface area = whA. 

At any point within a fluid, the fluid exerts equal pressures in all directions. 

FORCE ON A SUBMERGED PLANE AREA. Fig. 45-1 shows a plane area submerged vertically in 
a liquid of weight w pounds per unit of volume. Take the area to be in the x y  plane, with the x 
axis in the surface of the liquid and the positive y axis directed downward. Divide the area into 
strips (always parallel to the surface of the liquid), and approximate each with a rectangle (as in 
Chapter 39). 

I V  

Fig. 45-1 

Denote by h the depth of the upper edge of the representative rectangle of the figure. The 
force exerted on this rectangle of width A k y  and length xk = g( y k )  is w Y k g (  y k )  A k y ,  where Yk 
is some value of y between h and h + A k y .  The total force on the plane area is, by the theorem 
of Bliss, 

Hence, the force exerted on a plane area submerged vertically in a liquid is equal to the product 
of the weight of a unit volume of the liquid, the submerged area, and the depth of the centroid 
of the area below the surface of the liquid. This, rather than a formula, should be used as the 
working principle in setting up such integrals. 

297 
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Solved Problems 

1. Find the force on one face of the rectangle submerged in water as shown in Fig. 45-2. Water 
weighs 62.5 lb/ft3. 

The submerged area is 2 x 8 = 16 ft’, and its centroid is 1 ft  below the water level. Hence, 

F =  specific weight x area x depth of centroid = 62.5 lb/ft3 x 16 ft’ x 1 ft = 1O00 Ib 

Surface of Water 
t 2’ 

Fig. 45-2 Fig. 45-3 

2. Find the force on one face of the rectangle submerged in water as shown in Fig. 45-3. 

62.5 Ib/ft3 x 90 ft2 x 5 ft  = 28.125 Ib. 
The submerged area is 90ft2, and its centroid is 5 ft  below the water level. Hence, F = 

3. Find the force on one face of the triangle shown in Fig. 45-4. The units are feet, and the liquid 
weighs 50 lb/ft3. 

First solution: The submerged area is bounded by the lines x = 0, y = 2 ,  and 3x + 2y  = 10. The force 

exerted y n  the approximating rectangle of area x Ay and depth y is wyx Ay = wy 7 A y .  Then 

F = w l  Y 3  d y  = 9 w  = 450 lb. 

Second solution: The submerged area is 3 ft2, and its centroid is 2 + f ( 3 )  = 3 ft below the surface of 
the liquid. Hence, F = 50(3 ) (3 )  = 450 Ib. 

10 - 2y 

10 - 2y 

0 Surfaceof Liquid z Surface of Water X 

Fig. 45-4 

0 

3 

Fig. 45-5 

4. A triangular plate whose edges are 5, 5, and 8 f t  long is placed vertically in water with its 
longest edge uppermost, horizontal, and 3 ft below the water level. Calculate the force on a 
side of the plate. 

First solution: Choosing the axes as in Fig. 45-5, we see that the required force is twice the force on 
the area bounded by the lines y = 3 ,  x = 0, and 3x + 4y  = 24. The area of the approximating rectangle is 
x A y ,  and its mean depth is y .  Hence AF = wyx Ay = wy(8  - 4 y / 3 )  Ay and 

F = 2 w [  y ( 8 -  i y ) d y = 4 8 w = 3 0 0 0 I b  
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Second solution: The submerged area is 12 ft2, and its centroid is 3 + $ ( 3 )  = 4 ft below the water 
level. Hence F = 62.5( 12)(4)  = 3000 Ib. 

5. 

6. 

7. 

Find the force on the end of a trough in the form of a semicircle of radius 2 ft, when the 
trough is filled with a liquid weighing 60 lb/ft3. 

With the coordinate system chosen $s in Fig. 45-6, the force on the approximating rectangle is 

wyx A y  = w y v q  A y .  Hence F = 2 w  y d q  d y  = w = 320 Ib. 

Surface of Liquid (2,O) 
\ I / 

I 14-Y / 

0 

Fig. 45-6 Fig. 45-7 

A plate in the form of a parabolic segment of base 12 ft and height 4 ft is submerged in water 
so that its base is at the surface of the liquid. Find the force on a face of the plate. 

With the coordinate system chosen as in Fig. 45-7, the equation of the parabola is x2 = 9 y .  The area 
of the approximating rectangle is 2x A y ,  and the mean depth is 4 - y .  Then 

AF = 2 w ( 4  - y ) x  Ay  = 2w(4  - y ) ( 3 f i  A y )  and F = 6 w  Io4 ( 4  - y ) f i  d y  = ? w  = 3200 1b 

Find the force on the plate of Problem 6 if it is partly submerged in a liquid weighing 48 lb/ft3 
so that its axis is parallel to and 3 ft below the surface of the liquid. 

With the coordinate system chosen as in Fig. 45-8, the equation of the parabola is y 2  = 9 x .  The area 
of the approximating rectangle is ( 4 - x ) A y ,  its mean depth is 3 - y ,  and the force on it is A F =  
w(3  - y ) ( 4  - x) A y  = w ( 3  - y ) ( 4  - y 2 / 9 )  A y .  Then 

Fig. 45-8 
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Supplementary Problems 

8. A 6-ft by 8-ft rectangular plate is submerged vertically in a liquid weighing w Ib/ft3. Find the force on 
one face 
(a )  If the shorter side is uppermost and lies in the surface of the liquid 
(6) If the shorter side is uppermost and lies 2 ft  below the surface of the liquid 
(c) If the longer side is uppermost and lies in the surface of the liquid 
( d )  If the plate is held by a rope attached to a corner 2 ft below the liquid surface 

Ans. ( a )  192w Ib; (6) 288w lb; (c) 144w Ib; ( d )  336w Ib 

9. Assuming the x axis horizontal and the positive y axis directed downward, find the force on a side of 
each of the following areas. The dimensions are in feet, and the fluid weighs w Ib/ft3. 
(a) Within y = x2,  y = 4; fluid surface at y = 0 
( 6 )  Within y = x', y = 4; fluid surface at y = -2  
( c )  Within y = 4 - x2, y = 0; fluid surface at y = 0 
( d )  Within y = 4 - x2, y = 0; fluid surface at y = -3 
(e) Within y = 4 - x2,  y = 2; fluid surface at y = - 1 

Ans. 1 2 8 ~ 1 5  lb 
Am.  704w/15 Ib 
Ans. 256~115 lb 
Ans. 736w/15 Ib 
Am.  152flwl15 lb 

10. A trough of trapezoidal cross section is 2 f t  wide at the bottom, 4 ft wide at the top, and 3 ft  deep. Find 
the force on an end ( a )  if it is full of water; (6) if it  contains 2 ft  of water. 

Ans. ( a )  750 Ib; ( 6 )  305.6 lb 

11. A circular plate of radius 2 f t  is lowered into a liquid weighing w Ib/ft3 so that its center is 4 f t  below the 
surface. Find the force on the lower half of the plate and on the upper half. 

A ~ s .  ( 8 ~  + 1 6 / 3 ) ~  Ib; ( 8 ~  - 1 6 / 3 ) ~  Ib 

12. A cylindrical tank 6 f t  in radius is lying on its side. If it contains oil weighing w Ib/ft3 to a depth of 9 ft ,  
find the force on an end. Am. ( 7 2 ~  + 8 1 f i ) w  Ib 

13. The center of pressure of the area of Fig. 45-1 is that point (X, y )  where a concentrated force of 
magnitude F would yield the same moment with respect to any horizontal or vertical line as the 
distributed forces. 

( a )  Show that F i  = i w  1; y x 2  dy  and Fp = w y2x d y .  

(6) Show that the depth of the center of pressure below the surface of the liquid is equal to the moment 
of inertia of the area divided by the first moment of the area, each with respect to a line in the 
surface of the liquid. 

14. Use part ( 6 )  of Problem 13 to find the depth of the center of pressure below the surface of the liquid in 
(a )  Problem 5; ( 6 )  Problem 6; (c) Problem 7; ( d )  Problem 9(a); ( e )  Problem 9(6). 

Ans. ( a )  3 ~ 1 8 ;  (6) 7;  (c) g; ( d )  $; ( e )  3 



Chapter 46 

Work 

CONSTANT FORCE. The work W done by a constant force F acting over a directed distance s 
along a straight line is Fs units. 

VARIABLE FORCE. Consider a continuously varying force acting along a straight line. Let x 
denote the directed distance of the point of application of the force from a fixed point on the 
line, and let the force be given as some function F ( x )  of x .  To find the work done as the point 
of application moves from x = a to x = b (Fig. 46-1): 

1. 

2. 

Divide the interval a 5 x 5 b into n subintervals of length A k x ,  and let x k  be any point 
in the kth subinterval. 
Assume that during the displacement over the kth subinterval the force is constant and 
equal to F ( x , ) .  The work done during this displacement is then F ( x , ) A , x ,  and the 

total work done by the set of n assumed constant forces is given by F ( x k ) A , x .  

Increase the number of subintervals indefinitely in such a manner that each A k x + O  
and apply the fundamental theorem to obtain 

n 

k =  1 
3. 

W =  lim F ( x k )  A k x  = F(x) dx 
k =  1 n-+m 

Solved Problems 

1. 

2. 

Within certain limits, the force required to stretch a spring is proportional to the stretch, the 
constant of proportionality being called the modulus of the spring. If a given spring at its 
normal length of 10 inches requires a force of 25 lb to stretch it $ inch, calculate the work done 
in stretching it from 11 to 12 inches. 

Let x denote the stretch; then F(x)  = kx. When x = $ ,  F ( x )  = 25; hence 25 = k, so that k = 100 and 
F ( x )  = 10ox. 

The work corresponding to a stretch Ax is lOOx Ax, and the required work is W =  lOOx dx = 6' 
150 in-lb. 

The modulus of the spring on a bumping post in a freight yard is 270,000 Ib/ft. Find the work 
done in compressing the spring 1 inches. 

Let x be the displacement of the free end of the spring in feet. .Il;pFn F ( x )  = 27O,OOOx, and the work 

corresponding to a displacement Ax is 270,000~ Ax. Hence, W =  1, 270,000~ dx = 937.5 ft-lb. 
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3. A cable weighing 3 lb/ft is unwinding from a cylindrical drum. If 50 ft are already unwound, 
find the work done by the force of gravity as an additional 250ft are unwound. 

300 

Let x = length of cable unwound at any time. Then F ( x )  = 3x and W =  3x dx = 131,250 ft-lb. 

4. A 100-ft cable weighing 5 lb/ft supports a safe weighing 500 lb. Find the work done in winding 
80 ft of the cable on a drum. 

Let x denote the length of cable that has been wound on the drum. The total weight (unwound cable 
and safe) is 500 + 5(100 - x )  = 1000 - 5 x ,  and 

(1000 - 5x )  A x .  Thus, the required work is W =  

work done in raising the safe a distance A x  is 

(1000 - 5x )  dx = 64,000 ft-lb. 

5. A right circular cylindrical tank of radius 2 ft and height 8 ft is full of water. Find the work 
done in pumping the water to the top of the tank. Assume that the water weighs 62.5 lb/ft3. 

First solution: Imagine the water being pushed up by means of a piston that moves upward from the 
bottom of the tank. Figure 46-2 shows the piston when it is y ft from the bottom. The lifting force, being 
equal to the weight of the water remaining on the piston, is approximately F( y) = n r 2 w ( 8  - y )  = 

4nw(8 - y ) ,  and the work corresponding to  a displacement A y  of the piston is approximately 
47rw(8 - y )  A y .  The work done in emptying the tank is then 

(8 - y )  d y  = 128nw = 128~(62.5) = 8 0 0 0 ~  ft Ib 

Second solution: Imagine that the water in the tank is sliced into n disks of thickness Ay, and that 
the tank is to be emptied by lifting each disk to the top. For the representative disk of Fig. 46-3, whose 
mean distance from the top is y ,  the weight is 4nw A y  and the work done in moving it to the top of the 
tank isK 4nwy A y .  Summing for the n disks and applying the fundamental theorem, we have W =  

4 n w  1, y dy = 128nw = 8 0 0 0 ~  ft-lb. 

6. The expansion of a gas in a cylinder causes a piston to move so that the volume of the 
enclosed gas increases from 15 to 25 in3. Assuming the relation between the pressure 
( p  lb/in’) and the volume (U in’) to be P U ’ . ~  = 60, find the work done. 

If A denotes the area of a cross section of the cylinder, p A  is the force exerted by the gas. A volume 
increase AV causes the piston to move a distance A v l A ,  and the work corresponding to  this displacement 

is p A  - = 7 A V .  Then, 
AV 60 
A V  

= 9.39 in-lb 
2s 
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7. A conical vessel is 12 ft across the top and 15 ft tall. If it contains a liquid weighing w lb/ft3 to 
a depth of 10 ft, find the work done in pumping the liquid to a height 3 ft above the top of the 
vessel. 

Consider the representative disk in Fig. 46-4 whose radius is x ,  thickness is Ay, and mean distance 
from the bottom of the vessel is y.  Its weight is nwx2 Ay, and the work done in lifting it to the required 
height is nwx2( 18 - y) Ay. 

2 
5 25 

so x = - y. Then W = y2(18 - y) dy = 560nw ft-lb. 
6 

From similar triangles, x_ = - * 
y 15’ 

Supplementary Problems 

8. If a force of 80 lb stretches a 12-ft spring 1 ft, find the work done in stretching it ( a )  from 12 to 15 ft; (6) 
from 15 to 16 ft. Ans. (a )  360 ft-lb; (b )  280 ft-lb 

9. Two particles repel each other with a force that is inversely proportional to the square of the distance 
between them. If one particle remains fixed at a point on the x axis 2 units to the right of the origin, find 
the work done in moving the second along the x axis to the origin from a point 3 units to the left of the 
origin. Ans. 3k/10 

10. The force with which the earth attracts a weight of w pounds at a distance s miles from its center is 
F = (4000)2w/s2, where the radius of the earth is taken as 4000 mi. Find the work done against the force 
of gravity in moving a 1-lb mass from the surface of the earth to a point 1000 mi above the 
surface. Ans. 800 mi-lb 

11. Find the work done against the force of gravity in moving a rocket weighing 8 tons to a height 200 mi 
above the surface of the earth. Ans. 32,000/21 mi-tons 

12. Find the work done in lifting 1000 lb of coal from a mine 1500 ft deep by means of a cable weighing 
2 lb/ft. Ans. 1875 ft-tons 

13. A cistern is 10 ft square and 8 ft deep. Find the work done in emptying it over the top if (a) it is full of 
water; (6) it is three-quarters full of water. Ans. ( a )  200,000 ft-lb; (b )  187,500 ft-lb 

14. A hemispherical tank of radius 3 ft is full of water. (a )  Find the work done in pumping the water over 
the edge of the tank. (b )  Find the work done in emptying the tank through an outlet pipe 2 ft above the 
top of the tank. Ans. ( a )  3976 ft-lb; ( b )  11,045 ft-lb 
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15. How much work is done in filling an upright cylindrical tank of radius 3 ft and height 10 ft with liquid 
weighing w lb/ft3 through a hole in the bottom? How much if the tank is horizontal? 

Aw. 4 5 0 ~ ~  ft-lb; 2 7 0 ~ ~  ft-lb 

16. Show that the work done in pumping out a tank is equal to the work that would be done by lifting the 
contents from the center of gravity of the liquid to the outlet. 

17. A 200-lb weight is to be dragged 60 ft up a 30" ramp. If the force of friction opposing the motion is Np, 
where p = 1 /fi is the coefficient of friction and N = 200 cos 30" is the normal force between weight and 
ramp, find the work done. Am. 12,000 ft-lb 

18. Solve Problem 17 for a 45" ramp with the coefficient of friction p = 1 /fi. Am.  6000( 1 + fi) ft-lb 

19. Air is confined in a cylinder fitted with a piston. At a pressure of 20 lb/ft2, the volume is 100 ft'. Find the 
work done on the piston when the air is compressed to 2 f t3  (a) assuming p u  = constant; ( b )  assuming 
pu'  ' = constant. Am. (a) 7824 ft-lb; ( 6 )  18,910 ft-lb 



Chapter 47 

Length of Arc 

THE LENGTH OF AN ARC A B  of a curve is by definition the limit of the sum of the lengths of a set 
of consecutive chords AP, ,  P I P 2 , .  . . , P , - , B ,  joining points on the arc, when the number of 
points is indefinitely increased in such a manner that the length of each chord approaches zero 
(Fig. 47-1). 

Y 
B 

Fig. 47-1 

If A(a ,  c) and B(b, 
f ’ ( x )  are continuous on 

Similarly, if A(a,  c) 

d )  are two points on the curve y = f ( x ) ,  where f ( x )  and its derivative 
the interval a 5 x 5 b, the length of arc AB is given by 

and B(6,  d )  are two points on the curve x = g ( y ) ,  where g ( y )  and its 
derivative with respect to y are continuous on the interval c I y I d ,  the length of arc AB is 
given by 

s = I A B d s = r j / - d y  

If A(u = u l )  and B(u = u 2 )  are two points on a curve defined by the parametric equations 
x = f ( u ) ,  y = g(u), and if conditions of continuity are satisfied, the length of arc AB is given by 

(For a derivation, see Problem 1.) 

Solved Problems 

1. Derive the arc-length formula s = 

Let the interval a 5 x 5 6 be divided into subintervals by the insertion of points to = a, t l ,  
t2,  . . . , t,-,, tn = 6, and erect perpendiculars to determine the points PO = A ,  P , ,  P 2 ,  . . . , P , - , ,  
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2. 

3. 

4. 

5. 

6. 

P, = B on the arc as in Fig. 47-2. For the representative chord of the figure, 

Pk - Pk = V ( A k X ) '  ( A k y ) 2  = \il + ( 2) ' AkX 

By the law of the mean (Chapter 26), there is at least one point, say x = x k ,  on the arc Pk- ,Pk  where the 
slope of the tangent f ' ( x k )  is equal to the slope A k y / A k x  of the chord Pk-lPk. Thus, 

P k  - 1 P ,  = v1 + [ f ' ( x &  )]' for 6 k  - 1 < x k  < 6 k  

and, using the fundamental theorem, we have 

Find the length of the arc of the curve y = x3'2 from x = 0 to x = 5 .  

Since d y l d x  = ; x 1 l 2 ,  

Find the length of the arc of the curve x = 3y3" - 1 from y = 0 to y = 4. 

Since d x / d y  = % y ' " ,  

s = /a dy = 1; d q  dy = & (82m - 1) units 

Find the length of the arc of 24xy = x4 + 48 from x = 2 to x = 4. 

17 - dy = - X' - 16 dy 1 x 4  + 16 
8x2 and 1 f (x) = 64 (7) . Then s = 8 ( x 2  + 5) dx = - 6 units. 

Find the length of the arc of the catenary y = &(ex/" + e - x ' a )  from x = 0 to x = U .  

Find the length of the arc of the parabola y 2  = 12x cut off by its latus rectum. 
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h Y  The :equired length is twice that from the point (0,O) to the point (3,6). We have - = - and 
36 + y2 dY 6 

. Then 

s = 2( 8 ) j/m dy = 4 [ y j / m  + 18 In ( y + vw)]: 
= 6 [ f i  + In (1 + fi)] units 

7. Find the length of the arc of the curve x = t2, y = t3 from t = 0 to t = 4. 

9 
Here - h = 2 t ,  - dY =3t2, and ( g)2 + ( g)2 = 4t2 + 9t4 = 4t2( 1 + 4 t 2 ) .  Then 

dt dr 

8 
s = Io4 d p  (2t dt) = - 27 (37m - 1) units 

8. Find the length of an arch of the cycloid x = 8 - sin 8, y = 1 - cos 8. 

dx dY (g )  +(%) =2(1-cos8)=4sin2 $8. T h e n s = 2 c r n s i n 2  e d8=[-4c0s:]~ =Sunits. 
4 n  arch is described as 8 varies from 8 = 0 to 8 = 2n. We have - = 1 F~COS 8, - = sin 8, and d8 d8 

Supplementary Problems 

In Problems 9 to 20, find the length of the entire curve or indicated arc. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

y 3  = 8x2 from x = 1 to x = 8 

6xy = x4 + 3 from x = 1 to x = 2 

y = I n x f r o m x = I  t o x = 2 f i  

27y2 = 4(x - 2)’ from (2,O) to (11 ,6f l )  

y = In (ex - l) /e” + 1 from x = 2  to x = 4  

y = In (1 - x’) from x = a to x = 

y = l X 2  - - 1 n x f r o m x = l t o x = e  

y = In cos x from x = n / 6  to x = n / 4  

x = a cos 8, y = a sin 8 

x = e‘ cos t, y = e‘ sin t from t = O to t = 4 

x = In V I +  t2,  y = arctan t from t = o to t = 1 

x = 2cos 8 + cos28 + 1, y = 2sin 8 +sin 28 

Ans, 

Ans. 

Am. 

Ans. 

Ans + 

AnS. 

Am. 

Am. 

Am. 

Am. 

AnS. 

Am. 

( 1 0 4 m  - 125) 127 units 

3 units 

3 - V? + In i(2 + fi) units 

14 units 

In (e4 + 1) - 2 units 

I n ? - $  units 

ze - units 

In (1 + f i ) /V3 units 

2na units 

f i ( e 4  - 1) units 

In (1 + fi) units 

16 units 

1 2  



308 LENGTH OF ARC [CHAP. 47 

21. The position of a point at time t is given as x = $ t 2 ,  y = $ ( 6 t  -k 9)3'2. Find the distance the point travels 
from t = 0 to t = 4. Am. 20 units 

22. Let P(x,  y) be a fixed point and Q ( x  + A x ,  y + A y )  be a variable point on the curve y = f ( x ) .  (See Fig. 
22-1 .) Show that 

23. ( a )  Show that the length of the first-quadrant arc of x = a cos3 8, y = a sin3 8 is 3 a / 2 .  

(b) Show that when the arc length of (a) is computed from x' + yZi3  = we obtain - dr in 

which the integrand is infinite at the lower limit of integration. Definite integrals of this type will be 
considered in Chapter 52. 

0 p 3 '  

24. A problem leading to the so-called curve of pursuit may be formulated as follows: A dog at A( 1 , O )  sees 
his master at (0,O) walking along the y axis and runs (in the first quadrant) to meet him. Find the path 
of the dog assuming that it is always headed toward its master and that each moves at a constant rate, p 
for the master and 9 > p  for the dog. This problem can be solved in Chapter 76. Verify here that the 

( H i n t :  Let P ( a ,  b), for 0 < U < 1, be a position of the dog, and denote by Q the intersection of the y 
axis and the tangent to y = f ( x )  at P. Find the time required for the dog to reach P, and show that the 
master is then at (2.) 

equation y = f ( x )  of the path may be found by integrating y'  = ~ ( x P "  - x-'" 1. 



Chapter 48 

Area of a Surface of Revolution 

THE AREA OF THE SURFACE generated by revolving the arc AB of a continuous curve about a 
line in its plane is by definition the limit of the sum of the areas generated by the n consecutive 
chords AP,  , P I P 2 ,  . . . , P,-IB joining points on the arc when revolved about the line, as the 
number of chords is indefinitely increased in such a manner that the length of each chord 
approaches zero. 

If A(a, c )  and B(b, d) are two points of the curve y = f ( x ) ,  where f ( x )  and f ( x )  are 
continuous and f ( x )  is nonnegative on the interval a 5 x L b (Fig. 48-l), the area of the 
surface generated by revolving the arc AB about the x axis is given by 

When, in addition, f ’ ( x )  f 0 on the interval, an alternative form of (48.1 ) is 

(48.1 ) 

S,  = 27r I A B  y ds = 2 7 ~  y d l +  ($ I 2  dy  (48.2) 

If A(a, c) and B(b,  d )  are two points of the curve x = g( y ) ,  where g( y )  and its derivative 
with respect to y satisfy conditions similar to those listed in the previous paragraph, the area of 
the surface generated by revolving the arc AB about the y axis is given by 

x ds = 2rr Jab x d m  dx dx = 2rr 1; x d q  dy (48.3) 

If A(u  = U,) and B(u = u 2 )  are two points on the curve defined by the parametric equations 
x = f (u) ,  y = g ( u )  and if conditions of continuity are satisfied, the area of the surface generated 
by revolving the arc AB about the x axis is given by 

du du 

and the area generated by revolving the arc AB about the y axis is 

du 

given by 

du 

309 



310 AREA OF A SURFACE OF REVOLUTION [CHAP. 48 

Solved Problems 

1. Find the area of the surface of revolution generated by revolving about the x axis the arc of 
the parabola y 2  = 12x from x = 0 to x = 3. (See Fig. 48-2.) 

. Then dY 6 
dx Y 

Solution using (48.1 ): Here - = - and 1 + 

y +36 
Sr = 27r 1: y dx = 27r 1; d 1 2 x  + 36 dx = 2 4 ( 2 f i  - l ) n  square units 

Y 

. Hence, dx Y 
dY 6 

Solution using (48.2): - = - and 1 + 

v36  + y’ 
6 S . r = 2 n j l : y  dy = [ (36 + y ’ ) ” ’ ] :  = 2 4 ( 2 e  - 1)n square units 

Fig. 48-2 Fig. 48-3 

2. Find the area of the surface of revolution generated by revolving about the y axis the arc of 
x = y from y = 0 to y = 1. 

3 

Using (48.3) and Fig. 48-3, we have 

S, = 2 7r x /* dy = 2 n 1; y ’ d m  dy = [ ( 1 + 9y )3 2 ]  

lr 
= - ( 1 0 a  - 1 )  square units 

27 

3. Find the area of the surface of revolution generated by revolving about the x axis the arc of 
y 2  + 4x = 2 In y from y = 1 to y = 3. 

1 + y 2  32 
Sx = 2 r r  y j l +  ($)? dy = 2 n l  y 7 d y = 7 r 1 3 ( l + y ‘ ) d y =  - 3 7rsquare units 

4. Find the area of the surface of revolution generated by revolving a loop of the curve 
8a2y2 = a2x2 - x4 about the x axis. (See Fig. 48-4.) 

- 2x32 (3a’ - 2x?)2 
- - dy - a’x - 2x3 

and l+(g) ’= l+ 
dx 8a2y 8az(a2 - x ’ )  8a2(u2 - x 2 )  

Here - - 

Hence 

1 
= -!!- l ( 3 a Z  - 2x2)x  dx = - 7ru2 square units 

4a2 4 
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Fig. 48-4 

5. Find th,e area of the surface of revolution generated by revolving about the x axis the ellipse 
X L  y' - + - = l .  
16 4 

6. Find the area of the surface of revolution generated by revolving about the x axis the 
hypocycloid x = U  COS^ 8, y = a sin3 8 (a  > 0). 

dx 
d0 The required surface is generated by revolving the arc from 0 = O  to 0 = n. We have - = 

dY -3a cos2 0 sin 0, - = 3a sin' 0 cos 0, and 
d0 

3a cos Osin O t l O  O <  O <  K ,12 
ds= /-do= { -3a cos 6 sin 8 do ~ r l 2  < 8 < IT 

[recall that ds is intrinsically positive]. Then 
7r /2  

s,= 2n Iomy de dS d0 = 2~ (a sin3 0)(3a cos 8 sin 8) + 2~ (a sin3 8) (-3a COS 8 sin 0 &) d8 

rr 1 2 

= 2(27r) 1) ( a  sin3 0)(3a cos 0 sin 0) d0 = - square units 
5 

7. Find the area of the surface of revolution generated by revolving about the x axis the cardioid 
x = 2 cos 8 - cos 28, y = 2 sin 8 - sin 28. 

The required surface is generated by revolving the arc from 0 = 0 to,O = .TT (Fig. 48-5). We have 

_ -  - -2s inO+2sin28,  - dY = 2cos0-2cos20 ,  andso ( $)' + (2)- = 8( 1 - sin 8 sin 20 - 
dx 
d0 d0 
cos 8 cos 20) = 8( 1 - cos 6 ) .  Then 

S, = 27r Irn (2 sin 0 - sin 2 0 ) ( 2 f i m  do)  

Fig. 48-5 
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8. Derive: S ,  =27r rw+ 1 id')' & dx.  

Let the arc AB be approximated by n chords, as in Fig. 48-1. The representative chord Pkp,Pk, 
and y,, when revolved about the x axis, generates the frustum of a cone whose bases are of radii y ,  

whose slant height is 

P, ,P ,  = v ( A k x ) '  + (Aky) '  = J1 + ( ""')' A k x  = q m  A k x  

(see Problem 1 of Chapter 47), and whose lateral area (circumference of midsection x slant height) is 

A k x  

Y k - I  + y k  v T  s, =27r 2 1 + [f (x )I A k X  

Since f ( x )  is continuous, there exists at least one point X k  o n  the arc Pk . Pk such that 

f ( x k ) =  i ( y k - 1  + Y k ) =  ! [ f ( s k - l ) + f ( 6 k ) l  

Hence, SA = 27rf(Xk)f1 + [ f ' ( x k ) I 2  A k x  and, by the theorem of Bliss, 

s, = lim i sk = lim i 2 7 r f ( x k ) f m  L A X  = 27r r < x > v m  dx 
k = l  n - +  rn k -- I r1- t x 

Supplementary Problems 

In Problems 9 to 18, find the area of the surface generated by revolving the given arc about the given 
axis. (Answers are in square units.) 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

y = mx from x = 0 to x = 2 ;  x axis 

y = + x 3  from x = 0 to x = 3; x axis 

y = f<yJ  from x = 0 to x = 3; y axis 

One loop of 8y' = x'( 1 - 1'); x axis 

y = x 3 / 6  + 1 / 2 x  from x = 1 to x = 2; y axis 

y = In s from x = 1 to x = 7; y axis 

One loop of 9y' = x(3 - x ) ' ;  y axis 

Ans. 4 r n 7 r m  

Ans. 7482- - 1)/9 

Ans. 

A m .  $7r 

Ans. ( 9  + In 2)7r 

Ans. 

Ans. 28 7 r f i  15 

Ans. 

Ans. 647ra213 

Ans. 27rV3(2en + 1) /5  

;7r[9d@ + In (9 + m)] 

[ 3 4 f i  + In (3 + 2 f i ) ] 7 r  

y = a cosh x / a  from x = - a  to x = a ;  x axis irra2(e2 - e-' + 4) 

An arch of x = a(0 - sin O),  y = U (  1 - cos 0); x axis 

x = e' cos t ,  y = e' sin t from t = O to t = i 7r; x axis 

Find the surface area of a zone cut from a sphere of radius r by two parallel planes, each at a distance $ a  
from the center. Ans. 27rar square units 

Find the surface area cut from a sphere of radius r by a circular cone of half angle a with its vertex at the 
center of the sphere. Ans. 27rr'( 1 - cos a)  square units 



Chapter 49 

Centroids and Moments of Inertia of 
Arcs and Surfaces of Revolution 

CENTROID OF AN ARC. The coordinates (X, y) of the centroid of an arc AB of a plane curve of 
equation F ( x ,  y )  = 0 or x = f(u), y = g(u)  satisfy the relations 

(See Problems 1 and 2.) 

SECOND THEOREM OF PAPPUS. If an arc of a curve is revolved about an axis in its plane but 
not crossing the arc, the area of the surface generated is equal to the product of the length of 
the arc and the length of the path described by the centroid of the arc. (See Problem 3.) 

MOMENTS OF INERTIA OF AN ARC. The 
axes of an arc AB of a curve (a piece of 

(See Problems 4 and 5.) 

moments of inertia with respect to the coordinate 
homogeneous fine wire, for example) are given by 

and I y  = J  x2 ds 
A B  

CENTROID OF A SURFACE OF REVOLUTION. The coordinate X of the centroid of the surface 
generated by revolving an arc AB of a curve about the x axis satisfies the relation 

YS, = 2 n  I xy ds 
A B  

MOMENT OF INERTIA OF A SURFACE OF REVOLUTION. The moment of inertia with respect 
to the axis of rotation of the surface generated by revolving an arc AB of a curve about the x 
axis is given by 

I ,  = 2 n  IAB y 2 ( y  ds) = 2 7 ~  IAB y3 ds 

Solved Problems 

1. Find the centroid of the first-quadrant arc of the circle x2 + y 2  = 25. (See Fig. 49-1.) 

5 
2 

dY x 
dx Y 

Here - = - -  and 1 + Since s =  - T, we have 

T V = ~ , ~  y d l +  ( g)2 dx = l 5  dx = 2 5  

313 
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Fig. 49-1 Fig. 49-2 

Hence, = lO/.rr. By symmetry, X = 9 and the coordinates of the centroid are (lO/.rr, lO/w). 

2. Find the centroid of a circular arc of radius r and central angle 28. 

Take the arc as in Fig. 49-2, so that X is identicfl with the abscissa of the centroid of the upper half 
h Y  r2 of the arc and 9 = 0. Then - = - - and 1 + - 
dY x 

= -;i. For the upper half of the arc, s = r6 and 

Then X = (r sin 0)  18. Thus, the centroid is on the bisecting radius at a distance (r sin 6 )  /8 from the center 
of the circle. 

3. Find the area of the surface generated by revolving the rectangle of dimensions a by b about 
an axis that is c units from the centroid (c > a, b). 

The perimeter of the rectangle is 2(a + b), and the centroid describes a circle of radius c (Fig. 49-3). 
Then S = 2(a + 6)(272c) = 4 ~ ( a  + b)c square units by the second theorem of Pappus. 

c 
I 

Fig. 49-3 Fig. 49-4 

4. Find the moment of inertia of the circumference of a circle with respect to a fixed diameter. 

Take the circle as in Fig. 49-4, with the fixed diameter along the x axis. The required moment is four 

times that of the first-quadrant arc. Since - dY = - x - and jlicz,' = and s = 27rr, we have 
h Y  

r 

Y 
1, = 4 lo' y 2  ds = 4 /or y 2  - dr = 4r I]: dx 

5. Find the moment of inertia with respect to the x axis of the hypocycloid x = asin3 8, 
y = acos 8. 3 
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Fig. 49-5 

The required moment is four times that of the first-quadrant arc. We have h l d 8  = 3a sin2 8 cos 8 
and dyld8 = -3a  cos’ 8 sin 8, and 

1, = 4 I y2 ds = 12a3 Iom’2 cos6 8 sin 8 COS 8 d8 = $U’ 

Supplementary Problems 

6. Find the centroid of 
( a )  The first-quadrant arc of x2” + y’” = a2”, using s = 3 a / 2  
( 6 )  The first-quadrant arc of the loop of 9y’ = x(3 - x)’,  using s = 2 d  
(c) The first arch of x = a(8 - sin 8), y = a(1 -cos 0)  
( d )  The first-quadrant arc of x = a cos3 8, y = a sin’ 8 

Am. ( 2 a / 5 , 2 a / 5 )  
Am. (7/5,  d / 4 )  

Am. ( T U ,  4 a / 3 )  
Ans. same as (a )  

7. Find the moment of inertia of the given arc with respect to the given line or lines: 
(a )  Loop of 9y2 = x(3 - x ) ~ ;  x axis, y axis (Use s = 4 ~ . )  Am. 
(b) y = a cosh ( x / a )  from x = 0 to x = a;  x axis Am. (a’ + fs’)s 

I ,  = 8s/35; I,, = 99~135  

8. Find the centroid of a hemispherical surface. Am. y =  $ r  

9. Find the centroid of the surface generated by revolving 
(a) 4y + 3x = 8 from x = 0 to x = 2 about the x axis 
(b) An arch of x = a(8 - sin 8), y = a(1 - cos 0) about the y axis 

Am. X = 4 / 5  
Am. y = 4 a / 3  

10. Use the second theorem of Pappus to obtain 
(a )  The centroid of the first-quadrant arc of a circle of radius r 
(6) The area of the surface generated by revolving an equilateral triangle of side a about an axis that is c 

Am. ( 2 r / ~ ,  2 r l n )  

units from its centroid. Am. 67rac square units 

11. Find the moment of inertia with respect to the axis of rotation of 
(a )  The spherical surface of radius r Am. $Sr’ 
(6) The lateral surface of a cone generated by revolving the line y = 2x from x = 0 to x = 2 about the x 

axis Am. 8 s  

12. Derive each of the formulas of this chapter. 



Chapter 50 

Plane Area and Centroid of an Area in 
Polar Coordinates 

THE PLANE AREA bounded by the curve p = f ( 8 )  and the radius vectors 8 = 8, and 8 = O2 is given 
by 

s, .=$I,, p 2 d 8  

When polar coordinates are involved, considerable care must be taken to determine the proper 
limits of integration. This requires that, by taking advantage of any symmetry, the limits be 
made as narrow as possible. (See Problems 1 to 7.) 

CENTROID OF A PLANE AREA. The coordinates (2, 9 )  of the centroid of a plane area bounded 
by the curve p = f ( 8 )  and the radius vectors 8 = O1 and 8 = O2 are given by 

and 

(See Problems 8 to 10.) 

Solved Problems 

1. 
s, 

Derive A = 4 I, p2  do. 

Let the angle BOC of Fig. 50-1 be divided into n parts by rays OP,, = OB, OP,,  OP,, . . . , Of',-, , 
OP, = OC. The figure shows a representative slice P k - l O P k  of central angle A k 8  and its approximating 
circular sector R k - , O R k  of radius p k ,  of central angle Ak8, and (see Problem 15(r) of Chapter 39) of area 

Fig. 50-1 

316 
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$ p i  A k 8  = ; [ f ( O k ) ] '  A,@ Hence, by the fundamental theorem, 
a, a, 

n- + OL k = l  01 01 
A = lim i $[f(8k)]' A,e  = 4 1 [f(e)l' do = t \ p2 de 

2. Find the area bounded by the curve p 2  = a2 cos 28. 

From Fig. 50-2 we see that the required area consists of four equal pieces, one of which is swept 
over as 8 varies from 8 = 0 to 8 = v. Thus, 

A = 4 ( i  p2 de)  = 2a2 \0m'4 cos 2e de = [a2 sin 2el;/4 = a2 square units 

Fig. 50-2 

Since portions of the required area lie in each of the quadrants, it might appear reasonable to use, 
for the required area, 

; c" p2 de = fa2 cw cos 2e de = [ fa2 sin 2el:" = 0 

To see why these integrals give incorrect results, consider 

On the intervals [0, n / 4 ]  and [377/4, n] ,  p = a m 0  is real; thus the first and third integrals give the 
areas swept over as 8 ranges over these intervals. But on the interval [ n / 4 , 3 n / 4 ] ,  p 2  € 0  and p is 

imaginary. Thus, while \n/4 a2 cos 28 de is a perfectly valid integral, it cannot be interpreted here as 
an area. 

3 n i 4  

3. Find the area bounded by the three-leaved rose p = a cos 38. 

from 0 to v /6 .  Hence, 
The required area is six times the shaded area in Fig. 50-3, that is, the area swept over as 8 varies 

a, 

01 
A = 6( 1 I p 2  do)  = 3 c'6 a' cos2 38 d8 = 3a2 [ I 6  ($  + $ cos 68) d8 = $ nu2  square units 

4. Find the area bounded by the limacon p = 2 + cos 8 in Fig. 50-4. 

The required area is twice that swept over as 8 varies from 0 to T: 

In 9; 
1 1  
2 4  

= [ 4e + 4 sin e + - e + - sin 2e = - square units 
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Fig. 50-3 Fig. 50-4 Fig. 50-5 

5. Find the area inside the cardioid p = 1 + cos 8 and outside the circle p = 1. 

In Fig. 50-5, area ABC = area OBC - area OAC is one-half the required area. Thus, 

A = 2[ 4 Llm” (1 + cos 8)’ do] - 2[ 5 k:’* (1)* do]  

= L)m’2 (2  cos 8 + cos’ 8) do = 2 + lr square units 

6. Find the area of each loop of p = + cos 8. (See Fig. 50-6.) 

Larger loop: The required area is twice that swept over as 8 varies from 0 to 2 ~ 1 3 .  Hence, 

lr 3 v 3  A = Z[ i / :T’3 ($  + cos 8 ) 2  do]  = l:m’3 (i + cos 8 + cos’ 8 

Smaller loop: The required area is twice that swept over as 8 varies from 2 ~ 1 3  to T. Hence, 

Fig. 50-6 Fig. 50-7 

7. Find the area common to the circle p = 3 cos 8 and the cardioid p = 1 + cos 8. 

Area OAB in Fig. 50-7 consists of two portions, one swept over by the radius vector p = 1 + cos 8 as 
8 varies from 0 to v / 3 ,  and the other swept over by p = 3cos 8 as 8 varies from lr13 to n/2. Hence 

8. Derive the formulas AX= p3cos8 do, Ay= 3 p3sin 8 do, where (X, j )  are the I:: 6 
coordinates of the centroid of the plane area BOC of Fig. 50-1. 
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Consider the representative approximating circular sector R, -, OR, and suppose, for convenience, 
that OT, bisects the angle Pk-lOPk. To approximate the centroid C,(X,, y k )  of this sector, consider it 
to be a true triangle. Then its centroid will lie on OT, at a distance $ p k  from 0; thus, approximately, 

ik = $ pk cos e, = $ f(e,) cos 8, and y k  = 3 f(8,) sin 8, 

Now the first moment of the sector about the y axis is 

f k (  $ p i  A k 8 )  = $ p k  cos 8 k (  $ p’, A k 8 )  = ‘3 [f(8k)]’ cos 8, h k 8  

and, by the fundamental theorem, 

A i  = lim 2 f [ f ( O , ) ] ’  COS 8, Ak8 = ‘3 
k = l  n - t m  

It is left as an exercise to obtain the formula for Ay. 

2p, sin Ak8 
Note: From Problem 8 of Chapter 42, the centroid of the sector R , - , O R ,  lies on OT, at a distance 

from 0. You may wish to use this to derive the formulas. 
3(t  

9. Find the centroid of the area of the first-quadrant loop of the rose p = sin 28, shown in Fig. 
50-8. 

A = [’2 sin2 28 do = 1 [ 8 - sin 481;” = 4 

sin3 28 COS 8 d8 = so 

16 
= 8 [ I 2  (I  - COS’ e) cos4 8 sin 8 de = - 

3 105 

from which X = 128 /105~ .  By symmetry, = 128 /105~ .  The coordinates of the centroid are 
(128/ 1 0 h ,  128 / 1 0 5 ~ ) .  

Fig. 50-8 Fig. 50-9 

in Fig. 
6 

1 + cos 8 
10. Find the centroid of the first-quadrant area bounded by the parabola p = 

50-9. 

1 
d8 = 9”2 sec4 - 2 8 d8 

36 n / 2  

=’( ( l + t a n ’ j 8 ) s e c 2 i 8 d 8 = 9  1 1 n l 2  

2 0  

e n i 2  

d8 = 9 1 (2 sec4 - sec6 !) do 
2 

so 
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216 sin 0 
d0 = 27 

Hence X = 2 and j = :, and the centroid is (6/5,9/4).  

Supplementary Problems 

11. Find the area bounded by each of the following curves. (Answers are in square units.) 
(a) p 2 = 1 + c o s 2 8  Ans. TT ( 6 )  p 2  = a* sin t?( 1 - cos t?) A m .  a2 
(c)  p = 4cos 0 Ans. 4 n  ( d )  p = a cos 20 Ans. $ v a 2  
( e )  p = 4 sin? t? Ans. 6 v  (f) p = 4(1 -sin 6 )  Ans. 24n 

12. Find the area described in each of the following. (Answers are in square units.) 
(a) Inside p = cos 0 and outside p = 1 - cos 8 
(b) Inside p = sin 0 and outside p = 1 - cos 0 
(c) Between the inner and outer ovals of p 2  = a'( 1 + sin 8) 
(d) Between the loops of p = 2 - 4 sin 0 

Ans. (fl- n / 3 )  
Ans. (1 - n / 4 )  
Ans. 4a2 
Ans. 4(v  + 3 f i )  

13. (a) For the spiral of Archimedes, p = at?, show that the additional area swept over by the nth revolution, 

(6) For the equiangular spiral p = ae', show that the additional area swept over by the nth revolution, 
for n > 2, is n - 1 times that added by the second revolution. 

for n > 2, is eJT times that added by the previous revolution. 

14. Find the centroids of the following areas: 
(a) Right half of p = a(1 - sin 0)  
(b) First-quadrant area of p = 4 sin2 0 
(c) Upper half of p = 2 + cos 0 

A m .  ( 1 6 ~ / 9 n ,  - 5 ~ / 6 )  
Ans. (128/63n, 2048/315v) 
Ans. (17 / 18,80/27n) 

1 6 + 5 n  10 
1 6 + 6 v  ' 8 + 3 ~  

Ans. (- -) ( d )  First-quadrant area of p = 1 + cos 0 

(e) First-quadrant area of Problem 5. 
32+ 15v 22 

Ans. (- 4 8 + 6 n  ' -) 2 4 + 3 ~  

15. Use the first theorem of Pappus to obtain the volume generated by revolving 
(a) p = a( 1 - sin 0)  about the 90" line 
(b) p = 2 + cos 0 about the polar axis 

Ans. 8na3/3 cubic units 
Ans. 4 0 ~ / 3  cubic units 



Chapter 51 

Length and Centroid of an Arc and 
Area of a Surface of Revolution 

in Polar Coordinates 

THE LENGTH OF THE ARC of the curve p =f (8)  from 8 = O1 to 8 = O2 is given by 

(See Problems 1 to 4.) 

CENTROID OF AN ARC. The coordinates (2, 7 )  of the centroid of the arc of the curve p = f (8 )  
from 8 = O1 to 8 = O2 satisfy the relations 

x ~ = x ~ ~ a 3 = ~ ~ p c o ~ e d s = ~ l  s, xds 

(See Problems 5 and 6.) 

THE AREA OF THE SURFACE generated by revolving the arc of the curve p = f ( 8 )  from 8 = 8l to 
8 = O2 about the polar axis is 

Sx=27r y d s = 2 g  ps in8ds  l: l: 
and about the 90" line is 

e, s, 
sY = 27r I, x ds = 27T I,, p cos e ds 

The limits of integration should be taken as narrowly as possible. (See Problems 7 to 10.) 

Solved Problems 

1. Find the length of the spiral p = eze from 8 = 0 to 8 = 27r (Fig. 51-1). 

Here dplde = 2e2' and p 2  + (dp/dO)2 = 5e4'. Hence 
2w 

s = lm v p 2  + (dp/dO)2 do = fi I eze do = 4 f i ( e 4 "  - 1)  units 

2. Find the length of the cardioid p = a(1 - cos 8). 

32 1 
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Fig. 51-1 Fig. 51-2 

The cardioid isedescribed as 8 varies from 0 to 2n (see Fig. 51-2). Since p2 + (dp/d8)2 = 
a’( 1 - cos 8)’ + (a sin 8)’ = 4a2 sin2 48, we have 

2 n  

s = cn v p 2  + (+/tie)* de = 2a I sin f e  de = 8a units 

In this solution the instruction to take the limits of integration as narrow as possible has not been 
followed, since the required length could be obtained as twice that described as 8 varies from 0 to n. 
However, see Problem 3 below. 

3. Find the length of the cardioid p = a(1 - sin O ) ,  shown in Fig. 51-3. 

write 
Here p 2  + (dp /d8 )2  = a2( 1 - sin 8)’ + (-a cos 8)’ = 2a2(sin $8 - cos $8)’. Following Problem 2, we 

s = IO2= V p ’  + (dp /d8 )2  d8 = f i u  Io2* (sin $8 - cos $8) d8 

= [2f iu(-  cos 1 e - sin 1 e)]:“ = 4 f i a  units 

The cardioids of the two problems differ only in their positions in the plane; hence their lengths 
should agree. An explanation for the disagreement is to be found in a comparison of the two integrands 
sin $8 and sin $ 8  - cos $8. The first is never negative, while the second is negative as 8 varies from 0 to 
t n and positive otherwise. By symmetry, the required length in this problem is twice that described as 8 
varies from n/2  to 3 ~ 1 2 .  It may be found as 

3 n / 2  

s = 2 f i a  (sin $8  - cos $8) d8 = [4fia(-cos 48 - sin $8)]zi2 = 8a units 

Fig. 51-3 Fig. 51-4 

4. Find the length of the curve p = a cos4 SO. 

dpld8 = -a  cos3 $ 8  sin $8  and p 2  + (dp/dO)’ = a’ cos6 48. Hence, 
The required length is twice that described as 8 varies from 0 to 2n in Fig. 51-4. We have 

I 

s = 2(a cm cos3 a8 d8 =&[sin $8 - f sin3 a8]:“= F a  units 
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5. 

6. 

7. 

8. 

Find the centroid of the arc of the cardioid p = a(1 - cos 8). Refer to Problem 2 and Fig. 51-2. 

= 0 and the abscissa of the centroid of the entire arc is the same as that for the 
upper half. From Problem 2, half the length of the cardioid is 4a; hence, 

By symmetry, 

and X = -4a/5. The coordinates of the centroid are (- 40/5,0). 

Find the centroid of the arc of the circle p = 2 sin 8 + 4 cos 8 from 8 = 0 to 8 = $ T.  

We can see that the curve is a circle passing through the origin with center (2, 1) and radius fi (see 
Fig. 51-5) by noting that x2 + y2 = p 2  = 2p sin 8 + 4p cos 8 = 2y + 4x, which simplifies to ( x  - 2)2 + ( y - 
1)2 = 5. Also, dp/dO = 2 cos 8 - 4 sin 8 and p 2  + = 20. Since the radius is fi, s = f i 7 r .  Then 

= 4 f i [  1 e - sin 28 + sin2 e ] ; I 2  = 4V3( 7r + 1) 

Hence X = 2(77 + l ) /n  and = (v  + 4)/7r. 

Fig. 51-5 

Find the area of the surface generated by revolving the upper half of the cardioid 
p = a(1- cos 8) about the polar axis. 

From Problem 2, p 2  + (dp/d8)2 = 4a2 sin’ $8. Then 

S, = 2~ [ p sin 8 q p 2  + (dp/d8)2 de = 4 a 2 ~  [ (1 - cos 8 )  sin 8 sin t e  de 

= 16a27r [ sin4 $8 cos 48 de = ya27r square units 

Find the area of the surface generated by revolving the lemniscate p 2  = a2  cos 28 about the 
polar axis. 
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Fig. 51-6 

The required area is twice that generated by revolving the first-quadrant arc (see Fig. 51-6). Since 

n14 a2 a / 4  

S, = 2(2v I p sin 8 - do)  = 4a2v 1 sin 8 d8 = 2u2v(2 - fi) square units 
P 

9. Find the area of the surface generated by revolving a loop of the lemniscate p 2  = U* cos 28 
about the 90" line. 

The required area is twice that generated by revolving the first-quadrant arc: 
n l 4  

U 2  
a 1 4  

Sy = 2(2a  lo p cos 8 - d8) = 4a2a  cos 9 d8 = 2 f i a 2 v  square units 
P 

10. Use the second theorem of Pappus to find the centroid of the arc of the cardioid 
p = ~ ( 1 -  COS 8) from 8 = 0 to 8 = T. 

If the arc is revolved about the polar axis, then according to the theorem, S = 2 n j % .  Substituting 
from Problems 2 and 7 yields 32a2v/5 = 2ay(4a), from which 9 = 4a/5 .  By Problem 5 ,  X = - 4 a / 5  snd 
so the centroid has coordinates (-4a/5,4a/5). 

Supplementary Problems 

11. Find the length of each of the following arcs. 
(a) p = 8' from 8 = o to 8 = 2V3 
(b) p = ee" from 8 = 0 to 8 = 8 
(c) p = COS' (812) Ans. 4 units 
( d )  p = sin3 (813) Ans. 3a12 units 
(e) p = cos4 (8/4) Am. 1613 units 

Am. 5613 units 
Ans. G ( e 4  - 1) units 

(f) P = a / 8  from ( P , ,  0,) to ( p 2 ,  0,) AW.  im'- im'+ a In 
p,(a + vm) 

f l - 2  2(2 + fl)] units 
Am. 2 a ~ 3 [ ~ + 1 n  fl+fl 

(g) p = 2a tan 8 sin 8 from 8 = 0 to 8 = v / 3  

12. Find the centroid of the upper half of p = 8 cos 8. Ans. (4 ,8 /n )  

13. For p = U sin 8 + b cos 8, show that s = v m ,  S, = u v s ,  and S,, = bns.  
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

Find the area of the surface generated by revolving p = 4 cos 8 about the polar axis. 

Ans. 1 6 ~  square units 

Find the area of the surface generated by revolving each loop of p = sin3 (813) about the 90" line. 

Ans. 

Find the area of the surface generated by revolving one loop of p 2  = cos 28 about the 90" line. 

Am. 2 f i ~  square units 

Show that when the two loops of p = cos4 (814) are revolved about the polar axis, they generate equal 
surface areas. 

Find the centroid of the surface generated by revolving the right-hand loop of p 2  = U* cos 28 about the 
polar axis. Am. X = f i u ( f i  + 1)/6 

Find the area of the surface generated by revolving p = sin' (8/2) about the line p = csc 8. 

Am. 8~ square units 

Derive the formulas of this chapter. 

~ / 2 5 6  square units; 513~1256 square units 



Chapter 52 

Improper Integrals 

THE DEFINITE INTEGRAL f ( x )  dx is called an improper integral if either 

The integrand f ( x )  has one or more points of discontinuity on the interval a 5 x 5 6 ,  or 
At least one of the limits of integration is infinite. 

1 .  
2. 

DISCONTINUOUS INTEGRAND. 
ous at x = 6, we define 

If f ( x )  is continuous on the interval a 5 x < 6 but is discontinu- 

b 1 f ( x )  dx = lim [-' f ( x )  dx provided the limit exists 
C-O+ 

If f ( x )  is continuous on the interval a < x S 6 but is discontinuous at x = a ,  we define 

[ f ( x )  dx = lim [+. f ( x )  dx provided the limit exists 

If f ( x )  is continuous for all values of x on the interval a S x S  6 except at x = c, where 
a < c < 6, we define 

[ f ( x )  dx = lim+ l-' f ( x )  dx + lim l+', f ( x )  dx provided both limits exist 

€-+O+ 

b 

' - 0  C ' - + O +  

(See Problems 1 to 6.) 

INFINITE LIMITS OF INTEGRATION. If f ( x )  is continuous 

I f ( x )  dx = U++m lim 1." f ( x )  dx provided 

If f ( x )  is continuous on every interval U 5 x 5 6, we define 

define 
+ X  

r b  r b  

on every interval a 5 x 5 U, we 

the limit exists 

f ( x )  dx = lim f ( x )  dx provided the limit exists 
- x  u-+--m 

If f ( x )  is continuous, we define 

1-y f ( x )  dx = lim f ( x )  dx provided both limits exist U++= 

(See Problems 7 to 13.) 

Solved Problems 

. The integrand is discontinuous at x = 3. We consider 
dx 

1. Evaluate I 
o m  

3 - €  1 
= lirn arcsin - = arcsin 1 = - 7r d G  c-o+ [ g 3 - 6  0 '-PO+ 3 2 

dx - = lim arcsin lim+ J1:' 
€-+O 

326 
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dx 
Show that l2-x is meaningless. 2. 

The integrand is discontinuous at x = 2. We consider 

( l  7 
2 - c  

- lim In - 1 dx 
lim+ 102-' 2-x - c - o +  [ = lim ln - - In - 
E'O c+o+ E 2 

The limit does not exist; so the integral is meaningless. 

dx 
3. Show that is meaningless. 

The integrand is discontinuous at x = 1, a value between the limits of integration 0 and 4 (see Fig. 
52-1). We consider 

= l i m + ( - - l ) +  1 lim (-j+$) 1 
c+o E c , + O  

These limits do not exist. 

Fig. 52-1 

dx l 4  
If the point of discontinuity is overlooked, we obtain 7 = [ - -1 = - This result is 

x - 1 )  x - 1  0 3 '  
absurd because l / ( x  - 1)*  is always positive. 

dx 
4. Evaluate 

The integrand is discontinuous at x = 1 .  We consider 
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5. 

6.  

7. 

8. 

9. 

10. 

ll/ 2 

Show that secxdx is meaningless. 

The integrand is discontinuous at x = 

sec x d x  = lim+ [In (sec x 

The limit does not exist, so the integral is 

f - - z  

lim. 
-z -0 -0 

The integrand is discontinuous at x = 

in- .  We consider 

+ tan x > ~ i - ~  = lim, In [sec ( 4 n- - e)  + tan ( 4 n- - E)]  

meaningless. 
-0 

ln-. We consider 

dx + X  

Evaluate 1, x'+. 
The upper limit of integration is infinite. We consider 

d x  n- from which _ -  
i x  

Evaluate e2,' dx. 

The lower limit of integration is infinite. We consider 

Hence, e2' dr = 2 .  

+ m  

Show that 1 d x / F i s  meaningless. 

The upper limit of integration is infinite. We consider lim d x / f i  = lim [ 2 . / j E ] y =  
U - - . + %  U--.+ 1 

lim ( 2 a  - 2). The limit does not exist. 
U - + =  

Both limits of integration are infinite. We consider 

+r 

- r  11. Evaluate 1) e sin x dx. 
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The upper limit of integration is infinite. We consider 

lim IOU e-1 sin x cix = lim [- ie-x(sin x + cos x)]: = lim [- ie-U(sin U + cos U ) ]  + t 
(I-+= U++- U - + =  

As U+ +", e - u + O  while sin U and cos U vary from 1 to -1. Hence, 

and its asymptotes. (See Fig. 52-2.) Find the area between the curve y 2  = - 
X2 

1 - x 2  
12. 

, as can be seen from the approximating rectangle 
x d u  

The required area is A = 4 

in the figure. Since the integrand is discontinuous at x = 1, we consider 

The required area is 4( 1 )  = 4 square units. 

-2 -1 1 2 I n 
Fig. 52-2 Fig. 52-3 

1 13. Find the area lying to the right of x = 3 and between the curve y = - and the x axis. (See 

Fig. 52-3.) 
x 2  - 1 

Supplementary Problems 

14. Evaluate the integral on the left in each of the following: 

* dx (4 = 2  
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15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

(meaningless) 
dx 

( j )  x l n x d x =  - a  

I d x  
(h) 7 (meaningless) 

Find the area between the given curve and its asymptotes. (Answers are in square units.) 

XJ  4 - x  1 
(c) y2 = - Ans. (a) 47r; (6) 47r; (c) 27r ( b )  Y 2 =  x x(1- x) 

(a) y2 = - 
4 - x 2  

Evaluate the integral on the left in each of the following: 

( a )  / + *  9 = 1 

(meaningless) 

+ m  

( j )  x3e-"dx=6  

Find the area between the given curve and its asymptote. (Answers are in square units.) 

(c) y = x e - x 2 / 2  Ans. (a) 412; (b) d ;  ( c )  2 
8 X 

(4 Y = ( b )  Y = 

1 
Find the area (a) under y = - and to the right of x = 3; (6) under y = ~ and to the right of 

x = 2 .  
x2 -4 x(x - 1)2 

Am. (a) 

Show that the following are meaningless: (a )  the area under y = - from x = 2 to x = -2; (6) the 
area under xy = 9 to the right of x = 1. 

In 5 square units; (6) 1 - In 2 square units 

1 
4 - x 2  

Show that the first-quadrant area under y = e-2x is 4 square unit, and the volume generated by revolving 
the area about the x axis is {7r cubic units. 

Show that when the portion R of the plane under xy = 9 and to the right of x = 1 is revolved about the x 
axis the volume generated is 8 1 7 ~  cubic units but the area of the surface is infinite. 

Find the length of the indicated arc: 
( a )  9y2 = x(3 - x)', a loop 

Am. 

(6) x 2 ' 3  + y2I3 = 

(a) 4 f l  units; (6) 6a units; (c) 2 f l  units 

entire length (c) 9y2 = x2(2x + 31, a loop 

Find the moment of inertia of a circle of radius r with respect to a tangent. 

Show that 

Am. 3r2s/2 

$ diverges for all values of p. 

exists for p < 1 and is meaningless for p L 1. 
dx 

(4 Show that 

(6) Show that l+m $ exists for p > 1 and is meaningless for p 5 1. 
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26. Let f ( x )  5 g(x) be defined and nonnegative everywhere on the interval u 5 x < 6, and let lim- f ( x )  = + 
and lim- g(x)  = + 03. From Fig. 52-4, it appears reasonable to assume that (1) if 

x-b 

g (x)  dr exists so also 
x+b l 

does \ab f ( x )  dx and (2) if [ not exist neither does 1.6 g(x) dr. 

. For 01x < 1, 1 - x4 = (1 - x)(l + x)(l + x') <4(1 - x) and 
' d x  

As an example, consider 

Since I / '  does not exist, neither does the given integral. 
1 <- 114 

1 - x  1 - x 4 '  4 0 1 - x  
1 1 . For 0 < x 5 1 , ~  < - . Since exists so also does the given 

x + f i  fi 
Now consider 16 

integral. 
cos x 

IlFiermine whether or not each of the following exists: (a )  9; ( b )  ['4 7 dx; 
cos x (4 

Am. (a )  and (c) exist 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

Y = o ( 4  

Y = f ( 4  ' J: I 

I 
I 
I 
I 
I 
I A I 
I 

I - I 

-1 I 
. .  

I 
I ! z  - C c - 

I a b 

Fig. 52-4 

I 

a 

Fig. 52-5 

27. Let f ( x )  ~ g ( x )  be defined and nonnegative everywhere on the intern!? x 2 a while 

1. f ( x )  dx and (2) if 

lim f ( x )  = 

lim g(x)  = 0. From Fig. 52-5, it appears reasonable to assume that (1) if 1. g(x)  dx exists so also does 
x+ + a 

+ m  + m  
X 4 +  oc 

+ m  

f ( x )  dr does not exist neither does g(x)  dr. 
1 < 5. Since k+m $ exists so 

1 . For x z 1, 
dx +- 

As an example, consider 1 l / x 4 + 2 x + 6  d x 4 + 2 x + 6  

dx +a 
also does the given integral. 

qztermine whether or not each of the following exists: (a )  
dx 

Am. all exist 



Chapter 53 

Infinite Sequences and Series 

AN INFINITE SEQUENCE {s,} = sl ,  s,, s3, . . . , s,, . . . is a function of n whose domain is the set of 

A sequence {s,} is said to be bounded if there exist numbers P and Q such that P 5 s, 5 Q 

, . . . is bounded since, for all n ,  

A sequence {s,} is called nondecreasing if s1  5 s2 5 s3 5 * - * 5 s, 5 . - + ,  and is called 

{ n : 2 l I  2 ' 3 ' 4 9  

, . . . and {2n - (- 1)") = 3 ,  3, 7, 7, . . . are nondecreasing; and the sequences { :} = 1, i, 3, 

) L+= 

positive integers. (See Chapter 6.) 

for all values of n .  For example, - 2 '  4' ;"- * 7 

1 5  s,, 5 2; but 2, 4, 6 , .  . . , 2n ,  . . . is not bounded. 

2n + 1 
Z n  

3 5 7  

1 4 9  

1 1  

nonincreasing if sI L s2 L s j  L 

16 
5 
1 - 

lim s, = s if for any 
4 ' " '  

positive number E ,  however small, there exists a positive integer m such that whenever n > m, 
then (s - s,,( < E .  If a sequence has a limit, it is called a convergent sequence; otherwise, it is a 
divergent sequence. (See Problems 1 and 2.) 

A sequence {s,,} is said to diverge to GO, and we write lim s, = 00, if, for any positive 
number M ,  however large, there exists a positive integer rn such that, whenever n > rn, then 
ls,I > M .  I f  we replace Is,I > M in this definition by s, > M ,  we obtain the definition of the 
expression lirn s, = +=; and, if we replace Is,I > M by s, < - M ,  we obtain the definition of 

lirn s,, = - m .  

- I s, 2: - - - .  For example, the sequences - = - 

- 

and { - n }  = - 1, -2, -3 ,  -4, . . . are nonincreasing. 

A sequence {s,} is said to converge to the finite number s as limit 

n-++ m 

, I 4  + 1 

, I + +  x 

THEOREMS ON SEQUENCES 

Theorem 53.1 : Every bounded nondecreasing (nonincreasing) sequence is convergent. 

A proof of this basic theorem is beyond the scope of this book. 

Theorem 53.2: Every unbounded sequence is divergent. 

(For a proof, see Problem 3.) 

Theorem 53.3: 
first n terms are altered. 

A number of the remaining theorems are merely restatements of those given in Chapter 7 .  

A convergent (divergent) sequence remains convergent (divergent) after any or  all of its 

Theorem 53.4: 'The limit of a convergent sequence is unique. 

(For a proof, see Problem 4.) 
For Theorems 53.5 to 53.8, assume lirn s, = A and lirn t ,  = B .  

) I -  + f n - +  x 

Theorem 53.5: lirn (ks , , )  = k lirn s,, = k A ,  for k constant 

Theorem 53.6: lirn (s,, * t , ,) = lirn s,, +- lirn t,, = A ? B 

Theorem 53.7: lirn ( s , , t , , )  = lirn sI I  lim t ,  = AB 

I ,  * t r  11- I = 

,I * t x  , I - *  + x n- t rr 

, I - *  + L , I - t  L , , - t x  

lirn s,, 
Theorem 53.8: lirn sI! = = A if t # O  and t,, # O  for all n 

II't c,, lirn t,, B ' 
1,-t x 

332 
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Theorem 53.9: If {s,} is a sequence of nonzero terms and if lirn s, = 00, then lirn 1 Is, ,  = 0. 

(For a proof, see Problem 5.) 

Theorem 53.10: If a > 1, then lim a" = +m. 

(For a proof, see Problem 6.) 

Theorem 53.11: If Ir) < 1 ,  then lim r n  = 0. 

n- + 05 n-+ T 

n + + m  

n-+ 00 

INFINITE SERIES. Let {s,} be an infinite sequence. By the infinite series 

s, = s, = s, + s2 + s, + * + s, + * * 

n = l  
(53.1 ) 

we mean the following sequence {S,} of partial sums S,: 

S , = s , ,  s 2 = s , + s 2 ,  s 3 = s * + s 2 + s , , . .  . ,  S n = s ,  + s , + s , + . - + s , ,  . . . 
The numbers s,,  s,, s3, . . . are called the terms of the series C s,. 

If lirn S ,  = S, a finite number, then the series (53.1 ) is said to converge and S is called its 
sum. If lirn S,  does not exist, the series (53.1) is said to diverge. A series diverges either 
because lirn S, = or because, as n increases, S, increases and decreases without approach- 
ing a limit. An example of the latter is the oscillating series 1 - 1 + 1 - 1 - - * . Here, S, = 1, 
S, = 0, S, = 1 ,  S,  = 0, . . . . (See Problems 7 and 8.) 

From the theorems above, follow several more: 

n + + m  

n+ + m 

n + + m  

Theorem 53.12: 
first n terms are altered. 

A convergent (divergent) series remains convergent (divergent) after any or all of its 

(See Problem 9.) 

Theorem 53.13: The sum of a convergent series is unique. 

Theorem 53.14: If C s, converges to S, then C ks,, k being any constant, converges to kS .  If C s, 
diverges, so also does C ks,, if k f 0. 

Theorem 53.15: If C s, converges, then lim s, = 0. (For a proof, see Problem 10.) 
n 4  + m 

The converse is not true. For the harmonic series (Problem 7 ( c ) ) ,  lim s, = 0 but the series 
n + + m  

diverges. 

Theorem 53.16: If lim s, # 0, then C s, diverges. (See also Problem 11  .) 
n - + m  

The converse is not true; see Problem 7 ( c ) .  
Let the sequence {s,} converge to s. Lay off on a number scale (Fig. 53-1) the points s, 

s - E ,  s + E ,  where E is any small positive number. Now locate in order the points s, , s2,  s,, . . . . 
The definition of convergence assures us that while the first m points may lie outside the 
E-neighborhood of s, the point s,,~ and all subsequent points will lie within the neighborhood. 

In Fig. 53-2, a rectangular coordinate system is used to illustrate the same idea. First draw 
in the lines y = s, y = s - E ,  and y = s + E ,  determining a band (shaded) of width 2c. Now locate 
in turn the points ( l , s l ) ,  (2, s,), (3,s3), . . . . As before, the point ( m  + I , s , + ~ )  and all 
subsequent points lie within the band, for a suitably larger value of m. 

It is important to note that only a finite number of points of a convergent sequence lie 
outside an €-interval or €-band. 

81 8% 8 m  8 m + l  

I I I - 1  1 I 
1 I - 1  I I - 

8-• 8 8 + c  

Fig. 53-1 
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Solved Problems 

1 . 3 . 5 . 7 - * ( 2 n - l )  
1. Use Theorem 53.1 to show that the sequences (a )  1 - - and ( b )  { { 2 . 4 . 6 . 8 . . . ( 2 n )  

are convergent. 

1 1 -I--+--  
n n(n + 1) 

( a )  The sequence is bounded because 0 I s, I 1 for all n. Since s,+ = 1 - - - 

that is s,+ L s,, the sequence is nondecreasing. Thus the sequence converges to 
1 

s, + ~ n(n + 1) ' 
some number s 4 1. 

2n + 1 
2 n + 2  

- 1 
n-tl 

- - 1.3-5.7...(2n + 1) 
2.4 - 6 -  8 * - (2n + 2) ( b )  The sequence is bounded because 0 i s, I 1 for every n. Since s, + = 

s,, the sequence is nonincreasing. Thus the sequence converges to some number s 2 0. 

2. Use Theorem 53.2 to show that the sequence { ${ is divergent. 

(1)(2)(3) ' ' ' (n) = Since = - - > for rz > 4, it follows that the terms of the sequence 
n! 

2 (2)(2)(2).-*(2) 2 2 2 2 2 n! 
are unbounded. Hence, by Theorem 53.2, the sequence diverges. In fact, lirn - = + m .  

n++= 2" 

3. Prove: Every unbounded sequence {s,} is divergent. 

Suppose { s , ~ }  were convergent. Then for any positive E ,  however small, there would exist a positive 
integer rn such that whenever n > rn, then Is, - sI < E .  Since all but a finite number of the terms of the 
sequence would lie within this interval, the sequence would be bounded. But this is contrary to the 
hypothesis; hence the sequence is divergent. 

4. Prove: The limit of a convergent sequence is unique. 

lim s, = t ,  where (s - t (  > 2~ > O .  Now the 
E-neighborhoods of s and t have two contradictory properties: (1) they have no points in common, and 
(2) each contains all but a finite number of terms of the sequence. Thus s = t and the limit is unique. 

Suppose the contrary, so that lim s, = s and 
, + + E  ,++m 

5. Prove: If {s,} is a sequence of nonzero terms and if lirn s, = 03, then lirn l/s, = 0. 

Let E > 0 be chosen. From lim s, = E ,  it follows that for any M > 1 / E ,  there exists a positive 
integer rn such that whenever rz > rn then Is,\ > M > 1 / E .  For this rn, (1 /s, l< 1 / M  < E whenever n > rn; 
hence, lim l/s, = 0. 

n++= n + + m  

,4+ m 

,++ r 
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6. 

7. 

8. 

9. 

10. 

Prove: If a > 1, then lim a" = +W.  
n++m 

Let M > 0 be chosen. Suppose a = 1 + 6, for 6 > 0; then 

n(n - 1) 
a" = (1 + b)" = 1 + nb + ~ b2 + - . a >  1 + n b >  M 

1(2) 
when n > Mb. Thus an effective rn is the largest integer in Mlb. 

Prove: 
(a)  The infinite arithmetic series a + (a  + d )  + (a  + 2 4  + - - + [ a  + (n - l)d] + - - - diverges 

when a2 + d 2  > O .  
(b) The infinite geometric series a + ar + ar2 + - - - + ar"-' + - - * , where a # 0, converges to 
- if Irl< 1 and diverges if Irl? 1. 
1 - r  

(c )  The harmonic series 1 + 112 + 113 + 114 + - - + l l n  + - - * diverges. 

(a )  Here S, = $n[2a + (n - l)d] and 

4 

lim S, = 00 unless a = d = 0. Thus the series diverges when 
n + + m  

a2 + d 2  > 0. 

a - ar" U 
(b) Here S, = - = a - - rn, r #  1. If Irl< 1, lim r n  = 0, and lim S, = a. 

1 - r  1 - r  1 - r  n + + m  ,+ + 5 1 - r  

If Irl> 1, lim rn = m, and Sn diverges. 
If Irl= 1, the series is either a + a + a + - - - or a - a + a - a + - - - and diverges. 

Thus the sequence of partial sums (and hence the series) is unbounded and diverges. 

n + + m  

(c )  When the partial sums are formed, it is found that S, > 2, S, > 2.5, S,, > 3, S,, > 3.5, S,, > 4, . , . . 

+ -  l +  
1 1 

and (b) the series - + - Find S, and S for (a )  the series - + 2 + 7 + . - . 1 1 1  
1 5 5  5 1 . 2  2 . 3  3 - 4  - 4 * 5  + . * a .  

1 1  1 1 1 1  
(a )  S 1 = - = - ( l - J  5 4  s 2 = - + - = -  5 5 2  4(1 -$ )  

1 1 
S , = a ( l - ~ )  and S =  n - + + m  lim - 4 

1 1 1 1 1 1  1 1 - -  S 2 = - + - = 1 - - +  S1=- -=  

S3= S, + - = 1 - - + 

1 
2 2 - 3 = l - 5  1 . 2  2 1 . 2  2 - 3  

1 1 1 1  1 
4 

. . .  
3 . 4  3 5 - ; 1 = l - -  
1 

n + l  
S ,=l--  

The series 1 + 1 + converges to 2. Examine the series that results when (a )  its 
first four terms are dropped; (b) the terms 8 + 4  + 2  are adjoined to the series. 

(a) The series & + & + - - * is an infinite geometric series with r = 1 .  It converges to S = 2 - (1 + $ + 

(b) The series 8 + 4 + 2 + 1 + 4 + + - - * is an infinite geometric series with r = $ .  It converges to 

+ & + + Q 

+ b ) =  t .  

s = 2 + (8 + 4 + 2) = 16. 

Prove: If C s, = S, then lim s, = 0. 
,++m 

Since C s, = S, lirn S, = S and lirn Sn-l  = S. Now s, = S, - S, - , ;  hence, 

lim s, = lirn (S, - S,-l)= lirn S, - lirn S,-l = S -  S = O  

n+ + m , - D + f f i  

n + + =  n + + a  n+ + m ,-+a 
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11. Show that the series ( a )  + $ + + $ + - - a  and (6) 4 + $ + 5 + + . . .  diverge. 

- ZO. 
1 - lim - - - n 

( a )  Here s, = and lim s, = lim - - 
2 n + 1  n - + -  n - - + + r 2 n + l  n - + + - 2 + l / n  2 

2" - 1 
2" 

2" - 1 
(6) Here s, = ~ and lim - - 

12. A series C s, converges to S as limit if the sequence {S,} of partial sums converges to S, that 
is, if for any E > 0, however small, there exists an integer m such that whenever It > m then 
IS - S,l< E .  Show that the series of Problem 8 converge by producing for each an effective m 
for any given E. 

1 1 In 4~ 
4E In 5 

< E, then 5" > - , n In 5 > -In ( 4 ~ ) ,  and n > - -. Thus, 
1 1  

(a )  If IS- s,(= 1; - 4 (1 - +)I = - 
4 . 5 "  1n4E 

In 5 
rn = greatest integer not greater than - - is effective. 

1 1 < E, then n + 1 > - and n > - - 1. Thus, rn =greatest in- 
1 

( 6 )  If IS-S,l= 11 - (1 - -)I = - 
n + l  n + l  
1 

teger not greater than - - 1 is effective. 

Supplementary Problems 

13. Determine for each sequence whether or not it is bounded, nonincreasing or nondecreasing, and 
convergent or divergent. 

( a )  {n + ? }  n (6) { v} (c) {sin Sn.rr} (d) {m} (e) { $1 ( f )  { 
Ans. (a), ( d ) ,  and (e) are unbounded; ( a ) ,  (d), and (e) are nondecreasing, ( f )  is nonincreasing, and 

( 6 )  and (c) are neither nonincreasing nor nondecreasing; ( 6 )  and ( f )  are convergent 

14. Show that ,- lirn + I = 1, for p > O .  (Hint: np'" = e('"nn)'" * >  

15. For the sequence { - 1}, verify that (a) the neighborhood 11 - s , , l < O . O l  contains all but the first 99 

terms of the sequence, (6) the sequence is bounded, and (c) lim s,, = 1. 
n - + -  

16. Prove: If Irl< 1, then lim r" = 0. 
n - +  IC 

17. Examine each of the following geometric series for convergence. If the series converges, find its sum. 
( a )  1 +  1 / 2 +  1 / 4 +  1 / 8 + * - *  (6) 4 - 1 + 1 / 4 -  1 / 1 6 +  (c) 1 + 312 + 9 /4  + 27/8  + * .  * 

Am.  (a )  S = 2; ( 6 )  S = y ;  (c) diverges 

18. Find the sum of each of the following series. 

(a)  c 3-" 
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19. Show that each of the following diverges. 
(a) 3 + 512+ 7 / 3 +  9 / 4 +  * - .  
(c) e + e2/8 + e3/27 + e4/64 + - . 

(6) 2 + t / z + f i + f i + - * *  

1 
( d ) x  fi+W 

20. Prove: If lim s, # 0, then C s, diverges. 
n 4 + m  

21. Prove that the series of Problem 18(a) to ( d )  converge by producing for each an effective positive integer 
rn such that for E > 0, IS - S,l< E whenever n > rn. 

Am. rn = greatest integer not greater than (a) - -; In 2~ ( 6 )  - 1 1  - 2 ;  ( c )  - 1; In 3 4€ 
( d )  the positive root of 2€rn2 - 2(1 - 3 ~ ) r n  - (3  - 4 ~ )  = 0 



Chapter 54 

Tests for the Convergence and Divergence 
of Positive Series 

SERIES OF POSITIVE TERMS. A series C s,, all of whose terms are positive, is called a positive 
series. 

Theorem 54.1: A positive series C s, is convergent if the sequence of partial sums {S,} is bounded. 

This theorem follows from the fact that the sequence of partial sums of a positive series is 
always nondecreasing. 

Theorem 54.2 (the integral test): Let f ( x )  be a function such that f ( n )  is the general term s, of the series 
C s, of positive terms. If f ( x )  > 0 and never increases on the i n t y a l  x > 5, where 6 is some positive 

integer, then the series C s, converges or diverges according as 

(See Problems 1 to 5.) 

Theorem 54.3 (the comparison test for convergence): A positive series C s, is convergent if each term 
(perhaps, after a finite number) is less than or equal to the corresponding term of a known convergent 
positive series C c,. 

Theorem 54.4 (the comparison test for divergence): A positive series C s, is divergent if each term 
(perhaps, after a finite number) is equal to or greater than the corresponding term of a known divergent 
positive series C d,. 

(See Problems 6 to 11.) 

Theorem 54.5 (the ratio test): 

f ( x )  dx exists or does not exist. 

A positive series C s, converges if lim Sn+l < 1, and diverges if 

lim Sn+l > I  or if lim + = +m. If lim - - - 1 or if the limit does not exist, the test gives no 
s, n-e + ?o 

S n  
n - - +  m S n  n - + o  S n  n - f s  

information about convergence or divergence. 

(See Problems 12 to 18.) 

Solved Problems 

THE INTEGRAL TEST 

1. Prove the integral test: Let f ( n )  denote the general term s, of the positive series C s,. If 
f ( x )  > 0 and never increases on the interval+? > 5, where 6 is a positive integer, then the series 

C s,, converges or diverges according as f ( x )  dx exists or does not exist. 

In Fig. 54-1, the area under the curve y = f ( x )  from x = 5 to x = n has been approximated by two 
sets of rectangles having unit bases. Expressing the fact that the area under the curve lies between the 
sum of the areas of the small rectangles and the sum of the areas of the large rectangles, we have 

338 
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Fig. 54-1 

+ X  

Suppose lim I: f ( x )  dx = I, f ( x )  dx = A .  Then 
,-+ x 

s t + , + s t + , + . * * + ~ , < A  

and S, = sc + st +, + * - * + s, is bounded and nondecreasing, as n increases. Thus, by Theorem 54.1 , C s, 
converges. 

Now suppose lim Itn f ( x )  dx = It f ( x )  dx does not exist. Then S,, = st  + sf + + - - * + s, is 
unbounded and C s, diverges. 

+ d  

0 - + m  

In Problems 2 to 5, examine the series for convergence, using the integral test. 

2. 

3. 

4. 

1 1 1 + - + - + - + . * .  1 - 
v 3 v 5 v 7 l h  

1 1 
n + l  x + l  Here f ( n )  = s, = r, so take f ( x )  = r. On the interval x > 1, f ( x )  > 0 and decreases as 

x increases. Take 6 = 1 and consider 

The integral does not exist, so the series is divergent. 

1 1 1 1  - + - + - + - +. . .  
4 16 36 64 

1 1 
4n2 ' 4x 

Here f (n)  = s, = - so we take f ( x )  = 7. On the interval x > 1, f ( x )  > 0 and decreases as x 

increases. We take 6 = 1 and consider 

The integral exists, and the series is convergent. 

1 1  1 
n n  x x  

Here f(n) = s, = 2 sin - n; we take f ( x )  = A sin - 7. On the interval x > 2, f ( x )  > 0 and de- 

creases as x increases. We take 6 = 2 and consider 

The series converges. 
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1 1 
np  ’ x p  * 

Here f(n) = sn = - - take f ( x )  = - On the interval 

Take 6 = 1 and consider 

x > 1 ,  f ( x )  > 0 and decreases as x increases. 

and the series converges. 
1 1 1 I f p > l ,  - 1 ( lim u l - P - 1  ) -  -- ( lim - - I ) = -  

1 - p  ~ - + m  1 - p  u-++oc up-‘ P - 1  
+ m  

If p = 1, 1, f ( x )  dx = lim In U = +a and the series diverges. 
U - + -  

I f p - 4 , -  ’ ( lim - 1) = +a and the series diverges. 
I - p  U-++- 

THE COMPARISON TEST 

The general term of a series that is being tested for convergence is compared with general terms 

1. The geometric series a + ar + ur2 + * - - + ar” + - - * ,  for a # 0, which converges for 0 < r < 1 
and diverges for r 2 1 

2. The p series 1 + - + - + - + - - - + p + - - * ,  which converges for p > 1 and diverges for 
p‘l 

3. Each new series tested 

of known convergent and divergent series. The following series are useful as test series: 

1 1 1  1 
2 p  3p 4p  n 

In Problems 6 to 11, examine the series for convergence, using the comparison test. 

1 +-+...  1 1 1  1 - + - + - + - + . . .  
2 5 10 17 n 2 + 1  

6. 

1 1 
The general term of the series is s, = 7 < - * hence the given series is term by term less than 

the p series 1 + 4 + 9 + . . + 7 + - a .  The test series is convergent because p = 2, and so also is the 
given series. (The integral test may be used here as well.) 

1 1  1 n + 1 ne2 ’ 
n 

7. 
1 1 1 

- + - + -  + -  + . . .  1 
v - l v 5 v 3 ~  

1 1 1  
V 7 i - n  

or equal to the harmonic series and is divergent. (The integral test may be used here as well.) 

The general term of the series is 3. Since - > -, the given series is term by term greater 

1 1 1  
2! 3! 4! 

8. I + - + - + - + . * .  

The given series is term by The general term of the series is - Since n! ~ 2 , - ’ ,  - 5 - 

and is convergent. + - - 

1 1 1  
n! ’ n!  2n-l’ 

less than or equal to the convergent geometric series 1 + - 1 1  + - + 2 4 8  
integral test cannot be used here.) 

3 4 5  
9. 2 + - + - + - + * . .  z3 33 43 

than 

term 

(The 

n + l  n + l  2n 2 
The general term of the series is -. Since 3 I - = - the given series is term by term less 

n3  n n3 n 2 ’  
1 1 1  

2 3 42 
than or equal to twice the convergent p series 1 + -I + ;? + - + - .  - and is convergent. 
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10. 

11. 

THE 

12. 

1 1 1  
1 +  - + - + - + * . *  

22 33 4 
the given series is term by term less than or The general term of the series is 7. Since - < - 

1 
n" - 2"-" 

1 1 1  
2 4 8  

equal to the convergent geometric series 1 + - + - + - + * - and is convergent. (Also, the given series 
is term by term less than or equal to the convergent p series with p = 2.) 

2 2 + 1  3 2 + 1  4 2 + 1  +- +-+. . .  1+--- 
2 3 + i  3 3 + 1  4 3 + 1  

n 2 + 1  1 
n + 1  n 

The general term is 7 L -. Hence the given series is term by term greater than or equal to the 

harmonic series and is divergent. 

RATIO TEST 

Prove the ratio test: A positive series C s, converges if lirn s,+l < 1 and diverges if 
s, n + + m  

lim Sn+l> 1 .  
s n  n + + m  

= L < 1. Then for any r ,  where L < r < 1, there exists a positive integer rn such Suppose lim - S n + l  

S n  n - +  P 

that whenever n > rn then S,r+l < r ,  that is, 
Sn 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Thus each term of the series s,+ + s ~ + ~  + s,,,+~ + - * - is less than or equal to the corresponding term of 
the geometric series s,, + I + rsm + + r2sm + + - - which converges since r < 1. Hence C s, is convergent 
by Theorem 54.3. 

- L > 1 (or = + 03). Then there exists a positive integer rn such that whenever Suppose lim - - 

n > m, - > 1. Now s n + ]  > s,, and {s,} does not converge to 0. Hence C s, diverges by Theorem 

53.16. 

S n +  1 

Sn n - +  D 

S n + l  

Sn 

1 
Suppose lirn Sn+l = 1. An example is the p series 2 p , p > 0, for which 

S n  
n - + i  

S"+l  n" 1 
lirn - - - lim - - - lim (-)"=I 

n + + m  S, n - + m  ( n + l ) P  n - + m  I + l / n  

Since the series converges when p > 1 and diverges when p 5 1, the test fails to indicate convergence or 
divergence. 

In Problems 13 to 23, examine the series for convergence, using the ratio test. 

1 2 3 4  
- + - + 3 + - + * . *  13. 
3 3* 3 34 

s,+] n +  1 3" - n +  1 n + l  - 1 n n + l  
Here s, = - s,+] = - 3" ' 3"+l ' s, 3"+' n 3n n- + a s, n - + =  3n 3 

. Then lirn Sn+l = lim - - - and and - = - - - - 

the series converges. 
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1 + 2! 3! 4! 
14. - - + - + - + * . a  

3 32 33 34 
n + l  

, Then Here s, = G ,  s , + ~  = - , and - = - lirn Sn+l = lim - = a  and the n! (n + l)!  S n + l  n + l  
n + + m  S, n-++= 3 3"+l s, 3 

series diverges. 

15. 
1 . 2  + 

1 + -  
1 . 3  

1 . 2 . 3  
1 . 3 . 5  

+ 1 . 2 - 3 - 4  +. . .  
1 - 3 . 5 . 7  

Then n! (n + l ) !  s,.1- n + l  and 
1 . 3 . 5 .  . . (2n - 1) 7 = 1 . 3 . 5 . - . ( 2 n  + 1 ) '  s, 2 n + 1 '  

Here s, = 

n + l  1 
lirn - - - - and the series converges. 

n-+=  2 n + l  2 

1 + 4 + - . .  1 +-  +-  16. - 
1 1 

1 . 2  2.22 3.23 4 . 2  
n n 1 

(n + 1)(2"+') ' s, 2(n + 1 ) '  n - + -  2 ( n +  1) 2 
Then lim - - and - = - - - and the S,+l  1 1 

Here S" = (n)(z"), S n + *  = 

series converges. 

3 1  4 1  5 1  
17. 2 + -  - + - + -  - + * a *  

2 4  3 4 2  4 4 3  
n + l  1 n + 2  1 S n + l  n(n + 2) Then lim n(n + 2, = - 1 and the 

and - = Here s, = n F ,  s,+~ = - - 
n + l  4 " '  s, 4(n + 1)'' n - + =  4(n + 1)* 4 

series converges. 

2 2 + 1  3 '+1  
18. 1+-+- 

z 3 + 1  3 3 + 1  
4* + 1 
43 + 1 

+-+.. .  

( n + 1 ) 2 + 1  s , + ~  ( n + 1 ) 2 + 1  n 3 + 1  n2 + 1 
n 3 + 1  s n + 1 =  ( n +  q3+ 1 S, (n + q3+ 1 n2 + 1 

-- - s, = - 

Then lim Sn+l = 1 and the test fails. (See Problem 12.) 
s, n - + =  

Supplementary Problems 

19. Verify that the integral test may be applied, and use the test to determine convergence or divergence: 

Ans. (a ) ,  (c), (d), (e) divergent 
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20. 

21. 

22. 

23. 

24. 

25. 

26. 

Determine the convergence or divergence of each series, using the comparison test: 
1 

(4 c 

(0) 
ns 

Ans. ( a ) ,  (6), ( d ) ,  (f), (i), ( k ) ,  ( 1 )  for p > 2  convergent 

Determine the convergence or divergence of each series, using the ratio test: 

n 3  
( h )  = 

Determine the convergence or divergence of each series: 
1 1 1  1 3 3 3  

(4 2 + 7'+ 3 + 132 + . * .  

+ . . .  1 1 1  1 1  1 

4 3 11 9 2 3  
(e) 3 +  - + - + - 

4 27 32 

+ - + - + - + . . .  
( g )  2 + = + 3 ' 2 3 + z + * . .  ( h )  1.3 2 . 4  3 . 5  4 . 6  

1 1 1  1 2 3 4  
( i )  - + 7 + 3 + 7 + 

2 3  4 5 2 3s 4 
3 4 5  
5 10 17 5 5 . 8  5 . 8 . 1 1  5 . 8 - 1 1 . 1 4  

(c) 1 + - 5 + - 9 + - 13 + . S .  ( d )  2 + 3 . 4 + 4 . 5 . 6 + 5 . 6 . 7 . 8  

5 

2 3 4 5  

+ j + * . *  + -  ( f ) j + =  3.33 4 . 3  

1 1  1 1 

( j )  1 +  Yj + 7 + 

( I )  - + - + -  

+ . * *  

2 2 . 4  2 . 4 . 6  + 2 . 4 - 6 . 8  + . . .  
( k )  2 +  - + - + - + . . -  
Ans. ( a ) ,  (4, (f), ( g ) ,  G ) ,  (i), ( 1 )  convergent 

Prove the comparison test for convergence. (Hint: If C c, = C ,  then { S , }  is bounded.) 

Prove the comparison test for divergence. (Hint: 5 s, L 5 d, > A4 for n > m . )  
1 1 

Prove the polynomial tesf: If P(n)  and Q ( n )  are polynomials of degree p and q, respectively, the series 

PO converges if q > p + 1 and diverges if q I p + 1. (Hint: Compare with 1 
Q<n> 

Use the polynomial test to determine the convergence or divergence of each series: 

1 1 1 1 
1 . 2  2 . 3  3 . 4  4 . 5  
3 5 7 9  - + - + - + - + * - .  

2 10 30 68 

(a )  - + - + - + - + * - .  

(c )  

1 1 1  1 
( b )  2 7 12 17 

3 5  7 9 
2 24 108 320 

+ - + - + - + . . .  

( d )  - + - + - + - + + * *  
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3 4 5  + - + - + - + . . .  2 
( g )  1.3 2 . 4  3.5 4 . 6  

1 1 1 1 
(f) + + + + * * *  

Ans. ( U ) ,  ( c ) ,  ( d ) ,  (f) convergent 

27. Prove the roof fesf: A positive series C s, converges if lirn 

test fails if lirn = 1 .  (Hint: If lim < 1 ,  then < r < 1 for n > rn, and sn < r".) 

< 1 and diverges if lim ;/s;; > 1 .  The 
"-+ + Ix. n- t I 

n - +  w n - +  - 
2" - 1 1 1 

n (In n)" ' 28. Use the root testnto determine the convergence or divergence of ( a )  2 7 ; (6) 2 ___ * (4 c 7; 
( d )  (&) . ~ m .  all convergent 



Chapter 55 

Series with Negative Terms 

A SERIES having only negative terms may be treated as the negative of a positive series. 

ALTERNATING SERIES. A series whose terms are alternately positive and negative, as 

(- l ) n - ' S ,  = s, - s2 + s3 - s4 + * * * + (- l),-'s,, * * - (SS. 1 ) 

in which each s, is positive, is called an alternating series. 

Theorem 55.1: An alternating series (55.1 ) converges if (1) s, > s, + for every value of n, and (2) 
lim s, = O .  

n - +  ~1 

(See Problems 1 and 2.) 

ABSOLUTE CONVERGENCE. A series C s,, = s1 + s2 + - - - + s,! + . 0 -, with mixed (positive and 
+ - - . 

Every convergent positive series is absolutely convergent. Every absolutely convergent 

negative) terms, is called absolutely convergent if C Is,I = Is, I + Isz( + lsll + - - + 
converges. 

series is convergent. (For a proof, see Problem 3.) 

CONDITIONAL CONVERGENCE. If C s, converges while C I s n [  diverges, C s,, is called condition- 

- . - is conditionally convergent since it converges 
ally convergent. 

while 1 + + f + + * - diverges. 
As an example, the series 1 - f + 

RATIO TEST FOR ABSOLUTE CONVERGENCE. A series C s, with mixed terms is absolutely 

< 1 and is divergent if lim > 1. If the limit is 1 ,  the test gives 
n + + X  

convergent if lim 

no information. (See Problems 4 to 12.) 
n + + x  

Solved Problems 

1. Prove: An alternating series s1  - s2 + s3 - s4 * * - converges if (1) s, > s,, I for every value of 
n, and (2) lim s, = 0. 

n++ x 

Consider the partial sum S2,,I = s ,  - s, + s3 - s, + s2,,- - s2,,, . which may be grouped as follows: 

s 2 r n  = ('1 - ~ 2 )  + ( ~ 3  - ~ 4 )  + * * + ('2rri-l  - s z , n >  (1  ) 

or s,, = s 1 - (s2 - s3) - - - - (SZm - 2 - s 2 , , *  - I ) - sz,,I (2)  

By hypothesis, s, > s , + ~  so that s, - s , + ~  > 0. Hence, by ( I ) ,  0 < S2nl < Sz,,, + and, by (2) ,  SZnI < s,. 
Thus, the sequence { S2m}  is increasing and bounded and, therefore, converges to a limit L < s I .  

345 



346 SERIES WITH NEGATIVE TERMS [CHAP. 55 

Consider next the partial sum S2,+, = S,, + s,,+~; we have 

lirn S2,+, = lim S,, + lim s,,,,+~ = L + 0 = L 
m-- + m m- + 0 m--.+m 

Thus lim S, = L and the series converges. 
n - +  P 

2. Show that the following alternating series converge. 

1 1 1  (a )  1 - - + - - a.. .. 
22 32 42 - 

then s, > s,+, , lirn s, = 0, and the series converges. 
1 1 

s, = - and s , + ~  = - a  n2 (n + I), ' n 4 + m  

( b )  f - 3 + 1 -1 . . . .  
10 17 * 

=0,  and the series converges. 
1 

* then s n  ,byrn 
1 1 

(n + + 1 ' 
s, = - n 2  + 1 and 

1 2 3 4  ( c )  - - - + - - . . . *  

e e2 e3 e4 

n 1 
The series converges since s, > s, + and lirn 7 = , l ~ ~  7 = 0, by 1'Hospital's rule. 

,--.+- e 

3. Prove: Every absolutely convergent series is convergent. 

s, = s, + s, + s, + s, + * * .  + s, + * .  * Let 

having both positive and negative terms, be the given series whose corresponding convergent positive 
series is 

 IS,^ =  IS,^ +  IS,^ +  IS,^ + . - +  IS,^ + - .  a 

For all n, 0 I s, + Is,l 5 213,l. Since C Is,l converges, so does C 2 1 ~ ~ 1 .  By the comparison test, 
C (s, + Is,l) also converges. Hence, C s, = C (s, + Is,l) - C IS,! converges, since the difference of two 
convergent series is convergent, 

ABSOLUTE AND CONDITIONAL CONVERGENCE 

In Problems 4 to 12, examine the convergent series for absolute or conditional convergence. 

1 1 1  I - - +  - - - . . .  
2 4 8  

4. 

1 1  
The series 1 + - + - + + - - -, obtained by making all the terms positive, is convergent, being a 

2 4 ,  s 
geometric series with r = 5 .  Thus the given series is absolutely convergent. 

2 3 4  
5. l - j + ? - y '  

2 3 4  
3 32 3, 

The series 1 + - + - + - + - * -, obtained by making all the terms positive, is convergent by the 

ratio test. Thus the given series is absolutely convergent. 

1 1 1  
The series 1 + - fi + - fl + - fl + - * diverges, being a p series with p = < 1. Thus the given series 

is conditionally convergent. 
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1 2 1  3 1  4 1  
2 3 23 4 33 5 43 

- +  - - - - - . . .  7. - - -  

converges, since it is term by term less than or equal to The series 1 + - -3 + - - + - - + . - .  2 1  3 1  4 1  
3 2  4 3 3  5 4 3  

the p series with p = 3. Thus the given series is absolutely convergent. 

The series f + + + + - - - is divergent, being term by term greater than one-half the 
harmonic series. Thus the given series is conditionally convergent. 

+ - - - is convergent (by the ratio test), and the given 
23 25 27 22”-1 

3! 5 !  7! (2n - l ) !  
T h e s e r i e s 2 + - + - + - + - - * +  

series is absolutely convergent. 

1 4 9 16 +---... 10. - - - 
2 Z 3 + 1  3 3 + 1  4 3 + 1  

9 16 +-+- The series - + - 
the given series is conditionally convergent. 

1 4  
2. 23+.1 3 3 +  1 43+  1 

n2 
n3 + 1 

+...+- + . . .  is divergent (by the integral test), and 

1 2 3 4 
2 2 3 + i  3 3 + 1  4 3 + 1  

3 

+---... 11. - - -  

n 
is convergent, being term by term less +-+...+-+... +- The series - + - 4 1 2  

2 Z 3 + 1  3 3 + 1  4 3 + 1  n 3 + 1  
than the p series for p = 2. Thus the given series is absolutely convergent. 

is convergent, being term by term less than or equal to +-+.. .  +- The series - + - 
1 1 1  + - + .... Thus the given series is absolutely convergent. 

2 4 8 1 6  

1 1 1 

the convergent geometric series A + - + 

1 
1 . 2  2 * 2 *  3 .23  4 ~ 2 ~  

Supplementary Problems 

13. Examine each of the following alternating series for convergence or divergence. 

n + l  
n (c) E ( -1y- I  - 

Am. ( a ) ,  (b), ( d ) ,  (e) convergent 
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14. Examine each of the following for conditional or absolute convergence. 

Am. (a),  (c) ,  ( d ) ,  (f), ( h )  absolutely convergent, the others conditionally convergent. 



Chapter 56 

Computations with Series 

OPERATIONS ON SERIES. Let 

s, = s ,  + s* + s3 + - * * + s, + * * * (56.1 ) 

be a given series, and let C t ,  be obtained from it by the insertion of parentheses. For example, 
one possibility is 

c t ,  = (SI + s2) + (Sj + s, + s g )  + ( s h  + s,) + ( 3 8  + s, + slo + SI,) + * .  * 

Theorem 56.1: 
to the same sum as the original series. 

Theorem 56.2: 
diverges. but one obtained from a divergent series with mixed terms may or may not diverge. 

(See Problem 1.) 

Any series obtained from a convergent series by the insertion of parentheses converges 

A series obtained from a divergent positive series by the insertion of parentheses 

Now let C U, be obtained from (56.1 ) by a reordering of the terms, for example, as 

2 U, = s, + s j  + S? + s, + s, + s5 + ' *  

Theorem 56.3: Any series obtained from an absolutely convergent series by a reordering of the terms 
converges absolutely to the same sum as the original series. 

Theorem 56.4: The terms of a conditionally convergent series can be rearranged to  give either a 
divergent series or  a convergent series whose sum is a preassigned number. 

2rr + 1 
EXAMPLE 1: The series C ( -  1)" ' (7) diverges. (Why'?) When grouped as 

Jrn - 1 .I,?, + 1 1 1 

4 m 2 - - 2 m  m 
< 7. the series converges, since the general term 

1 1 1  1 1 
2 3 4  2 n - I  2n 

EXAMPLE 2: The series 1 - - + - - - - + ~ - - + - * is convergent, and it may be grouped 

1 1 1 1 1  
as (1  - i) + (1 - !) + . e .  + (- - -) + - - - to yield the convergent series - + - + - + * * = A .  

3 4  2 n - 1  2n 1 lf ('z 1 30 

When i t  is arranged in the pattern + - - + - - * . .  we have (1-1-4 + 
i 1 1 ' ) + . . ,  or - + - + - + . . .  = - A .  

1 1 1  
4 24 60 2 

ADDITION, SUBTRACTION, AND MULTIPLICATION. If C s, and C t ,  are any two series, their 
sum series S U,,, their difference series C U,, and their product series C w ,  are defined as 

c U,, = c (s, + 4,) 

c U,, = c (s,, - 4, )  

C w,, = s , t ,  + ( s , r 2  + s , t , )  + (sit, + S 2 t 2  + s , t l )  + - - - 

Theorem 56.5: I f  s,] converges to S and C t,, converges to T ,  then S (s,, + f,,) converges to S + T and 
Z: (s,, - f,,) converges to S - T. I f  C s,] and C t,, are both absolutely convergent, so also are C (s, 2 f,]). 

349 
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(See Problems 2 and 3.) 

Theorem 56.6: If C s, and C r ,  converge, their product series C w, may or may not converge. If C s, and 
C r ,  converge and at least one of them is absolutely convergent, then C w, converges to ST. If C s, and 
C t, are absolutely convergent, so also is C w,. 

COMPUTATIONS WITH SERIES. The sum of a convergent series can be obtained readily 
provided the nth partial sum can be expressed as a function of n; for example, any convergent 
geometric series. On the other hand, any partial sum of a convergent series may be taken as an 
approximation of the sum of the series. If the approximation S, of S is to be useful, information 
concerning the possible size of IS, - SI must be known. 

For a convergent series C s, with sum S, we write 

S = S , + R ,  

where R,, called the remainder after n terms, is the error introduced by using S,, the nth partial 
sum, instead of the true sum S. The theorems below give approximations of this error in the 
form R, < CY for positive series and IR,I 5 CY for series with mixed terms. 

For a convergent alternating series s 1  - s2 + s, - s4 + - - -, 
R 2 n ~  = ' 2 m + 1  ~ S 2 m + 2 ~ S 2 m + 3 ~ S Z n i + ~ ~ " ' ~ S ~ m + l  

- and R 2 m + l  = ' 2 m + 2  + ' 2 m + 3  - ' 2 m + 4  + ' 2 m + S  - * ' '  - S 2 m + 2  

by Problem 1 of Chapter 55. Thus, we have: 

Theorem 56.7: 
even, and R,, is negative when n is odd. 

(See Problem 4.) 

ar" 
Theorem 56.8: For the convergent geometric series C ur" ', I R,  1 = 1 - 1 

1 - r  * 

Theorem 56.9: 

For a convergent alternating series, IR,I < s , + ~ ;  moreover, R, is positive when n is 

If the positive series C s, converges by the integral test, then 

R, < I,+% f(x) dx 

(See Problems 5 to 7.) 

Theorem 56.10: 
for every value of n > n, , then 

If C c, is a known convergent positive series, and if for the positive series C s,,, s, 5 c, 

t u  

R, 5 2 c, for n > U ,  
n + l  

(See Problems 8 to 10.) 

Solved Problems 

1. Let C s, = s,  + s2 + s, + - - - + s, + - - * be a given positive series, and let C t ,  = (sl + s2)  + 
s3 + (s4 + ss)  + s, + - . - be obtained from it by the insertion of parentheses according to the 
pattern 2, 1, 2, 1 ,  2, 1 , .  . . . Discuss the convergence or divergence of C t,. 

For the partial sums of C t,,, we have T, = S,, T ,  = S,, T ,  = S, ,  T ,  = S,, . . . . If C s, converges to S 
so also does C t,, since lim T,, = lim S,t. If C s, diverges, {S,} is unbounded and so also is { T,}; 
hence C t, diverges. 

n - + + m  n--. + Ix 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

3 + 1  3 2 + 2 3  3 3 + 3 3  
Show that - +- +-+ . . -+  

3 - 1  3 2 . 2 3  3 3 . 3 3  
3" + n3 
-+. . .  converges. 
3" - n3 

3 " + n 3  1 1 
Since 7 = 3 + - the given series is 

3 - n  n 3"' 
convergent; hence by Theorem 56.5 the given series converges. 

1 1 
- and 
n3 3 

the sum of the two series 7 .  Each is 

3" + n 
Show that the series - . 3,, diverges. 

3" + n 1 1  1 
7 = 2 (- + F )  converges. Then, since 
n . 3  3 

-.  But this is false; hence the given series diverges. 
n 

Suppose 7 converges, so also (by Theorem 

56.5) does 

( a )  Estimate the error when C s, = 1 - is approximated by its first 10 terms. 
(6) How many terms must be used to compute the value of the series with allowable error 

(a )  This is a convergent alternating series. The error RI , ,  < s,  = 1 / 11 '  = 0.0083. 

= 0.05. Then (n + 1)' = 20 and n = 3.5. Hence four terms are 
1 

(b) Since J R , ( < s , + , ,  = - 
(n + 1)' 

+ I - 16 * .  

0.05? 

required. 

+ m  

Establish R ,  < f ( x )  dx as given in Theorem 56.9. 

In Fig. 54-1, let the approximation (by the smaller rectangles) of the area under the curve be 
extended to the right of x = n. Then 

t r  

R n = S n + 1  + s n + 2 + s n + 3 + * . . < \ n  f ( x ) d x  

1 
Estimate the error when - is approximated by its first 10 terms. 

4n2 
This series converges by the integral test (Problem 3 of Chapter 54). Then 

d x  - 1 " d x  1 1 1 + U  

R1o < f io 7 - 4 "!mm lo 2 = 4 U - +  lim m (- + 4) = - 40 = 0.025 

1 
Estimate the number of terms necessary to compute - with allowable error 0.ooOOl. 

n5 + 1 
1 
7 which, in turn, converges by the integral test. Then 
n 

Setting 7 = 0.00001, we find n4 = 25,000 and n = 12.6. Thus 13 terms are 

This series converges by comparison with 
1 

R n < l  2=- 4n4 ' 4n 
necessary. 

+ m  d x  1 

1 
- is approximated by its first 12 terms. n! Estimate the error when 

This series was found to converge (in Problem 8 of Chapter 54) by comparison with the geometric 
1 - Thus the error R I ,  for the given series is less than the error RI, for the geometric series; series 

that is, R I ,  < R; = - - - = 0.0005. 
2"-' * (1/2)" - 1 

1 - 1 / 2  2" 1 1 ( 1 / 4 ) ' I  - 1 
hence, R,,  < ___ - - = 0.00000008. We can do better! For n > 6, 7 < - * 

n .  4"- l '  1 - 1 / 4  3(4'') 
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9. Estimate the error when C s, = 3 + 4 ( f )* + 5 ( 5 )3 + 5 ( # )4 + - - - is approximated by its first 10 
terms. 

2 n  and r =  lim k - 2 S n + l  2 - 3.  NOW-<-  
S n  S" 3 

The series converges by the ratio test, since % = - - s, 3 n + 1  n++oE 

for every value of n ,  so that the given series is term by term less than or equal to the geometrid'series 

= 0.04. 
(2 /3)' 2,' 

C s 1 r n - l .  Hence R I O < ( $ )  +(;) +(:) + * * * = - = -  

I 1  I2 13 

1 - 2 1 3  3,' 
A better approximation may be obtained by noting that after-the tenth term the given series is term 

1 2  211 
11 3 

n-1  

by term less than s l l (  i) = c - (-)"( = 11.3'0 = 0.004. 

is approximated by its first 10 terms. 
1 2 3 4  s, = - + 2 + - + - + - .  - 10. Estimate the error when 
3 3 33 34 

1 n + l  1 1 
3 '  

and r = - Here Sn+l L 5 for every The series converges by the ratio test, since Sn+l = - - 
sn  f "  

s, 3 n 

value of n, and we cannot use the geometric series C ( f )" as comparison series. However, { } is a 
c Y, J s 4  

nonincreasing sequence, and 12 = - 
than or equal to the geometric series c s l I (  A) 
7 . 3 "  

s,, 11' 

12' = 0.O00 097 58 < O.OOO1. 

Supplementary Problems 

11. 

12. 

13. 

14. 

15. 

16. 

Rearrange the terms of 1 - 

n ,  negative terms until the sum first falls below 1, and repeat.) 

+ 3 - - * to produce a convergent series whose sum is ( a )  1, (6) - 2 .  
(Hint :  In ( a ) ,  write the first n ,  positive terms until their sum first exceeds 1, then follow with the first 

Can the sum of two divergent series converge? Give an example. 

Ans. yes; a trivial example 

(a )  Estimate the error when 
(b) Estimate the number of 

Ans. ( a )  0.01; (6) 100,OOO 

1 
n 

is c - + 2 + 
(- l)n-l 

the series - is approximated by its first 50 terms. 
terms necessary to compute the sum if the allowable error is O.OOOOO5. 

2n - 1 

( a )  Estimate the error when 
(- 1 y - l  C T  is approximated by its first eight terms. 

(6) Estimate the number of terms necessary to compute the sum if the allowable error is O.oooO5. 

Ans. ( a )  0.0002; (6) 11 

3 
2" 

( a )  Estimate the error when the geometric series C - is approximated by its first six terms. 
(6) How many terms are necessary to compute the sum if the allowable error is O.ooOo5? 

Ans. ( a )  0.05; (6) 16 

Prove: If the positive series C s, converges by comparison with the geometric series C t", for 0 < r < 1, 
/l+ 1 

then R, < 
1 - r '  
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17. 

18. 

19. 

20. 

(< 2 $) is approximated by its first six terms; (b) Estimate the error when (a )  2 7 

2 
Am. (a )  0.0007; ( 6 )  0.00009 

1 
1 3 + 1  (< x $) is approximated by its first six terms. 

n + l  n 
n - 3  

are convergent by the ratio test. Estimate the error when 
(n + 1)3" The series (a) 2 7 and (b )  

each is approximated by its first eight terms. Am. (a )  0.00009; ( 6 )  0.00007 

(Hint: See Problem 7.) 
1 

For the convergent p series, show that R, < 
( p  - l)nP- '  ' 

1 n - 1  
The series (a )  7 are convergent by comparison with appropriate p series. 

Estimate the error when each is approximated by its first six terms, and find the number of terms needed 
for the sum if the allowable error is 0.005. 

7 and (6) n + 2  n 

Am. (a )  0.014, 10 terms; (b) 0.002, 5 terms 



Chapter 57 

Power Series 

AN INFINITE SERIES of the form 
+ X  

c;xi = 2 c,x' = c,  + clx + c2x2 + * * * + cnxn + 
1 =o 

where the c's are constants, is called a power series in x. Similarly, an 
+= 

. . .  (57.1 ) 

nfinite series of the form 

C c,(x - a)' = 2 c i (x  - a)' = c,  + cl(x - a )  + c2(x - a)' + - - + c n ( x  - a)" + - - 
(57.2) 

i = O  

is called a power series in (x - a ) .  

and (see Chapters 54 and 55) either converge or diverge. 
For any given value of x, both (57.1 ) and (57.2) become infinite series of constant terms 

INTERVAL OF CONVERGENCE. The totality of values of x for which a power series converges is 
called its interval of convergence. Clearly, (57.1 ) converges for x = 0 and (57.2) converges for 
x = a. If there are other values of x for which a power series (57.2 ) or (57.2) converges, then it 
converges either for all values of x or for all values of x on some finite interval (closed, open, or 
half-open) having as midpoint x = 0 for (57.1 ) or x = a for (57.2). 

The interval of convergence will be found here by using the ratio test for absolute 
convergence supplemented by other tests of Chapters 54 and 55 at the endpoints. (See 
Problems 1 to 9.) 

CONVERGENCE AND UNIFORM CONVERGENCE. The discussion and theorems given below 
involve series of the type of (57.1 ) but apply equally after only minor changes to series of the 
type of (57.2 ) . 

Consider the power series (57.2 ). Denote by 

n - 1  . -  

n - I  
S n ( x )  = CjX'  = c,  + c,x + c2x2 + * * * + c n - , x  

I = ,  

the nth partial sum and by 

+ W  

Rn(x)  = 2 ckx k = c,xn + c,+,x"+' + cn,'xn+' + - - * 

k = n  

the remainder after n terms. Then 

cix' = Sn(x) + R n ( x )  (57.3) 

If for x = x,,, C c,x' converges to S(x,) ,  a finite number, then lim Sn(x , )  = S(x,) .  Since 
IS(x,,) - S,(x,,)l= ~ R , ( x , ) ~ ,  hlW IS(x,) - S,(x, ) l=  lim IRn(xo)l = 0. Thus, C c,x' converges 
for x = x,, if for any positive E ,  however small, there exists a positive integer m such that 
whenever n > m then IR,,(x0)l < E .  

Note that here m depends not only upon E (see Problem 12 of Chapter 53) but also upon 
the choice x,, of x. (See Problem 10.) 

In Problem 11, we prove the first of our theorems: 

n + + m  

n + + m  

354 
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Theorem 57.1: If C c$ converges for x = x , ,  and if Ix,l -= I x , ! ,  then the series converges absolutely for 
x = x, .  

Suppose now that (57.1) converges absolutely, that is, C lcix'l converges, for all values of x 
such that 1x1 < P. Choose a value of x ,  either x = p or x = - p ,  so that 1x1 = p < P. Since (57.1 ) 
converges for 1x1 = p, it follows that for any E > 0, however small, there exists a positive integer 

m such that whenever n > m, then IR,(p)(  = lckpkl < E .  Now let x vary over the interval 

1x1 ' p .  Every term of (R,(x)(  = l C k X k l  has its maximum value at 1x1 = p; hence IR,(x)l has 

its maximum value on the interval 1x1 ~p when 1x1 = p. 
Let E be chosen and m be found when 1x1 = p. Then for this E and m, IR,(x)l< E for UN x 

such that 1x1 ' p ;  that is, m depends on E and p but not on the choice xo  of x on the interval 
1x1 5 p as in ordinary convergence. We say that (57.1 ) is uniformly convergent on the interval 
1x1 I p. We have proved 

+m 

k = n  +m 

k = n  

Theorem 57.2: If C c lx l  converges absolutely for 1x1 < P, then it converges uniformly for 1x1 s: p < P. 

As an example, the series C (- l ) 'xi  is convergent for 1x1 < 1. By Theorem 57.1 it is 
absolutely convergent for 1x1 5 0.99, and by Theorem 57.2 it is uniformly convergent for 
1x1 5 0.9. 

Theorem 57.3: A power series represents a continuous function f ( x )  within the interval of convergence 
of the series. 

(For a proof, see Problem 12.) 

Theorem 57.4: If C cixi  converges to the function f ( x )  on an interval I, and if a and 6 are within the 
interval, then 

= 166 CO dx + l c,x  dx + l c*xZ dx + . . . + c n - , x n - *  dx + * * l 
(For a proof, see Problem 13.) 

Theorem 57.5: If converges to f ( x )  on an interval I, then the indefinite integral 

converges to g(x) = dx for all x within the interval I .  

Theorem 57.6: If C cixi  converges to the function f ( x )  on the interval I ,  then the term-by-term 

derivative of the series, 2 - (cix')  converges to f ' ( x )  for all x within the interval I .  

Theorem 57.7: The representation of a function f ( x )  in powers of x is unique. 

d 
dx 

Solved Problems 

+ (- 1)n-1  - 1 x n  . .  . 1. Find the interval of convergence of x - $ x 2  + $ x 3  - $x4 - . 
n 

The ratio test yields 

lim iyl= lim I- x n + l  zI=lxl lim A- 
n++ oc n - + =  n + l  x n  n - - * + m  n + 1 - 1x1 
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2. 

3. 

4. 

5. 

6. 

The series converges absolutely for 1x1 < 1 and diverges for 1x1 > 1. Individual tests must be made at the 
endpoints x = 1 and x = -1: 

For x = 1, the series becomes 1 - 4 + 4 - f - - and is conditionally convergent. 
F o r x = - 1 ,  theseriesbecomes -( 1 + 4 + 4 + f + . . . ) a n d i s d i v e r g e n t  . 
Thus the given series converges on the interval - 1 < x I 1. 

x2  x 3  X n  
Find the interval of convergence of 1 + x + - + - + + - + - - 0 .  

2! 3! n! 

= O  = 1x1 Iim - 
n++- n + 1 

Is,/= S n + l  lim 1- X " + l  - 1  n! 1 
Here 

n - + -  (n + l)! x n  

The given series converges for all values of x .  

- 2 
+- -+...+- + *. . .  Find the interval of convergence of - 

1 
( x  - 212 + ( x  - 213 ( x  - 2)" 

2 3 n 

Here 
~ l = l x - 2 1  lim -- n 
( x  - 2)" - Ix - 21 

n - + m  n + 1 lim 
n++m 

The series converges absolutely for Ix - 2) < 1 or 1 < x < 3 and diverges for Ix - 21 > 1 or for x < 1 and 
x > 3 .  

+ f - ..., and for x = 3  it becomes 1 + 3 + 4 + a + a . . .  

The first converges, and the second diverges. Thus the given series converges on the interval 1 I x < 3 
and diverges elsewhere. 

For x = 1 the series becomes -1 + 4 - 

+ . a . .  

x - 3 + ( x  - 3)2 (x  - 3)3 ( x  - 3 y - l  
l2 22 +3,+.'*+ (n - 112 

Find the interval of convergence of 1 + - - 

Here 

The series converges absolutely for Ix - 3)  < 1 or 2 < x < 4 and diverges for Ix - 31 > 1 or for x < 2 and 
x > 4 .  

+ . - - .  Since 
both are absolutely convergent, the given series converges absolutely on the interval 2 r x  14 and 

F o r x = 2  the series becomes 1 - 1 + f - + . - - ,  and forx = 4 i t  becomes 1 + 1 + f + 

diverges elsewhere Note that the first term of the series-is not given by the general term with n = 0. 

Find the interval 

Here 

x + l  (x+1)2 (x+1)3 ( x  + 1)" 
di +- fi v3 fi 

+-+...+-+... of convergence of - 

The series converges absolutely for Ix + 11 < 1 or -2 < x < 0 and diverges for x < -2 and x > 0. 
, and for x = 0 it becomes 1 + + 1 1 1  For x = -2 the series becomes - 1 + - - - + - - -  

- + - + * - * .  The first is convergent, and the second is divergent (why?). Thus, the given series 
converges on the interval -2 5 x < 0 and diverges elsewhere. 

fl 1 1  f l f i f l  
v3v2 

m rn(m - 1) m(m - l)(m - 2) 
1 

x 3  + * * * .  
1 . 2 . 3  

x2  + 
1 . 2  

Find the interval of convergence of 1 + - x + 
This is the binomial series. For positive integer values of rn, the series is finite; for all other values of 

rn, it is an infinite series. We have 

rn(rn - l)(rn - 2) .  * - (rn - n + 1)x" 
n! 

(n - l)! 
rn(m - l)(m - 2).  * (rn - n + 2)x"- '  

lim I 
n d + m  
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7. 

8. 

9. 

10. 

11. 

The infinite series converges absolutely for 1x1 < 1 and diverges for 1x1 > 1 .  
At the endpoints x = ? 1, the series converges when rn L 0 and diverges when rn I - 1.  When 

- 1 < rn < 0, the series converges when x = 1 and diverges when x = - 1 .  To establish these facts, tests 
more delicate than those of Chapter 54 are needed. 

2 " - 1  x 3  x 5  x 7  X 
Find the interval of convergence of x - - + - - - + - - - + (- l)"-' - + - - - .  

3 5 7  2n - 1 

Here 

The series is absolutely convergent on the interval x 2  < 1 or - 1 < x < 1 .  

Both series converge; thus the given series converges for - 1 I x I 1 and diverges elsewhere. 
For x = - 1 the series becomes - 1 + 3 - + + * * * , and for x = 1 it becomes 1 - 3 + f - 5 - - . 

Find the interval of convergence of ( x  - 1) + 2!(x - 1)2 + 3!(x - 1)3 + - - + n ! ( x  - 1)" + - - -. 

Here 

The series converges for x = 1 only. 

n . This is a power series Find the interval of convergence of - + - + - + - - - + - + - - - 
in l lx .  

1 2 3  
2x 4x2 8 x 3  2"x" 

Here 

1 
The series converges absolutely for - < 1 or 1x1 > l .  

For x = $ the series becomes 1 + 2 + 3 + 4 + . . .  and for x = - $ the series becomes 
- 1 + 2 - 3 + 4 - - . Both these series diverge. Thus the given series converges on the intervals x < - 4 
and x > 1 and diverges on the interval - 1 I x I 1. 

21x1 

The series 1 - x + x 2  - x 3  * + (- 1 ) " ~ "  + - 
m when (a) x = f and (b) x = a so that IR,(x)l< E for n > m. 

converges for 1x1 < 1. Given E = 0.O00 001, find 

+ P  

Rn(x)  = (-l)kxk, so that 
k = n  

+ m  + P  

IRn( $) I  = 1 (-l)k( $)'I = f (  $)"-' and lRn( $)I  = 1 ( - l )k(  $ ) k l  = 5 4  l( 
k = n  k = n  

( a )  We seek rn such that for n>rn then f(~)"-'<O.OOOOOl or 1/2n-'<0.000003. Since 1/218= 

( 6 )  We seek rn such that for n > r n  then f (  $ ) " - I  <O.OOOOO1 or 1/4"- '  <O.O00005. Here, rn = 9. 
0.OOO 004 and 1 /219 = O.OO0 002, rn = 19. 

Prove: If a power series C cixi  converges for x = x ,  and if Ix21 < lxl) ,  the series converges 
absolutely for x = x 2 .  

lim cnxy = 0 by Theorem 53.15; also { Ic ix : l> ,  being convergent, is 
bounded, say, 0 < Icnxyl< K for all values of n. Suppose Ix2/x l  I = r, for 0 < r < 1; then 

Since C c,xi converges, 
?I--.+= 

and C Icnx;l ,  being term by term less than the convergent geometric series C Kr", is convergent. Thus 
C c,x; converges and, in fact, converges absolutely. 
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12. Prove: A power series represents a continuous function f ( x )  within the interval of convergence 
of the series. 

Set f ( x )  = C c,x' = S , ( x )  + R , ( x ) .  For any x = x ,  within the interval of convergence of C c ,x l  there 
is, by Theorem 57.1, an interval I about x,  on which the series is uniformly convergent. To prove f ( x )  
continuous at x = x , ,  it is necessary to show that lim I f ( x ,  + A x )  - f(x,)I = 0 when x ,  + Ax is on I ;  that 
is, it is necessary to show that for a given E > 0, h%&(?ver small, A x  may be chosen so that x,  + A x  is on I 
and If(% + - f(x,)l< 

Now for any A x  such that x ,  + A x  is on the interval I, 

If(x0 + A x )  - f ( x O ) l =  ISn(x0 + A x )  + Rn(x0 + A x )  - Sn(x0) - Rn(x0)I 
5 I S n ( x 0  + A') - Sn(xo)l+ IRn(x0 + ' > I +  lRe(xO)l (1  1 

Let E be chosen. Since x ,  + A x  is on the interval of convergence of the serieS, an integer m > 0 can be 
found so that whenever n > m  then I R , ( x , + A x ) l < ~ / 3  and I R , ( x , ) l < ~ / 3 .  Also, since S , ( x )  is a 
polynomial, a smaller IAxl can be chosen, if necessary, so that ISn(xo + A x )  - S,(x,)( < € 1 3 .  For this new 
choice of A x ,  IRn(xo + Ax)I remains less than r / 3  since the series is uniformly convergent on I and 
lR,,(xo)/  is unchanged. Hence, by ( I ) ,  

I ~ ( x ,  + A x )  -f(x,)l< ~ / 3  + € 1 3  + ~ / 3  = E 

Thus f ( x )  is continuous for all x within the interval of convergence of the series. 

13. Prove: If C cixi converges to the function f ( x )  on an interval, and if x = a and x = 6 are within 
the interval, then 

and 

Since C clx' is convergent on an interval, say 1x1 < P, the series is uniformly convergent on an interval 
1x1 c: p < P which includes both x = a and x = 6 .  Then for any E > 0, however small, n can be chosen 
sufficiently large that IR, , (x) l<  for all 1x1 s p .  Thus, 

6 - a  

so 

(6  - U )  = E 

as was to be proved. 

Supplementary Problems 

14. Find the interval of convergence of each of the following series. 

( a )  x + 2 x 2  + 3 2  + 4x4 + * * 

x 2  x 3  x4 

2 3 fI4 
( c )  x - -I + 7 - - + * . *  
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15. 

16. 

(g) The series obtained by differentiating (a) term by term 
(h)  The series obtained by differentiating (b) term by term 

X3 x4 + 3 + * * *  
X2 (i) x + ~ +- 

1 + 2 3  1 + 3 3  1 + 4  
( j )  The series obtained by differentiating (i) term by term 
(k) The series obtained by differentiating ( j )  term by term 
(I) The series obtained by integrating (a )  term by term 
(m)The series obtained by integrating (c) term by term 

( x  - 2)? ( x  - 2)3 ( x  - 214 +-+-+... 
9 16 (n) ( x  - 2) + - 

4 

x - 3  (x - 3 ) ?  (x -3)' (x -3)4  +- +- + 4 + * * .  
(0) 1.3 2 . 3 2  3 . 3 3  4 . 3  

+ . . .  3x - 2 (3x - 2)? (3x - 2)3 
5' 

+ 
5 2  

w - 5  + 
( 4 )  The series obtained by differentiating (a )  term by term 
(r) The series obtained by integrating (n) term by term 

X (4 1 + - 1 - x  + (&)* + ( & ) 3  + . . . 
2 3 4  

( t )  1 - - + , - , + . .  
x x  x 

+ * *  

1 x 2 + 6 x + 7  + ( x ' + 6 ~ + 7 ) ~  ( x ' + 6 ~ + 7 ) ~  
- 4  + (4 ; + - 2  m 3  

L L L L 

Am. (a )  - 1 < x < 1;  (6) - 1 I x I 1; (c) all values of x ;  (d) - 5 < x 5 5; ( e )  - 1 5 x 5 1 ; ( f ) all values 
of x ;  (g)  - l < x < l ;  (h) - l ~ x < l ;  (i) - 1 5 x 1 1 ;  (j) - 1 5 x 5 1 ;  ( k )  - l l x < l ;  
(I) - l < x < l ;  (m) all valuesofx; (n) 1 5 x 1 3 ;  (0) 0 S x < 6 ;  ( p )  - l < x < $ ;  ( 4 )  1 5 x < 3 ;  
( r )  1 5 x 1 3 ;  (s) X <  i ;  ( t )  x < - l ,  x > l ;  ( U )  - 5 < ~ < - 3 ,  - 3 < ~ < - 1  

Prove:+b power s5ces can be di!Frentiated term by term within its interval of convergence. (Hint: 12 1 .  Use Theorems 57.1, 57.2, f ( x )  = 2 c r x r  and 2 - ( c $ )  = 2 jc,x" converge for 1x1 < lim 

and 57.5 to show [ f ' ( x )  dx = f ( x ) . )  

d 
n--+ + oc i = O  r = O  dx I =  1 

Prove: The representation of a function f ( x )  in powers of x is unique. (Hint: Let f ( x )  = C s,xn and 

f ( x )  = C t,xn on 1x1 < a z 0. Put x = o in c (s, - t , )x" = 0, C (s, - t , )x"  = 0, - E(s, - t , )x"  = 

0, . . . to obtain s, = t j ,  j = 0, 1,  2, 3, . . . .) 
d d 2  

dx2 



Chapter 58 

Series Expansion of Functions 

POWER SERIES in x may be generated in various ways; for example, imagining the division 
continued indefinitely, we find that 

1 + + x 2  + x 3  + - .  - + y - l +  - .  . (58. I ) 

(Note that for, say, x = 5 this is a perfectly absurd statement.) In Example 1 below, it is shown 

only on the interval 1x1 < 1; that is, 
1 

that the series (58. I ) represents - 
I - x  

- l < x < l  

1 
1 - x  
-= 

-- - 1 + 1 
1 - x  

+ x 2  + x 3  + - .  . + xn- l  + - - - 

Other methods for generating power series are illustrated below and in Problem 1. 

A GENERAL METHOD for expanding a function in a powers series in x and in ( x  - a )  is given 
below. Note the requirement that the function and its derivatives of all orders must exist at 
x = 0 or at x = a. Thus l l x ,  In x ,  and cot x cannot be expanded in powers of x .  

Maclaurin's series: Assuming that a given function can be represented by a power series in 
x ,  that series is necessarily of the form of Maclaurin's series: 

Taylor's series: Assuming that a given function can be represented by a power series in 
( x  - a) ,  that series is necessarily of the form of Taylor's series: 

I 

(-58.3 ) 

(See Problem 2.4.) 
The question of the interval on which f ( x )  is represented by its Maclaurin's or Taylor's series 
will be considered in the next chapter. For the functions of this book, the interval on which a 
series represents the function coincides with the interval of convergence of the series (See 
Problems 3 to 9.) 

Another and very useful form of Taylor's series 

f ' "-ya) + . . . (58.4) 
h h2 h3 hn-- '  

I! 2! 3! (n - l)! 
f(a + h )  = f(a) + - f'(a) + - f"(a) + - f"'(a) + * * * + ~ 

is obtained by replacing x by a + h in (58.3). 

EXAMPLE 1: The power series 1 + x + xz + x3 + * * * + x''--* + . * - is an infinite geometric series with 

for Irl = 1x1 L 1, the series a = 1 and r = x. For Irl = 1x1 < 1, the series converges to a = -* 

1 - r  1 - x '  
diverges. 

1 

By repeated differentiation of the series of Example 1, we obtain other power series, 

1 + 2 x  + 3 x 2  + 4 x 3  + - - .  + nxn- l  + - . .  (58.5) 

2 + 6 x  + 12x2 + 2 0 2  + - - - + n(n + l )xn- '  + - * * (58.6) 

360 
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in the By Theorem 57.6, the series (58.5) represents the function - (-) = - 

interval 1x1 < 1, and (58.6) represents the function in the same 

interval. 
By repeated integration between the limits 0 and x of the series of Example 1, we obtain 

d 1  
& 1 - x  (1-x)2 

1 2  1 1 1 
(58.7) x + - x  + - X 3 + - x 4 + . . . + - x n + . . .  

2 3 4 n 

x n + l + . . .  1 2  1 1 1 
- x + - x3 + - x4 + - x 5 +  
2 6 12 20 n(n + 1) 

- * + (58.8) 

By Theorem 57.5, the series (58.7) represents the function l-x dx=- ln(1-x)  in the 

interval 1x1 < 1. The series (58.7) also converges for the endpoint x = -1. In such a case, and 
where the function that is represented inside the interval is continuous at an endpoint, the 
function is equal to the series at the endpoint also. (The proof of this fact is beyond the scope 

of this book.) Hence, -In 2 = - 1 + - - 1 1 1  1 1 1  
3 + 4 

Similarly, the series (58.8) represents the function 1 -1n(1 - 

, and, therefore, In2 = 1 - - + 
2 3 - 4 ” ”  

= 

x + (1 - x) In (1 - x) in the interval - 1 5  x < 1. 

Solved Problems 

1. Find the power series y = C cnxn satisfying the conditions y = 2 when x = 0, y’ = 1 when x = 0, 
and y” + 2y’ = 0. 

Consider y = CO + c,x + c2x2 + C’X’ + 
y’ = c, + 2C’X + 3C’X’ + 4c4x3 + * - * 

* * 

y” = 2c2 + 6c3x + 12c4x’ + 20c5x3 + * - - 
From (1) with x = 0 and y = 2 we find c, = 2; from (2) with x = 0 and y ’  = 1 we find c ,  = 1. Since the 
third condition requires y” = -2y’, we set 

2c2 + 6 ~ 3 ~  + 1 2 ~ ~ ~ ’  + 20c5x3 + * . . = - 2 ~ ,  - ~ C , X  - ~ c , x ’  - ~ c , x ’  - * * * 

from which it follows that c2 = -cl = -1, c j  = - $c2 = $,  c4 = - $c3 = - 3 , .  ’ . . . Thus, y = 2 + x  - x 2  + 
3x - $x4 + - - - is the required series. 

2. Assuming that f ( x )  together with its derivatives of all orders exist at x = a and that f ( x )  can be 
represented as a power series in (x - a) ,  show that this series is 

Let the series be 

f ( x )  = CO + c,(x - a)  + c,(x - a)’ + c,(x - a)’ + * * + c,& - + - * - ( 1 )  

Differentiating successively, we obtain 

f ’ ( x )  = c ,  + 2c,(x - a)  + 3c3(x - a)’ + 4c4(x - a)’ + - * - + nc,(x - a)”-’ + - * * 

f”(x) = 2 ~ 2  + 6 ~ 3 ( x  - U )  + 1 2 ~ 4 ( ~  - U)’ + 2 0 ~ . 5 ( ~  - U)’ + * * + (n + l)nc,+,(x - U ) ” - ’  + * * 

(2 ) 
(3  ) 
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f" ' (X)  = 6 ~ 3  + 24C4(X - U )  + 6OC5(X - U ) ,  + * * * + (n + 2)(n I)nC,+,(x - U ) " - ,  + * * * ( 4  1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Setting x = a in ( Z ) ,  ( 2 ) ,  ( 3 ) ,  . . .  , we find in turn 

1 
f'"-''(a), . * . CO =f(a) . c ,  =f'(a) . c, .. f"(a) ,  . . . .  cn-l . - 1 

2! (n - l)! 

When these replacements are made in ( I ) ,  we have the required Taylor's series. 

In Problems 3 to 8, obtain the expansion of the function in powers of x or x - U as indicated, under 
the assumptions of this chapter, and determine the interval of convergence of the series. 

- 2x 3. e ; powers of x 

We have 

. . . . . . . . . . . .  . . . . . . . . . .  

and since 

the series converges for every value of x. 

4. sin x ;  powers of x 

We have f ( x )  = sin x 
f ' ( x )  = cos x 

f'"(x) = - cos x 

f ( 0 )  = 0 
f '(0) = 1 

f"'(0) = - 1 
f"(x)  = -sin x f"(0) = 0 

. . . . . . . . . . . .  . . . . . . . . .  
The values of the derivatives at x = 0 form cycles of 0, 1, 0, - 1; hence 

and since 

the series converges for every value of x .  

5. In (1 + x ) ;  powers of x 

Here f ( x )  = In (1 + x) f(0) = 0 
1 

l + x  
f ' ( x )  = - f'(0) = 1 

f"(0) = - 1 
1 f"(x) = - - 

( 1  + X ) *  
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Hence 

f”’( 0) = 2! 

f”(0) = -3! 

1 . 2  f”’(x) = - 
(1 + x)3 

1 - 2 . 3  

. . . . . . . . . . . . . . . . . . . . . . . . . .  

1 1 1 1 
2 3  4 n 

= x  .. x2 + . *3 .. x4 + . . .  + (-1)n-l . X ” .  . .  

By Problem 1 of Chapter 57, the series converges on the interval - 1 < x 5 1. 

6.  arctan x ;  powers of x 

We have f ( x )  = arctan x f(0) = 0 

f ’(0) = 1 

f”(x) = -2x + 4x3 - 6 x s  + - S .  

f”’(x) = -2 + 1 2 ~ ’  - 30x4 + 
f l y x )  = 2 4 ~  - 120x3 + - . - 
f’(x) = 24 - 360~’ + - * * 

fV’(x) = - 7 2 0 ~  + * * * 

fVii(x) = -720 + ... 

f ”( 0) = 0 
f’”(0) = -2! 
f’”(0) = 0 
f’(0) = 4! 
f”(0) = 0 
f””(0) = -6! 

* 

so 
2! 4! 6! 
3! 5 !  7! 

arctan x = x - - x3 + - x5 - - x7 + - - * 

x3 x5 x7 x Z n - l  = x . - + - . - + ... + (-1)n-l ~. . .  
3 5 7  2n - 1 

From Problem 7 of Chapter 57, the interval of convergence is - 1 5 x I 1. 

7. ex’* ;  powers of x - 2 

We have 

Hence 

and since 

. . . . . . . . . . . . . . . . . . . .  

1 (X-2y-l  + . . . I  1 1 (x - 2)‘ 
ex’’=e[l+ 5 ( x - 2 ) +  - - + a . . +  - 

4 2! 2”-’ (n -  I)! 

the series converges for every value of x .  

8. In x ;  powers of x - 2 

Here f ( x )  = In x f(2) = In 2 
f ’ ( x )  = x- I  
f”(x) = -x-2 

f’(2) = ; 
f”(2) = - + 
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so 

Since 

. . . . . . . . . . a . .  . . . . . . . . . .  

1 1 (x -212 +-- - - -+. . .  1 (x -2 )3  3 (x -2)4 
In x = In2 + - (x - 2) - - - 

2 4 2! 4 3! 8 4! 

the series converges for Ix - 21 < 2  or O<x <4 .  

f - 

For x = 0, the series is In 2 - (harmonic series) and diverges; for x = 4, the series is In 2 + 1 - $ + 
. . .  and converges. Thus the series converges on the interval 0 < x I 4. 

9. Obtain the Maclaurin's series expansion for = sin i x  + cos i x .  

Replace x by $x in the expansion for sin x (Problem 4) to obtain 

- 1  1 x3 x5 x7 

Differentiate this expansion to obtain 

1 1 x2 I---+... x4 X6 =I - -+- - -+ . . .  X2  x4 X6 
cos - x = 2 ( -  - 1 22 .2 !  2 4 . 4 !  26 .6 !  2 2 Z3-2!  2 '*4!  2'-6! 

1 1 x x 2  X3 X4 +- - . . .  XS +- VI + sinx = sin - x + c o s  - x = 1 + - - - - - 
2 2 2 2 2 * 2 !  Z3.3! 2 4 . 4 !  2 5 * 5 !  

Then 

for all values of x .  

10. Obtain the Maclaurin's series expansion for ecoSx = e(e(cOsx-l) 1. 
u2 u3 x2 x4 x6 

U s i n g e u = l + u + - + - + * * *  a n d u = c o s x - l = - - + - - - + + . . ,  we find 
2! 3! 2! 4! 6! 

) + . . . I  

11. Under the assumption that all necessary operations are valid, show that (a )  er" = cos x + 
i sin x ,  (6) e-'" = cos x - i sin x ,  (c) sin x = (e'" - e - '" ) /2 i ,  (d) cos x = (e'" + e-'")/2, where 
i = G .  

z2 z3  z4 z5 
Since e' = 1 + z + - + - + - + - + * -, we have the following: 

2! 3! 4! 5 !  

(b) e-'' = cos (-x) + i sin (-x) = cos x - i sin x 
(c) e" - e - I t  = 2i sin x; hence, sin x = (eIX - e - ' " ) / 2 i  
(d) + e-" = 2 cos x; hence, cos x = (elX + e- I , )  / 2  
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Supplementary Problems 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Verify that (a) series (58.5) and (58.6) converge for 1x1 < 1; (6) series (58.7) converges for - 1 5 x < 1; 
(c) series (58.8) converges for - 1 5 x 5 1. 

Verify that (a )  the series obtained by adding (58.5) and (58.6) converges for I x ( < l ;  ( 6 )  the series 
obtained by adding (58.7) and (58.8) converges for - 1 5 x < 1. 

Find the power series y = C C,X" satisfying the conditions (1) y = 2 when x = 0, (2) y' = 0 when x = 0, 
x4 2x'" 

and (3 )y" -y=O.  Am. y = 2 + x 2 +  - +.. .+-  
12 (2n)! 

Find the power series y = C C,X" sastisfying the conditions (1) y = 1 when x = 0, (2) y' = 1 when x = 0, 
x' x3 x4 x5 
2! 3! 4! 5 !  

and (3) y" + y = 0. Am. y = 1 + x - - - - + - + - - * - 

Obtain the given Maclaurin's series expansion: 

, for all x 2 23 2'"-' x'" - . . . 
2! 4! ( 2 4 .  

cos' x = 1 - - x' + - x4 - . . . + (- 1)" 

1 5 61 
2 24 720 (6) s e c x =  1 + - x2 + - x 4 +  - x h + - - - ,  for - 7 ~ / 2 < x <  T/2  

1 1 7  I /  
( c )  t a n x = x + ~ x 3 + 4 x s + - x 7 + - - . ,  for - v / 2 < x < r / 2  

3 15 315 

1 x3 1 - 3  x 5  1 . 3 . 5  x7 
2 3 2 . 4  5 2 . 4 - 6  7 

( d )  a rcs inx=x+  - - + -  - +- - + * * * ,  for - l < x < l  

Obtain the given Taylor's series expansion: 

( x  - a)' (x - a)3 (x - a)" .  
(a )  ex = e" 1 + ( x  - a)  + - + ~ + + + . - * I ,  for all x [ 2! 3! (n - l)!  

( x  - a)' (x - a y  
(6) sin x = sin a + (x - a)  cos a - - sin a - - cos a + . - -, for all x 

2! 3! 

( x  - qT)' (x - aT)3 + + * * . I ,  for all x 2! 3! 

Differentiate the expansion for sinx (Problem 4) to obtain the expansion for cosx. Then identify the 
solution of Problem 15 as y = sin x + cos x. 

Replace x by i x  in the expansion for e-'x (Problem 3) to obtain the expansion for e P x .  In this latter 
series replace x by -x to obtain the expansion for e x ;  then identify the solution of Problem 14 as 
y = ex + e-x .  

2x4 32x6 96x8 + - * * ,  for all x. Obtain the Maclaurin's series expansion sin' x = (sin x)' = x2 - - + - - - 
3! 3!5! 3!7! 

, for all x .  
x3 x 5  x 7  

d y q -  - + - - - + .. .  
3 - l !  5*2!  7.3! Show that e P y 2  

Obtain by division the series expansion of -* then obtain 
1 + x 2 '  
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f X 7  + . . . " d x  
arctanx = In = x - +x' + ix5 - 

and compare with the result of Problem 6. 

1 1 , 1 . 3  1.3.5 
x 6  + - * -; then obtain By the binomial theorem, establish - = 1 + -x- + - x4 + - lfF-7 2 2 . 4  2 . 4 - 6  

23. 

= x + - + -  l . x 3  1 . 3 . ~ ~  + 1 . 3 . 5 . ~ '  + . . .  
2 . 3  2 . 4 . 5  2 . 4 . 6 . 7  

x 3  x s  x6 
24. Multiply the respectiye series expansions to obtain 

( b ) e x c o s x = l + x - - - - - - * * -  

(a )  ex sin x = x + x2 + - - - - - - - - ; x x4 x5 3 30 90 
3 6 3 0 -  

25. 
1 - Write sec x = - - 

equate to zero the coefficient of each positive 'power of x to obtain co = 1, c ,  = 0, . . . . 
= c,  + c,x + c2x2  + c3x3  + * - - .  Multiply the two series 

1 
cos x 1 - x2/2! + x4/4! - * * * 

and 



Chapter 59 

Maclaurin's and Taylor's Formulas 
with Remainders 

MACCAURIN'S FORMULA. If f(x) and its first n derivatives are continuous on an interval 
containing x = 0, then there are numbers xo and x ;  between 0 and x such that 

where 

or 

(Lagrange form) 

( x  - x;f)"-lx (Cauchy form) f '"" 1 R,(x)  = - (n - l)! 

TAYLOR'S FORMULA. If f(x) and its first n derivatives are continuous on 
x = a, then there are numbers xo and x ;  between a and x such that 

where 

or 

an interval containing 

(Lagrange form) 

( x  - x;)"-'(x - a)  (Cauchy form) f ' " ' (x; )  R,(x)  = - (n - l)! 

Maclaurin's formula is a special case (a  = 0) of Taylor's formula. Taylor's formula with the 
Lagrange form of the remainder is a simple variation of the extended law of the mean (see 
Chapter 26). For the derivation of the formula with the Cauchy form of the remainder, see 
Problem 10. 

The Maclaurin's and Taylor's series expansions of a function f ( x )  as obtained in Chapter 58 
represent that function for those values, and only those values, of x for which lim R , ( x )  = 0. 

n + + m  

SERIES FOR REFERENCE. The following series, with the functions they represent and the 
intervals on which they do so, are listed here for reference: 

x 2  x 3  X n  
ex= 1 + x + - + - + . . . + - + . . . for all x 

2! 3! n! 

+.. .  for all x 
s i n x = x - - + + - - + + . . + + - 1 ) " + '  x 3  x 5  x' X2" - 

3! S !  7! (2n - l)! 

x 2  x4 x6 X 2 ,  

2! 4! 6! ( 2 4 .  for all x cosx=  1 - - + - - - + * * + (-1)" 7 + - * 

X n  + (-l)"-l 2 + l n ( a + x ) = l n a +  - - - + - - . S .  
* for - a  < x I a 

x x 2  x 3  
a 2a2 3a3 

for - 1 s x s l  arcsin x = x + - l ax3  + - + * . a +  1 . 3 . ~ '  1 * 3 5 - * (2n - 3)x2"-' +. . .  
2 . 3  2 - 4 . 5  2 + 4 6 * - - (2n - 2)(2n - 1) 

367 
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(- un-' (* - a)"+ . . . 1 1 1 
+ nan I n x = I n a +  - (  ~ - a ) - - ( x - a ) ~ + - ( ( x - a ) ' - . . .  

U 2a2 3a3 
for 0 < x I 2a 

(x - (x - a)' (x - a)"-' 
e x = e "  1 + ( x - a ) + - - - -  + ~ + - * a +  ( n  - l)! + - - .] for all x [ 2! 3! 

(x - a)' 

(x - a)' 

( x  - a)' 

( x  - a)' 
cos x = cos a - (x - a) sin a - - cos a + ~ 

sin x = sin a + (x - a) cos a - - sin a - ~ COSU + . . .  

sin a + . - + 

for all x 
2! 3! 

for all x 
2! 3! 

Solved Problems 

1. Find the interval for which ex may be represented by its Maclaurin's series. 

f ' " ' ( x )  = er ;  the Lagrange form of the remainder is IR,,(x)I = - f ' " ' ( x , )  = 7 ex(' ,  where x,, is 

The factor - is a general term of ex = 1 + x + - + - + * - - which is known to converge for every 

lim 7 = 0. The factor exo is bounded by the maximum of e x  and 1. Hence, 

I x,7 I '? 
between 0 and x. 

n! 
value of x. Thus, 

X n  xz x3 
2! 3! 

lXn I 
n - + -  n !  

lim R, (x )  = 0 and the series represents ex for all values of x. 
n - +  I 

2. Find the interval for which sinx may be represented by its Maclaurin's series. 

Ixn I lxn I Apart from sign, f ' " ' ( x )  = sin x or cos x, and IR,,(x)l = 7 Isin x,l or 7 /cos x, l ,  where xO is 

As in Problem 1, - -0 as n-, +m.  Since lsin x,,I and lcosx,I are never greater than 1, 

n. n .  
between 0 and x. 

X n  

nl 
lim R , ( x )  = 0 and the sekies represents sin x for all values of x. 

n - +  x 

3. Find the interval for which cosx may be represented by its Taylor's series in powers of 
(x - a ) .  

(cos xo I * Kx - 4"l 
n!  For the Lagrange form of the remainder, we have (R,(x)I = 

- 

n!  
Isin x,l or 

where x,,  is between U and x. 

Since - ')"I -*O as n-, + m ,  while lsin x,I and [cos x,,I are never greater than 1, lim R , ( x )  = 0 n!  n- + 1 
and the series represents cosx for all values of x. 

4. Find the interval for which In (1 + x) may be represented by its Maclaurin's series. 

( n  - l)! 
( l + x ) " '  

Here f ' " ' ( x )  = (- l ) n - '  -* then with x,, and x t  between 0 and x, the Lagrange form of the 

remainder is 



CHAP. 591 MACLAURIN'S AND TAYLOR'S FORMULAS WITH REMAINDERS 369 

and the Cauchy form of the remainder is 

( x  - xX)"-' ( n  - I)! = (- l)n-l  x(x - xO*)"-l 

(1 + x: )"  
R , ( x )  = (- l)n-l  

( n  - l)! (1 + x:)"  
X 

W h e n O < x , < x s l ,  t h e n O < x < l + x , a n d - < l ;  then, from ( I ) ,  1 + x ,  

IR,(x)I = n ( E )"< and n++ lim m R , ( x ) = O  

1 
When - l < x < x t < O ,  then O < l + x < l + x :  a n d T < -  From (2), 

1 + x ,  l + x '  

and lim R , ( x )  = 0 1x1" 
IRn(x)l< l+x n - +  x 

Hence, In (1 + x )  is represented by its Maclaurin's series on the interval - 1 < x 5 1. 

5. For the Maclaurin's series representing ex, show that 

Ix" I xneX 
n! n! IR,,(x)l< - when x < 0 and R, (x )  < - when x > 0 

X n  

n .  

n .  n! 

From Problem 1, R , ( x )  = 7 exn, where x ,  is between 0 and x .  When x < 0, ern < 1; hence, 
xnex Ixn I IR,(x)I < 7. When x > 0, exn < e"; hence, R , ( x )  < -. 

6. For the Maclaurin's series representing In (1 + x), show that 

X" 

n R , ( x ) <  - when O < x s  1 

1 
From (I ) of Problem 4, IR,(x)I = - n 

< 1; hence, IR,(x)< -. When 
X n  

Ixn I 1 + x,  

IRn(x)l< n(l  + * 

1 n, where x,, is between 0 and x. When 0 < x o  < x 5 1, 

. hence, - 1 < x < x , < 0 ,  1 + x 0 > 1 + x  and -<- 1 + xo 1 1 
1 + x ,  l + x '  

Supplementary Problems 

7. Find the interval for which cosx may be represented by its Maclaurin's series. 

Am. all values of x 

8. Find the intervals for which (a) ex and (6) sin x may be represented by their Taylor's series in powers of 
(x  - a). Am. all values of x 

9. Show that In x may be represented by its Taylor's series in powers of ( x  - a )  on the interval 0 < x 5 2a. 
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10. Let T be defined by 

and define 

f'""'(x) (6  - x)"-l + T(6 - x )  f "(x) F(x)  = -f(6) + f ( x )  + fT (6 - x) + - (6 - x)' + - - + ~ 

( n  - l)! 2! 

Carry through as in Problem 15 of Chapter 26, and obtain Taylor's formula with the Cauchy form of the 
remainder, 

11. (a )  In the Cauchy form of the remainder of Taylor's formula, put x,* = a + e(x - a ) ,  where O <  8 < 1 .  
f(")[a + e ( x  - U ) ]  

Show that R , ( x )  = ( 1  - e)"-'(x - U)". 
( n  - l)! 

(6) Show that /?,,(I) = ~ (1 - 8 ) n - 1 x n  in Maclaurin's formula. 
( n  - l ) !  

1 
1 - x  

12. Show that - is represented by its Maclaurin's series on the interval - 1 5 x < 1 .  

"(b), ' n ( x )  = ( 1  - e x ) n + i  

Hint: From Problem 

n( 1 - e)', Ixn 1 - 8  
f o r 0 < 8 < 1 .  For I x l < l , - < l  and l - O x > l - l x [ . )  

1 - ex 

+=  n2 
, = 1  n !  + m  n 3  + P  n4 n .  n !  

+ a  + z  n n 
13. ( a )  Show that xex = c - x" for all values of x, and c 7 = e; also show that (x' + x)ex = c - x n  

and c 7 = 2e. (6) Obtain 
+= n 2  

- = 5e and c 7 = 15e. 
n .  n !  n .  



Chapter 60 

Computations Using Power Series 

TABLES OF LOGARITHMS, trigonometric functions, and such are computed by means of power 
series. Other uses of series are suggested in the problems below. 

It is usually necessary to have some estimate of how well the sum of the first n terms of a 
series represents the corresponding function for a given value of the variable. For this purpose 
two theorems from preceding chapters are useful: 

If f ( x )  is represented by an alternating series, and if x = 6 is on its interval of 
convergence, the error introduced by using the sum of the values of the first n terms as 
an approximate value of f( 6 )  does not exceed the numerical value of the first term 
discarded. 
If f ( x )  is represented by its Taylor's series, and if x = 6 is on its interval of convergence, 
the error introduced by using the sum of the values of the first n terms as an 
approximate value of f( 6 )  does not exceed Ix - a l"M/n! ,  where M is equal to the 
maximum value of lf'"'(x)I on the interval a to 6.  For a Maclaurin's series, a = 0. 

1 .  

2. 

CORRECTNESS OF APPROXIMATIONS. If an actual value V is approximated by a number A ,  
we say that the approximation is correct to k decimal places if the error IA - VI is less than 
5 x 10k+'. This is equivalent to saying that A would be the result of rounding off V to k decimal 
places. 

Solved Problems 

1. Find the value of l / e  correct to five decimal places. 

e-x  - x 2  x 3  X n - '  - 1 - x + - - - + . . . + (-,)"-I - + . . . 
2! 3! (n - l)! 

Since 

1 1 1 1  
2! 3! 4! 5 !  

we have e - ' = 1 - 1 +  - - - + - - - +. . .  

= 1 - 1 + 0.500 OOO - 0.166 667 -t 0.041 667 - 0.008 333 + 0.001 389 
- 0.OOO 198 + 0.O00 025 - 0.O00 003 + * * * 

= 0.36788 

2. Find the value of sin62" correct to five decimal places. 

The Taylor's for sin x series in powers of ( x  - a) is 

( x  - U)* ( x  - a y  
sin x = sin a + ( x  - a)  cos a - - sin a - - cos a + * 

2! 3! 
Take a = W, since it is near 62" and its trigonometric functions are known. Then x - a = 62" - 60" = 
2" = ~ / 9 0  = 0.034 907 and 

sin 62" = + i(0.034 907) - i f i ( 0 .034  907)* - (0.034 907)3 + . - - 
= 0.866 025 + 0.017 454 - 0.O00 528 - O.OO0 004 + * = 0.88295 

37 1 
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3. Find the value of ln0.97 correct to seven decimal places. 

For 

we take a = 1 and x = 0.03; then 

In 0.97 = - 0.03 - $ (0.03)' - 5 (0.03)3 - a (0.03)4 - 4 (0.03)5 - * * * = -0.030 459 2 

4. How many terms in the expansion of In (1 + x) must be used to ensure finding In 1.02 with an 
error not exceeding O.OO0 OOO 05? 

We have 
(0 .02)2 + (0.02).' (0.02y 

In 1.02 = 0.02 - - - - - + - .  
2 3 4 

Since this is an alternating series, the error introduced by discarding all terms after the first n is not 
greater than the numerical value of the first term discarded. The problem here is to find the first term 
whose numerical value is less than O.OO0 OOO 05. This must be done by trial. Since (0.02)'/3 = 0.0oO 002 7 
and (0.02)'/4 = O.OO0 000 04, the desired accuracy is obtained when the first three terms are used. 

5. For what values of x can sinx be replaced by x ,  if the allowable error is 0.0005? 

less than lx31 /3!. Now lx31 /3! = 0.0005 requires Ix'I = 0.003 or 1x1 = 0.1442; thus, 1x1 < 8"15'. 
sin x = x - 2/33! + xs/5! - . - . is an alternating series. The error in using only the first term x is thus 

6. How large may the angle be taken if the values of cosx are to be computed using three terms 
of the Taylor's series in powers of ( x  - r / 3 )  and the error must not exceed O.ooOo5? 

(sin x 1 
3! 

Since f " ' ( x )  = sin x, 1R31 = 

Since lsin xol 5 1 ,  lR31 5 i l x  - 7r/3I3 = 0.00005. 
Then Ix - ~ / 3 (  5- = 0.0669 = 3'50'. Thus x may have any value between 56'10' and 63'50'. 

Ix - 7r/3I3, where x, is between 7r/3 and x. 

7. Approximate the amount by which an arc of a great circle on the earth 100 miles long will 
recede from its chord. 

Let x be the required amount. From Fig. 60-1,  x = OB - OA = R - R cos a, where R is the radius 
of the earth. Since angle a is small, cos a = 1 - ixz ,  approximately, and 

Taking R = 4000 mi yields x = & mi. 

0 

Fig. 60-1 

8. Derive the approximation formula sin ( a r + x) = $fi( 1 + x), and use it to find sin 43". 

Using the first two terms of the Taylor's expansion, we have 
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sin ($71. + x )  =sin $T + xcos $T  = t f i +  ;fix = i f i ( 1 +  x )  

sin 43" = sin [ $T + (- q/90)] = $fi( 1 - 0.0349) = 0.6824 

9. Solve the equation cos x - 2 x 2  = 0. 

Replace cosx by the first two terms, 1 - t x 2 ,  of its Maclaurin's series. Then the equation is 

1 -  + x 2 - 2 x 2 = 0  or 2 - 5 x 2 = 0  

The roots are * f i / 5  = k0.632. Newton's method gives the roots as k0.635. 

ex - ePx 
10. Use power series expansions to evaluate lim -. 

X - ~ O  sin x 

( I t x +  x 2  - + x 3  - x 2  - - x 3  - + . . .  
2! 3! e* - e-x 2! 3! 

lim - - - lirn Y C  

x - - +  - - . . .  
3! 5 !  

2x + 2x3/3! + * * - 2 + x2/3 + - * - 
= lim = lim = 2  

x-o x - x 3 / 3 !  + * * x-o 1 - x2/6 + * 

11. Expand f ( x )  = x4 - l l x 3  + 43x2 - 60x + 14 in powers of ( x  - 3), and find l'' f ( x )  dx. 

f(3) = 5,  f'(3) = 9, f"(3) = -4, f"'(3) = 6, and f " ( 3 )  = 24. Hence, 

f ( x )  = 5 + 9(x - 3) - 2(x - 3)2 + ( x  - 3)3 + ( x  - 3)4 

f ( x ) d x = [ 5 ~ +  5 ( ~ - 3 ) ~ -  f ( ~ - 3 ) ~ +  $ ( ~ - 3 ) ~ +  4 ( ~ - 3 ) " ] ; ~ =  1.185 and I:' 
sin x 

12. Evaluate JI,' - dx.  
X 

sin x 
The difficulty here is that I x & cannot be expressed in terms of elementary functions. 

However, 

1: = 0.946 083 

1 
9 . 9 !  

The error in using only four'terms is 5 - = O.OO0 000 3. 

Supplementary Problems 

13. Compute to four decimal places (a )  e - 2 ;  (b) sin 32"; (c) cos 36"; (d) tan 31". 

Am. (a)  0.1353; (6) 0.5299; (c) 0.8090; ( d )  0.6009 

14. For what range of x can 
( a )  ex be replaced by 1 + x + i x 2  if the allowable error is 0.0005? 
(6) cosx be replaced by 1 - i x 2  if the allowable error is 0.0005? 

I 
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( c )  sin x be replaced by x - x3/6 + x5/ 120 if the allowable error is O.ooOo5? 

Ans. ( a )  1x1 <0.1; ( b )  1x1 < 18'57'; (c) 1x1 < 47" 

cosh x - COS x e - ecos ex - erin 

x 3  
15. Use power series expansions to evaluate (a) lim -. 7 ( b )  !: 

; (') !z s.nhx - s i n x  * x--0 xz 

Ans. ( a )  e / 2 ;  ( b )  k ;  ( c )  00 

Ans. (a )  1.854; ( 6 )  0.76355; (c) 0.4940 

17. Find the length of the curve y = x3/3 from x = 0 to x = 0.5. Am. 0.5031 

18. Find the area under the curve y = sin x 2  from x = 0 to x = 1. Ans. 0.3103 



Chapter 61 

Approximate Integration 
b 

AN APPROXIMATE VALUE of I f ( x )  dx may be obtained by means of certain formulas and by the 

use of modern computers. Approximation procedures are necessary when ordinary integration 
is difficult, when the indefinite integral cannot be expressed in terms of elementary functions, or 
when the integrandf(x) is defined by a table of values. 

r b  

In Chapter 39, an approximation of J f ( x )  dx was obtained as the sum S ,  = - 2 f ( x , )  A,x.  In obtaining S ,  we interpreted the definite integral as an area, divided the area 

into n strips, approximated the area of each strip as that of a rectangle, and summed the several 
approximations. The formulas developed below vary only as to the manner of approximating 
the areas of the strips. 

k = l  

TRAPEZOIDAL RULE. Let the area bounded above by the curve y = f ( x ) ,  below by the x axis, 
and laterally by the lines x = a and x = 6 be divided into n vertical strips, each of width 
h = ( b  - a ) / n ,  as in Fig. 61-1. Consider the ith strip, bounded above by the arc P,-IPi of 
y = f ( x ) .  As an approximation of the area of this strip, we take 

$h[ f (a  + (i - 1)h) +f(a + ih)] 

the area of the trapezoid obtained by replacing the arc P , - l P ,  by the straight line segment 
P i - l P i .  When each strip is so approximated, we have (where = is to be read “is 
approximately”) 

h h 
2 f(x) dx = - [f(a) +f(a  + h)l + [f(a + h )  +f(a + 2h) 

h 
2 

1.” f ( x )  dx =r - [f(a) + 2f(a + h )  + 2f(a + 2h) + - - or 

h + - - - + [f(a + ( n  - 1)h)  + f ( b ) ]  

+ 2 f (a  + ( n  - 1)h) + f ( b ) ]  (61.1 ) 

+ 
b 

Fig. 61-1 

375 
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b 

PRISMOIDAL FORMULA. Let the area defined by 1. f ( x )  dx be separated into two vertical strips 
of width h = (6  - a), and let the arc PoP,P, of y = f ( x )  be replaced by the arc of the parabola 
y = Ax2 + Bx + C through the points PO,  P,, P,, as in Fig. 61-2. Then 

a + b  
(61.2) 

(See Problem 1.) 

PI 

‘x 0 - ‘6- - a + b  b 
2 

Fig. 61-2 

I 

Fig. 61-3 

SIMPSON’S RULE. Let the area under discussion be separated into n = 2m strips, each of width 
h = (6 - a ) / n ,  as in Fig. 61-3. Using the prismoidal formula to approximate the area under each 
of the arcs P,P,P,, P2P3P4,  . . . , P2m-2P2m-,P2m, we have 

h 
3 

[ f ( x )  dx = - [ f (a )  + 4f(a + h)  + 2f(a + 2h)  + 4f(a + 3h)  + 2f(a + 4h) 

+ . . .  + 2f(a + (2m - 2)h) + 4f(a + (2m - 1)h) + f ( b ) J  (61.3) 

POWER SERIES EXPANSION. This procedure for approximating f ( x )  dx consists in replacing 

the integrand f ( x )  by the first n terms of its Maclaurin’s or Taylor’s series. This method is 
available provided the integrand may be so expanded and the limits of integration fall within 
the interval of convergence of the series. (See Chapter 60.) 

l 

Solved Problems 

1. For the parabola y = Ax2 + Bx + C, passing through the points PO( 5, yo), P ,  

P 2 ( q ,  y 2 )  as shown in Fig. 61-4, show that y dx = - (y,  + 4y, + y,). 
r l - 5  

6 

A B 
3 2 

We have It‘ y dr = It’ (Ax’ + Bx + C) dx = - (7’ - 6’) + - ( q 2  - 6 ’ )  + ~ ( q  - 5) 

-- - ‘- ‘ [ A ( t 2  + &I + q’) + $ B ( t  + q) + 3C] 
3 

Now if y = Ax2 + Bx + C passes through the points PO, P , ,  P 2 ,  then 

y,= + B[  + c 
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and 

2 

Fig. 61-4 

Thus, y dx = 77-r ( y, + 4y, + y , )  as required 
6 

2. Approximate L’’ - dx by each of the four methods, and check by integration. 
1 + x 2  

1 / 2 - 0  
5 Trapezoidal rule with n = 5 :  Here, h = ~ = 0.1. Then a = 0, a + h = 0.1, a + 2h = 0.2, 

a + 3h = 0 . 3 ,  a + 4h = 0.4, and 6 = 0.5. Hence, 

1’2 + = 
0.1 

[f(O) + 2f(0.1) + 2f(0.2) + 2f(0.3) + 2f(0.4) +f(O.S)] 

+ - + - + - + -  2 2 2 )=0.4631 
= - ( l + -  1 2 

20 1.01 1.04 1.09 1.16 1.25 

1 / 2 - 0  1 
Prismoidul formula: Here, h = - 2 = - 4 and f(a) = f(0) = 1, f( 9) = f (  a) = {, andf(b) = f ( i )=f .  Then 

~ _ -  :: (1 + 3 + $ )  = A (  1 + 3.76471 + 0.8) = 0.4637 

112-0 1 
Simpson’s rule with n = 4 :  Here, h = - = - Then a = 0, a + h = i, a + 2h = a ,  a + 3h = i, 

4 8 ’  
and b = $ .  Hence, 

1 1 1 
24 

-- 

24 
Series expansion, using seven terms: 

1 1 1 1 1 
+y--+--- 

1 1  
2 3 * Z 3  5.2’ 7.2’ 9 . 2  11.2” 13.213 
0.5oooO - 0.04167 + 0.00625 - 0.00112 + 0.00022 - 0.00004 + 0.00001 = 0.4636 

+- - -  - - - -  
Integration : 

[ol/z 
- - [arctan x ] ; l 2  = arctan 4 = 0.4636 
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y 

3. Find the area bounded by y = e-“,  the x axis, and the lines x = O  and x = 1 using 
(a )  Simpson’s rule with n = 4 and (6) series expansion. 

(a )  Here, h =  a ;  since a = O ,  a + h =  a ,  a + 2 h =  4 ,  a + 3 h =  i, a n d b = l .  Then 

‘I4 (1 + 4e-1116 + 2 e - 1 / 4  + 4e-9/16 + e - l )  dx - I’ LX2 3 

= &[l + 4(0.9399) + 2(0.7788) + 4(0.5701) + 0.36791 = 0.747 square units 

x 1 2  3 4 5 6 7 8 9 

0 0.6 0.9 1.2 1.4 1.5 1.7 1.8 2 

x4 x6 x8 X1O l 2  
( 6 )  e - x 2 ~ a I ’  ( 1 - x 2 +  - - - + - - - +  

2! 3! 4! 5 !  6! 

= x3 x5 X7 x9 X I 1  X I 3  ‘ [ 3 5.2! 7.3! 9.4! 11-5! + 13.6?10 
1 +- 1 1  1 1 1 =1--+---+---  

3 5-2!  7.3! 9-4!  11-5! 13*6! 
= 1 - 0.3333 + 0.1 - 0.0238 + 0.0046 - 0.0008 + O.OOO1 = 0.747 square units 

4. A plot of land lies between a straight fence and a stream. At distances x from one end of the 
fence, the width of the plot y was measured (in yards) as follows: 

x I 0 20 40 60 80 100 120 

y 1 0 22 41 53 38 17 ~ 0 

Use Simpson’s rule to approximate the area of the plot. 

Here, h = 20 and 

lzo f ( x )  dr = (0 + 4 - 22 + 2 - 41 + 4 - 53 + 2 * 38 + 4 17 + 0) = 3507 yd2 

5. A certain curve is given by the following pairs of rectangular coordinates: 

( a )  Approximate the area between the curve, the x axis, and the lines x = 1 and x = 9, using 

( b )  Approximate the volume generated by revolving the area in (a )  about the x axis, using 

(a )  Here, h = 1 and 

Simpson’s rule. 

Simpson’s rule. 

l y d x -  $[0+4(0 .6)+2(0 .9)+4(1 .2)+2(1 .4)+4(1 .5)+2(1 .7)+4(1 .8)+2]  

= 10.13 square units 

3 
7T 

( 6 )  T l y 2  dr = - [0 + 4(0.6)2 + 2(0.9)2 + 4(1.2)2 + 2(1.4)2 + 4(1.5)2 + 2(1.7)2 + 4(1.8)’ + 41 

~ 4 6 . 5 8  cubic units 
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Supplementary Problems 

6. Derive Simpson’s rule. 

7. Approximate - using (a )  the trapezoidal rule with n = 4, ( 6 )  the prismoidal formula, and l: 
(c) Simpson’s rule with n = 4. ( d )  Check by integration. 

Ans. ( a )  1.117; ( 6 )  1.111; (c) 1.100; ( d )  1.099 

8. Approximate 1 dx as in Problem 7. Ans. ( a )  24.654; (6) 24.655; (c) 24.655; ( d )  24.655 

9. Approximate 

(c) Check by integration. 

In x dx using (a )  the trapezoidal rule with n = 5 and (6) Simpson’s rule with n = 8. 

Ans. ( a )  1.2870; (6) 1.2958; (c) 1.2958 

10. Approximate dx using ( a )  the trapezoidal rule with n = 5 and (6) Simpson’s rule with 
n = 4 .  Ans. ( a )  1.115; ( 6 )  1.111 

sin x 
11. Approximate 7 dx by Simpson’s rule with n = 6. A m .  1.852 

12. Use Simpson’s rule to find (a )  the area under the curve determined by the data below and (6) the 
volume generated by revolving the area about the x axis 

X I 1  2 3 4 5 
~ 

y I 1.8 4.2 7.8 9.2 12.3 

A m .  ( a )  27.8; (6) 2 2 8 . 4 4 ~  
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Partial Derivatives 

WNCTIONS OF SEVERAL VARIABLES. If a real number z is assigned to each point (x, y )  of a 
part (region) of the x y  plane, then z is said to be given as a function, z = f ( x ,  y ) ,  of the 
independent variables x and y .  The locus of all points ( x ,  y ,  z )  satisfying z = f ( x ,  y )  is a surface 
in ordinary space. In a similar manner, functions w = f ( x ,  y ,  z, . . .) of several independent 
variables may be defined, but no geometric picture is available. 

There are a number of differences between the calculus of one and of two variables. 
Fortunately, the calculus of functions of three or more variables differs only slightly from that 
of functions of two variables. The study here will be limited largely to functions of two 
variables. 

LIMITS AND CONTINUITY. We say that a function f ( x ,  y) has a limit A as x + x ,  and y + y , ,  
and we write lim f ( x ,  y )  = A ,  if, for any E > 0, however small, there exists a S > 0 such that, 

x-x, 
Y'TO 

for all (x, y )  satisfying 
0 < V(x - xJ2 + ( y  - y , J 2  < S (62.1 ) 

we have I f ( x ,  y )  - AI < E. Here, (62.1 ) defines a deleted neighborhood of (x,, y o ) ,  namely, all 
points except (x,, y , )  lying within a circle of radius 6 and center (x,, y , ) .  

A function f ( x ,  y )  is said to be continuous at (xo, y , )  provided f ( x o ,  y , )  is defined and 
lim f ( x ,  y )  = f ( x , ,  y , ) .  (See Problems 1 and 2.) 

x-xo 
Y-*Yo 

PARTIAL DERIVATIVES. Let z = f ( x ,  y )  be a function of the independent variables x and y .  Since 
x and y are independent, we may (1) allow x to vary while y is held fixed, (2) allow y to vary 
while x is held fixed, or (3) permit x and y to vary simultaneously. In the first two cases, z is in 
effect a function of a single variable and can be differentiated in accordance with the usual 
rules. 

If x varies while y is held fixed, then z is a function of x; its derivative with respect to x, 

is called the (first) partial derivative of  z = f ( x ,  y )  with respect to x. 
If y varies while x is held fixed, z is a function of y ;  its derivative with respect to y ,  

d z  f(x7 Y + AY) - f ( x ,  Y )  f y ( x ,  y )  = - = lim 
d y  AY-, AY 

is called the (first) partial derivative of  z = f ( x ,  y )  with respect to y .  (See Problems 3 to 8.) 
If z is defined implicitly as a function of x and y by the relation F ( x ,  y ,  z) = 0, the partial 

derivatives d z l d x  and d r l d y  may be found using the implicit differentiation rule of Chapter 11. 
(See Problems 9 to 12.) 

The partial derivatives defined above have simple geometric interpretations. Consider the 
surface z = f ( x ,  y )  in Fig. 62-1. Let APB and CPD be sections of the surface cut by planes 
through P, parallel to xOz and y O z ,  respectively. As x varies while y is held fixed, P moves 
along the curve APB and the value of d z l d x  at P is the slope of the curve APB at P. 

Similarly, as y varies while x is held fixed, P moves along the curve CPD and the value of 
dzldy at P is the slope of the curve CPD at P. (See Problem 13.) 

380 



CHAP. 621 PARTIAL DERIVATIVES 381 

PARTIAL DERIVATIVES OF HIGHER ORDERS. The partial derivative d z l d x  of z = f ( x ,  y )  may 
in turn be differentiated partially with respect to x and y ,  yielding the second partial derivatives 

d 2z d d z  d 2z 
d X 2  dx dx d y  dx  
- =f,,(x, y )  = - (-) and - 

Similarly, from d z l d y  we may obtain 

d 2z d d z  d 2z d d z  

dY dY dY 
= f y ( x ,  Y > =  (,) and 2 = f y y ( x ,  y ) =  - (-) dx a y  

If z = f ( x ,  y )  and its partial derivatives are continuous, the order of differentiation turns out to 

(See Problems 14 and 15.) be immaterial; that is, - - - 
d 2z - d 2z 

d x d y  a y d i  

Solved Problems 

1. Investigate z = x2 + y 2  for continuity. 

a' + b2. Hence, the function is continuous everywhere. 
For any set of finite values ( x ,  y )  = ( a ,  b) ,  we have z = a2 + b2. As x-- ,  a and y -  b,  x 2  + y 2 -  

2. The following functions are continuous everywhere except at the origin (0, 0), where they are 
defined. Can they be made continuous there? 

sin ( x  + y )  

X + Y  
z =  

sin ( x  + y )  sin (1 + m)x - 1. The function - - Let ( x ,  y)-+ (0,O) over the line y = m x ;  then z = 
X + Y  ( 1  + m)x 

sin ( x  + y )  

X + Y  
may be made continuous everywhere by redefining it as z = for ( x ,  y )  f (0.0); z = 1 for 

( x ,  y )  = (0,O). 

z = -  XY 

x2 + y 2  
m 

the particular line chosen. Thus, the function cannot be made continuous at (0,O). 

Let ( x ,  y)-+ (0,O) over the line y = m x ;  the limiting value of z = X Y  = - depends on 
x + y  1 + m 2  

In Problems 3 to 7, find the first partial derivatives. 
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3. 

4. 

5. 

6. 

z = 2 x 2  - 3xy + 4y2 
d z  
d x  
d z  

Treating y as a constant and differentiating with respect to x yield - = 4 x  - 3 y .  

Treating x as a constant and differentiating with respect to y yield - = -3x + 8 y .  
dY 

x 2  y z  z = - + -  
Y X  

Treating y as a constant and differentiating with respect to x yield - = - - T.  

Treating x as a constant and differentiating with respect to y yield - = - 7 + -. 

d z  2 x  y' 
d x  y x 
d z  x2 2 y  

dY y' x 

z = sin ( 2 x  + 3 y )  
dZ d z  
- = 2 cos ( 2 x  + 3 y )  
dX dY 

and - = 3 cos ( 2 x  + 3 y )  

z = arctan x2y + arctan xy2 
7 c72=2x1'+-- Y' d z  - X- 2XY and ---+- 

dx 1 + x4y' 1 + x 2 y 4  d y  1 + x4y2  1 + x 2 y 4  

r ' + x y  7. z = e' 
d z  ' d z  ' 
- = e r - ' " " ( 2 x  + y )  = z ( 2 x  + y )  and - = exL""(x) = x z  
d X  dY 

8. The area of a triangle is given by K = i a b  sin C ,  If a = 20,  b = 30,  and C = 30", find: 
( a )  The rate of change of K with respect to a ,  when b and C are constant. 
( 6 )  The rate of change of K with respect to C ,  when a and b are constant. 
(c )  The rate of change of b with respect to a ,  when K and C' are constant. 

d K  1 1 15 
(a )  - = - b sin C = - (30)(sin 30") = - da 2 2 2 

d K  1 1 
d C  

( b )  - = 5 ab COS C = 5 (20)(30)(~0~ 30") = 1 5 O G  

In Problems 9 to 11, find the first partial derivatives of z with respect to the independent variables x 
and y .  

9. x 2  + y' + z 2  = 25 

Solution I : Solve for z to obtain z = k v w .  Then 

X Y -Y d z  - _ _  - and - - - _ - -  - X  d z  - - _  
dx  + v m j  z d y  *v-- z 

Solution 2 :  Differentiate implicitly with respect to x ,  treating y as a constant, to obtain 

d z  x 2 x + 2 z - - = o  d z  or - = - -  
dX a x  z 

Then differentiate implicitly with respect to y ,  treating x as a constant: 

2 y + 2 z - - = o  dZ or - = - -  d z  Y 
dY dY z 
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10. 

11. 

12. 

13. 

The procedure of Solution 1 of Problem 9 would be inconvenient here. Instead, differentiating 
implicitly with respect to x yields 

d z  dZ dZ dZ 
dX dX d X  dX 

2x(2y + 32) + 3x2 - + 3y2 - 4y2 - + 2z(x - 2y)  - + z2  = yz + xy - 

dz - 
dx 

4xy + 6xz + 3y2 + Z ?  - Y Z  - - -  so that 
3x2 - 4y2 + 2xz - 4yz - xy 

Differentiating implicitly with respect to y yields 

so that dz - 
ay 

2x2 + 6xy - 8yz - 2z2 - xz - - -  
3x2 - 4y2 + 2xz - 4yz - xy 

xy + yz + zx = 1 
dz dz dz  y + z  

Differentiating with respect to x yields y + y - + x - + z = 0 and - = - - 
dx  d x  dx x + y '  

dZ dZ dz x + z  
Differentiating with respect to y yields x + y - + z + x - = 0 and - = - - 

dY dY ay x + y '  

d r  d r  d 0  d 0  
Considering x and y as independent variables, find - - - - when x = e2' cos 0, 

y = e3r sin 8. 
dx ' ay ' d d  dy 

First differentiate the given relations with respect to x :  

d r  88 d r  d8 
0 = 3e3'sin 8 - + e" COS 8 - 

dX dX ax d X  
1 = 2e2' cos 8 - - e2' sin 8 - and 

dr  cos 8 de 3 sin 8 
dx e2'(2 + sin2 8 )  d x  e2'(2 + sin2 8 )  ' 

Then solve simultaneously to obtain - = and - = - 

Now differentiate the given relations with respect to y :  

d r  d8 d r  d8 
1 = 3e3' sin 8 - + e3' cos 8 - 0 = 2e2' cos 8 - - e2' sin 8 - and 

dY dY dY JY 
dr  sin 8 d8 2 cos 8 

dy e3'(2 + sin2 8 )  dy e3'(2 + sin2 8 )  * 
Then solve simultaneously to obtain - = and - = 

Find the slopes of the curves cut from the surface z = 3x2 + 4y2 - 6 by planes through the 
point (1,1,1) and parallel to the coordinate planes XOZ and yOz.  

The plane x = 1, parallel to the plane yOz ,  intersects the surface in the curve z = 4y2 - 3, x = 1. 
Then dz /dy  = 8y  = 8 X 1 = 8 is the required slope. 

The plane y = 1, parallel to the plane xOz ,  intersects the surface in the curve z = 3x2 - 2 ,  y = 1. 
Then d z / d x  = 6x = 6 is the required slope. 

In Problems 14 and 15, find all second partial derivatives of 2. 

14. z = x2 + 3xy + y 2  

- = 2 x + 3 y  dZ - = -  d 2 z  (qZ2 d 2 z  - - - ( - ) = 3  d dz  

-- dZ - 3 x + 2 y  -=-(+ d2z  a d z  -- d 2 z  - - ( - ) = 3  d dz  

dX2 dx  dx  d y d x  dy dx  

dY dY2 dY dY d x d y  dx dy 

dX 
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15. z = x COS y - y COS x 

16. 

d z  - d z  
- = cos y + y sin x 
dX dY 

- - - x  sin y - cos x 

- = - ( - ) = - s i n y + s i n x = -  d’z  d d z  a 2z -- d 2z - a ( a r ) = - x c o s y  
d y d x  dy dx  dx dy ay2 dY dY 

Supplementary Problems 

Investigate each of the following to determine whether or not it can be made continuous at (0,O): 

(4 m7 Y 2  ( b )  - + * (4 - 7  (4 m. + Y  
x - y  x 3 + y 3  

~ n s .  ( a )  no; ( b )  no; ( c )  yes; ( d )  no 

17. For each of the following functions, find d z l d x  and dz ldy .  

d z  d z  
- = 2~ + 3 y ;  - = 3~ + 2y 
dX dY 

(a )  z = x2 + 3xy + y’ Am. 

d z  - y ’ + x z , - = - - - -  1 2 y .  d z  2x 1 
Ans. - - - X Y  ( b )  z =  - - - 

y 2  x’ dX dy y 3  x’ 

d z  d z  
- = 3 cos 3x cos 4 y ;  - = - 4  sin 3x sin 4y 
dX dY 

(c) z = sin 3x cos 4y 

( d )  z = arctan - 

( e )  x’ - 4y’ + 92’ = 36 

Ans. 

Y Am. - = - Y e - = -  d z  d z  X 
X dx x’ +y”  dy x’ + y ’  

- _ -  Ans, - - - - X .  - 4y 
dx 92’  dy 9z 

2y(x - 2). d z  - x(x - 22) 
d x  2’ + 2 x y  * dy z’ +2xy  

d z  y + z . Z =  X + Z  

d z  - - _  (f) z3  - 3x2y + ~ X Y Z  = 0 Am. - -  

( g )  y z + x z + x y = o  Ans. - = -- 

( a )  If z = v m ,  show that x z + y - = z .  

( b )  If z = In l/m, show that x z + y - = 1. 

dx x + y ’ d y  x + y  

az 
18. 

dY 
d z  d z  

dY 
d z  d z  
dx + Y  dy =o .  X Y (c) If z = ex‘.” sin - + e”” cos -, show that x - 

Y X 

d z  d z  
(d) If z = (ax + by)’ + eox+by + sin (ax + by ) ,  show that b - = a - 

d x  dy 

19. Find the equation of the line tangent to 
(a )  The parabola z = 2x’ - 3y’, y = 1 at the point ( - 2 , 1 , 5 )  

(c) The hyperbola z = 2x2 - 3y2, z = 5 at the point ( - 2 , 1 , 5 )  
Show that these three lines lie in the plane 8x + 6y + z + 5 = 0. 

Am. 

Ans. 

8x + z + 11 = 0, y = 1 

4x + 3y + 5 = 0, z = 5 
( b )  The parabola z = 2x2 - 3y’, x = - 2  at the point ( -2 ,  1 , 5 )  Am. 6 ~ + ~ - 1 1 = 0 , ~ = - 2  

20. 
d ’z  d’z d’z d 2z 

For each of the following functions, find - ~ - and - 
dX2 ’ dx ay ’ dy dx  ’ dy2 ‘ 
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d 2z 
- 5 ;  7 = 2  

d ’z d’z d 2 z  

dx’ d x d y  d y d x  dY 
( U )  z = 2 x 2 - 5 x y + y 2  Am. -=4;-=-= 

d ’Z d ’2 d 2 2  d 2 z  

d X 2  a x a y  d y d x  dY 
- - 12 cos 3x sin 4 y ;  7 = - 162 (c) z = sin 3x cos 4y Am. - = -9z; - = - - 

d‘z d’z a’z J’Z - y 2 - x 2  Am. - = - - -  2xy .-=-- Y ( d )  z = arctan - 
X dx2 dy’ - (x’ + y’)2 ’ d x  dy dy d x  (x’ + y2)2 

d ’Z 
x - y ’  d X 2  

21. (a)  If z = - xy show that x’ - + 2xy - 

d’z d2z  

d X 2  dy’ 
( b )  If z = eUx cos b y  and = +a, show that - + - = 0. 

d’z d’z d z  

d X 2  ay2 d t ‘  
( c )  If z = e-‘(sin x + cos y ) ,  show that - + - = - 

( d )  If z = sin M sin by sin k t m ,  show that = k2(  5 + ”). 
d t  dY2 

22. For the gas formula ( p  + :)(U - 6 )  = ct, where a ,  b ,  and c are constants, show that 

cu _ -  - dp = ~ U ( U  - 6 )  - ( p  + a / u 2 ) u 3  d u  
dU U’(U - b )  d t  ( p  + a /u2)u3  - 2a(u - 6 )  

[For the last result, see Problem 1 1  of Chapter 64.1 



Chapter 63 

Total Differentials and 
Total Derivatives 

TOTAL DIFFERENTIALS. The differentials dx and dy for the function y = f ( x )  of a single 
independent variable x were defined in Chapter 28 as 

dY dx = A x  and dy = f ' ( x )  dx = - dx 
dx 

Consider the function z = f ( x ,  y )  of the two independent variables x and y ,  and define 
dx = Ax and dy = Ay.  When x varies while y is held fixed, z is a function of x only and the 
partial differential of z with respect to x is defined as d,z = f x ( x ,  y )  dx = - dx. Similarly, the 
partial differential of z with respect to y is defined as d,z = f y ( x ,  y )  dy = - dy. The total 

differential dz  is defined as the sum of the partial differentials, 

d z  

dx d z  

JY 

d Z  dZ 
d z  = - dx + - dy 

d X  dY 

For a function w = F ( x ,  y ,  z ,  . . . , t ) ,  the total differential dw is defined as 

d W  d W  d W  d W  
dw = - dx + - dy + - dz  + * - .  + - dt 

d X  dY d z  dt 

(63.1) 

(63.2) 

(See Problems 1 and 2.) 
As in the case of a function of a single variable, the total differential of a function of several 

variables gives a good approximation of the total increment of the function when the 
increments of the several independent variables are small. 

dZ dZ 
EXAMPLE 1: 

Ax = dx and A y  = d y ,  the increment Az taken on by z is 

When z = x y ,  dz = - dx + - d y  = y dx + x d y ;  and when x and y are given increments 
d X  dY 

A Z  = (X + A x ) ( y  + A y )  - XY = X  A y  + y AX + AX A y  
= x d y  + y dx + dx d y  

A geometric interpretation is given in Fig. 63-1: dz and Az differ by the rectangle of area Ax A y  = dx d y .  

(See Problems 3 to 9.) 

I r 
Fig. 63-1 

THE CHAIN RULE FOR COMPOSITE FUNCTIONS. If z = f ( x ,  y )  is a continuous function of the 
variables x and y with continuous partial derivatives d z l d x  and d z l d y ,  and if x and y are 

386 
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differentiable functions x = g( t )  and y = h( t )  of a variable t ,  then z is a function of t and dz ld t ,  
called the total derivative of z with respect to t ,  is given by 

(63 .3)  
dz az dx d z  dy - = - - + - -  
dt ax dt  ay dt 

Similarly, if w = f ( x ,  y, z ,  . . .) is a continuous function of the variables x ,  y ,  z ,  . . . with 
continuous partial derivatives, and if x ,  y ,  z ,  . . . are differentiable functions of a variable t ,  the 
total derivative of w with respect to t is given by 

dw dw dx aw dy dw dz 
dt  dx dt  ay dt az dt 

- + - - + - - + . . .  (63.4) - = -  

(See Problems 10 to 16.) 
If z = f ( x ,  y )  is a continuous function of the variables x and y with continuous partial 

derivatives d z l d x  and dz ldy ,  and if x and y are continuous functions x = g ( r ,  s )  and y = h(r ,  s )  
of the independent variables r and s, then z is a function of r and s with 

dt az dx d z  ay az az ax d z  ay 
d r  dx d r  dy ar  as ax d s  dy ds 

(63.5) 

Similarly, if w = f (x ,  y ,  z ,  . . .) is a continuous function of the variables x ,  y ,  z ,  . . . with 
continuous partial derivatives d w l d x ,  d w l d y ,  dw ldz ,  . . . , and if x ,  y ,  z ,  . . . are continuous 
functions of the independent variables r ,  s,  t ,  . . . , then 

- - + - -  and - - - + - -  - - - - -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(See Problems 17 to 19.) 

Solved Problems 

In Problems 1 and 2,  find the total differential. 

1. z = x3y + x2y2 + xy3 

We have 

Then 

d z  d t  
- = 3x2y + 2xy2 + y’ 
dx dY 

and - = x 3  + 2x2y + 3xy2 

dZ d z  
dz = - dx + - dy = (3x2y + 2xy2 + y ’ )  dx + (x’ + 2x2y + 3 x y 2 )  dy 

dx dY 

2. z = x sin y - y sin x 

d Z  d Z  
- = sin y - y cos x 
d X  dY 

We have and - = x cos y - sin x 

Then 
d z  d Z  

dz = - dx + - dy = (sin y - y cos x )  dx + ( x  cos y - sin x )  dy 
dx dY 

(63.6) 

3. Compare dz and Az, given z = x2  + 2xy - 3y2. 
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d Z  d Z  - = 2x + 2y 
d X  dY 

and - = 2 x  - 6 y  . So d z  = 2 ( x  + y )  dx + 2(x - 3 y )  dy 

Also, A Z  = [(x + dr)’ + 2(x  + dx)( y + d y )  - 3( y + dy)’] - (x’ + 2 ~ y  - 3 ~ ’ )  
= 2 ( ~  + y )  dx + 2 ( ~  - 3 y )  dy + ( d ~ ) ~  + 2 dx dy - 3(dy)’ 

Thus d z  and A z  differ by (~5)’ + 2 dx dy - 3(dy)’. 

4. Approximate the area of a rectangle of dimensions 35.02 by 24.97 units. 

d A  d A  

d X  dY 
For dimensions x by y ,  the area is A = x y  so that d A  = - dx + - dy = y dx + x dy. With x = 35, 

dx = 0.02, y = 25, and dy = -0.03, we have A = 35(25) = 875 and d A  = 25(0.02) + 35(-0.03) = -0.55. 
The area is approximately A + d A  = 874.45 square units. 

5. Approximate the change in the hypotenuse of a right triangle of legs 6 and 8 inches when the 
shorter leg is lengthened by f inch and the longer leg is shortened by Q inch. 

Let x, y ,  and z be the shorter leg, the longer leg, and the hypotenuse of the triangle. Then 

d Z  d z  x d x + y d y  
Y d z = - d x + - d y =  

z=q= d z  X d Z  

ax = VW. dy = v m  d X  dY v m  
6( ‘) + ’(- ’) - -  - 

v m  20 
inch. Thus the hypotenuse is When x = 6 ,  y = 8 ,  d x =  a ,  and d y = - Q ,  then d z =  

lengthened by approximately & inch. 

6. The power consumed in an electrical resistor is given by P = E 2 / R  (in watts). If E = 200 volts 
and R = 8 ohms, by how much does the power change if E is decreased by 5 volts and R is 
decreased by 0.2 ohm? 

We have 
E’ d P  2 E  d P  E’ 

d E  R d R  R’ R R2 
d P =  d E  - - d R  - = -  - = - -  

When E = 200, R = 8,  d E  = - 5 ,  and d R  = -0.2, then 

d P =  - 2(200) ( - 5 )  - (?)’(-0.2) = -250 + 125 = - 125 
8 

The power is reduced by approximately 125 watts. 

7. The dimensions of a rectangular block of wood were found to be 10, 12, and 20 inches, with a 
possible error of 0.05 in in each of the measurements. Find (approximately) the greatest error 
in the surface area of the block and the percentage error in the area caused by the errors in 
the individual measurements. 

The surface area is S = 2(xy + y z  + z x ) ;  then 

d S  d S  
d X  d y  d z  

dS = - dx + - dy + ds d z  = 2 ( y  + z )  dx  + 2(x  + z )  dy + 2 ( y  + x )  d z  

The greatest error in S occurs when the errors in the lengths are of the same sign, say positive. Then 

dS = 2( 12 + 20)(0.05) + 2( 10 + 20)(0.05) + 2( 12 + 10)(0.05) = 8.4 in2 

The percentage error is (error/area)(100) = (8.4/1120)( 100) = 0.75%. 

8. For the formula R = E / C ,  find the maximum error and the percentage error if C = 20 with a 
possible error of 0.1 and E = 120 with a possible error of 0.05. 
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9. 

10. 

11. 

12. 

13. 

14. 

Here 
dR dR 1 E 

dR = - dE + - d C =  - dE - 7 dC 
d E  d C  C C 

0.05 120 
20 400 

The maximum error will occur when dE = 0.05 and dC = -0.1; then dR = - - - (-0.1) = 0.0325 

0.0325 (100) = 0.40625 = is the approximate maximum error. The percentage error is - (100) = - 
0.41%. 

dR 
R 8 

Two sides of a triangle were measured as 150 and 200 ft ,  and the included angle as 60". If the 
possible errors are 0.2 ft in measuring the sides and 1" in the angle, what is the greatest 
possible error in the computed area? 

d A  1 
- -  - - XY COS e 2 ~ s i n 8  

d A  1 dA 1 - - y s i n ( j  - = -  1 
2 dx 2 2 

Here A = - xysin 8 - - 
dY 

1 1 1 
2 2 

d A  = 2 y sin 8 dr + - x sin 8 dy + - xy cos 8 d8 and 

When x = 150, y = 200, 8 = 60", dx = 0.2, dy = 0.2, and d8 = 1" = ~/l80, then 

d A  = $(200)(sin 60")(0.2) + ;(150)(sin 60")(0.2) + $ (  150)(2OO)(cos 6 0 " ) ( ~ / 1 8 0 )  = 161.21 ft' 

Find dz ld t ,  given z = x2 + 3xy + 5 y 2 ;  x = sin t, y = cos t. 

Since 

we have 

d z  d z  dx dY - = 2 ~ + 3 y  - = 3 x + l O y  - = c o s t  - = - s i n t  
dX dY dt dt 

dz d z  dx d z  dy 
dt dx dt dy dt 

- + - - = (2x + 3y) cos t - (3x + 1Oy) sin t - = -  

Find dz ld t ,  given z = In (x' + y 2 ) ;  x = e-', y = er. 

Since 

we have 

dY el dx - = - e - '  - =  dz 2y -=- d z  2x 
dx x 2 + y 2  dy x 2 + y 2  dt dt 
-=- 

ye' - xe ' - - + - - = -  ( -ee l )  + 7 2Y e' = 2 
dz d z  dx d z  dy 2x _ -  - 
dt dx dt dy  dt x2 + y x + y 2  x2 + y2 

Let z = f ( x ,  y )  be a continuous function of x and y with continuous partial derivatives d z l d x  
and d z l d y ,  and let y be a differentiable function of x. Then z is a differentiable function of x. 
Find a formula for d z l d x .  

BY (63.3 1, 
dz - df dx df dy df df dy _ _ - -  + - - = - + - -  
dr dx dr dy dx d x  dy dx 

The shift in notation from z to f is made here to avoid possible confusion arising from the use of 
dzldx and azldx in the same expression. 

Find dzldx, given z = f ( x ,  y )  = x2 + 2xy + 4y2, y = eUx. 

dz - = df + af d y  = (2x + 2y) + (2x + 8y)ae"" = 2(x + y )  + 2a(x + 4y)e"" dx dx dy dx 

Find (a)  d z l d x  and ( b )  d z l d y ,  given z = f ( x ,  y )  = xy2  + x2y ,  y = In x. 

(a)  Here x is the independent variable: 

dz = 3 + 9 d y  = (y2 + 2xy) + (2xy + x2) - 1 = y' + 2xy + 2y + x 
dx dx dy dr X 
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(b )  Here y is the independent variable: * - df dx + - df = (y’ + 2xy)x + (2xy + x ’ )  = xy2 + 2x2y + 2xy + x 2  
dy d x  dy dy 

15. The altitude of a right circular cone is 15 inches and is increasing at 0.2 in/min. The radius of 
the base is 10 inches and is decreasing at 0.3 inlmin. How fast is the volume changing? 

Let x be the radius, and y the altitude of the cone (Fig. 63-2). From V =  ~ x ’ y ,  considering x and y 
as functions of time t ,  we have 

- + - - = - “ (  dt 
d V  d V  dx d V  dy 
dt dx  dt dy dt 3 2xy [2(10)(15)(-0.3) + 102(0.2)] = - 7 0 ~ / 3  in3/min - 

X 2  
16. A point P is moving along the curve of intersection of the paraboloid - - - y 2  = z and the 

cylinder x2 + y 2  = 5 ,  with x ,  y ,  and z expressed in inches. If x is increasing at 0.2 in/min, how 
fast is z changing when x = 2? 

16 9 

x 2  y2 dz d z  dx d z  dy x dx 2y dy 
16 9 dt d x  dt dy  dt 8 dt 9 dt 

From z = - - - ,  we obtain - = -  - + -  - = -  - - -  -. Since x 2 + y 2 = 5 ,  y = k l  

dx dy 
dt dt 

when x = 2 ;  also, differentiation yields x - + y - = 0. 

dy x dx 2 dz 2 2 5 
When y = 1, - = - - - = - - (0.2) = -0.4 and - = - (0.2) - - (-0 4 )  = - in/min. 

dt y dt 1 dt 8 9 ’ 36 

When y = - 1,  - = - - - = 0.4 and - = - (0.2) - - (-1)(0.4) = - in/min. 
dy x dx dz 2 2 5 
dt y dt dt 8 9 36 

17. Find d z l d r  and dz lds ,  given z = x2 + x y  + y 2 ;  x = 2r + s ,  y = r - 2s. 

Then 

and 

d z  d z  dx  d z  dy - - - - + - - = (2x + y)(2) + ( x  + 2 y ) ( l )  = 5x + 4y - 
d r  dx d r  dy d r  

d z  d z  dx d z  dy 
ds dx ds dy ds  

+ - - = (2x + y ) ( l )  + (x  + 2y)( -2)  = -3y - - - -- 

du d u  d U  

d o  
and - given U = x2 + 2y2 + 2 z 2 ;  x = p sin p cos 0, y = p sin p sin 0, 18. Find -, - 

dP d o ’  
z = p c o s p .  . 

du d u  dx d u  dy d u  d z  

dp dx dp dy dp d z  dp 
- + - - + - - = 2x sin p cos 8 + 4y sin p sin 8 + 42 cos p - 
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a u -  au d x  du dy du d z  
d p  d x  d p  dy dp  dz ap - + - - + - - = 2x p cos p cos 8 + 4y p cos p sin 8 - 42 p sin p 

d u -  du d x  du dy du d z  
d o  d x  de dy de d z  de 

- + - - + - - = -2xpsin p sin8 + 4 y  psin p cos8 

19. Find duldx, given U = f ( x ,  y ,  z )  = xy  + y z  + z x ;  y = 1 l x ,  z = x2.  

From (63.6), 

x + z  
X’ 

df dy df d z  @ = af + - - + - - = ( y  + 2 )  + ( x  + 2 )  + ( y  + x ) 2 x  = y  + z + 2 x ( x  + y )  - - dx d x  dy dx d z  dx 

20. If z = f ( x ,  y )  is a continuous function of x and y possessing continuous first partial derivatives 
d z l d x  and d z l d y ,  derive the basic formula 

d Z  d Z  
A Z  = - AX + - Ay + E ,  AX + E~ Ay 

d X  dY 

where E ,  and e2 + 0 as Ax and Ay + 0. 

When x and y are given increments Ax and Ay respectively, the increment given to z is 

A.2 = f(x + A x ,  y + Ay)  - f(x, y )  

= [f(x + Y + AY) - f(x, Y + AY)] + [ f k  Y + AY) - f(x,  Y ) l  ( 2  1 
In the first bracketed expression, only x changes; in the second, only y changes. Thus, the law of the 
mean (26.5) may be applied to each: 

where 0 < 8, < 1 and 0 < 8, < 1, Note that here the derivatives involved are partial derivatives. 
Since dz ldx  = f , ( x ,  y )  and dz ldy  = f , ( x ,  y )  are, by hypothesis, continuous functions of x and y ,  

lim f , ( x  + 8, A x ,  y + A y )  = f x ( x ,  y )  and lim f,,(x, y + 0, A y )  = f, ( x ,  y )  
Ax-0  AX-0 
A y - 0  AV-0 

Then f,(x + 8, A X ,  Y + A Y )  = f (x ,  Y )  + E ,  and f, ( x ,  Y + 8, AY)  = f, ( x ,  Y )  + e2 

where c1 + 0 and e2+O as Ax and Ay+ 0. 
After making these replacements in ( 3 )  and ( 4 )  and then substituting in ( I  ), we have, as required, 

A z  = [fxix, y )  + €11 Ax + [f,(x, Y )  + € 2 1  Ay =fxk Y )  Ax  +f, . (x,  Y )  AY + € 1  Ax + € 2  AY 

Note that the total derivative d z  is a fairly good approximation of the total increment A z  when IAxI and 
[ A y [  are small. 

Supplementary Problems 

21. Find the total differential, given: 
(a )  = x3y + 2xy3 Am. 

(6) 8 = arctan ( y / x )  Ans. d8 = 

dz = (3x2 + 2y2)y  dx + (x’ + 6 y 2 ) x  dy 

x d y - y d r  
x’ + y’ 

Ans. dz = 2z(x  dx - y dy)  

Y ( Y  d X  - x dY) 
(x’ + y2)3’2 

( d )  z = x ( x 2  + Y’)”’~ Ans. dz = 
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22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

The fundamental frequency of vibration of a string or wire of circular section under tension T is 

n = - where 1 is the length, r the radius, and d the density of the string. Find ( a )  the 
approximate effect of changing 1 by a small amount dl, ( 6 )  the effect of changing T by a small amount 
dT, and ( c )  the effect of changing 1 and T simultaneously. 

Ans. 

1 
2rl. n d 7  

( a )  - ( n / l )  dl;  ( 6 )  ( n / 2 T )  dT;  ( c )  n ( - d l / l +  d T / 2 T )  

Use differentials to compute ( a )  the volume of a box with square base of side 8.005 and height 9.996 ft; 
( 6 )  the diagonal of a rectangular box of dimensions 3.03 by 5.98 by 6.01 ft. 

Ans. (a) 640.544 ft3; ( b )  9.003 ft  

Approximate the maximum possible error and the percentage of error when z is computed by the given 
formula: 
( a )  z = T r 2 h ;  r = 5 2 0.05, h = 12 2 0.1 
( 6 )  l / z =  l / f +  l / g ; f = 4 + 0 . 0 1 ,  g = 8 + 0 . 0 2  Ans. 0.0067; 0.25% 
(c )  z = y / x ;  x = 1 . 8 + 0 . 1 , y = 2 . 4 + 0 . 1  Am. 0.13; 10% 

Ans. 8.57~; 2.8% 

Find the3approximate maximum percentage of error in: 
( a )  o =m if there is a possible 1% error in measuring g and a possible $% error in measuring b .  

dw 1 dg db dg db Hint: In o = f(ln g - In 6 ) ;  - = - (- - 7);  17 1 = 0.01; I 7 1 = 0.005) Am. 0.005 " 3 g  
( b )  g = 2s / tZ  if there is a possible 1% error in measuring s and % error in measuring t .  

Ans. 0.015 

Find duldt, given: 
( a )  = x 2 y 3 ;  = 2t3, = 3t2  Am.  6xy2t(2yt + 3x)  
( b )  U = x cos y + y sin x; x = sin 2t ,  y = cos 2t 

( c )  U = x y  + y z  + zx; x = e', y = e-' ,  z = e ' +  e-' 
Ans.  C COS y + y cos x) cos 2t - 2(-x  sin y + sin x) sin 2t 

Ans. (x + 2y + z)e' - (2x + y + z ) e  ' 

At a certain instant the radius of a right circular cylinder is 6 inches and is increasing at the rate 
0.2 in/sec, while the altitude is 8 inches and is decreasing at the rate 0.4 in/s. Find the time rate of 
change ( a )  of the volume and ( b )  of the surface at that instant. 

Ans. (a) 4 .87  in3/sec; ( b )  3 . 2 ~  in2/sec 

A particle moves in a plane so that at any time t its abscissa and ordinate are given by x = 2 + 3t ,  
y = t 2  + 4 with x and y in feet and t in minutes. How is the distance of the particle from the origin 
changing when t = l? Am. 5 / f i  ft/min 

A point is moving along the curve of intersection of x2 + 3xy + 3y2 = z2  and the plane x - 2 y  + 4 = 0. 
When x = 2 and is increasing at 3 units/sec, find ( a )  how y is changing, ( b )  how z is changing, and (c) 
the speed of the point. 

Ans. ( a )  increasing 312 units/sec; ( b )  increasing 75 /14  units/sec at ( 2 , 3 , 7 )  and decreasing 751 
14 units/sec at ( 2 , 3 ,  - 7 ) ;  (c) 6.3 unitslsec 

Find d z l d s  and d z l d t ,  given: 
( a )  z = x 2  - 2 y 2 ;  x = 3s + 2t, y = 3s - 2 t  
( 6 )  z = x' + 3xy + y 2 ;  x = sin s + cos t ,  y = sin s - cos t 
( c )  z = x 2  + 2y';  x = es - er, y = es + e' 

( e )  z = e";  x = s' + 2st, y = 2st + t 2  

Ans. 6(x - 2y) ;  4(x + 2y)  
Am. 5 ( x  + y )  cos s; ( x  - y )  sin t 

Ans. 2(x + 2y)e"; 2(2y - x)e' 
( d )  z = sin (4x + 5y) ;  x = s + t ,  y = s - t Am. 9 COS ( 4 ~  + 5 ~ ) ;  -COS ( 4 ~  + 5 y )  

Ans. 2e"[tx + ( s  + t ) y ] ;  2eXy[(s + t ) x  + sy] 
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31. 

32. 

33. 

34. 

35. 

( a )  If U = f ( x ,  y )  and x = r cos 8, y = r sin 8, show that 

( + ( $ ) 2  = ( $ ) 2  + 7 1 (z) au 

( 6 )  If U = f ( x ,  y )  and x = r cosh s ,  y = r sinh s, show that 

d u  du 

d 2 z  1 d 2 z  
(a )  If z = f ( x  + a y )  + g(x - a y ) ,  show that 7 = - - (Hint: Write z = f (u )  + g ( v ) ,  U = x + a y ,  

dx  a 2  d y 2 '  

( 6 )  If z = x"f( y l x ) ,  show that x dz ldx  + y dz ldy  = n z .  
(c )  If z = f ( x ,  y )  and x = g(t) ,  y = h( t ) ,  show that, subject to continuity conditions 

U = x - a y . )  

d 2z 
- = f x X ( g ' I 2  +2fXyg 'h '  +fy , . (h')2 + f x g " + f , h "  dt2 

(d) If z = f ( x ,  y ) ;  x = g(r ,  s) ,  y = h(r,  s),  show that, subject to continuity conditions 

d 2Z 
- d r 2  = f x x ( g r ) 2  + 2Lygrhr + fyy(hr12 + L g r r  + fyhrr 

d 2Z 

d r  d s  

I3 2z 

-= 
f x x g r g s  + f x y  (grhs + g5hr) + fyyhrhs + f x g r s  + fyhrs 

2 = f x x ( g J 2  + 2Lygshs + f Y Y ( h J 2  + fxg5 ,  + fyhss  

A function f ( x ,  y )  is called homogeneous of order n if f(tx, ty) = t"f(x,  y) .  (For example, f ( x ,  y )  = 
X' + 2xy + 3y2 is homogeneous of order 2;  f ( x ,  y )  = x sin ( y / x )  + y cos ( y / x )  is homogeneous of order 
1.) Differentiate f ( t x ,  ty )  = t"f(x, y )  with respect to t and replace t by 1 to show that xf, + yfy = nf. Verify 
this formula using the two given examples. See also Problem 32(6) .  

du J U  au av 
dx a y  dy d x  

If z = +(U, U), where U = f ( x ,  y )  and U = g ( x ,  y), and if - = - and - = - -, show that 

d2u d 2 U  d 2 v  d 2 v  d2+ d2+ 
d x  dy d x 2  dy2 dX2 dy 

(a )  ~ + ~ = - + - = o  ( 6 )  - + 7 = 

Use (1) of Problem 20 to derive the chain rules (63.3) and (63.5). (Hint: For (63.3), divide by At.) 



Chapter 64 

Implicit Functions 

THE DIFFERENTIATION of a function of one variable, defined implicitly by a relation f ( x ,  y) = 0, 
was treated intuitively in Chapter 11. For this case, we state without proof: 

Theorem 64.1: If f ( x ,  y )  is continuous in a region including a point (x , ,  y , )  for which f (x , ,  y , )  = 0 ,  if 
dfldx and dfldy are continuous throughout the region, and if dfldy Z O  at (x , ,  y , ) ,  then there is a 
neighborhood of (x , ,  y , )  in which f ( x ,  y )  = 0 can be solved for y as a continuous differentiable function of 

dy dfldx 
x ,  y = 4 ( x ) ,  with y ,  = 4 ( x , )  and - = - - dx d f l d y '  

(See Problems 1 to 3.) 

Theorem 64.2: If F ( x ,  y ,  z )  is continuous in a region including a point (x , ,  y o ,  z o )  for which 

d F  d F  and - are continuous throughout the region, and if d F l d z  # 0 at 
(x , ,  y , ,  z , ) ,  then there is a neighborhood of (x , ,  y,, z,) in which F ( x ,  y ,  z) = 0 can be solved for z as a 

d z  d F l d x  
continuous differentiable function of x and y ,  z = 4 ( x ,  y ) ,  with z,, = +(x, , ,  y , ) )  and - = - ~ 

d z  - dF1dy d x  d F l d z '  

dy d F l d z '  

(See Problems 4 and 5.) 

Theorem 64.3: If f ( x ,  y ,  U ,  U) and g(x, y ,  U ,  U) are continuous in a region including the point (x , ,  y , ,  
U,, U*) for which f (x , ,  y,, U,, U,) = 0 and g(x,, y , ,  U,, U,) = 0, if the first partial derivatives off  and 

Extending this theorem, we have the following: 

d F  
d z  F ( X , ) ,  yo, 2,) = 0, if - - dx.  ' dy ' 

- - -- 

of g are continuous throughout the region, and if at ( x o ,  y,, U,, U,) the determinant I ( - - )  f 4  ~ 

U ,  U 1 :;: ;E: 1 # O ,  then there is a neighborhood of (x , ,  y o ,  U,, U,) in which f ( x ,  y ,  U ,  U) = O  and 

g ( i ,  y ,  U,;) = 0 can be solved simultaneously for U and U as continuous differentiable functions of x and 

y ,  U = + ( x ,  y )  and U = $ ( x ,  y ) .  If at (x , ,  y , ,  U,, U,) the determinant J - ZO, then there is a 

neighborhood of (x , ,  y , ,  U,, U,) in which f ( x ,  y ,  U, U) = 0 and g(x,  y ,  U ,  U) = 0 can be solved for x and y as 
continuous differentiable functions of U and U, x = h(u,  U) and y = k(u,  U). 

(See Problems 6 and 7.) 

(:,;I 

Solved Problems 

1. Use Theorem 64.1 to show that x2 + y 2  - 13 = 0 defines y as a continuous differentiable 
function of x in any neighborhood of the point (2,3) that does not include a point of the x 
axis. Find the derivative at the point. 

Set f ( x ,  y )  = x 2  + y 2  - 13.  Then f ( 2 , 3 )  = 0, while in any neighborhood of ( 2 , 3 )  in which the 
function is defined, its partial derivatives dfldx = 2 x  and dfldy = 2y are continuous, and dfldy # 0. Then 

2. Find dy/dx, given f ( x ,  y) = y 3  + xy - 12 = 0. 

394 
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3. 

4. 

5. 

6.  

7. 

Find dy ldx ,  given ex sin y + e y  sin x = 1. 

dy dfldx ex sin y + e’ cos x 
dr @/ay ex cos y + e” sin x * 

Put f ( x ,  y )  = ex sin y + e y  sin x - 1. Then - = - - = - 

Find dz ldx  and dz ldy ,  given F(x,  y ,  z )  = x 2  + 3xy - 2y2 + 3xz + z2 = 0. 

to x and again with respect to y ,  we have 
Treating z as a function of x and y defined by the relation and differentiating partially with respect 

and 
d F  d F  dz  dZ 
- + - - = ( 3 x - 4 y ) + ( 3 x + 2 2 )  - = o  
dy d z  dy dY 

d z  dF ldx  2x + 3 y  + 3 z  d z  dF ldy  - 3x - 4 y  
3x + 22 

. From (Z), - = - - - - - 
dx d F l d z  dy d F l d z  3 x + 2 2 ’  

- From ( I ) ,  - = -- - - 

Find dz ldx  and dz ldy ,  given sin xy + sin yz + sin zx = 1. 

Set F(x ,  y ,  z )  = sin xy + sin yz + sin zx - 1 ;  then 

d F  d F  d F  
- = y cos xy + z cos zx 
dX dY dZ 

- = x cos xy + 2 cos yz - = y cos yz + x cos zx 

d z  dF ldx  y cos xy + z cos zx dz  dF ldy  x cos xy + z cos yz 
dx d F l d z  y cos yz + x cos zx dy d F l d z  y cos yz + x cos zx 

-=---  - -  - - - _ - - _ -  and 

If U and U are defined as functions of x and y by the equations 

f ( x ,  y ,  U ,  U) = x + y 2  + 2uv = 0 g(x, y ,  U ,  U) = x 2  - xy + y2  + u2 + v 2  = 0 

find ( a )  du ldx ,  d v l d x  and ( 6 )  du ldy ,  dv ldy .  

(a) Differentiating f and g partially with respect to x ,  we obtain 

1 + 2 v  - dU + 2 u  - dV = O  and 2 x - y + 2 u  - dU + 2 v  - dV = O  
dX dX dX dX 

Solving these relations simultaneously for d u l d x  and d v l d x ,  we find 

du  - U + u ( y  - 2 x )  
‘dX 2(u2 - U’) d x  2(UZ - V Z )  

dv - v(2x - y )  - U 
and - - - _  

(6) Differentiating f and g partially with respect to y ,  we obtain 

2 ~ + 2 ~ - + 2 u - = O  dU dV and - x + 2 y + 2 ~ - + 2 v - = O  dU dV 

dY dY dY dY 

du - u(x - 2y )  + 2vy 
dy 2 (u2 -  U’) dy 2(UZ - v 2 )  

dv - v(2y - x )  - 2uy 
and - - Then - _  

du dv au J V  d x  dy 
Given u2 - v 2  + 2 x  + 3y = 0 and uv + x - y = 0, find (a)  - - - - and ( b )  - - 
d x  dy d x ’  d x ’  a y ’  dy du ’  d u ’  - -  
d v ’  d v ’  
(a) Here x and y are to be considered as independent variables. Differentiate the given equations 

partially with respect to x ,  obtaining 

du dv 
dx dx 

2 ~ - - 2 u - + 2 = 0  dU dV and U - + U - + l = O  
dX dX 
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d U  u + v  du  U - U  
Solve these relations simultaneously to obtain - = -- and - = - 

Differentiate the given equations partially with respect to y ,  obtaining 
d x  U’ + u2 d x  U’+ U’‘ 

d U  dV du dv 
2 ~ - - 2 v - + 3 = 0  and U - + U - - l = O  

dY dY dY dY 
d u  2~ - 3 ~  d u  2 u + 3 u  

Solve simultaneously to obtain - = and - = 

d x  dy d x  d y  d x  

ay 2 ( u 2 +  U’) d y  2 ( u 2 +  u 2 ) ‘  
(6) Here U and U are to be considered as independent variables. Differentiate the given equations 

= 0 and U + - - - = 0. Then - = partially with respect to U ,  obtaining 2u + 2 - + 3 
d U  du  d u  dU 214 + 3U d y  2(V - U )  

and - = ~ 

-____ 

5 dU 5 .  d x  dy 
d x  dy d x  2u - 3 u  dy 2 u ( u +  U )  du  dv 

Differentiate the given equations partially with respect to U ,  obtaining - 2 v  + 2 - + 3 - = 0 

and U + - - - = 0. Then - = ____ and - = . 
du  dv dU 5 dV 

Supplementary Problems 

8. Find d y l d x ,  given 
(a )  x3 - x 2 y  + xy’ - y3 = 1 

3x2 - 2xy + y’ . 

( b )  xy - ex sin y = 0 ( c )  In (x’ + y ’ )  - arctan y l x  = o 
e” sin y - y 2x + y 

Ans. (4 x 2  - 2xy + 3y2 7 (6) - cos ; (4 y-+ 

9. Find d z l d x  and d z l d y ,  given 

( a )  3 ~ ‘  + 4 y z  - 5 z 2  = 60 Ans. d z l d x  = 3x152; d z l d y  = 4y15z 

d z = -  x + y + 4 z  d z  x + y + 2 z  
Ans. - 

d x  
. - - _  - ( 6 )  x’ + y 2  + z’ + 2xy + 4yz + 8zx = 20 

4 x  + 2y + 2 ’ dy  4x + 2y + z 

( c )  x + 3y + 22 = In z 

( d )  z = e,‘ cos ( y  + z )  

32 -- 2 Ans. - d z  - - -* - 
d x  1 - 2 2 ’ 5  1 - 2 2  

* d z -  - e x  sin ( y + z )  
1 + er sin ( y  + z) 

- Z d z  - Ans. - - 
d x  1 + ex sin ( y  + z )  ’ dy  

(e) sin ( x  + y )  +sin ( y  + 2) +sin (z + x )  = 1 

(32 - 
d x  

cos (x + y )  + cos (2 + x) . d z  - - COS (x + y )  + COS ( y  + z )  - -  Ans. - - - 
cos ( y + z )  + cos (2 + x )  ’ dy cos ( y + 2) + cos (2 + x) 

10. Find all the first and second partial derivatives of z ,  given x’ + 2yz + 2 z x  = 1 .  

Ans. - - -- - - --- __ - .- -  ______.___--  - 2 2  2 d 2 z  x - y + 2 2  d 2 z  x + 2 2  d’z - d z -  x + z . d z -  
d x  x + y ’ dy x + y ’ dx’ (x + y)’ ’ d x  ay ( x  + y)’ ’ dy’ (x + y)’ 

d x  d y  d z  
dy  d z  d x  

11. If F(x ,  y ,  Z) = 0 show that - - - = - 1 .  

dz d x  dy  dy  d x  1 

dg - 
12. If z = f(x, y )  and g(x, y )  = 0 ,  show that - = 

dx 
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d f  dg dY df dg 
a y  d x  dz  dx  d z ’  

13. If f ( x ,  y )  = 0 and g(z, x )  = 0, show that - - - = - - 

14. Find the first partial derivatives of U and U with respect to x and y and the first partial derivatives of x 
and y with respect to U and U ,  given 224 - U + x’ + xy = 0,  U + 2u + xy - y’ = 0. 

du - 1 d u  1 d u  1 d u  4 y - x .  - _  d x -  4 Y - x  . 
dx 5 dy 5 ’ du 2(x2 -2xy  - y ’ ) ’  

(4x + 3y) ;  - = - (2x - y); - dy = - (2y - 3 4 ;  - = - Am. 
d x  5 

3X-2Y , dy = -4x - 3y - dX . - -  y - 2x dY - - -  
du 2(x2 - 2xy - y ’ )  ’ d o  2(x2 - 2xy - y ’ )  ’ du  2(x2 - 2xy - y ’ )  

15. If U = x + y + z ,  U = x’ + y’ + z2, and w = x 3  + y 3  + z3, show that 

dz- 1 - x + z  - Y Z  - -  dy - dx  _ -  
du (x - y)(x  - z )  d u  2(x - y)( y - z )  d w  3(x - z)( y - z )  



Chapter 65 

Space Vectors 

VECTORS IN SPACE. As in the plane (see Chapter 23), a vector in space is a quantity that has 
both magnitude and direction. Three vectors a, b, and c, not in the same plane and no two 
parallel, issuing from a common point are said to form a right-handed system or triad if c has the 
direction in which a right-threaded screw would move when rotated through the smaller angle 
in the direction from a to b, as in Fig. 65-1. Note that, as seen from a point on c,  the rotation 
through the smaller angle from a to b is counterclockwise. 

We choose a right-handed rectangular coordinate system in space and let i, j, and k be unit 
vectors along the positive x, y and z axes, respectively, as in Fig. 65-2. The coordinate axes 
divide space into eight parts, called octants. The first octant, for example, consists of all points 
(x ,  y ,  z )  for which x>O,  y > O ,  z > O .  

As in Chapter 23, any vector a may be written as 

a = a,i + a,j + a3k 

If P ( x ,  y. z )  is a point in space (Fig. 65-2), the vector r from the origin 0 to P is called the 
position vector of P and may be written as 

r = O P =  OB + B P =  OA + A B  + B P =  xi + yj  + zk (65.1) 

The algebra of vectors developed in Chapter 23 holds here with only such changes as the 
difference in dimensions requires. For example, if a = a, i  + a,j + a,k and b = 6,i  + b2j  + 6,k, 
then 

ka = ka,i + ka,j + ka,k for k any scalar 

a =  b if and only if a ,  = b , ,  a2  = b,, and a3  = 63 

a + b = ( a ,  + b , ) i + ( a , ~ b , ) j + ( a , ~ b , ) k  

a b = lallbl cos 8, where 8 is the smaller angle between a and b 

i i = j . j = k .  k = 1 and i j = j . k k .  i = 0 

398 
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a b = 0 if a = 0, or b = 0, or a and b are perpendicular 

From (65.l), we have 

I r l = m = v w  (65.2) 

as the distance of the point P ( x ,  y, 2 )  from the origin. Also, if P , ( x , ,  y , ,  zl) and P,(x , ,  y,, z,) 
are any two points (see Fig. 65-3), then 

PIP2 = P,B + BP2 = P,A + AB + BP, = ( x ,  - xl) i  + ( y 2  - yl)j  + (2, - z,)k 

and 

is the familiar formula for the distance between two points. (See Problems 1 to 3.) 

IPlP21 = V(x2 - .A2 + (Y, - Y d 2  + (22 - 2A2 (65.3) 

DIRECTION COSINES OF A VECTOR. Let a = a , i + a 2 j + a , k  make angles a ,  p, and y,  
respectively, with the positive x ,  y, and z axes, as in Fig. 65-4. From 

i a = lil lal cos a = lal cos a j a = lal cos p k a = lal cos y 

we have 
k * a  a c o s y =  - = 3 

lal lal lal lal lal lal 

cos2 a + cos2 p + cos2 y = 

j - a  a cos p = - = 2 i - a  a coscy=-=--1 

These are the direction cosines of a. Since 

a: + a; + afi 

lal 
= 1  

the vector U = i cos a + j cos p + k cos y is a unit vector parallel to a. 

VECTOR PERPENDICULAR TO TWO VECTORS. Let 

a = a,i + a,j + a,k and 

be two nonparallel vectors with common initial point P. By an easy computation it can be 
shown that 

b = bli  + b j  + b,k 
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(65.4) 

is perpendicular to (normal to) both a and b and, hence, to the plane of these vectors. 
In Problems 5 and 6, we show that 

Icl = lallbl sin 8 = area of a parallelogram with nonparallel sides a and b 

vector. The zero vector, by definition, has magnitude 0 but no specified direction. 

(65.5) 

If a and b are parallel, then b =  ka, and (65.4) shows that c=O;  that is, c is the zero 

VECTOR PRODUCT OF TWO VECTORS. Take 

a = a, i  + a2j + a3k and 

with initial point P and denote by n the unit vector normal to the plane of a and b, so directed 
that a, b, and n (in that order) form a right-handed triad at P, as in Fig. 65-5. The vector 
product or cross product of a and b is defined as 

a X b = lallbl sin 8 n (65.6) 

where 8 is again the smaller angle between a and b. Thus, a X b is a vector perpendicular to 
both a and b. 

b = bl i  + b j  + b3k 

Fig. 65-5 

We show in Problem 6 that la X bl = lallbl sin 8 is the area of the parallelogram having a and 

If a and b are parallel, then 8 = 0 or T and a X b = 0. Thus, 
b as nonparallel sides. 

i x i = j x j = k x k = O  (65.7) 

In (6.5.6), if the order of a and b is reversed, then n must be replaced by -n; hence, 

b X a = -(a X b) (65.8) 

Since the coordinate axes were chosen as a right-handed system, it follows that 

(65.9) 

In Problem 8, we prove for any vectors a, b, and c, the distributive law 

(a + b) x c = (a x c) + (b X c) (65.10) 
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Multiplying (65.10) by - 1 and using (65.8), we have the companion distributive law 

c X (a + b) = (c X a) + (c X b) (65.11 ) 

Then, also, 

(a + b) X (c + d) = a  x c + a x d +  b x c + b x d (65.12) 

.i 

bl b2 b3 
and a x b =  idl a2 t31 
(See Problems 9 and 10.) 

(65.13) 

TRIPLE SCALAR PRODUCT. In Fig. 65-6, let 8 be the smaller angle between b and c and let 4 be 
the smaller angle between a and b x c. Then the triple scalar product is by definition 

a * ( b  x c) = a -  lbllcl sin 8 n = lallbllcl sin 8 cos 4 = (lal cos +)(lbllcI sin 0)  = hA 
= volume of parallelepiped 

It may be shown (see Problem 11) that 

Also, 

bl b2 b3 a, a2 a3 
while 

(65.14) 

and 

Similarly, we have 

a -  (b x c) = c -  (a X b) = b (c X a) (65.15) 
a - ( b x c ) = - b * ( a x c ) = - c * ( b x a ) = - a * ( c X b )  (65.16) 

From the definition of a (b X c) as a volume, it follows that if a, b, and c are coplanar, then 
a (b X c) = 0, and conversely. 

The parentheses in a (b x c) and (a x b) c are not necessary. For example, a b X c can be 
interpreted only as a (b X c) or (a b) x c. But a b is a scalar, so (a b) x c is without meaning. 
(See Problem 12.) 
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TRIPLE VECTOR PRODUCT. In Problem 13, we show that 

a X (b X c) = (a*c)b - (a-  b)c 

(a X b) x c = (a-c)b - (b*c)a Similarly, 
(65.17) 
(65.18) 

Thus, except when b is perpendicular to both a and c,  a X (b X c) # (a X b) X c and the use of 
parentheses is necessary. 

THE STRAIGHT LINE. A line in space through a given point Po(x,, y,,  2,) may be defined as the 
locus of all points P ( x ,  y ,  z )  such that POP is parallel to a given direction a = a l i  + a,j + a,k. 
Let r, and r be the position vectors of PO and P (Fig. 65-7). Then 

(65.19) r - r ,  = k a  where k is a scalar variable 

is the vector equation of line PP,. Writing (65.19) as 

(x  - xo)i + ( y  - y o ) j  + ( z  - z,)k = k (a , i  + a,j + a,k) 

then separating components to obtain 

x - x, = k a ,  y - y ,  = ka ,  z - z ,  = k a ,  

and eliminating k ,  we have 

( 65.20 ) 

as the equations of the line - in rectangular - coordinates. Here, [ a l ,  a,, a,] is a set of direction 
a a  

numbers for the line and 3]  is a set of direction cosines of the line. 
lal ’ lal ’ lal . .  . .  . .  

If any one of the numbers a , ,  a,, a3  is zero, the corresponding numerator in (65.20) must 
be zero. For example, if a ,  = 0 but a 2 ,  a3 f 0,  the equations of the line are 

Y - Y , _ Z - Z o  
a ,  a ,  

x - ~ , = 0  and 

THE PLANE. A plane in space through a given point Po(xo, y,, z,) can be defined as the locus of 
all lines through PO and a perpendicular (normal) to a given line (direction) a = Ai + Bj + Ck 
(Fig. 65-8). Let P ( x ,  y ,  z )  be any other point in the plane. Then r - r, = POP is perpendicular to 
a, and the equation of the plane is 

(r - r,) a = 0 (65.21 ) 
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In rectangular coordinates, this becomes 

or 
or 

[(x - x,)i + ( y  - y,)j + ( z  - z,)k] (Ai + Bj + Ck) = 0 

Ax + B y  + Cz + D = 0 
A(x - x,) + B( y - y,)  + C(Z - 2,) = 0 

( 65.22 ) 

where D = - (Ax ,  + B y ,  + Cz,). 

Ax, + B y ,  + Cz,  + D = 0. Subtracting the second of these equations from the first yields 
Conversely, let Po(xo, y,, z,) be a point on the surface Ax + B y  + Cz + D = 0. Then also 

A(x - x,) + B( y - y , )  + C(z  - z,) = (Ai + Bj + Ck) [ ( x  - x,)i + ( y  - y,)j + (z - z,)k] = 0 

and the constant vector Ai + Bj + Ck is normal to the surface at each of its points. Thus, the 
surface is a plane. 

Solved Problems 

1. Find the distance of the point Pl(l, 2 ,3)  from (a)  the origin, ( b )  the x axis, ( c )  the z axis, ( d )  
the x y  plane, and ( e )  the point P2(3, - 1,5). 

In Fig. 65-9, 
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(a)  r = OP, = i + 2j + 3k; hence, Irl = d12 + 2, + 3, = m. 
( b )  AP, = AB + BP, = 2j + 3k; hence, IAP, I = 

( c )  DP, = DE + EP, = 2j + i; hence, IDP, I = fi. 
( d )  BP, = 3k, so IBP,I = 3. 
( e )  PIPz = (3 - 1)i + (- 1 - 2)j + (5 - 3)k = 2i - 3j + 2k; hence, IP,P,I = q 4  + 9 + 4 = m. 

= fi. 

2. Find the angle 8 between the vectors joining 0 to P , ( l , 2 , 3 )  and P2(2, -3, -1). 

Let r ,  = OP, = i + 2j + 3k and r2 = OP, = 2i - 3j - k. Then 

3. Find the angle Q = LBAC of the triangle ABC (Fig. 65-10) whose vertices are A ( l ,  0, l ) ,  
B ( 2 ,  - 1 ,  l ) ,  C(-2,1,0). 

c 

Fig. 65-10 

Let a = A C =  - 3 i + j - k  and b = A B = i - j .  Then 

a - b  - 3 - 1  c o s a = - = - -  - -0.85280 and a = 148'31' 
lallbl 

4. Find the direction cosines of a = 3i + 12j + 4k. 
i * a  3 j - a  12 k - a  4 

lal 
1 3 ,  cos y = - = - 

lal 13' The direction cosines are cos a = - = -, cos p = - = - 
181 13 

5. If a = a, i  + a2j + a,k and b = 6,i  + 62j + 6,k are two vectors issuing from a point P and if 

show that IcI = lallb( sin 8, where 8 is the smaller angle between a and b. 

a - b  
We have cos 8 = - 

lallbl and 

Hence, Icl = lallbl sin 8 as required. 

6. Find the area of the parallelogram whose nonparallel sides are a and b. 

From Fig. 65-11, h = lbl sin 8 and the area is hlal = lallbl sin 8. 



CHAP. 651 SPACE VECTORS 405 

7. Let a, and a2, respectively, be the components of a parallel and perpendicular to b, as in Fig. 
65-12. Show that a2 x b = a x b and a, X b = 0. 

If 6 is the angle between a and b, then /a , /  = lal cos 8 and la,l = lal sin 8. Since a, a,, and b are 
coplanar , 

a, X b = la,llbl sin +n = lal sin 61bln = la(lb1 sin On = a x b 

Since a, and b are parallel, a, X b = 0 .  

8. Prove: (a + b) X c = (a X c) + (b X c) 

In Fig. 65-13, the initial point P of the vectors a, b, and c is in the plane of the paper, while their 
endpoints are above this plane. The vectors a, and b, are, respectively, the components of a and b 
perpendicular to c. Then a,, b,, a, + b, , a, X c, b, X c, and (a, + b,) X c all lie in the plane of the paper. 

In triangles PRS and P M Q ,  
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Thus, PRS and PMQ are similar. Now PR is perpendicular to PM, and RS is perpendicular to MQ; 
hence PS is perpendicular to PQ and PS = PQ x c. Then, since PS = PQ X c = PR + RS, we have 

(a, + b,) x c = (a, x c) + (b, X c) 

By Problem 7, a, and b, may be replaced by a and b, respectively, to yield the required result. 

j 

61 62 63 
9. When a = a,i  + a2j + a3k and b = 6,i + 62j + 6,k, show that a x b = 1 dl a2 :3 1 .  

We have, by the distributive law, 

a X b = (a,i + a j  + a,k) X (6,i + b j  + b,k) 
= a,i x (6,i + b j  + 6,k) + a j  x (6,i + b j  + 6,k) + a3k x (b, i  + b j  + b,k) 

= (a ,b ,k  - a , b J )  + (-a,b,k + a,b,i) + (a3b,j  - a3b,i) 
= (a2b3 - a,b,)i - (u ,b ,  - a,b,)j  + (a ,b ,  - a,b , )k  

b, b, b3 

10. Derive the law of sines of plane trigonometry. 

interior angles are a, p,  y. We have 
Consider the triangle ABC, whose sides a, b, c are of magnitudes a,  b, c, respectively, and whose 

Then 
and 
Thus, 
so that 
or 

and 

a + b + c = O  

a x ( a + b + c ) = a x b + a x c = O  or a X b = c X a  

b ~ ( a + b + c ) = b X a + b X c = O  or b X c = a X b  

a X b = b X c = c X a  

lallbl sin y = lbllcl sin a = lcllal sin p 
ab sin y = bc sin a = ca sin p 

sin y - sin (I! sin p .----=- 
C U b 

11. If a = a,i + a j  + a3k, b = 61i + 62j + 63k, and c = c,i + c2j + c3k, show that 

By (65.13), 

a . ( b x c ) = ( a , i + a j + a , k ) *  

= (a,i + a j  + a,k) [(b2~3 - b3cz)i + (b3c1 - b,c3)j + (b , c ,  - b,c,)k] 

a,  a2 Q, 
62 63 = al (b2~3 - b3cZ) + az(b3~1 - b 1 ~ 3 )  + ~ 3 ( 6 1 ~ 2  - 6 2 ~ 1 )  = 6, I C I  c2 c 3 1  

12. Show that a (a x c) = 0. 

By (65.24), a . (aXc)= (aXa) -c=O.  

13. For the vectors a, b, and c of Problem 11, show that a % (b X c) = (a*c)b - (a b)c. 
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Here 

a X (b X c) = (a , i  + a2j  + a,k) X 

14. If 1, and 1, are two nonintersecting lines in space, show that the shortest distance d between 
them is the distance from any point on I ,  to the plane through I ,  and parallel to I , ;  that is, 
show that if PI is a point on I ,  and P,  is a point on I ,  then, apart from sign, d is the scalar 
projection of PIP, on a common perpendicular to I ,  and I,. 

Let I, pass through Pl(x,, y , ,  2,) in the direction a = a , i  + u,j + a,k, and let I, pass through 
P2(x , ,  y,, 2 , )  in the direction b = b, i  + b,j + b,k. 

Then PIP, = ( x ,  - x l ) i  + (y ,  - y , ) j  + ( 2 ,  - z , )k ,  and the vector a X b is perpendicular to both I, 
and I,. Thus, 

15. Write the equation of the line passing through PO( 1 ,2 ,3 )  and parallel to a = 2i - j - 4k. Which 
of the points A(3,1, - l ) ,  B(1/2 ,9 /4 ,4) ,  C(2,0,1)  are on this line? 

From (65.19), the vector equation is 

(xi + yj  + zk) - (i + 2j + 3k) = k(2i - j - 4k) 
( x  - l ) i +  ( y  -2) j  + ( 2  - 3)k = k(2i - j  -4k)  or 

The rectangular equations are 

x - 1 - y - 2 - 2 - 3  --- 
2 -1 -4  

Using (2), it is readily found that A and B are on the line while C is not. 

components. The point A is on the line because 
In  the vector equation (I  ), a point P ( x ,  y,  z )  on the line is found by giving k a value and comparing 

(3 - l ) i  + (1 - 2)j + (- 1 - 3)k = k(2i - j - 4k) 

when k = 1. Similarly B is on the line because 

- i i  + $j + k = k(2i - j - 4k) 

when k = - a .  The point C is not on the line because 

i - 2j - 2k = k(2i - j - 4k) 

for no value of k.  
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16. Write the equation of the plane 
( a )  Passing through PO( 1,2,3) and parallel to 3x - 2 y  + 42 - 5 = 0 
(b) Passing through Po(l, 2,3) and P,(3, - 2 ,  l), and perpendicular to the plane 

(c) Through Po(l, 2,3), P , ( 3 ,  - 2 , l )  and P2(5, 0, -4 )  
Let P ( x ,  y ,  z) be a general point in the required plane. 

( a )  Here a = 3i - 2j + 4k is normal to the given plane and to the required plane. The vector equation of 
the latter is (r - r,) - a  = 0 and the rectangular equation is 

3x - 2 y  + 42 - 5 = o  

or 

(b) Here rl - rO = 21 - 4j - 2k and a = 31 - 2j + 4k are parallel to the required plane; thus, (r, - to) x a 
is normal to this plane. Its vector equation is (r - rO) [(r, - rO) x a] = 0. The rectangular equation is 

= [ (x - 1 )i + ( y - 2)j + (2 - 3)k] 9 [ - 20i - 14j + 8k] 

= -2O(x - 1) - 14( y - 2) + 8(2 - 3) = 0 

or 20x + 14y - 82 - 24 = 0. 
(c) Here r l  - r, =2i  - 4j -2k and r, - r, =4i  - 2j - 7k are parallel to the required plane, so that 

(r, - rO) X (r, - CO) is normal to it. The vector equation is (r - CO)  [(r, - r,) x (r, - r,)] = 0 and the 
rectangular equation is 

j 
(r - CO) 2 - 4 - 2 = [ (x - 1)i + ( y - 2)j + (z - 3)k] [24i + 6j + 12k] 1: -2 :7I 

= 2 4 ( ~  - 1) + 6( y - 2) + 12(2 - 3) = 0 

or 4x + y + 22 - 12 = 0. 

17, Find the shortest distance d between the point Po(l, 2 ,3 )  and the plane Jl given by the 
equation 3x - 2 y  + 52 - 10 = 0. 

A normal to the plane is a = 3i - 2j + 5k. Take P,(2, 3 ,2)  as a convenient point in II. Then, apart 
from sign, d is the scalar projection of POP, on a. Hence, 

(r, - r , ) * a  ( i + j - k ) . ( 3 i - 2 j + 5 k )  
lal I = I  m 

Supplementary Problems 

18. Find the length of ( a )  the vector a = 21 + 3j + k, (b) the vector b = 3i - 5j + 9k, and (c) the vector c, 
joining P,(3,4,5) to P2( l ,  -2,3). Ans. ( a )  fi, (6) m, (c) 2 f l  

19. For the vectors of Problem 18, 
( a )  Show that a and b are perpendicular. 
(6) Find the smaller angle between a and c, and that between b and c. 
(c )  Find the angles that b makes with the coordinate axes. 

Ans. (6) 165"14', 85"lO'; (c) 73"45', 117"47', 32"56' 

20. Prove: i * i = j * j = k * k = l  and i * j = j B k = k * i = O .  
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21. Write a unit vector in the direction of a and a unit vector in the direction of b of Problem 18. 

VTi 3 5 9 
3VTij + - k; (6) i -  j + k Ans. (a )  - i +  - 

V D  
14 7 14 

22. Find the interior angles p and y of the triangle of Problem 3. Ans. /3 = 22'12'; y = 9'16' 

23. For the unit cube in Fig. 65-14, find ( a )  the angle between its diagonal and an edge, and ( b )  the angle 
between its diagonal and a diagonal of a face. 

Ans. (a)  54"44'; (b) 3576' 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

a - b  
Show that the scalar projection of b onto a is given by -. 

lal 

Show that the vector c of (65.4) is perpendicular to both a and b. 

Given a = i + j, b = i - 2k, and c = 2i + 3j + 4k, evaluate the left-hand member: 
(a)  a x b = - 2 i + 2 j - k  

( d )  (a + b) X (a - b) = 4i - 4j + 2k 

(g) a x (b X c) = 3i - 3j - 14k 

(b) b x c = 6i - 8j + 3k 

(e) a . ( a x  b) = O  

(h) c x ( a x b ) =  -1 l i -6 j+ lOk  

(c) c x a = - 4 i + 4 j - k  

( f) a (b  X c) = - 2 

Find the area of the triangle whose vertices are A(1,2,3),  B(2, -1, l ) ,  and C(-2, 1, -1). (Hint: 
1AB x ACI = twice the area.) Ans. 5a 

Find the volume of the parallelepiped whose edges are OA, OB, and OC, for A( 1 ,2 ,3) ,  B(1,1,2),  and 
C(2,1,1). Ans. 2 

If U = a x b, v = b x c, w = c X a ,  show that 
(a )  u . c = v . a = w . b  
(b) a . u = b . u = O ,  b . v = c . v = O ,  c - w = a - w = O  
(c) U - (v X w) = [a * (b  X c)]' 

Show that (a + b) - [(b + c) X (c + a)] = 2a. (b X c). 

Find the smaller angle of intersection of the planes 5x - 14y + 22 - 8 = 0 and 1Ox - l l y  + 22 + 15 = 0. 
(Hint: Find the angle between their normals.) Ans. 22"25' 
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32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

Write the vector equation of the line of intersection of the planes x + y - z - 5 = 0 and 4x - y - z + 2 = 
0. (x - l ) i  + ( y  - 5)j + (z - l ) k  = k(-2i - 3j - 5k), where P O ( l ,  5 , l )  is a point on the line Ans. 

Find the shortest distance between the line through A(2, - 1, - 1) and B(6, -8,O) and the line through 
C(2, 1 ,2)  and D(0,2,  -1). Ans. G / 6  

Define a line through Po(x,,  yo, 2,) as the locus of all points P(x ,  y,  2) such that POP and OP, are 
perpendicular. Show that its vector equation is (r - ro) r,, = 0. 

Find the rectangular equations of the line through P0(2, -3 ,5)  and 
(a )  Perpendicular to 7x - 4y + 22 - 8 = 0 
(b) Parallel to the line x - y + 22 + 4 = 0, 2x + 3y + 62 - 12 = 0 
(c) Through P , (3 ,6 ,  -2) 

x - 2  - y + 3  - 2 - 5  x - 2 - y + 3  2 - 5  x - 2  y + 3  - 2 - 5  -- 
9 - 7  ; ( 6 ) ~  --= -; (4 --j- - -4  2 2 -5 Ans. ( a )  7 - - - - 

Find the equation of the plane 
( a )  Through P,(l, 2 , 3 )  and parallel to a = 2i + j - k and b = 3i + 6j - 2k 
( b )  Through P,,(2,  - 3 , 2 )  and the line 6x + 4y + 3z + 5 = 0, 2x + y + z - 2 = 0 
(c) Through P,(2 ,  - 1. - 1) and f l ( l ,  2 , 3 )  and perpendicular to 2x + 3y - 5z - 6 = 0 

Ans. ( a )  4x + y + 9z - 33 = 0; (6) 16x + 7y + 82 - 27 = 0; (c) 9x - y + 32 - 16 = 0 

If ro = i + j + k, r ,  = 2i + 3j + 4k, and r ,  = 3i + 5j + 7k are three position vectors, show that r, X r l  + 
rl  x r, + rz x r, = 0. What can be said of the terminal points of these vectors? A m .  collinear 

If P, ,  P ,  , and P, are three noncollinear points and rO, r l  , and r, are their position vectors, what is the 
position of r, x r l  + rl  x r, + r2 X r, with respect to the plane PoPlP2?  Ans. normal 

Prove: (a) a X (b X c) + b x (c X a) + c x (a x b) = 0 
( b )  (a X b).(c X d) = (a-c) (b*d)  - (a.d)(b*c) 

Prove: ( a )  The perpendiculars erected at the midpoints of the sides of a triangle meet in a point. 
(6) The perpendiculars dropped from the vertices to the opposite sides (produced if necessary) 

of a triangle meet in a point. 

Let A( 1 , 2 , 3 ) ,  B(2, - 1, S ) ,  and C(4, 1 , 3 )  be three vertices of the parallelogram ABCD. Find ( a )  the 
coordinates of D, (b) the area of ABCD, and (c) the area of the orthogonal projection of ABCD on each 
of the coordinate planes. Ans. (a )  D(3,4 ,1) ;  ( b )  2V%; (c) 8, 6, 2 

Prove that the area of a parallelogram in space is the square root of the sum of the squares of the areas 
of projections of the parallelogram on the coordinate planes. 



Chapter 66 

Space Curves and Surfaces 

TANGENT LINE AND NORMAL PLANE TO A SPACE CURVE. A space curve may be defined 

x = f ( t )  y = g ( t )  z = h( t )  (66.1 ) 

At the point Po(xo,  y , ,  z o )  of the curve (determined by t = t o ) ,  the equations of the tangent line 
are 

parametrically by the equations 

x - x ,  y - y ,  2 - z ,  

dxldt dyldt dzldt  
---=- - 

and the equation of the normal plane (the plane through PO perpendicular to the tangent line 
there) is 

dx dY dz  
- dt ( x - x , ) +  - dt ( y - y o ) +  dt ( z - z , ) = O  (66.3) 

(See Fig. 66-1.) In both (66.2) and (66.3) it is understood that the derivatives have been 
evaluated at the point PO. (See Problems 1 and 2.) 

Tangent line 

Normal plane -, 

I line 

Fig. 66-1 Fig. 66-2 

TANGENT PLANE AND NORMAL LINE TO A SURFACE. The equation of the tangent plane to 
the surface F(x, y ,  z )  = 0 at one of its points Po(x,, y , ,  z , )  is 

dF dF dF 
- ( x  - x,)  + - ( y  - y , )  + 
d X  dY 

( z  - z o )  = 0 

and the equations of the normal line at PO are 
x - x ,  y - y ,  z - z z ,  -- -- --- 
aFiax a m y  dFiaz 

(66.4) 

(66.5) 

with the understanding that the partial derivatives have been evaluated at the point PO. (Refer 
to Fig. 66-2.) (See Problems 3 to 9.) 

A SPACE CURVE may also be defined by a pair of equations 

F(x, y ,  z )  = 0 G(x, y ,  z) = 0 (66.6) 

41 1 
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At the point P,(x, ,  y,, z,) of the curve, the equations of the tangent line are 

- - x - x,  
d F  d F  

d y  d z  

dG dG 
d y  d z  

- -  

- -  

and the equation of the normal plane is 

z - 2, 
d F  d F  
d x  d y  

d G  d G  
d x  d y  

- -  

- -  

[CHAP. 66 

(66.7) 

In (66.7) and (66.8) it is to be understood that all partial derivatives have been evaluated at 
the point PO.  (See Problems 10 and 11.) 

Solved Problems 

1. Derive (66.2) and (66.3) for the tangent line and normal plane to the space curve x =f(t) ,  
y = g ( t ) ,  z = h ( t )  at the point P,(x,,, y,, z o )  determined by the value t = to. Refer to Fig. 66-1. 

Let P,& + Ax,  y,  + Ay, z ,  + A z ) ,  determined by t = t ,  + At, be another point on the curve. As 
PO-+ P, along the curve, the chord POPo approaches the tangent line to the curve at PO as limiting 
position. 

A simple set of direction numbers for the chord POPo is [ A x , A y ,  Az] ,  but we shall use [&,*,*I. Then as P,-*P,,  A t - 0  and [&,*,*]-[* "1, a set of direction 

numbers of the tangent line at PO.  Now if P ( x ,  y ,  z )  is an arbitrary point on this tangent line, then 
[x - x,, y - y,, z - z,] is a set of direction numbers of POP. Thus, since the sets of direction numbers are 
proportional, the equations of the tangent line at P, are 

At At At At At At dt ' dt ' dt 

If R ( x ,  y ,  z )  is an arbitrary point in the normal plane at PO then, since P,R and POP are perpendicular, 
the equation of the normal plane at P, is 

2. Find the equations of the tangent line and normal plane to 
(a) The curve x = t ,  y = t2,  z = t 3  at the point t = 1 
(b )  The curve x = t - 2, y = 3t2 + 1, z = 2 t 3  at the point where it pierces the yz plane. 

(a) At the point t = 1 or (1, 1, l ) ,  dxldt = 1. dyldt = 2t = 2 ,  and dzldt = 3tZ = 3 .  Using (66.2) yields, for 
x - 1  - y - l - z - l  -- - -* ~ , using (66.3) gives the equation of the the equations of the tangent line, 7- 3 A L. J 

normal plane as (x - 1) + 2 ( y  - 1) + 3(z - 1) = x + 2y + 32 - 6 = 0.  
(b) The given curve pierces the yz plane at the point where x = t - 2 = 0 ,  that is, at the point t = 2  

or (0, 13, 16) .  At this point, dxldt = 1, dyldt = 6t = 12, and dz/dt  = 6t2 = 24. The equations 
x - y - 1 3  - 2 - 1 6  

of the tangent line are - - -- - - , and the equation of the normal plane is 
I 12 24 

x + 12( y - 13)  + 24(2 - 16)  = x + 12y + 242 - 540 = 0.  
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3. Derive (66.4) and (66.5) for the tangent plane and normal line to the surface F(x,  y, z )  = 0 at 
the point Po(xo, y,, z l ) .  Refer to Fig. 66-2. 

Let x = f(t), y = g( t ) ,  z = h ( t )  be the parametric equations of any curve on the surface F(x ,  y ,  z )  = 0 
and passing through the point PO. Then, at PO, 

dF dx d F  d y  d F  d z  - - + + - + + - = ( )  
d x  dt d y  dt d z  dt 

with the understanding that all derivatives have been evaluated at PO.  

This relation expresses the fact that the line through PO with direction numbers [ dy dy e] is 
perpendicular to the line through PO having direction numbers [ aF, "1. The first set of direction 

numbers belongs to the tangent to the curve which lies in the tangent plane of the surface. The second 
set defines the normal line to the surface at PO. The equations of this normal are 

dt ' dt ' dt 

d x  a y  d z  

x - x o  Y -YO - 2 - 2 0  

d F / d x  dFldy dFldz  
- -- 

and the equation of the tangent plane at PO is 

d F  d F  d F  
- ( x  - x,) + - ( y  - y,) + - ( 2  - f o )  = 0 
d X  dY d Z  

In Problems 4 and 5, find the equations of the tangent plane and normal line to the given surface at 
the given point. 

4. z = 3x2 + 2y2 - 11; (2 ,1 ,3)  

d F  d F  
d X  dY dZ 

Put F(x ,  y ,  2) = 3x' + 2y2 - z - 11 = 0. At ( 2 , 1 , 3 ) ,  E = 6 x  = 12, - = 4y  = 4 ,  and - = - 1 .  The 

equation of the tangent plane is 12(x - 2 )  + 4 ( y  - 1 )  - (2  - 3 )  = 0 or 12x + 4y  - z = 25. 
x - 2 - y - 1  - 2 - 3  

The equations of the normal line are - - - - - 
12 4 - 1  * 

5. F(x, y, z ) =  X *  + 3y2 - 4Z2 + ~ X Y  - IOYZ + 4X - 5 2  -22=O; (1, -2, I) 

d F  d F  
dX dY d z  

At ( 1 ,  - 2 ,  l ) ,  aF = 2x + 3 y  + 4 = 0 ,  - = 6 y  + 3 x  - 1Oz = - 19, and - = - 8 2  - 1Oy - 5 = 7. The 

equation of the tangent plane is O(x - 1 )  - 19( y + 2 )  + 7 ( z  - 1 )  = 0 or 19y - 7 z  + 45 = 0. 
y + 2  - z - 1  

The equations of the normal line are x - 1 = 0 and - - - or x = 1 ,  7 y  + 19z - 5 = 0. -19 7 

x 2  y2 z2 
6. Show that the equation of the tangent plane to the surface 7 - 7 - 7 = 1 

. . XXn VVn ZZn a b I  
_ I  

at the point 
C- 

" 1.  Yo(xo,  y,, z,) is --f - - - - = 
/ / "  

a b2 c2 
d F  22, 

The equation of the tangent plane is d F  - -  2x0 - _ - -  d F  - 2yo and - = 
b2 ' d z  c2 * 

At PO, - - 
d x  a2 ' d y  

7. Show that the surfaces 

F(x,  y,  z )  = x 2  + 4y2 - 4z2 - 4 = 0 and G(x, y, z )  = x 2  + y2 + z2 - 6x - 6y + 22 + 10 = 0 

are tangent at the point (2 ,1 ,1) .  
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and 

It  is to be shown that the two surfaces have the same tangent plane at the given point. At ( 2 ,  1 ,  l ) ,  

- 2 x = 4  
dF 
d X  
-- 

Since the sets of direction numbers [4 ,8,  -8) and [ - 2 ,  - 4 , 4 ]  of the normal lines of the two surfaces are 
proportional, the surfaces have the common tangent plane 

l ( x  - 2 )  + 2 ( y  - 1 )  - 2 ( z  - 1 )  = O  or x + 2 y  - 22 = 2  

8. Show that the surfaces F ( x ,  y ,  z )  = x y  + y r  - 4 z x  = 0 and G(x, y ,  z )  = 3 z 2  - 5x + y = 0 inter- 
sect at right angles at the point (1 ,2 ,  1). 

It is to be shown that the tangent planes to the surfaces at the point are perpendicular or, what is the 
same, that the normal lines at the point are perpendicular. At ( 1 , 2 ,  l ) ,  

A set of direction numbers for the normal line to F(x ,  y ,  z) = 0 is [ I , ,  m , ,  n,] = [ l ,  - 1, 11. At the same 
point, 

= 6 2 = 6  
d G  d G - 1  - d G  - = - 5  - -  
dX dY d z  

A set of direction numbers for the normal line to G ( x ,  y ,  z )  = 0 is [ 1 2 ,  m 2 ,  n,] = [ - 5 ,  1 , 6 ] .  
Since 1,1, + m,m, + n,n, = 1(-5) + (- 1 ) l  + l ( 6 )  = 0 ,  these directions are perpendicular. 

9. Show that the surfaces F(x,  y, z) = 3x2 + 4 y 2  + 8z2  - 36 = 0 and G ( x ,  y, z) = x 2  + 2y2 - 
4 z 2  - 6 = 0 intersect at right angles. 

d F  d F  d F  
dY d z  

At any point PJx,, ,  y o ,  z o )  on the two surfaces, = 6x,,, ~ = 8y0,  and - = 162,); hence 

[3x0,  4y0 ,  8 z o ]  is a set of direction numbers for the normal to the surface F(x ,  y ,  z )  = 0 at PO. Similarly, 
[x, , ,  2y,,, - 4 z 0 ]  is a set of direction numbers for the normal line to G ( x ,  y ,  z) = 0 at P,, .  Now, since 

3XO(X,,) + 4Y0(2Yo) + 820(-4Z(,)  = 3x5 + 8Yi - 322; 
= 6 ( ~ 5  + 2y: - 425) - (3x5 + 4yt  + 82:) = 6 ( 6 )  - 36 = 0 

these directions are perpendicular. 

10. Derive (66.7) and (66.8) for the tangent line and normal plane to the space curve C: 
F ( x ,  y ,  z )  = 0, G(x, y ,  z) = 0 at one of its points P,(x, ,  y , ,  z 0 ) .  

At PO the directions [ aF ”1 and [ e, ac, $1 are normal, respectively, to the tangent 
d x ’  d y ’  d z  d x  d y  

planes of the surfaces F(x ,  y ,  z )  0 and G(x, y ,  z )  = 0. Now the direction 

dFldy dFldz dFId2 d F / d x  dFldx dFldy [ 1 d C l d y  d G l d z  1 ’  1 JGldz  d G / d x  1 ’  1 d C l d x  d G l d y  

being perpendicular to each of these directions, is that of the tangent line to C at PO.  Hence, the 
equations of the tangent line are 

x - xo - Y - Y o  - - 20 

d G l d y  d G l d z  
1 dF1dy dFldz 1 - 1 

and the equation of the normal plane is 

dFldz dFldx dFldx dFldy 
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11. Find the equations of the tangent line and the normal plane to the curve x2 + y 2  + z 2  = 14, 
x + y + z = 6 at the point (1 ,2 ,3) .  

Set F ( x , y , z ) = x 2 + y 2 + z 2 - 1 4 = O a n d  G ( x , y , z ) = x + y + z - 6 = 0 .  A t  ( 1 , 2 * 3 ) ,  

x - 1  - y - 2  2 - 3  
With [ l ,  -2 ,1]  as a set of direction numbers of the tangent, its equations are - - - = - 1 - 2  1 '  
The equation of the normal plane is ( x  - 1)  - 2 ( y  - 2 )  + ( z  - 3 )  = x - 2y + z = 0. 

Supplementary Problems 

12. Find the equations of the tangent line and the normal plane to the given curve at the given point: 

x - 2 - y - 1 - 2 4  - -- 

x - y - 1  2 

Am. 3 , 2 ~ + 2 ~ + 3 ~ - 9 = O  
2 2 (a )  x = 2 r ,  y = t 2 ,  z = t 3 ;  t = l  

( 6 )  x = re', y = er, z = t ;  t = 0 x + y + z - l = O  Ans. - - - = - .  
1 1 1 '  

(c) x = t c o s t , y = t s i n r ,  z = t ;  t = O  Am. x = z , y = O ; x + z = O  

13. Show that the curves (a) x = 2 - t ,  y = - 1 I t ,  z = 2t2 and (6) x = 1 + 8, y = sin 8 - 1, z = 2 cos 8 intersect 
at right angles at P ( l ,  - 1,2) .  Obtain the equations of the tangent line and normal plane of each curve at 
P. 

x - 1  - y + l - z - 2 +  , x - y - 4 2  + 6 - 0 ;  (b )  x - y = 2,  z = 2 ;  x + y = O  
4 

Ans. ( a )  -1 - - 
1 

14. Show that the tangents to  the helix x = a cos t ,  y = a sin t ,  2 = br meet the xy plane at the same angle. 

15. Show that the length of the curve (66.1 ) from the point t = to  to the point t = t ,  is given by 

Find the length of the helix of Problem 14 from t = 0 to  t = t , .  Ans. r l  

16. Find the equations of the tangent line and the normal plane to the given curve at the given point: 
(a )  x 2  + 2y2 + 2z2 = 5 ,  3 x  - 2y - 2 = 0; (1, 1 , l )  
( 6 )  9x2  + 4y2 - 362 = 0 ,  3~ + y + z - z2 - 1 = 0;  ( 2 ,  - 3 , 2 )  
( c )  4 z 2  = x y ,  x 2  + y 2  = 8 2 ;  ( 2 , 2 ,  1 )  

x - 2  - 2 - 2  
Am. (a )  S=e-e- - 2~ + 7 y  - 82 - 1 = 0; ( 6 )  - - - , y + 3 = 0 ;  x + z - 4 = 0 ;  

2 7 -8 ' 1 1 

2 - 1 = o ;  x - y  = o  x - 2 - y - 2  (4 1 - - -1 ' 

17. Find the equations of the tangent plane and normal line to  the given surface at the given point: 

(a )  x 2  + y 2  + z2 = 14; (1, - 2 , 3 )  
x - l - y + 2 - 2 - 3  

3 
Am. x - 2y + 32 = 14; - - - 

1 - 2  
x - - 1  - Y - Y I - Z - Z l  x l x  + y l y  + z , z  = r 2 ;  ~ - ~ - ___ 

X I  Yl 2, 
( 6 )  x 2  + y 2  + z2 = r 2 ;  (x,, y , ,  z , )  Ans. 
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x - 2  2 + 2  
1 3 -2  

y + 2 - -  z + 3  
2 -1 

4 x - 3 ~  + ~ = 1 2 ;  - - - - 

AM. x + 3y - zz =o;  - = y+2 = - ( c )  x2 + 2z2 = 3y2; (2, -2, -2) 

(d) 2x2 + 2xy + y2 + 2 + 1 = 0; (1, -2, -3) AM. z -2y  = 1; x - 1 = O ,  - - 

x - 3 - y + 4  -- 2 + 1 2  
1 

Am. 
4 -3 (e) z = xy; (3, -4, - 12) 

18. ( a )  Show that the sum of the intercepts of the plane tangent to the surface x1’2 + y”’ + z’” = a’” at 

(6) Show that the square root of the sum of the squares of the intercepts of the plane tangent to the 
any of its points is a. 

surface x2l3 + y2’3 + z2’3 = a2 /3  at any of its points is a. 

19. Show that each pair of surfaces is tangent at the given point: 

( 6 )  x 2  + y2 + z2 - 8x - 8y - 6 2  + 24 = 0, x2 -t 3y2 + 2z2 = 9; (2,1,1) 
( a )  x2 + y2 + z2 = 18, xy = 9; (3,3,0) 

20. Show that each pair of surfaces is mutually perpendicular at the given point: 
(U) x 2  + 2y2 - 4z2 = 8, 4x2 - y2 + 2z2 = 14; (2,2,1) 
(6) x2 + y2 + 2’ = 50, x2 + y2  - 102 + 25 = 0; (3,4,5) 

21. Show that each of the surfaces (a) 14x2 + l l y 2  + 8z2 = 66, ( b )  3z2 - 5 x  + y = 0, and (c) xy + yz - 4zx = 
0 is perpendicular to the other two at the point (1,2, 1). 



Chapter 67 

Directional Derivatives; 
Maximum and Minimum Values 

DIRECTIONAL DERIVATIVES. Through P ( x ,  y ,  z ) ,  any point on the surface z = f ( x ,  y ) ,  pass 
planes parallel to the coordinate planes x O z  and y O z  cutting the surface in the arcs PR and PS 
and the plane x O y  in the lines P*M and P * N ,  as shown in Fig. 67-1. The partial derivatives 
dz ldx  and d z l d y  evaluated at P * ( x ,  y )  give, respectively the rates of change of z = P*P when y 
is held fixed and when x is held fixed, that is, the rates of change of z in directions parallel to 
the x and y axes or the slopes of the curves PR and PS at P. 

Consider next a plane through P perpendicular to the plane x O y  and making an angle 8 
with the x axis. Let it cut the surface in the curve PQ and the x O y  plane in the line P*L.  The 
directional derivative of f ( x ,  y )  at P* in the direction 8 is given by 

d z  d z  d Z  
- -  - ~ cos 8 + - sin 8 
ds d x  dY 

(67.1 ) 

The direction 8 is the direction of the vector (cos 8)i + (sin 8)j. The directional derivative gives 
the rate of change of z = P * P  in the direction of P*L or the slope of the curve PQ at P. 

The directional derivative at a point P* is a function of 8. There is a direction, determined 
by a vector called the gradient off at P* (Chapter 68) ,  for which the directional derivative at P* 
has a maximum value. That maximum value is the slope of the steepest tangent line that can be 
drawn to the surface at P. (See Problems 1 to 8.) 

For a function w = F ( x ,  y ,  z ) ,  the directional derivative at P ( x ,  y ,  z )  in the direction 
determined by the angles a ,  p, y is given by 

d F  d F  d F  d F  
- -  - - cos a + - cos p + - cos y 
ds dx dY d Z  

By the direction determined by a ,  p, and y, we mean the direction of the vector (cos a)i + 
(cos p)j + (cos y)k.  (See Problem 9.) 

417 
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RELATIVE MAXIMUM AND MINIMUM VALUES. Suppose that z = f ( x ,  y) has a relative 
maximum (or minimum) value at Po(xo,  y,, z,). Any plane through PO perpendicular to the 
plane x O y  will cut the surface in a curve having a relative maximum (or minimum) point at PO; 

that is, the directional derivative - cos 8 + af sin 8 of z = f ( x ,  y )  must equal zero at PO, for 

any value of 8. Thus, at PO, af = 0 and - = 0. 

The points, if any, at which z = f ( x ,  y) has a relative maximum (or minimum) value are 
among the points (x , ,  y , )  for which df ldx  = 0 and d f / a y  = 0 simultaneously. To separate the 
cases, we quote without proof: 

df 

d x  d f  dY 

dX dY 

Let z = f ( x ,  y )  have first and second partial derivatives in a certain region including the 

point ( x o ,  y o ,  z,) at which af = 0 and af = 0. If A = ( -)2 d "f - (?)( 3 ' f  7) < O  at PO,  then 
dX JY d x  d y  d x  d y  

z = f ( x ,  y )  has 

A relative minimum at PO if azf  + 7 > 0 
dX2 d y  

or A relative maximum at PO if 7 
d x  d y  

If A > 0, PO yields neither a maximum nor a minimum value; if A = 0, the nature of the critical 
point PO is undetermined. (See Problems 10 to 15.) 

Solved Problems 

1. Derive (67.1 ). 

In Fig. 67-1, let PT(x + A x ,  y + A y )  be a second point on P* L and denote by As the distance P* PT. 
Assuming that z = f ( x ,  y )  possesses continuous first partial derivatives, we have, by Problem 20 of 
Chapter 63, 

dZ d z  
A Z  = - AX + - A y  + el Ax + e2 A y  

dX dY 
where cl and c2-0 as Ax and Ay-,O. The average rate of change of z between the points P* and PT is 

A Z  d z  A X  a z  AY A X  AY + - - + - + €* - 
As d x  As  d y  As  As As  
- -  - - -  

dZ dZ - -  - cos 8 + - sin 8 + cl cos 8 + c2 sin 8 
d X  dY 

where 8 is the angle that the line P * P :  makes with the x axis. Now let PT-* P* along P * L ;  the 
instantaneous rate of change of z ,  or the directional derivative at P * ,  is 

dz  d z  dZ 

ds d x  dY 
COS 8 + - sin 8 - = -  

2. Find the directional derivative of z = x2  - 6 y 2  at P * ( 7 , 2 )  in the direction ( a )  8 = 45", 
( b )  8 = 135". 

The directional derivative at any point P * ( x ,  y )  in the direction 8 is 

dz  d z  d.? 

ds d x  dY 
COS 8 + - sin 8 = 2x cos 8 - 12y sin 8 - = -  
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3. 

4. 

5. 

6. 

7. 

8. 

(a )  At P*(7,2) in the direction 8 = 45", dzlds = 2(7)( +a) - 12(2)( $a) = - 5 f i .  
(6) At P*(7,2) in the direction 8 = 135", dzlds = 2(7)(- $a) - 12(2)( +a) = - 1 9 f i .  

Find the directional derivative of z = ye" at P*(O, 3) in the direction (a)  8 = 30", (6) 8 = 120". 

(a )  At (0,3) in the direction 8 = 30", dzlds = 3(1)( ifi) + 4 = i(3V3 + 1). 
(6) At (0,3) in the direction 8 = 120", dzlds = 3(1)(- 5 )  + $fl= +(-3 + fl). 

Here, dzlds = ye" cos 8 + ex sin 8. 

The temperature T of a heated circular plate at any of its points (x, y) is given by 

the origin being at the center of the plate. At the point (1,2) find the rate of T =  

change of T in the direction 8 = ~ / 3 .  

64 
x 2 + y 2 + 2 '  

We have 

7r dT 128 1 256 fi (1+2V3). At (1,2) in the direction 8 =  - - = -- - - - = -- 
3 ' d s  49 z 49 2 

The electrical potential V at any point (x, y) is given by V =  In v x 2  + y2. Find the rate of 
change of V at the point (3,4) in the direction toward the point (2,6). 

COS e + - 
ds x 2 + y 2  x' + y' sine 
dV x -=- Here, 

Since 8 is a second-quadrant angle and tan 8 = (6 - 4) l(2 - 3) = -2, cos 8 = - 1 l f l  and sin 8 = 2 l f i .  

Hence, at (3,4) in the indicated direction, - dV 3 4 2  v3 

Find the maximum directional derivative for the surface and point of Problem 2. 

At P*(7,2) in the direction 8, dzlds = 14 cos 8 - 24 sin 8. 

To find the value of 8 for which - dz is a maximum, set - ( d z ) = - ~ 4 s i n ~ - 2 4 c o s ~ = ~ .  m e n  ds d8 ds 
tan 8 = - and 8 is either a second- or fourth-quadrant angle. For the second-quadrant angle, 
sin 8 = 1 2 l m  and cos 8 = - 7 l m .  For the fourth-quadrant angle, sin 8 = - 1 2 l m  and cos 8 = 
7 I-. 

= - 

d' 
Since - (g ) = (- 14 sin 8 - 24 cos 8 )  = - 14 cos 8 + 24 sin 8 is negative for the fourth-quad- 

rant angle, the maximum directional derivative is - ds = 14( m) - 24( - &) = 2-, and the 
direction is 8 = 300"15'. 

d8 d8 dz 7 

Find the maximum directional derivative for the function and point of Problem 3. 

At P*(O, 3) in the direction 8, dzlds = 3 cos 8 + sin 8. 

To find the value of 8 for which - is a maximum, set = -3 sin 8 + cos 8 = 0. Then 

Since 7 (2) = - (-3 sin 8 + cos 8 )  = -3 cos 8 - sin 8 is negative for the first-quadrant angle, 
d8 dt? dz 3 1 

dz 
ds 

tan 8 = f and 8 is either a first- or third-quadrant angle. 

the maximum directional derivative is - = 3 - + - = fi, and the direction is 8 = 1826'. 

d 2  d 

ds m f i  

In Problem 5 ,  show that V changes most rapidly along the set of radial lines through the 
origin. 
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dV x 
At any point (x , ,  y , )  in the direction 8, - = 6 cos 8 + A sin 8. Now V changes most 

2 2  + y1  
Y1'(xl + Y1) = &. Thus, 

d.9 % + Y ,  
sin 8 + A cos 8 = 0, and then tan 0 = 

x :  + Y ,  x1 + Y l  x , / ( x :  + Y:> XI 
8 is the angle of inclination of the line joining the origin and the point ( x , ,  y , ) .  

9. Find the directional derivative of F ( x ,  y, z) = xy + 2x2 - y 2  + z2  at the point (1, - 2 , l )  along 
the curve x = t, y = t - 3, z = t 2  in the direction of increasing 2. 

A set of direction numbers of the tangent to the curve at (1, -2, 1) is [ l ,  1 ,2] ;  the direction cosines 
are [ 1 l f i ,  1 /V-6,2/V-6]. The directional derivative is 

d F  d F  d F  1 1 2 1 3 G  
~ cos a + - cos p + - cosy = o  - + 5 - + 4  - = - 
d X  dY d 2  6 G G 6  

10. Examine f ( x ,  y) = x 2  + y 2  - 4x + 6 y  + 25 for maximum and minimum values. 

The conditions dfldx = 2x - 4 = 0 and dfldy = 2y + 6 = 0 are satisfied when x = 2, y = -3. 
Since f(x, y) = (x' - 4x + 4) + ( y2 + 6y + 9) + 25 - 4 - 9 = (x - 2)' + ( y  + 3)2 + 12, it is evident 

Geometrically, (2, -3, 12) is the minimum point of the surface z = x' + yz  - 4x + 6y + 25. 
that f(2, -3) = 12 is a minimum value of the function. 

11. Examine f ( x ,  y) = x 3  + y-' + 3xy for maximum and minimum values. 

w h e n x = - 1 ,  y = - 1 .  
The conditions dfldx = 3(x2 + y) = 0 and dfldy = 3( y2 + x) = 0 are satisfied when x = 0, y = 0 and 

= 9 > 0, and (0,O) d 'f d 'f 

dx d x  dy JY 
= 3, and 7 = 6y = 0. Then At (0, 0), 7 = 6x = 0, ~ 

vields neither a maximum nor minimum. 

= 3, and 7 d 'f = -6. Then = - 2 7 < 0 ,  and 
d 'f d 'f 

At (-1, - l ) ,  p2 = - 6 ,  ~ 

d zf dx  d x  dy dY 
a'f + 7 < 0. Hence, f(- 1, - 1) = 1 is the maximum value of the function. 
dx' dy 

12. Divide 120 into three parts such that the sum of their products taken two at  a time is a 
maximum. 

Let x ,  y,  and 120 - ( x  + y) be the three parts. The function to be maximized is 
S =  xy + (x + y)(120 - x - y ) ,  and 

= x + (120 - x - y) - ( x  + y) = 120 - x - 2y 
dS 

- = y + (120 - x - y) - ( x  + y) = 120 - 2x - y 
d S  

d X  dY 
- 

dS as 
Setting - = - = 0 yields 2x + y = 120 and x + 2y = 120. Simultaneous solution gives x = 40, y = 40, 

d x  ay 
and 120 - ( x  + y) = 40 as the three parts, and S = 3(402) = 4800. For x = y = 1, S = 237; hence, S = 4800 
is the maximum value. 

13. Find the point in the plane 2x - y + 22 = 16 nearest the origin. 

Let (x, y,  2) be the required point; then the square of its distance from the origin is D = 

x' + y' + 2'. Since also 2x - y + 22 = 16, we have y = 2x + 22 - 16 and D = x2 + (2x + 22 - 16)' + z2. 
Then the conditions d D l d x  = 2x + 4(2x + 22 - 16) = 0 and d D / d z  = 4(2x + 22 - 16) + 22 = 0 are 

equivalent to 5x + 42 = 32 and 4x + 52 = 32, and x = z = T .  Since it is known that a point for which D is 
a minimum exists, ( p ,  - 9, $) is that point. 

14. Show that a rectangular parallelepiped of maximum volume V with constant surface area S is a 
cube. 
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15. 

Let the dimensions be x ,  y ,  and z. Then V =  xyz and S = 2(xy + yz + zx) .  
The second relation may be solved for z and substituted in the first, to express V as a function of x 

and y .  We prefer to avoid this step by simply treating z as a function of x and y .  Then 

dZ 
- xz + xy - 

dY 

dV dV dZ 
- = y z + x y  - 
dX dX JY 

-- 

d z  
e = 0 = 2  y + z + x - + y q  dZ - = 0 = 2 ( x + z + x - + y -  d S  
dX ( dx r9x dY dY dY 

d z  x + z  
From the latter two equations, - d z  = -- Y + z a n d - = - -  . Substituting in the first two yields the 

xy(x + ’ )  = 0,  which reduce to y2(z - x )  = 0 and conditions - = yz - 

x2(z - y )  = 0. Thus x = y = z,  as required. 

dx x + y  dy x + y  
dV xY(Y + ’) = 0 and - = xz - dV 

dX X + Y  dY X + Y  

Find the ;olumF V yf the largest rectangular parallelepiped that can be inscribed in the 

ellipsoid 3 + - + 7 = 1. X Y Z  

a b2 c 
Let P(x,  y ,  z )  be the vertex in the first octant. Then V =  8xyz. Consider z to be defined as a function 

of the independent variables x and y by the equation of the ellipsoid. The necessary conditions for a 
maximum are 

- = 8 ( y z + x y $ ) = O  dV and 
dX 

2x 22 dz  2y 22 dz  
a c dx b2 c dy 

From the equation of the ellipsoid, obtain 7 + 7 - = 0 and - + 7 - = 0. Eliminate d z / d x  and 

dz ldy  between these relations and ( I )  to obtain 

and, finally, 
x 2  - z2 - y 2  - - - _ -  
a2 c2 b2 

Combine ( 2 )  with the equation of the ellipsoid to get x = a V 3 / 3 ,  y = b V 3 / 3 ,  and z = c V 3 / 3 .  Then 
V =  8xyz = ( 8 f i / 9 ) u b c  cubic units. 

Supplementary Problems 

16. Find the directional derivative of the given function at the given point in the indicated direction: 
(U)  z = x 2  + XY + y2, (3 ,  I ) ,  e = d 3  
(c) z = y + x COS XY,  (0, o), e = v/3 

Am. 

( b )  z = x 3  + y’ - 3xy,  (2 ,  l ) ,  8 = arctan 2 / 3  
(d) z = 2x2 + 3xy - y’, (1 ,  - l ) ,  toward ( 2 , l )  

(a)  $ ( 7 + 5 f l ) ;  ( 6 )  2 1 a / 1 3 ;  (c)  $ ( l  + fl); ( d )  1 1 f l / 5  

17. Find the maximum directional derivative for each of the functions of Problem 16 at the given point. 

Ans. (a) m; ( 6 )  3 f l ;  ( c )  fi; ( d )  

18. Show that the maximum directional derivative of V =  In v x 2  + y 2  of Problem 8 is constant along any 
circle x 2  + y’ = r’. 

19. On a hill represented by z = 8 - 4x2 - 2y2, find (a) the direction of the steepest grade at (1 ,  1 , 2 )  and ( b )  
the direction of the contour line (direction for which z = constant). Note that the directions are mutually 
perpendicular. Ans. (a )  arctan $,  third quadrant; ( 6 )  arctan - 2  
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20. Show that the sum of the squares of the directional derivatives of z = f ( x ,  y)  at any of its points is 
constant for any two mutually perpendicular directions and is equal to  the square of the maximum 
directional derivative. 

21. Given z = f ( x ,  y) and w = g(x, y) such that dzldx = dw/dy and dzldy = -dw/dx. If 8, and 0, are two 
mutually perpendicular directions, show that at any point P ( x ,  y), dzlds ,  = dw/ds, and dz/ds, = 
- d wlds, . 

22. Find the directional derivative of the given function at the given point in the indicated direction: 

(6) x’ + y‘ + z’, (1, 1, l ) ,  toward ( 2 , 3 , 4 )  
(c) x’ + y’ - 2xz, ( 1 , 3 , 2 ) ,  along x2 + y’ - 2xz = 6 ,  3x’ - y’ + 32 = 0 in the direction of increasing z 

Ans. ( a )  - y ;  ( 6 )  6 m / 7 ;  (c )  0 

(a )  xy’z, (2, 1 ,3) ,  [ I ,  - 2 , 4  

23. Examine each of the following functions for relative maximum and minimum values. 
( a )  z = 2x + 4y - x’ - y’ - 3 Ans. maximum = 2 when x = 1,  y = 2 
(6) z = x3  + y’ - 3xy Ans. minimum = -1 when x = 1,  y = 1 
(c) z = x’ + 2xy + 2y’ Ans. minimum = 0 when x = 0, y = 0 
(4 z = (x - Y)(l - XY) Ans. neither maximum nor minimum 
(e) z = 2x’ + y’ + 6xy + 1Ox - 6y + 5 Ans. neither maximum nor minimum 
( f )  z = 3x - 3y - 2x3 - xy’ + 2x’y + y’ Ans. 

(g) z = xy(2x + 4y + 1) Ans. m a x i m u m = & w h e n x = - i , y = - &  

minimum = -G when x = - G / 6 ,  y = G / 3 ;  
maximum = fl when x = G / 6 ,  y = - a / 3  

24. Find positive numbers x, y,  z such that 
(a )  x + y + z = 18 and xyz is a maximum 
(c) x + y + z = 20 and xyz’ is a maximum 

Ans. 

(6) xyz = 27 and x + y + z is a minimum 
(d) x + y + z = 12 and xy2z3 is a maximum 

( a ) x = y = z = 6 ;  ( b ) x = y = z = 3 ;  ( c ) x = y = 5 ,  z = l O ;  ( d ) x = 2 , y = 4 ,  z = 6  

25. Find the minimum value of the square of the distance from the origin to  the plane Ax + By + Cz + D = 
0.  Ans. D 2 / ( A 2  + B 2  + C’) 

26. ( a )  The surface area of a rectangular box without a top is to be 108 ft’. Find the greatest possible 
volume. (6) The volume of a rectangular box without a top is to be 500 ft3. Find the minimum surface 
area. Ans. ( a )  108 ft3; (6) 300 ft’ 

27. Find the point on  z = xy - 1 nearest the origin. Am. ( O , O ,  - 1) 

28. Find the equation of the plane through (1, 1 , 2 )  that cuts off the least volume in the first octant. 

Ans. 2x + 2y + z = 6 

29. Determine the values of p and 4 so that the sum S of the squares of the vertical distances of the points 
(0 ,2) ,  (1 ,3) ,  and ( 2 , 5 )  from the line y = p x  + q is a minimum. (Hint: S = ( q  - 2)’ + ( p  + q - 3)’ + 
( 2 p + 4 - 5 ) ’ . )  Am. p = t ; q = y  



Chapter 68 

Vector Differentiation and Integration 

VECTOR DIFFERENTIATION. Let 

r=ifi(t)+jf,(t) + k f 3 ( t ) = i f 1  +if2 + k f 3  
s = ig, ( t )  + j g2W + kg&) = igl + j g2 + kg3 
U = ih,(t)  + j h , ( t )  + kh3( t )  = ih,  + jh, + kh, 

be vectors whose components are functions of a single scalar variable t having continuous first 
and second derivatives. 

We can show, as in Chapter 23 for plane vectors, that 

d dr  ds 
- ( r * s ) = - * s + r * -  
dt dt dt 

(68.1) 

Also, from the properties of determinants whose entries are functions of a single variable, we 

and 

dr  ds  
- -  - X s + r X -  

dt dt 

(68.2) 

(68.3) 

These formulas may also be established by expanding the products before differentiating. 
From (68.2) follows 

d dr  d 
- [ ~ x ( s x u ) ] =  - X ( S X U ) + ~ X  - ( S X U )  
dt dt dt 

(68.4) 

SPACE CURVES. Consider the space curve 
x = f ( t )  y = g ( t )  z = h( t )  (68.5) 

where f ( t ) ,  g ( t ) ,  and h( t )  have continuous first and second derivatives. Let the position vector 
of a general variable point P ( x ,  y ,  z )  of the curve be given by 

r = xi  + y j  + zk 

A s  in Chapter 23, t = dr lds  is the unit tangent vector to the curve. If R is the position vector of 
a point (X, Y ,  2)  on the tangent line at P, the vector equation of this line is (see Chapter 65) 

(68.6) R - r = kt for k a scalar variable 

and the equations in rectangular coordinates are 

x - x  Y - y - 2 - 2  -=--- 
dxlds dylds dzlds  

where [ dx dy “‘1 is a set of direction cosines of the line. In the corresponding equation, 

[ dx dy ”‘3 was used. (66.2), a set of direction numbers 
ds ’ ds ’ ds 

dt ’ dt ’ dt 

423 
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The vector equation of the normal plane to the curve at P is given by 

(R - r) t = 0 (68.7) 

Again, as in Chapter 23, dtlds is a vector perpendicular to t. If n is a unit vector having the 
where R is the position vector of a general point of the plane. 

direction of dtlds, then 

dt 
- = lKln 
ds 

where IKI is the magnitude of the curvature at P. The unit vector 

(68.8) 

is called the principal normal to the curve at P. 
The unit vector b at P, defined by 

b = t x n  (68.9) 

is called the binormal at P. The three vectors t ,  n, b form at P a right-handed triad of mutually 
orthogonal vectors. (See Problems 1 and 2.) 

At a general point P of a space curve (Fig. 68-l), the vectors t, n,  b determine three 
mutually perpendicular planes: 

1. The osculating plane, containing t and n, of equation (R - r) b = 0 
2. The normal plane, containing n and b, of equation (R - r) t = 0 
3. The rectifying plane, containing t and b, of equation (R - r) n = 0 

In each equation, R is the position vector of a general point in the particular plane. 

SURFACES. Let F(x,  y, z )  = 0 be the equation of a surface. (See Chapter 66.) A parametric 
representation results when x ,  y, and z are written as functions of two independent variables or 
parameters U and U ,  for example, as 

x =f&, 4 y =f2(u, 4 =f3(u, U) (68.10) 

When U is replaced with uo,  a constant, (68.10) becomes 

x =f i (uo ,  4 Y =f2(uo, 4 z =f3(uo, U) (68.11 ) 
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the equation of a space curve (U curve) lying on the surface. Similarly, when U is replaced with 
uo, a constant, (68.10) becomes 

(68.12) 

the equation of another space curve (U curve) on the surface. The two curves intersect in a 
point of the surface obtained by setting U = U, and U = U ,  simultaneously in (68.10). 

The position vector of a general point P on the surface is given by 

r = x i  + yj + zk = if,(u, U )  + jf2(u, U) + kf3(u, U) (68.13) 

Suppose (68.11 ) and (68.12) are the U and U curves through P. Then, at P, 

is a vector tangent to the U curve, and 

is a vector tangent to the U curve. The two tangents determine a plane that is the tangent plane 
to the surface at P (Fig. 68-2). Clearly, a normal to this plane is given by - X -. The unit 
normal to the surface at P is defined by 

d r  dr 
du  d u  

dr dr x -  
d u  dv 
- 

n =  (68.14) 

If R is the position vector of a general point on the normal to the surface at P, its vector 
equation is 

( R - r ) = k ( g x  E) (68.15) 

If R is the position vector of il general point on the tangent plane to the surface at P, its vector 
equation is 

dr 
( R - r ) - ( %  x $ ) = o  (68.16) 

(See Problem 3.) 
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THE OPERATOR V. In Chapter 67 the directional derivative of z = f ( x ,  y) at an arbitrary point 
( x ,  y) and in a direction making an angle 8 with the positive x axis is given as 

dz 
- = df cos 8 + df sin 8 
ds d x  dY 

Let us write 

(68.17) 

Now a = i cos 8 + j sin 8 is a unit vector whose direction makes the angle 8 with the positive x 

axis. The other factor on the right of (68.17), when written as i - + j -)f, suggests the 

definition of a vector differential operator V (del), defined by 

a d 

( d x  d y  

(68.18) 

J f  af 
d x  a y  

In vector analysis, Vf = i - + j - is called the gradient of f or grad f .  From (68.17), we see 

that the component of Vf in the direction of a unit vector a is the directional derivative off in 
the direction of a. 

Let r = xi + yj be the position vector to P ( x ,  y). Since 

d r  
ds 

= V f .  - 

and 

where 4 is the angle between the vectors Vf and d r l d s ,  we see that d f l d s  is maximal when 
cos 4 = 1, that is, when Vf and d r l d s  have the same direction. Thus, the maximum value of the 
directional derivative at P is IVfl; and its direction is that of Vf.  (Compare the discussion of 
maximum directional derivatives in Chapter 67.) (See Problem 4.) 

For w = F(x,  y,  z ) ,  we define 
d F  d F  d F  

V F  = i - + j - + k - 
d x  ay d z  

and the directional derivative of 
a = a,i  + a2j + a,k is 

F(x,  y, z )  at an arbitrary point P ( x ,  y, z) in the direction 

= V F * a  
d F  
ds 
- (68.19) 

As in the case of functions of two variables, (VFI is the maximum value of the directional 
derivative of F(x,  y, z) at P ( x ,  y, z), and its direction is that of VF.  (See Problem 5 . )  

Consider now the surface F ( x ,  y, z) = 0. The equation of the tangent plane to the surface at 
one of its points P,(x, ,  y,, z , )  is given by 

d F  
= [ ( x  - xo)i + ( y - yo)j + ( z  - z ,  )k] [ i - + j + k "1 = 0 (68.20) 

ax dy d z  

with the understanding that the partial derivatives are evaluated at PO. The first factor is an 
arbitrary vector through PO in the tangent plane; hence the second factor V F ,  evaluated at PO,  is 
normal to the tangent plane, that is, is normal to the surface at PO.  (See Problems 6 and 7.) 
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c u r l F = V x F =  

DIVERGENCE AND CURL. The divergence of a vector F = if,(x, y, z) + j f 2 ( x ,  y ,  z) + kf3(x, y ,  z ) ,  
sometimes called del dot F,  is defined by 

i j k  
d d d  

dy 
fi f 2  f 3  

(68.21 ) 

(See Problem 8.) 

INTEGRATION. Our discussion of integration here will be limited to ordinary integration of 
vectors and to so-called “line integrals.” As an example of the former, let 

be a vector depending upon the scalar variable U. Then 

F(u) = i cos U + j sin U + auk 

F’(u)= - i s i n u + j c o s u + a k  I F’(u) du = (-i sin U + j cos U + ak) du I and 

= i I -sin u du + j I cos u du + k I a du 

=icos  u + j sin u + auk + c 
= F(u) + c 

where c is an arbitrary constant vector independent of U. Moreover, 

F’(u) du = [F(u) + c]:I: = F(b) - F(a) 
u = b  

(See Problems 9 and 10.) 

LINE INTEGRALS. Consider two points PO and P ,  in space, joined by an arc C. The arc may be 
the segment of a straight line or a portion of a space curve x = gl(t), y = g 2 ( t ) ,  z = g , ( t ) ,  or it 
may consist of several subarcs of curves. In any case, C is assumed to be continuous at each of 
its points and not to intersect itself. Consider further a vector function 

F = F(x, Y ,  2) = if&, y ,  2) +jf2(x, y ,  2) + kf3(x, y ,  4 
which at every point in a region about C, and, in particular, at every point of C ,  defines a 
vector of known magnitude and direction. Denote by 

r = xi + y j  + zk ( 68.23 ) 

the position vector of P ( x ,  y,  z) on C. The integral 

(68.24 ) 

is called a line integral, that is, an integral along a given path C. 
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As an example, let F denote a force. The work done by it in moving a particle over dr is 
given by (see Problem 9 of Chapter 23) 

1Flldrl cos 8 = Fe dr 

and the work done in moving the particle from PO to P ,  along the arc C is given by 

1'' F *  dr 
PO 

C 

From (68.23 ) , 

and (68.24) becomes 
dr = i dx + j dy + k dz 

(68.25 ) 
C C 

(See Problem 11.) 

Solved Problems 

1. A particle moves along the curve x = 4 cos t, y = 4 sin t, z = 6t. Find the magnitude of its 
velocity and acceleration at times t = 0 and t = $?r. 

Let P ( x ,  y, z) be a point on the curve, and 

r = xi + yj  + zk = 4i cos t + 4j sin t + 6kt 

be its position vector. Then 

dr d 2 r  
dt dt' 

a =  -4i la) = 4 

a =  -4j )a1 = 4 

v =  - = - 4 i s i n t + 4 j c o s t + 6 k  and a =  - = -4 i cos t -4 j s in t  

At t = 0 :  v = 4 j + 6 k  l v l = m = 2 f l  

At t =  ; T :  v = -4i + 6k IvI = = 2 f l  

2. At the point (1 ,1 ,1)  or t =  1 of the space curve x = t, y = t2, z = t3, find 
(a )  The equations of the tangent line and normal plane 
(6) The unit tangent, principal normal, and binormal 
(c) The equations of the principal normal and binormal 

We have r = ti + t'j + t3k 

dr 
- = i + 2tj + 3t2k 
dt 

At t =  1, r = i + j + k  and t =  ( i + 2 j + 3 k ) .  m 
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( a )  If R is the position vector of a general point (X, Y, 2 )  on the tangent line, its vector equation is 
R - r =  kt or 

k 
fi (X- l)i + (Y - 1)j + (2 - l)k = - (i + 2j + 3k) 

and its rectangular equations are 

x-1 Y - 1  2-1 
1 2 3 

-=-=- 

If R is the position vector of a general point (X, Y, 2 )  on the normal plane, its vector equation 
is ( R - r ) * t = O  or 

1 

[(X- 1)i + ( Y  - 1)j + (2 - l)k]* (i + 2j + 3k) = 0 fi 
and its rectangular equation is 

(X- 1) + 2(Y - 1) + 3(2 - 1) = X + 2Y + 3 2 - 6 = 0  

(see Problem 2(a) of Chapter 66.) 

- = -  dt dt dt 
di d t d s =  (I  + 4t2 + 9t412 

(-4t - 18t3)i + (2 - 18t4)j + (6t + 12t3)k 

and 121 = f = IKI. Then dt 
a3 

- l l i  - 8j + 9k 
98 A t t = l , - =  

and 

(c) If R is the position vector of a general point (X, Y, 2 )  on the principal normal, its vector equation is 
R - r = k n  or 

-1l i -8j+9k 
(X- l)i + ( Y  - 1)j + (2 - l)k = k 

and the equations in rectangular coordinates are 

x-1 Y - 1 - 2 - 1  -=--- 
-11 -8 9 

If R is the position vector of a general point (X, Y, 2 )  on the binormal, its vector equation is 
R - r = k * b o r  

3i - 3j + k 
rn (X - 1)i + ( Y  - 1)j + (2 - l)k = k 

and the equations in rectangular coordinates are 

x-1 Y - 1  2 - 1  
3 -3 1 

-=-=- 

3. Find the 
y = 3(u - 

Here 

and at the 

equations of the tangent plane and normal line to the surface x = 2(u + U), 
U), z = uu at the point P(u = 2, U = 1). 

dr dr 
- = 2i + 3j + vk 
dU dV 

r = 2(u + v)i + 3(u - v)j + uvk - = 2i - 3j + uk 

point P, 
dr dr 
dU dV 

r = 6 i + 3 j + 2 k  - = 2 i + 3 j + k  - =2i-3 j+2k 
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dr dr  
- x - = 9 i - 2 j - l 2 k  

and du  dv 
The vector and rectangular equations of the normal line are 

dr dr 
R - r =  k - X - 

du dv 
or ( X  - 6)i + ( Y  - 3)j + (2 - 2)k = k(9i - 2j - 12k) 

and 
X - 6  Y - 3 - 2 - 2  -+--- 

9 -2  -12 

The vector and rectangular equations of the tangent plane are 

or 

and 

[(X - 6)i + ( Y  - 3)j + (Z - 2)k] * [9i - 2j - 12k] = 0 

9X- 2Y - 1 2 2  - 2 4 = 0  

4. (a )  Find the directional derivative of f ( x ,  y) = x 2  - 6y2 at the point (7 ,2)  in the direction 

(6) Find the maximum value of the directional derivative at (7,2).  
8 =  in.  

d d 
( x 2  - 6y2)  = i - ( x 2  - 6y') + j - ( x 2  - 6y2) = 2xi - 12yj 

dx dY 
1 1 

(4 

a = i c o s O + j s i n O =  - i + - j  f i e  and 

At (7 ,2) ,  Vf = 14i - 24j, and 

v ~ O  a = ( 14i - 24j) ( 3 1 i + 3 j ) = 7 f i - - 1 2 f i = - 5 f i  

is the directional derivative. 

Since 
(b) At (7 ,2) ,  with Vf = 14i - 24j, [Vfl = = 2 a  is the maximum directional derivative. 

the direction is 8 = 300'15'. (See Problems 2 and 6 of Chapter 67.) 

5. (a)  Find the directional derivative of F(x,  y ,  z )  = x2 - 2y2 + 4z2 at P(l, 1 ,  - 1) in the direc- 

(6) Find the maximum value of the directional derivative at P. 
tion a = 2i + j - k. 

anda t  ( l , l , - l ) ,  V F = 2 i - 4 j - 8 k .  
( a )  VF-a = (2i - 4j - 8k)*(2i  + j - k) = 8 
(b) At P, (VF( = %'% = 2 m .  The direction is a = 2i - 4j - 8k. 

6. Given the surface F ( x ,  y ,  z) = x 3  + 3xyz + 2y3 - z 3  - 5 = 0 and one of its points Po(l, 1, l),  
find (a )  a unit normal to the surface at PO, ( b )  the equations of the normal line at PO,  and 
( c )  the equation of the tangent plane at PO. 

VF = (3x' + 3yz)i + (3x2 + 6y2)j + (3xy - 3z2)k Here 

and at PO( 1, 1, 1). V F  = 6i + 9j. 
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V F  2 3 2 2 
(a )  - = - i + - j is a unit normal at PO; the other is - - i - - j 

lVFl a vi3m 
X - 1 -  Y - 1  

( 6 )  The equations of the normal line are - - - , z = 1 .  
2 3 

(c )  The equation of the tangent plane is 2(X - 1) + 3( Y - 1) = 2X + 3 Y  - 5 = 0. 

7. Find the angle of intersection of the surfaces 

Fl = x 2  + y2 + z2  - 9  = O  and F2 = x 2  + 2y2 - z - 8 = 0  

at the point (2 ,1 ,  -2). 

We have VF, = V ( x 2  + y2 + z2 - 9) = 2xi + 2yj + 2zk 
VF2 = V ( x 2  + 2y2 - z - 8) = 2xi + 4yj - k and 

At (2, 1, -2), VF,  = 4i + 2j - 4k and VF2 = 4i + 4j - k. 
Now VF,  *VF2 = IVF, I(VF2) cos 8, where 8 is the required angle. Thus, 

(4i + 2j - 4k) (4i + 4j - k) = (4i + 2j - 4kl14i + 4j - kl cos 8 

from which cos 8 = = 0.81236, and 8 = 35’40’. 

8. When B = xy2i + 2x2yzj - 3yz2k, find (a) div B and (b) curl B. 
d d  

div B = V -  B = - i + - j + 

dx dY d Z  

(xy’i + 2x2yzj - 3yz2k) (4 ( d x  dy dz 

d d d 
= - (xy’) + - (2x2yz) + - (-3yz’) 

= y2 + 2x2z - 6yz 

I i  j k l  
d d  

(6) curlB=VXB= 

Ixy’ 2x2yz -3yz21 

= - (32’ + 2x2y)i + (4xyz - 2xy)k 

9. Given F(u) = ui + (U’ - 2u)j + (3u2 + u3)k, find (a) I F(u) du and (6) I‘ F(u) du. 

(a) du =I [ui + (u2 - 2u)j + (3u2 + U3)k] du 

= i 

=ei+($-~2) 2 j + ( u 3 + $ ) k + c  

u du + j (u2 - 224) du + k (32.42 + 1.43) du I I  I 
where c = cli + czj + c3 k + with c1, c2, c3 arbitrary scalars. 

(6)  l l F ( u ) d u =  [ 5 i + (  $ - d ) j +  ( u 3 + $ )  k ] : = i  i - 5  2 5  j +  4 k 
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10. The acceleration of a particle at any time t 2 0 is given by a = d v / d f  = e'i + e*'j + k. If at t = 0, 
the displacement is r = 0 and the velocity is v = i + j ,  find r and v at any time t. 

Here v = 1i-a dt = i 1 er dt + j 1 e2' dt + k 1 dt 

= e'i + :e2'j + tk + c, 

At t = 0, we have v = i + $j  + c,  = i + j ,  from which c, = $j. Then 

v = e'i + $(e2' + 1)j + tk 

r = 1 v dt = er i + ( i e2' + i t ) j  + 5 t 2  k + c, and 

At t = 0, r = i + i j  + c, = 0, from which c, = - i  - ij. Thus, 

r = (er  - 1)i + ( ie2 '  + + t  - :)j + {t2k 

11. Find the work done by a force F = ( x  + yz)i + ( y + xz)j + (2 + xy)k in moving a particle from 
the origin 0 t o  C(1, 1, l ) ,  ( U )  along the straight line OC; (b) along the curve x = t, y = t2, 
z = t 3 ;  and (c) along the straight lines from 0 to A(l ,O,  0), A to B(1, l , O ) ,  and B to C. 

F - d r  = [(x + yz)i + ( y  + xz)j + ( z  + xy)k]*[i dx + j dy + k d z ]  
= (x + yz) dx + ( y  + xz) dy  + (2 + x y )  dz 

( a )  Along the line OC, x = y = z and dx = dy = dz. The integral to be evaluated becomes 
( 1 . 1 . 1 )  

i O . O . 0 )  W =  1 F dr = 3 lO1 (x + xZ) dx = [( 5x2 + x')]; = ; 

(6) Along the given curve, x = t and dx = dt; y = t 2  and dy = 2t dt;  z = f 3  and dz = 3 t 2  dt. At 0, t = 0; at 

W =  I' (t + t ')  dt + (t' + t 4 )2 t  dt + (t' + t3)3t2 dt 

C ,  t = 1 .  Then 

(c) From 0 to A: y = z = 0 and dy = dz =0,  and x varies from 0 to 1. 
From A to B: x = 1, z = 0, dx = dz = 0, and y varies from 0 to 1. 
From B to C: x = y = 1 and dx = dy = 0, and z varies from 0 to 1. 

Now, for the distance from 0 to A,  W ,  = 1-l x dx = 5 ; for the distance from A to B, W, = 1-l y dy = 

; and for the distance from B to C, W, = (z + 1)  dz = $ .  Thus, W =  W ,  + W, + W, = 5 .  
In general, the value of a line integral depends upon the path of integration. Here is an example of 

one which does not, that is, one which is independent of the path. It can be shown that a line integral 

\ (f, dx +f2 dy + f3 dz) is independent of the path if there exists a function +(I, y ,  z )  such that 

d+ = f, dx + f, dy + f, dz. In this problem the integrand is 
c 

(x + yz) dx + ( y  + xz) dy + (z + x y )  dz = d [  $(x2 + y 2  + z2) + x y z ]  
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12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Supplementary Problems 

Find ds /d t  and d2s /d t2 ,  given ( a )  s = (t + 1)i + ( t 2  + t + l ) j  + (t' + t 2  + t + 1)k and (b) s = ie' cos 2t + 
jef sin 2t + t2k. 

Ans. ( a )  i + (2t + 1)j + (3t2 + 2t + l )k,  2j + (6t + 2)k; (6) e'(cos 2t - 2 sin 2t)i + e'(sin 2r + 2 cos 2t)j + 
2tk, e'( - 4 sin 2t - 3 cos 2t)i + e'(-3 sin 2t + 4 cos 2t)j + 2k 

Given a = ui + u2j + u3k, b = i cos U + j sin U, and c = 3u2i - 4uk. First compute a b, a x b, a (b  x c). 
and a x  (bxc),  and find the derivative of each. Then find the derivatives using the formulas. 

A particle moves along the curve x = 3t2, y = t 2  - 2t, z = t', where t is time. Find ( a )  the magnitudes of 
its velocity and acceleration at time t = 1; (6) the components of velocity and acceleration at time t = 1 in 
the direction a = 4i - 2j + 4k. Ans. ( a )  IvI = 3V3, 181 = 2 0 ;  (6) 6 ,  

Using vector methods, find the equations of the tangent line and normal plane to the curves of Problem 
11 of Chapter 66. 

Solve Problem 12 of Chapter 66 using vector methods. 

UU 
Show that the surfaces x = U ,  y = 5u - 3u2, z = U and x = U ,  y = U ,  z = ~ are perpendicular at 

4u - U 
P ( 1 , 2 , 1 ) .  

Using vector methods, find the equations of the tangent plane and normal line to the surface 
(a) x = U ,  y = U ,  z = uu at the point (U, U) = (3, -4)  
(6) x = U, y = U ,  z = u2 - U' at the point (U, U) = ( 2 , l )  

x - 3  --- y + 4  - -- z + 1 2 ,  ( b )  4 x - 2 y - z - 3 = 0 ,  
3 - 1  

A m .  ( U )  4 X - 3 Y + Z - 1 2 = 0 ,  -- 
- 4  x - 2  - Y - 1  2 - 3  ---=- 

- 4  2 1 

(a )  Find the equations of the osculating and rectifying planes to the curve of Problem 2 at the given 

(6) Find the equations of the osculating, normal, and rectifying planes to x = 2t - t2, y = t', z = 2t + r 2  at 
point . 

t = l .  

A m .  ( U )  3 X - 3 Y + Z - 1 = 0 ,  l l X + 8 Y - 9 Z - 1 0 = 0 ;  ( b )  X + 2 Y - Z = 0 ,  Y + 2 Z - 7 = 0 ,  
5X - 2 Y  + Z - 6 = 0 

Show that the equation of the osculating plane to a space curve at P is given by 

(It-+(- dr x "') = o  
dt dt2 

Solve Problems 16 and 17 of Chapter 67, using vector methods. 

Find F(u) du, given 

( a )  F(u) = u'i + (3u2 - 2u)j + 3k; a = 0, 6 = 2 

Ans. 

(6) F(u) = e"i + eP2"j  + uk; a = 0, 6 = 1 

( a )  4 i + 4 j + 6 k ;  (b) ( e - l ) i +  i ( l - e - ' ) j +  i k  

The acceleration of a particle at any time t is given by a = dv /d t  = ( t  + 1)i + r'j + (t' - 2)k. If at t = 0, 
the displacement is r = O  and the velocity is v = i -  k, find v and r at any time t. 

Am. v = ( i t 2  + t + 1)i + it3j + ( i t '  - 2t - 1)k; r = (at'  + i t 2  + t)i + &t4j  + ( A t 4  - t' - r)k 
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24. In each of the following, find the work done by the given force F in moving a particle from O(0, 0,O) to 
C( 1 ,  1 , l )  along (1)  the straight line x = y = z, (2) the curve x = t, y = t2, z = t3 ,  and (3) the straight lines 
from 0 to A(1,0,0), A to B(1, l,O), and B to C. 
(a) F = xi + 2yj + 3xk 
(6) F = ( y  + z)i + ( x  + z)] + (x + y)k 
( c )  F = ( x  + xyz)i + ( y  + x2z)j + (2 + x2y)k 

Am. (a) 3; (6) 3; ( c ) $ ,  E ,  

25. If r = xi + yj + zk, show that (a) div r = 3 and (6) curl r = 0. 

26. If f = f ( x ,  y, z) has partial derivatives of order at least two, show that (a) V x Vf = 0; 

and (6 )  V - V f =  ( dX2 + 

If F is a twicedifferentiable vector function of position, show that V -  (V x F ) = 0. 

d 2  d 2  d 2  

d y  d z  + -& 
27. 



Chapter 69 

Double anc 
r b  

lteratec Integrals 

THE (SIMPLE) INTEGRAL J f ( x )  dx of a function y = f ( x )  that is continuous over the finite 

The interval a I x 5 b was divided into n subintervals h,,  h,, . . . , h, of respective 
lengths A l x ,  A 2 x , .  . . , Anx with A, the greatest of the Akx .  

interval a 5 x I b of the axis was defined in Chapter 38. Recall that 

1. 

n 

2. 

3. 

4. we defined J f (x> dx = lim c f ( x k )  Akx.  

Points x ,  in h,,  x ,  in h,, . . . , x ,  in h, were selected, and the sum 

The interval was further subdivided in such a manner that A, --+ 0 as n -+ + W .  

f ( x k )  Akx  formed. 
k =  1 

b 

k = l  n++m 

THE DOUBLE INTEGRAL. Consider a function z =f (x ,  y )  continuous over a finite region R of 
the x O y  plane, Let this region be subdivided (see Fig. 69-1) into n subregions R I ,  R,, . . . , R, 
of respective areas A I A ,  A , A ,  . . . , A n A .  In each subregion R k ,  select a point Pk(Xk, y k )  and 
form the sum 

n 

f ( x k ,  y k )  ‘ k A  =f(xl, Y l )  ‘ l A  + f ( x 2 ,  Y 2 )  + ’ ’  ’ +f(xn, Yn)  ‘ n A  (69’1) 
k = l  

Now, defining the diameter of a subregion to be the greatest distance between any two points 
within or on its boundary, and denoting by A, the maximum diameter of the subregions, 
suppose the number of subregions to be increased in such a manner that A,+O as n-, +a. 
Then the double integral of the function f ( x ,  y )  over the region R is defined as 

r r  n 

(69.2) 

When z = f ( x ,  y )  is nonnegative over the region R ,  as in Fig. 69-2, the double integral 
(69.2) may be interpreted as a volume. Any termf(x,, y k )  A k A  of (69.1 ) gives the volume of a 
vertical column whose parallel bases are of area A k A  and whose altitude is the distance z k  

measured along the vertical from the selected point Pk to the surface z = f ( x ,  y ) .  This, in turn, 
may be taken as an approximation of the volume of the vertical column whose lower base is the 
subregion R k  and whose upper base is the projection of Rk on the surface. Thus, (69.1 ) is an 
approximation of the volume “under the surface” (that is, the volume with lower base in the 

435 
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x O y  plane and upper base in the surface generated by moving a line parallel to the z axis along 
the boundary of R ) ,  and, intuitively, at least, (69.2) is the measure of this volume. 

The evaluation of even the simplest double integral by direct summation is difficult and will 
not be attempted here. 

THE ITERATED INTEGRAL. Consider a volume defined as above, and assume that the boundary 
of R is such that no line parallel to the x axis or to the y axis cuts it in more than two points. 
Draw (see Fig. 69-3) the tangents x = a and x = b to the boundary with points of tangency K 
and L ,  and the tangents y = c and y = d with points of tangency M and N. Let the equation of 
the plane arc LM K be y = g l ( x ) ,  and that of the plane arc LNK be y = g2(x). 

Divide the interval a I x I b into rn subintervals h, ,  h,, . . . , h, of respective lengths A , x ,  
A2x, . . . , A,x by the insertion of points x = tl, x = 5,, . . . , x = t,-, (as in Chapter 38), and 
divide the interval c I y I d into n subintervals k , ,  k , ,  . . . , k ,  of respective lengths A , y ,  
A 2 y , .  . . , A n y  by the insertion of points y = q,, y = q2, . . . , y = qnP1. Denote by A, the 
greatest A,x, and by pn the greatest A,y. Draw in the parallel lines x = tl,  x = t2, . . . , x = tmP1 
and the parallel lines y = ql, y = q,, . . . , y = qn-,,  thus dividing the region R into a set of 
rectangles RI, of areas A,x A,y plus a set of nonrectangles that we shall ignore. On each 
subinterval h, select a point x = x,, and on each subinterval k, select a point y = y, ,  thereby 
determining in each subregion R,, a point Pl l (x , ,  y , ) .  With each subregion R,,, associate by 
means of the equation of the surface a number z,, = f ( x , ,  y , ) ,  and form the sum 

(69.3) 

Now (69.3) is merely a special case of (69.1 ), so if the number of rectangles is indefinitely 
increased in such a manner that both A,-0 and pn-+O, the limit of (69.3) should be equal to 
the double integral (69.2). 

In effecting this limit, let us first choose one of the subintervals, say hi, and form the sum 
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of the contributions of all rectangles having hi as one dimension, that is, the contributions of all 
rectangles lying in the ith column. When n + +%, pn + 0 and 

Now summing over the m columns and letting m+ +m, we have 

(69.4) 

Although we shall not use the brackets hereafter, it must be clearly understood that (69.4) calls 
for the evaluation of two simple definite integrals in a prescribed order: first, the integral of 
f ( x ,  y) with respect to y (considering x as a constant) from y = g l ( x ) ,  the lower boundary of R,  
to y = g2(x), the upper boundary of R,  and then the integral of this result with respect to x from 
the abscissa x = a of the leftmost point of R to the abscissa x = b of the rightmost point of R. 
The integral (69.4) is called an iterated or repeated integral. 

It will be left as an exercise to sum first for the contributions of the rectangles lying in each 
row and then over all the rows to obtain the equivalent iterated integral 

(69.5) 

where x = h,(y)  and x = h2( y) are the equations of the plane arcs MKN and MLN, respec- 
tively. 

In Problem 1 it is shown by a different procedure that the iterated integral (69.4) measures 
the volume under discussion. For the evaluation of iterated integrals see Problems 2 to 6. 

The principal difficulty in setting up the iterated integrals of the next several chapters will 
be that of inserting the limits of integration to cover the region R. The discussion here assumed 
the simplest of regions; more complex regions are considered in Problems 7 to 9. 

Solved Problems 

1. Let z = f ( x ,  y) be nonnegative and continuous over the region R of the plane xOy whose 
boundary consists of the arcs of two curves y = g,(x) and y = g2(x) intersecting in the points K 
and L, as in Fig. 69-4. Find a formula for the volume V under the surface z = f ( x ,  y). 

Let the section of this volume cut by a plane x = x , ,  where a < x ,  < b,  meet the boundary of R in the 
points S(x, ,  g,(x,)) and T(x,, g 2 ( x l ) ) ,  and the surface z = f ( x ,  y )  in the arc UV along which z = f ( x , ,  y ) .  
The area of this section STUV is given by 

A(xi) = \g2(xJ) f ( x , ,  y )  dy 

Thus, the areas of cross sections of the volume cut by planes parallel to the y O z  plane are known 

functions A(x) = f ( x ,  y )  dy of x ,  where x is the distance of the sectioning plane from the origin. By 

Chapter 42, the required volume is given by 

g, (I, ) 

B2 ( x  ) 

&?l(X) 

This is the iterated integral of (69.4).  
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In 

2. 

3. 

4. 

5. 

6. 

7. 

Problems 2 to 6, evaluate the integral at the left. 

1 2 3 1  I; dydx =I’ [y],”z dx =I’ (x  -2) dx = [: - ;] 0 6  = - 

-12 4 cos 0 l’’ ’ p dp d8 = I [ p4], d8 = (64 cos4 8 - 4) d8 

7rl2 38 sin28 sin48 
+- + --) 32 -4810 = 107T 

= [ 6 4 ( s  4 

Evaluate I I d A ,  where 

parabola y 2  = x 3  and the 
R 

R is the region in the first quadrant bounded by the semicubical 

line y = x .  

The line and parabola intersect in the points (0,O) and (1 , 1) which establish the extreme values of x 

Solution 1 (Fig. 69-5): Integrating first over a horizontal strip, that is, with respect to x from x = y 
and y on the region R. 

(the line) to x = y2I3 (the parabola), and then with respect to y from y = 0 to y = 1, we get 

Solution 2 (Fig. 69-6): Integrating first over a vertical strip, that is, with respect to y from y = x3’2  
(the parabola) to y = x (the line), and then with respect to x from x = 0 to x = 1, we obtain 
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Fig. 69-5 Fig. 69-6 

8. Evaluate dA where R is the region between y = 2 x  and y = xz lying to the left of x = 1 .  
R 

Integrating first over the vertical strip (see Fig. 69-7). we have 

R 

When horizontal strips are used (see Fig. 69-S), two iterated integrals are necessary. Let R ,  denote 
the part of R lying below A B ,  and R ,  the part above AB,  Then 

y y = 2 x  j((y Y y = 2 x  

(1.2) '  v = r '  T?4i!.ll * - - B ( 1 , 1 )  

Fig. 69-7 Fig. 69-8 

9. Evaluate 1 / x 2  dA where R is the region in the first quadrant bounded by the hyperbola 

xy = 16 and the lines y = x ,  y = 0, and x = 8. (See Fig. 69-9.) 

It is evident from Fig. 69-9 that R must be separated into two regions, and an iterated integral 
evaluated for each. Let R ,  denote the part of R lying above the line y = 2, and R ,  the part below that 
line. Then 

R 

I I x 2  d A  = I I x 2  d A  + I I x 2  d A  = \Y'6'y x 2  dx dy + Io2 /,n x' dx dy 
R R1 R2 

1 16' 
= 3 l2 (7 - y 3 )  dy + (S3 - y ' )  dy = 448 

As an exercise, you might separate R with the line x = 4 and obtain 

I ( x 2  d A  = 1; x 2  dydx + [16" x2  dy dx 
R 
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10. 

Y 

0 

Fig. 69-9 Fig. 69-10 

[CHAP. 69 

c, 

3,1) 

X 

3 

Evaluate 1’ 6, ex2 dx dy  by first reversing the order of integration. 

The given integral cannot be evaluated directly, since ex2 dx is not an elementary function. The 

region R of integration (see Fig. 69-10) is bounded by the lines x = 3y, x = 3, and y = 0. To reverse the 
order of integration, first integrate with respect to y from y = 0 to y = x / 3 ,  and then with respect to x 
from x = 0 to x = 3. Thus, 

I 

Supplementary Problems 

11. Evaluate the iterated integral at the left: 

(c)  I: 6’ (x2 + y 2 )  dy dr = 

( e )  112 10y”2 x/y2 d.x dy = 

(i) 10arctan 312 2 sec B 

p d p d O = 3  

(d) J1: XY2 dY = 



CHAP. 691 DOUBLE AND ITERATED INTEGRALS 441 

12. Using an iterated integral, evaluate each of the following double integrals. When feasible, evaluate the 
iterated integral in both orders. 
( a )  x over the region bounded by y = x2 and y = x3 
(6) y over the region of part (a )  
(c) x2 over the region bounded by y = x, y = 2 x ,  and x = 2 
( d )  1 over each first-quadrant region bounded by 2 y  = x2, y = 3x, and x + y = 4 
(e) y over the region above y = 0 bounded by y 2  = 4x and y 2  = 5 - x 

Am. & 
Am. 
Am. 4 
Am. 3 ,  * 3 

Ans. 5 

Am. 4 over the region in the first quadrant bounded by x 2  = 4 - 2y 

13. In Problem ll(a) to (h), reverse the order of integration and evaluate the resulting iterated integral. 



Chapter 70 

Centroids and Moments of 
Inertia of Plane Areas 

PLANE AREA BY DOUBLE INTEGRATION. If f (x ,  y )  = 1, the double integral of Chapter 69 

becomes I I dA.  In cubic units, this measures the volume of a cylinder of unit height; in square 

units, it m%asures the area of the region R. (See Problems 1 and 2.) 
B P d . )  

In polar coordinates, A = I d A  = 1- I,,,.) P dP do7 where 6 = a, 6 = P7 P , ( 6 ) ,  and P ’ ( V  
R 

are chosen to cover the region R. (See Problems 3 to 5.) 

CENTROIDS. The coordinates (X, r) of the centroid of a plane region R of area A = 

the relations 

and 

or 
R R R R 

(See Problems 6 to 9.) 

THE MOMENTS OF INERTIA of a plane region R with respect to the coordinate axes are given by 

I ,  = I I y 2  d A  and I y  = / / x 2  d A  
R R 

The polar moment of inertia (the moment of inertia with respect to a line through the origin 
and perpendicular to the plane of the area) of a plane region R is given by 

(See Problems 10 to 12.) 

Solved Problems 

1. Find the area bounded by the parabola y = x 2  and the line y = 2 x  + 3. 
Using vertical strips (see Fig. 70-l), we have 

A = $,, dy dx = I:, ( 2 x  + 3 - x2)  dx = 3213 square units 
- 1  xz 

2. Find the area bounded by the parabolas y’ = 4 - x and y 2  = 4 - 4x. 

442 
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/ 0 
- .  

Fig. 70-1 Fig. 70-2 

Using horizontal strips (Fig. 70-2) and taking advantage of symmetry, we have 

2 4-y2  

A = 2 b Iry4n dx dY = 2 l K4 - Y ’ )  - (1 - f Y’)l dY 

= 6 I: (1 - ay’) dy = 8 square units 

3. Find the area outside the circle p = 2 and inside the cardioid p = 2(1 + cos 8). 

Owing to symmetry (see Fig. 70-3), the required area is twice that swept over as 8 varies from 8 = 0 
to 8 = + T.  US, 

A = 2 b  
v / 2  2 ( l + C O S @ )  

p d p d B = 2 ~ ~ * [ S p 2 1 : ” + ‘ 0 ’ ~ ’  de = 4 l’’ (2 cos e + cos2 e )  de 

= 4[2 sin 8 + $ 8  + f sin 28],“‘2 = (T + 8) square units 

Y 

IB 

Fig. 70-3 Fig. 70-4 

4. Find the area inside the circle p = 4 sin 8 and outside the lemniscate p 2  = 8 cos 28. 

The required area is twice that in the first quadrant bounded by the two curves and the line 8 = $ T. 
Note in Fig. 70-4 that the arc A 0  of the lemniscate is described as 8 varies from 8 = ~ / 6  to 8 = n / 4 ,  
while the arc AB of the circle is described as 8 varies from 8 = ~ / 6  to 8 = ~ / 2 .  This area must then be 
considered as two regions, one below and one above the line 8 = ~ / 4 .  Thus, 

n I 4  4 s i n 8  n / 2  4 s i n 8  

A = 2 / v / 6  1V‘- dp d 8 + 2 f v / 4  1 dp de 

v 1 4  

= JvI6 (16 sin2 8 - 8 cos 28) d8 + lv;r 16 sin’ 8 d8 

= ( 2 T + 4V3 - 4) square units 
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+ m  

- 1 2  5. Evaluate N = e dx. (See Fig. 70-5.) 

+ X  +o 
- .2 Since 1" e dx = 1" e - " d y ,  we have 

R 

Changing to polar coordinates (x' + y 2  = p2, dA = p dp do)  yields 

and N = f i I 2 .  

X 

0 

Fig. 70-5 Fig. 70-6 

6.  Find the centroid of the plane area bounded by the parabola y = 6x - x 2  and the line y = x .  
(See Fig. 70-6.) 

R 

x dy dx = (5x2 - x3) dx = = 1 R \ x  dA = \ ,6x-x2 1: 
M ,  = 1 \ y dA = 1"' 1.""' y dy dx = 4 I: [(6x - x2)2 - x'] dx = 

R 

Hence, X = M, /A  = :, = M,/A = 5, and the coordinates of the centroid are (;, 5 ) .  

7. Find the centroid of the plane area bounded by the parabolas y = 2x - x 2  and y = 3 x 2  - 6x. 
(See Fig. 70-7.) 

R 

M,v = I1.x dA = lo2 13z::l x dy dx = 102 (8x2 - 4x3) dx = 

R 

M ,  = 1 1 y dA = lo2 13:111 y dy & = $ [ ( 2 x  - x2)* - (3x2 - 6 ~ ) ~ ]  dx = - E 
R 

Hence, X = M v / A  = 1,  y =  M,/A = - $ ,  and the centroid is ( 1 ,  - 3 ) .  
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Fig. 70-7 Fig. 70-8 

8. Find the centroid of the plane area outside the circle p = 1 and inside the cardioid 

= 0 and that X is the same whether computed for the given area or 

p = 1 + COS 8. 

From Fig. 70-8 it is evident that 
for the half lying above the polar axis. For the latter area, 

7r+8 
8 

1 +COS 8 

A = / / d A = [ l 2 L  [ ( i + c o ~ 8 ) ~ - 1 ~ ] d t 1 =  - 

157r + 32 
48 

n / 2  3 3 1  1 
8 4  32 

sin 20 + 3 sin e - sin3 e + - e + - sin 28 + - sin 4 e l 0  = 

( 16:= 1 :; 4 The coordinates of the centroid are 

9. Find the centroid of the area inside p = sin 8 and outside p = 1 - cos 8. (See Fig. 70-9.) 
n / 2  s i n 0  A = / / d A = l  l - c o s 8 p d p d e =  ~ [ 1 2 ( 2 C o s e - i - c o ~ 2 e ) d e =  - 4 - 7 r  

R 
2 4 

R 

37r-4 
(sin’ e - 1 + 3 COS e - 3 c o s 2  e + cos3 e )  sin e de = ~ 

48 

The coordinates of the centroid are (;;;I:. 1;;::))- 

10. Find I,, I,,, and I, for the area enclosed by the loop of y2 = x2(2 - x ) .  (See Fig. 70-10.) 

A = 1 1 dA = 2 [ 1;- dy dx = 21; x- dx 
R 

1 3 2 f i  1-  (222 - z4) dz = - 4  z3 - 5 zq = - 
fi 15 

= -4  



446 CENTROIDS AND MOMENTS OF INERTIA OF PLANE AREAS [CHAP. 70 

X 

Fig. 70-9 

X 

Fig. 70-10 

where we have used the transformation 2 - x = z2. Then 

2 X V T I  

Z , = l ( y 2 d A = 2 1  0 0  1 y ’ d y d x =  ~ l o 2 x 3 ( 2 - x ) 3 ’ 2 d x  
R 

zll]O - 2048fi  - 64 A _ - - -  
fi 3465 231 

I y  = I x 2  dA = 2 IO2 p” x 2  dy dr = 2 Io2 x 3 e  dx 
R 

13312f i  - 416 A 
3465 231 

- -  I ,  = z, + zy = 

11. Find I,, I y ,  and I ,  for the first-quadrant area outside the circle p = 2a and inside the circle 
p = 4a cos 8. (See Fig. 70-11 .) 

R 

R 

4 7 r + 9 f l  a2A 
a4 = 

127r + l l f i  

47r + 9 v 3  
6 2(27r + 3 f l )  

= 4a4 [ I 3  (16 cos4 8 - 1) sin2 8 do = 

3(127r + 1 1 f l )  a4 = 
2 2(2n + 3 G )  Zy = I 1 x2 dA = [ I 3  ’ ( p cos 8)’p dp do = 

R 

207r+21f l  a4 = 207r+21f l  a2A 

3 27r + 3 f l  
zo = I ,  + zy = 

12. Find I,, I y ,  and I, for the area of the circle p = 2(sin 8 + cos 8 ) .  (See Fig. 70-12.) 

Since x2 + y 2  = p2, 
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13. 

14. 

15. 

16. 

17. 

18. 

Fig. 70-11 Fig. 70-12 I;::: 1~2(sin @+cos 0 )  3n14 

I ,  = (x2 + y2) dA = p2p dp de = 4 (sin e + cos 814 de 
R 

= 4[ $8  - COS 28 - Q sin 481 !:;: = 67r = 3A 

It is evident from Fig. 70-12 that f, = fy. Hence, I ,  = Iy = if, = $ A .  

Supplementary Problems 

Use double integration to find the area: 
(a )  Bounded by 3x + 4y = 24, x = 0, y = 0 
(6) Bounded by x + y = 2, 2y = x + 4, y = 0 
(c) Bounded by x2 = 4y, 8y = x 2  + 16 
(d) Within p = 2(1 - cos 8) 
(e) Bounded by p = tan 8 sec 8 and 8 = 7r/3 
( f )  Outside p = 4 and inside p = 8 cos 8 

Ans. 24 square units 
Ans. 6 square units 
Am. square units 
Am. 67r square units 
Ans. $6 square units 
Am. 8( f 7r + a) square units 

Locate the centroid of each of the following areas. 
(a )  The area of Problem 13(a) Am. ( $ , 2 )  
(6) The first-quadrant area of Problem 13(c) Am. ( I ,  5 )  
(c )  The first-quadrant area bounded by y2 = 6x, y = 0, x = 6 Ans. ( y , : )  
( d )  The area bounded by y 2  = 4x, x2 = 5 - 2y, x = 0 Am. (%,$ )  
(e) The first-quadrant area bounded by x 2  - 8y + 4 = 0, x 2  = 4y, x = 0 Am. ( $ , f )  
( f )  The area of Problem 13(e) Am. (ifi, $ )  

167r + 6 f l  
27r + 3 a  ' 277 + 3 f i  

( g )  The first-quadrant area of Problem 13(f) Am. ( 

R R 

Find I, and Iy  for each of the following areas. 
(a) The area of Problem 13(a) 
(6) The area cut from y2 = 8x by its latus rectum 
( c )  The area bounded by y = x 2  and y = x 
(d) The area bounded by y = 4x - x 2  and y = x 

Ans. 
Ans. 
Ans. 
Am. 

I ,  = 6 A ;  fy = ? A  
I ,  = ? A ;  Iy = Y A  
I , =  AA; I Y = " A  10 

I ,  = % A ;  I." = % A  

Find I ,  and Iy for one loop of p2  = ~ 0 ~ 2 8 .  Am. I ,  = ( E  - L ) A ;  fy = ( E  16 + ' ) A  6 16 6 

Find I,, for (a )  the loop of p = sin 28 and (6) the area enclosed by p = 1 + cos 8. Am. (a )  : A ;  
(6) % A  



Chapter 71 

Volume Under a Surface by 
Double Integration 

THE VOLUME UNDER A SURFACE z = f ( x ,  y )  or z = f ( p ,  O), that is, the volume of a vertical 
column whose upper base 

by the double integral 

the surface and whose lower base is in the x O y  plane, is defined 

z dA, the region R being the lower base of the column. 

Solved Problems 

1. Find the volume in the first octant between the planes z = 0 and z = x + y + 2, and inside the 
cylinder x 2  + y 2  = 16. 

From Fig. 71-1, it is evident that z = x + y + 2 is to be integrated over a quadrant of the circle 
x2 + y 2  = 16 in the xOy plane. Hence, 

V =  / / z  dA  = lm ( x  + y + 2) dy dx = /: ( x w  + 8 - x 2  + 2 w )  dx 
R 

=[-I ( 1 6 - ~ ~ ) ” ~ + 8 x - C  + x \ / 1 6 ~ + 1 6 a r c ~ i n ~ x ] ~ = ( ~ + 8 ~ )  1 128 cubicunits 
3 6 

2. Find the volume bounded by the cylinder x 2  + y 2  = 4 and the planes y + z = 4 and z = 0. 

plane. Hence, 
From Fig. 71-2, it is evident that z = 4 - y is to be integrated over the circle x 2  + y 2  = 4 in the xOy 

(4 - y )  dx dy = 2 Lrn (4 - y )  dx dy = 1 6 ~  cubic units 

448 
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3. Find the volume bounded above by the paraboloid x2 + 4y2 = z, below by the plane z = 0, and 
laterally by the cylinders y 2  = x and x2 = y .  (See Fig. 71-3.) 

The required volume is obtained by integrating z = x ’  + 4 y z  over the region R common to the 
parabolas y’ = x and x’ = y in the x O y  plane. Hence, 

V =  Jol 1: (x2  + 4 y 2 )  dy dx = [x’y + $ y 3 ] F  dx = f cubic units I‘ 
4. Find the volume of one of the wedges cut from the cylinder 4x2 + y 2  = u2 by the planes z = 0 

and z = my. (See Fig. 71-4.) 

The volume is obtained by integrating z = my over half the ellipse 4x’ + y’ = a2. Hence, 

m a  
3 

[y’]? dx = - cubic units 

5. Find the volume bounded by the paraboloid x 2  + y 2  = 4z, the cylinder x2 + y 2  = 8 y ,  and the 
plane z = 0. (See Fig. 71-5.) 

The required volume is obtained by integrating z = f (x’ + y ’ )  over the circle x’ + y’ = 8 y .  Using 
cylindrical coordinates, the volume is obtained by integrating z = i p ’  over the circle p = 8 sin 8. Then, 

K 

= & [ [ p 4 ] :  ’ d8 = 256 [ sin4 8 d0 = 9 6 ~  cubic units 

6. Find the volume removed when a hole of radius U is bored through a sphere of radius 2a,  the 
axis of the hole being a diameter of the sphere. (See Fig. 71-6.) 

From the figure, it is obvious that the required volume is eight times the volume in the first octant 
bounded by the cylinder p 2  = a’, the sphere p’ + z’ = 4a2, and the plane z = 0. The latter volume is 
obtained by integrating z = d n  over a quadrant of the circle p = a. Hence, 
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7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Supplementary Problems 

Find the volume cut from 9x2 + 4y2 + 362 = 36 by the plane z = 0. Am. 37r cubic units 

Find the volume under z = 3x and above the first-quadrant area bounded by x = 0, y = 0, x = 4, and 
x’ + y’ = 25. Am. 98 cubic units 

Find the volume in the first octant bounded by x’ + z = 9, 3x + 4y = 24, x = 0, y = 0, and z = 0. 

Ans. 1485/16 cubic units 

Find the volume in the first octant bounded by xy = 42, y = x, and x = 4. Am. 8 cubic units 

Find the volume in the first octant bounded by x’ + y2  = 25 and z = y. Am. cubic units 

Find the volume common to the cylinders x 2  + y2  = 16 and x 2  + z2 = 16. Am. cubic units 

Find the volume in the first octant inside y’ + z’ = 9 and outside y 2  = 3x. Am. 27n/16 cubic units 

Find the volume in the first octant bounded by x 2  + z2 = 16 and x - y = 0. Ans. 9 cubic units 

Find the volume in front of x = 0 and common to y2  + z2 = 4 and y 2  + z’ + 2 x  = 16. 

Am. 28n  cubic units 

Find the volume inside p = 2 and outside the cone z2 = p’. Am. 327r/3 cubic units 

Find the volume inside y 2  + z’ = 2 and outside x 2  - y2  - 2’ = 2. Am. 8 ~ ( 4  - f l ) / 3  cubic units 

Find the volume common to p 2  + z2 = U’ and p = U sin 8. Am. 2(37r - 4)a2/9 cubic units 

Find the volume inside x 2  + y2  = 9, bounded below by x 2  + y2 + 42 = 16 and above by z = 4. 

Ans. 817r/8 cubic units 

Find the volume cut from the paraboloid 4x2 + y2 = 42 by the plane z - y = 2. Am. 9 7  cubic units 

Find the volume generated by revolving the cardioid p = 2( 1 - cos 8) about the polar axis. 

Ans. V =  27r J 1 yp dp d8 = 6 4 ~ 1 3  cubic units 

Find the volume generated by revolving a petal of p = sin 28 about either axis. 

Ans. 327rl105 cubic units 

A square hole 2 units on a side is cut symmetrically through a sphere of radius 2 units. Show that the 
volume removed is i ( 2 f i  + 197r - 54 arctan fi) cubic units. 



Chapter 72 

Area of a Curved Surface by 
Double Integration 

TO COMPUTE THE LENGTH OF A(PLANAR) ARC, (1) the arc is projected on a convenient coor- 

dinate axis, thus establishing an interval on the axis, and (2) an integrand function, 

if the projection is on the x axis or da if the projection is on the y axis, is integrated 
over the interval. 

A similar procedure is used to compute the area S of a portion R* of a surface z = f ( x ,  y ) :  
(1) R* is projected on a convenient coordinate plane, thus establishing a region R on the plane, 
and (2) an integrand function is integrated over R .  Then, 

rn 

If R* is projected on x O y ,  S = 11 d w  dA.  
R 

If R* is projected on yOz ,  S = 1 1 d m  dZ dA.  
R 

If R* is projected on zOx, S = dl+ (z)2 + (%)* dA 
R 

Solved Problems 

1. Derive the first of the formulas for the area S of a region R* as given above. 

Consider a region R* of area S on the surface z = f ( x ,  y ) .  Through the boundary of R* pass a 
vertical cylinder (see Fig. 72-1) cutting the xOy plane in the region R. Now divide R into n subregions 

45 1 
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A A ,  (of areas A A l ) ,  and denote by AS,  the area of the projection of A A ,  on R*. In each subregion A S , ,  
choose a point PI and draw there the tangent plane to the surface. Let the area of the projection of A A ,  
on this tangent plane be denoted by A T , .  We shall use A T t  as an approximation of the corresponding 
surface area A S , .  

Now the angle between the xOy plane and the tangent plane at PI  is the angle yl between the z axis 

with direction numbers [O,O,  11, and the normal, 

PI ; thus 

1 

Then (see Fig. 72-2),  

A T l  cos y, = A A i  and A T l  = sec yi A A I  

n n 

Hence, an approximation of S is 2 A T ,  = 2 sec y, A A i ,  and 
r = l  r = l  

S =  n+ lim f 3u r = l  t s e c y j A A i = \ \ s e c y d A = J \ / m d A  
K R 

2. Find the area of the portion of the cone x2 + y 2  = 3z2 lying above the x O y  plane and inside the 
cylinder x2 + y 2  = 4y. 

Solution 1 : Refer to Fig. 72-3. The projection of the required area on the xOy plane is the region R 
enclosed by the circle x 2  + y 2  = 4 y .  For the cone, 

9z2  + x 2  + y 2  - 12z2 - 4 - - _ -  
so l+(g)2+($)2= 9z2 9z2 3 

d z - 1 x  and - d Z J y _  
dx  3 z dy 3 2 ’  

2 4 v m  
Then S = I\ d1+ (g)’ + (5)’ d A  = l0 dx dy = 2 v3 jO4 jaw dx dy 

R 

S f l  
= 5 J]: v w  dy = - 7r square units v3 3 

Solution 2: Refer to Fig. 72-4. The projection of one-half the required area on the yOz plane is the 
region R bounded by the line y = f i z  and the parabola y = $ z z ,  the latter obtained by eliminating x 
between the equations of the two surfaces. For the cone, 

x 2  + y 2  + 9z2 12z2 - 12z2 -- - -- 
X2 x 2  3 z 2 - y 2  

dx  - 32 dx- -Y_ - and - - - 
d z  x dY x 
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Solution 3 :  Using polar coordinates in solution 1, we must integrate /- = -& 
over the region R enclosed by the circle p = 4 sin 8. Then, 

3. Find the area of the portion of the cylinder x2 + z 2  = 16 lying inside the cylinder x2 + y’ = 16. 

Figure 72-5 shows one-eighth of the required area, its projection on the xOy plane being a quadrant 
of the circle x 2  + y 2  = 16. For the cylinder x 2  + z 2  = 16, 

d z  x dZ - - - _ _  and - = O .  So l +  
d x  z dY 

s = 8 lw vD 4 dy dx = 32 J: dx = 128 square units Then 

4. Find the area of the portion of the sphere x2 + y 2  + z2  = 16 outside the paraboloid 
x2  + y 2  + z = 16. 

R bounded by the circle y 2  + z 2  = 16, the y and z axes, and the line z = 1. For the sphere, 
Figure 72-6 shows one-fourth of the required area, its projection on the yOz plane being the region 
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Then 

‘ 1  17 dz = 16 T dz = 8~ square units V-iG-2 = 1616 [arcsin 

5. Find the area of the portion of the cylinder x 2  + y 2  = 6 y  lying inside the sphere x2 + y 2  + z2  = 
36. 

Figure 72-7 shows one-fourth of the required area. Its projection on the yOz plane is the region R 
bounded by the z and y axes and the parabola z2 + 6y = 36, the latter obtained by eliminating x from the 
equations of the two surfaces. For the cylinder, 

d x  - 3 - y  d X  (6’;)’ (6’~)~ x 2 + 9 - 6 y + y Z  - -- 9 
and - = O .  So 1 +  - + - = 

JY x d z  X2 6Y - Y 2  

(jvz 
Then S = 4 L- vA dz dy = 12 L 3 dy  = 144 square units 

6Y - Y  

Supplementary Problems 

6. Find the area of the portion of the cone x2 + y2 = z2 inside the vertical prism whose base is the triangle 
bounded by the lines y = x ,  x = 0, and y = 1 in the xOy plane. Ans. square units 

7. Find the area of the portion of the plane x + y + z = 6 inside the cylinder x2 + y2 = 4. 

Ans. 4 V 3 ~  square units 

8. Find the area of the portion of the sphere x 2  + y2 + z2 = 36 inside the cylinder x2 + y2 = 6y. 

Ans. 7 2 ( ~  - 2) square units 
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9. 

10. 

11. 

12. 

13. 

14. 

15. 

Find the area of the portion of the sphere x2 + y2 + z2 = 42 inside the paraboloid x2 + y 2  = z 

Am. 47r square units 

Find the area of the portion of the sphere x2 + y 2  + z2 = 25 between the planes z = 2 and z = 4. 

Am. 207r square units 

Find the area of the portion of the surface z = xy inside the cylinder x2 + y 2  = 1. 

Ans. 27r(2fi - 1) /3  square units 

Find the area of the surface of the cone x2 + y2 - 9z2 = 0 above the plane z = 0 and inside the cylinder 
x2 + y 2  = 6 y .  Am. 3m7r square units 

Find the area of that part of the sphere x2 + y2 + z2 = 25 that is within the elliptic cylinder 2x2 + y2 = 25. 

Am. 507r square units 

Find the area of the surface of x2 + y2 - uz = 0 which lies directly above the lemniscate 

4p2 = u2 COS 28. Ans. S = v m p  dp d8 = (: - f )  square units 
U 

Find the area of the surface of x2 + y2 + z2 = 4 which lies directly above the cardioid p = 1 - cos 8. 

Am. 8[7r - fi - In (fi + l)] square units 



Chapter 73 

Triple Integrals 

CYLINDRICAL AND SPHERICAL COORDINATES. Assume that a point P has coordinates 
(x, y , z) in a right-handed rectangular coordinate system. The corresponding cylindrical 
coordinates of P are ( r ,  8, z), where ( r ,  0)  are the polar coordinates for the point (x, y )  in the 
xy plane. (Note the notational change here from ( p ,  8) to ( r ,  8) for the polar coordinates of 
(x, y); see Fig. 73-1.) Hence we have the relations 

2 2 2  Y x = r c o s 8  y = r s i n 8  r = x  + y  t a n $ = -  

In cylindrical coordinates, an equation r = c represents a right circular cylinder of radius c with 
the z axis as its axis of symmetry. An equation 8 = c represents a plane through the z axis. 

X 

THE 

2 
Z 

I 

X 

Fig. 73-1 Fig. 73-2 

A point P with rectangular coordinates ( x ,  y, z )  has the spherical coordinates ( p ,  8, c$), 
where p = I OPI, 8 is the same as in cylindrical coordinates, and 4 is the directed angle from the 
positive z axis to the vector OP. (See Fig. 73-2.) In spherical coordinates, an equation p = c 
represents a sphere of radius c with center at the origin. An equation $ = c represents a cone 
with vertex at the origin and the z axis as its axis of symmetry. 

The following additional relations hold among spherical, cylindrical, and rectangular 
coordinates: 

r = p sin 4 
x = p sin 4 cos 8 

z = p cos 4 p 2  = x2 + y2 + z2 

y = p sin 4 sin 8 

(See Problems 14 to 16.) 

TRIPLE INTEGRAL I 11 f ( x ,  y, z )  dV of a function of three independent variables over a 

closed region R of points ( x ,  y, z), of volume V, on which the function is single-valued and 
continuous, is an extension of the notion of single and double integrals. 

R 

456 
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If f ( x ,  y ,  z )  = 1, then I f ( x ,  y ,  z )  dV may be interpreted as measuring the volume of 
R 

the region R .  

EVALUATION OF THE TRIPLE INTEGRAL. In rectangular coordinates, 

d X2(Y) z2(x*.Y) 

= j-,,,, j-l(x,y) f(x9 Y ,  2 )  d z  dx dY, etc. 

where the limits of integration are chosen to cover the region R .  
In cylindrical coordinates, 

rz(0) 22('.0) J I I f(c 8, z )  dV= IaP I r , ( O )  j-l(r,O, f(r, 6, z ) r  dz  dr 
R 

where the limits of integration are chosen to cover the region R. 
In spherical coordinates, 

where the limits of integration are chosen to cover the region R.  
Discussion of the definitions: Consider the function f ( x ,  y ,  z ) ,  continuous over a region R 

of ordinary space. After slicing R with planes x = 6, and y = 77, as in Chapter 69, let these 
subregions be further sliced by planes z = & .  The region R has now been separated into a 
number of rectangular parallelepipeds of volume AV,,, = A x ,  Ayl Azk  and a number of partial 
parallelepipeds which we shall ignore. In each complete parallelepiped select a point 
pl lk(x , ,  y l ,  z k ) ;  then compute f ( x , ,  y l ,  z k )  and form the sum 

f(x~, Y ] ,  ' k )  = f ( x i ,  Y J ~  z k >  A x ~  A z k  (73.1) 
I = ] ,  , m  r = l .  , m  
, = I , .  . . , n  
k = l ,  . . . , p 

j = l , .  . . , n 
k = l . .  . . , p 

The triple integral of f ( x ,  y ,  z )  over the region R is defined to be the limit of (73.1 ) as the 
number of parallelepipeds is indefinitely increased in such a manner that all dimensions of each 
go to zero. 

In evaluating this limit, we may sum first each set of parallelepipeds having Aix and A,y, for 
fixed i and j ,  as two dimensions and consider the limit as each Akz-+O.  We have 

Now these are the columns, the basic subregions, of Chapter 69; hence, 

k = l , ,  . . . p 

CENTROIDS AND MOMENTS OF INERTIA. The coordinates (X, f ,  2 )  of the centroid of U 

volume satisfy the relations 
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R R R R 

R R 

The moments of inertia of a volume with respect to the coordinate axes are given by 

R R R 

Solved P r o ~ l ~ m s  

1. Evaluate the given triple integrals: 

( a )  1’ lPx xyz dz dy dx 

= [ 
^ x  

xyz dz) dy] dx 

xy(2 - x)2 

13 
4 y = o  240 - 6x4 + x’) dr = - 

= 

2 2 
= 2 /0w’2 [r.’]: sin 8 d8 = - - [cos 81;” = 3 

lot [;I2 r2 sin 8 drd8 = 2 10’ r2 sin 8 dr d8 

3 3 

(c )  lo* I”;“ Le‘’ sin 24  dp d 4  d8 

= 2 1  sin 4 d 4  d8 = 2 [(l  - $.\rz) d8 = (2 - f l)~ 

2. Compute the triple integral of F(x, y ,  z> = z over the region R in the first octant bouRded by 
the planes y = 0, z =: 0, x + y = 2 ,  2 y  + x = 6, and the cylinder y 2  + z2 = 4. (See Fig. 73-3.) 

Integrate first with respect to z from z = 0 (the xOy plane) to z = v q  (the cylinder), then with 
respect to x from x = 2 - y to x = 6 - 2 y ,  and finally with respect to y from y = 0 to y = 2. This yields 
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3. Compute the triple integral of f(r, 8, z )  = r2  over the region R bounded by the paraboloid 
r2 = 9 - z and the plane z = 0. (See Fig. 73-4.) 

Integrate first with respect to z from z = 0 to z = 9 - r2, then with respect to r from r = 0 to r = 3, 
and finally with respect to 8 from 8 = 0 to 8 = 27~ .  This yields 

/ / / r2 d V =  JT1* I: /09-r2  r2(r  dz dr do) = c* I: r3(9 - r 2 )  dr d8 

4 2& - 
4. Show that the integrals (a)  4 

(c) 4 f y*/4 1- 0 
dz dy  dx, ( b )  4 l0 dy dx d z ,  and 

dx d z  dy  give the same volume. 

(a)  Here z ranges from z = $(x’  + y’) to z = 4; that is, the volume is bounded below by the paraboloid 
42 = x 2  + y 2  and above the plane z = 4. The ranges of y and x cover a quadrant of the circle 
x2 + y 2  = 16, z = 0, the projection of the curve of intersection of the paraboloid and the plane z = 4 
on the x O y  plane. Thus, the integral gives the volume cut from the paraboloid by the plane z = 4. 

( b )  Here y ranges from y = 0 to y = w; that is, the volume is bounded on the left by the zOx 
plane and on the right by the paraboloid y 2  = 42 - x2. The ranges of x and z cover one-half the area 
cut from the parabola x2 = 42, y = 0, the curve of intersection of the paraboloid and the zOx plane, 
by the plane z = 4. The region R is that of (a) .  

(c) Here the volume is bounded behind by the yOz plane and in front by the paraboloid 42 = x 2  + y2 .  
The ranges of z and y cover one-half the area cut from the parabola y 2  = 42, x = 0, the curve of 
intersection of the paraboloid and the yOz plane, by the plane z = 4. The region R is that of (a). 

5. Compute the triple integral of F( p,  4,  6 )  = 1 / p  over the region R in the first octant bounded 
by the cones 4 = T and 4 = arctan 2 and the sphere p = 6 (See Fig. 73-5.)  
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Integrate first with respect to p from p = 0 to p = s, then with respect to 4 from 4 = i 7 r  to 
4 = arctan 2, and finally with respect to 8 from 8 = 0 to 8 = 7r. This yields 

/ R / / f dV= l O 7 I 2  /:;ran kfi f p2 sin 4 d p  d 4  d8 = 3 

6.  Find the volume bounded by the paraboloid z = 2x2 + y 2  and the cylinder z = 4 - y2 .  (See Fig. 

Integrate first with respect to z from z = 2x2 + y 2  to z = 4 - y’, then with respect to y from y = 0 to 
(obtain x’ + y 2  = 2 by eliminating x between the equations of the two surfaces), and finally 

(obtained by setting y = 0 in x2 + y 2  = 2) to obtain one-fourth of 

73-6.) 

y = 
with respect to x from x = 0 to x = 

the required volume. Thus, 

16 fi 
dx = 7 l0 (2 - x2)3’2 dx = 47r cubic units 

7. Find the volume within the cylinder r = 4 cos 8 bounded above by the sphere r2 + z2  = 16 and 
below by the plane z = 0. (See Fig. 73-7.) 

Integrate first with respect to z from z = O  to z =-, then with respect to r from r = O  to 
r = 4 cos 8, and finally with respect to 8 from 8 = 0 to 8 = 7r to obtain the required volume. Thus, 

= - (sin3 8 - 1) de  = y(37r - 4) cubic units 
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8. Find the coordinates of the centroid of the volume within the cylinder r =2cos8 ,  bounded 
above by the paraboloid z = r2 and below by the plane z = 0. (See Fig. 73-8.) 

m12 ~ C O S B  

v = 2 1  l L r d z d r d s = 2 \ 0 m ’ 2 [ c 0 s B r 3 d r d e  

- r2 
= 2 [ I 2  I: cos r4 COS 8 dr dB = 

- ; [ I 2  [ ~ ~ I ; C O S ~  de = 8 

M y z  = \ \ J x  d v =  2 JOml2 1 
cos4 e de = iT 

2 cos  0 2 
( r  cos e ) r  dz  dr de 

R 

Then X =  M,,,/V= :. By symmetry, y =  0. Also, 

R 

- -  - 332 \om’2 cos6 e de = zr 

and Z = Mxy/V= 9 .  Thus, the centroid has coordinates (: , 0, y ) ,  

9. For the right circular cone of radius a and height h,  find ( a )  the centroid, ( b )  the moment of 
inertia with respect to its axis ( c ) ,  the moment of inertia with respect to any line through its 
vertex and perpendicular to its axis, ( d )  the moment of inertia with respect to any line through 
its centroid and perpendicular to its axis, an (e) the moment of inertia with respect to any 
diameter of its base. 

Take the cone as in Fig. 73-9, so that its equation is r =  z .  Then 
h 

v =  4 \om’2 Joa Jh:Ia r d z  dr de = 4 J: (hr  - r2)  dr de 
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(a)  The centroid lies on the z axis, and we have 

10. 

11. 

= 2 [’2 1: (h’r - r3 dr do = - 1 h’a’ 
2 

Then Z =  Mx,IV= i h ,  and the centroid has coordinates (O,O,  zh). 

R 

(c) Take the line as the y axis. Then 
HI’ a h 

Iy = I I I (x’ + 2’) dV= 4 1 10 Ihrla (r’ cos’ 8 + z’)r dz dr do 
R 

1 h3 
3 a 

= 4 [” [ (hr3 - r4) cos’ 8 + - (h3r - 5 r4)] dr dB 

= - 1 rha’(h’ + 4 1 a’) = (h’ + 4 1 a2)V 
5 

( d )  Let the line c through the centroid be parallel to the y axis. By the parallel-axis theorem, 

Zy = Z, + V( jh)’ and Z, = f ( h ’  + fa’)V- &h2V= &(h’ + 4a2)V 

(e) Let d denote the diameter of the base of the cone parallel to the y axis. Then 

Id = I, + V( f h)’ = & (h’ + 4a’)V + $ h’V= &j (2h’ + 3a’)V 

Find the volume cut from the cone 4 = 7~ by the sphere p = 2a cos 4. (See Fig. 73-10.) 

V =  4 I I I dV= 4 [I’ [I4 IozU ‘OS’ p’ sin 4 d p  d 4  d8 
R 

32a3 T12 
- - - I0 I O T l 4  cos3 4 sin 4 d 4  do = 2a3 1;” do = r a 3  cubic units 

3 

Locate the centroid of the volume cut from one nappe of a cone of vertex angle 60” by a 
sphere of radius 2 whose center is at the vertex of the cone. 
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Take the surfaces as in Fig. 73-11, so that X = = 0. In spherical coordinates, the equation of the 
cone is 4 = ~ / 6 ,  and the equation of the sphere is p = 2. Then 

and Z = M,,/V= i ( 2  + fi). 

12. Find the moment of inertia with respect to the z axis of the volume of Problem 11. 

I z = / / / ( X 2 + Y ’ ) d v = 4  Jo2 ( p ’  sin2 4 ) p ’  sin 4 dp d 4  de 
R 

Supplementary Problems 

13. Describe the curve determined by each of the following pairs of equations in cylindrical coordinates. 

Ans. ( a )  circle of radius 1 in plane z = 2 with center having rectangular coordinates (0, 0,2); ( b )  helix 
on right circular cylinder r = 2; ( c )  vertical line through point having rectangular coordinates 
(1,1,0);  ( d )  line through origin in plane 8 = 7~14, making an angle of 45” with xy plane 

(a )  r = l , z = 2  ( b )  r = 2, z = e (c) e = d 4 ,  r = ID ( d )  e = n/4,  z = r 
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Describe the curve determined by each of the following pairs of equations in spherical coordinates. 
?I n 7r 

(c) p = 2 ,  4 = - 
4 

( b )  e =  - - ?  4 =  - 
4 6 

( a )  p = i ,  e = n  

Am. ( a )  circle of radius 1 in XI plane with center at origin; ( b )  halfline of intersection of plane 
0 = 7r14 and cone 4 = n16;  (c)  circle of radius fi in plane I = fi with center on z axis 

Transform each of the following equations in either rectangular, cylindrical, or spherical coordinates into 
equivalent equations in the two other coordinate systems. 

Am. 

( a )  P = 5 (6) z 2 = r 2  ( c )  x 2  + y2 + ( 2  - 1)2 = 1 

(a) x 2  + y 2  + z2 = 25, r2 + z' = 25; ( b )  z2 = x 2  + y2, cos2 4 = 4 (that is, 4 = n14 or 4 = 3 ~ 1 4 ) ;  
(c) r2 + z2 = 22, p = 2 cos 4 

Evaluate the triple integral on the left in each of the following: 

Evaluate the integral of Problem 16(b) after changing the order to dz dx dy. 

Evaluate the integral of Problem 16(c), changing the order to dx dy dz and to dy dz dx. 

Find the following volumes, using triple integrals in rectangular coordinates: 
( a )  Inside x 2  + y 2  = 9, above z = 0, and below x + z = 4 
( 6 )  Bounded by the coordinate planes and 6x  + 4y + 32 = 12 
( c )  Inside x' + y-' = 4x. above z = 0. and below x 2  + y 2  = 42 

Am. 3 6 ~  cubic units 
Am. 4 cubic units 
Am. 67r cubic units 

Find the following volumes, using triple integrals in cylindrical coordinates: 
( a )  The volume of Problem 4 
(6) The volume of Problem 1Y(c) 
(c) That inside r2 = 16, above z = 0, and below 22 = y Am. 6413 cubic units 

Find the centroid of each of the following volumes: 
( a )  Under 2' = xy and above the triangle y = x ,  y = 0. x = 4 in the plane z = 0 
( b )  That of Problem 1Y(b) Am. ( i ,  : , l )  

Am. (3.  ;, g )  

64-97r 
1 6 ( ~ - 1 ) ' 8 ( ~ - 1 ) '  3 2 ( ~ - 1 )  

(c) The first-octant volume of Problem 1Y(a) Am. ( 
(d) That of Problem 1Y(c) Am. (! ,0,?) 
(e) That of Problem 20(c) Am. (0,3n14,37r116) 

Find the moments of inertia I , ,  I,, I, of the following volumes: 
( a )  That of Problem 4 
( b )  That of Problem lY(6)  Am. I , = ~ V ; I y = 2 V ; I , = ~ V  
(c )  That of Problem 1Y(c) 
(d) That cut from z = r2 by the plane z = 2 

Am. 

Am. 
Am. 

I ,  = I ,  = Y V ;  I ,  = Y V  

I ,  = gV; I ,  = gV; I ,  = FV 
I ,  = I ,  = 3V; I ,  = $V 
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23. Show that, in cylindrical coordinates, the triple integral of a function f(r, 8, z) over a region R may be 
represented by 

\ap l:yl) ~ ~ ~ ~ ~ @ ) )  f ( r ,  8, z ) r  dz dr do 

(Hint: Consider, in Fig. 73-12, a representative subregion of R bounded by two cylinders having Oz as 
axis and of radii r and r + A r ,  respectively, cut by two horizontal planes through ( O , O ,  z )  and 
( O , O ,  z + Az), respectively, and by two vertical planes through Oz making angles 8 and 8 + A8, 
respectively, with the xOz plane. Take AV= ( r  A 8 )  Ar Az as an approximation of its volume.) 

24. Show that, in spherical coordinates, the triple integral of a function f( p,  4, 8) over a region R may be 
represented by 

P +2(e) ~ ~ ( 4 . o )  1- I,,,.) I,,,,,) f ( P 7  4, w2 sin 4 dP d4 

(Hint: Consider, in Fig. 73-13, a representative subregion of R bounded by two spheres centered at 0, of 
radii p and p + Ap, respectively, by two cones having 0 as vertex, Oz as axis, and semivertical angles 
and 4 + A 4 ,  respectively, and by two vertical planes through Oz making angles 8 and 8 + A 8 ,  
respectively, with the zOy plane. Take AV= ( p  A+)(p sin 4 A8)(Ap) = p 2  sin 4 Ap A 4  A 8  as an approx- 
imation of its volume.) 
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Masses of Variable Density 

HOMOGENEOUS MASSES have been treated in previous chapters as geometric figures by taking 
the density S = 1. The mass of a homogeneous body of volume V and density S is m = SV. 

For a nonhomogeneous mass whose density S varies continuously from point to point, an 
element of mass dm is given by: 

S(x, y) ds for a material curve (e.g., a piece of fine wire) 

S(x, y) dA for a material two-dimensional plate (e.g., a thin sheet of metal) 

S(x, y, z )  dV for a material body 

Solved Problems 

1. Find the mass of a semicircular wire whose density varies as the distance from the diameter 
joining the ends. 

Take the wire as in Fig. 74-1, so that S ( x ,  y )  = ky.  Then, from x2 + y’ = r’, 

and rn = / S ( x ,  y )  & = ky f dx = kr / I r  dr = 2kr2 units 

2. Find the mass of a square plate of side a if the density varies as the square of the distance from 
a vertex. 

Take the square as in Fig. 74-2, and let the vertex from which distances are measured be at the 
origin. Then 6 ( x ,  y )  = k(x’ + y’) and 

m = I / ~ ( x ,  y )  d A  = l l k(x2 + y 2 )  dx dy = k ( f a 3  + ay’) dy = 5ka4 units 
R 

466 
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3. Find the mass of a circular plate of radius r if the density varies as the square of the distance 
from a point on the circumference. 

Take the circle as in Fig. 74-3, and let A(r,O) be the fixed point on the circumference. Then 
S(x, y )  = k [ ( x  - r)2 + y 2 ]  and 

4. Find the center of mass of a plate in the form of the segment cut from the parabola y 2  = 8 x  by 
its latus rectum x = 2 if the density varies as the distance from the latus rectum. (See Fig. 
74-4.) 

Here, S(x, y )  = 2 - x and, by symmetry, 7 = 0. For the upper half of the plate, 

m = / I S ( x , y ) d A = c / y : / 8 k ( 2 - x ) d r d y = k  2 - - + -  Y 2  Y 4  ) d y =  - k  64 
( 4 128 15 

R 

and X = M , / m  = 4 .  The center of mass has coordinates ( 5  , 0). 

5. Find the center of mass of a plate in the form of the upper half of the cardioid r = 2(1 + cos 0) 
if the density varies as the distance from the pole. (See Fig. 74-5.) 

2 ( 1  + C O S  e )  

m = I I 6(r ,  e )  dA = IOT 
M ,  = I I S(r, 0 ) y  dA = IOT 

(kr)r  dr de = 5 k (1 + COS 0)' de = 9 k v  
R I O T  

 COS e )  
(kr)(r  sin 0 ) r  dr do 

R 

= 4k [(I + cos e ) 4  sin e de = y k  

2( 1 + c o s  0 )  

M~ = I I q r ,  e)x d~ = [ I0 (kr)(r cos e ) r  dr de = i4kv 
R 

M y  21 - M ,  96 21 96 
m 10 m 251r Then X = - = - , y = - = - , and the center of mass has coordinates 

6. Find the moment of inertia with respect to the x axis of a plate having for edges one arch of 
the curve y = sin x and the x axis if its density varies as the distance from the x axis. (See Fig. 
74-6 .) 
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,=I(S(x, y ) d A = [ l i n x  k y d y d x =  $k[sin2xdx= dk.rr 

I X = J J S ( x ,  y ) y 2 d A = L  lo 
R 

T s i n x  

(ky)(y2)dydx= fk[s in4xdx= & k n =  irn 
R 

7. Find the mass of a sphere of radius a if the density varies inversely as the square of the 
distance from the center. 

k k 

P 
Take the sphere as in Fig. 74-7. Then 6 ( x ,  y ,  z )  = x 2  + y 2  + z 2  = 2 and 

7712 X I 2  a 

m = \I / 6 ( x ,  y ,  z )  dV= 8 I. 1 1 $ p 2  sin 4 dp d 4  d0 
R 

= 8ka L l 2  [ I 2  sin 4 d+ d0 = 8ka d0 = 4 k r a  units 
l I 2  

8. Find the center of mass of a right circular cylinder of radius a and height h if the density varies 
as the distance from the base. 

Take the cylinder as in Fig. 74-8, so that its equation is r = a and the volume in question is that part 
of the cylinder between the planes z = 0 and z = h .  Clearly, the center of mass lies on the z axis. Then 

m = / / /6(z, r ,  0)  dV= 4 /on/2 JOa [ (kz)r dz  dr d0 = 2kh2 1 \oa r dr d0 
n / 2  

R 

= kh2a2 1'2 d0 = $ k r h 2 a 2  

n / 2  

Mxy = I I / 6(z, r ,  0 ) z  dV= 4 ( k z 2 ) r  dz dr d0 = $kh3 IOU r dr d0 
R 

= gkh3a2 [ I 2  do = + k r h 3 a 2  

and Z = M,,/m = $ h .  Thus the center of mass has coordinates (O,O,  gh) .  
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Supplementary Problems 

9. Find the mass of: 
(a )  A straight rod of length a whose density varies as the square of the distance from one end 

( b )  A plate in the form of a right triangle with legs a and b ,  if the density varies as the sum of the 

(c) A circular plate of radius a whose density varies as the distance from the center 

( d )  A plate in the form of an ellipse b2x2 + a’y’ = a2b2, if the density varies as the sum of the distances 

(e) A circular cylinder of height b and radius of base a,  if the density varies as the square of the distance 

( f )  A sphere of radius a whose density varies as the distance from a fixed diametral plane 

(g) A circular cone of height b and radius of base a whose density varies as the distance from its 

(h) A spherical surface whose density varies as the distance from a fixed diametral plane 

Am. f k a 3  units 

distances from the legs Am. akab(a + b )  units 

Am. 3ka37r units 

from its axes Am. jkab(a + b )  units 

from its axis Am. qka4b7r units 

Am. $ka47r units 

axis Am. 8ka3b7r units 

Am. 2ka37r units 

10. Find the center of mass of: 
(a )  One quadrant of the plate of Problem 9(c) 
( b )  One quadrant of a circular plate of radius a,  if the density varies as the distance from a bounding 

(c) A cube of edge a,  if the density varies as the sum of the distances from three adjacent edges (on the 

( d )  An octant of a sphere of radius a,  if the density varies as the distance from one of the plane 

(e) A right circular cone of height 6 and radius of base a, if the density varies as the distance from its 

Am. (3a/27r, 3 ~ 1 2 ~ )  

radius (the x axis) Am. ( 3 ~ 1 8 ,  3 ~ 7 ~ 1 1 6 )  

coordinate axes) Am. ( 5 ~ 1 9 ,  5 ~ 1 9 ,  5 ~ 1 9 )  

faces Am. (16aI 1 5 ~ ,  16al 1 5 ~ ,  8 ~ 1 1 5 )  

base Am. ( O , O ,  2615) 

11. Find the moment of inertia of: 
( a )  A square plate of side a with respect to a side, if the density varies as the square of the distance from 

( b )  A plate in the form of a circle of radius a with respect to its center, if the density varies as the square 

(c) A cube of edge a with respect to an edge, if the density varies as the square of the distance from one 

( d )  A right circular cone of height b and radius of base a with respect to its axis, if the density varies as 

(e) The cone of ( d ) ,  if the density varies as the distance from the base 

an extremity of that side Am. Aa‘m 

of the distance from the center Am. $a2m 

extremity of that edge Am. s a 2 m  

the distance from the axis Am. ga2m 
Am. fa’m 
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Differential Equations 

A DIFFERENTIAL EQUATION is an equation that involves derivatives or differentials; examples 
dY are + 2 - + 3y = 0 and dy = ( x  + 2y)  dx. 

h2 dx 
The order of a differential equation is the order of the derivative of the highest order 

appearing in it. The first of the above equations is of order two, and the second is of order one. 
Both are said to be of degree one. 

A solution of a differential equation is any relation between the variables that is free of 
derivatives or differentials and which satisfies the equation identically. The general solution of a 
differential equation of order n is that solution which contains the maximum number ( = n )  of 
essential arbitrary constants. (See Problems 1 to 3.) 

AN EQUATION OF THE FIRST ORDER AND DEGREE has the form M ( x ,  y )  dx + N(x,  y )  dy = 0.  
If such an equation has the particular form fi(x)g2( y )  dx + f2(x)gl( y )  dy = 0 ,  the variables are 
separable and the solution is obtained as 

(See Problems 4 to 6.) 
A function f ( x ,  y )  is said to be homogeneous of degree n in the variables if f( Ax, Ay) = 

A"f(x, y ) .  The equation M(x,  y )  dx + N(x,  y )  dy = 0 is said to be homogeneous if M ( x ,  y )  and 
N(x,  y )  are homogeneous of the same degree. The substitution 

y = v x  d y = u d x + x d v  

will transform a homogeneous equation into one whose variables x and U are separable. (See 
Problems 7 to 9.) 

CERTAIN DIFFERENTIAL EQUATIONS may be solved readily by taking advantage of the 
presence of integrable combinations of terms. An equation that is not immediately solvable by 
this method may be so solved after it is multiplied by a properly chosen function of x and y. 
This multiplier is called an integrating factor of the equation. (See Problems 10 to 14.) 

The so-called linear dflerential equation of the first order dy + Py = Q ,  where P and Q are 

An equation of the form dy + Py = Qy", where n # 0, 1, and where P and Q are functions 

dx 
as integrating factor. (See Problems 15 to 17.) $ P dx functions of x alone, has ( ( x )  = e 

dx 
of x alone, is reduced to the linear form by the substitution 

(See Problems 18 to 19.) 

470 
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Solved Problems 

1. Show that ( a )  y = 2ex, (b) y = 3 x ,  and ( c )  y = Clex + C2x, where C ,  and C, are arbitrary 
constants, are solutions of the differential equation y"(1 - x )  + y ' x  - y = 0.  

( a )  Differentiate y = 2e" twice to obtain y' = 2e" and y" = 2e". Substitute in the differential equation to 
obtain the identity 2e"(l - x )  + 2exx - 2e" = 0. 

(6) Differentiate y = 3x twice to obtain y'  = 3 and y" = 0. Substitute in the differential equation to 
obtain the identity 0(1 - x )  + 3x - 3x = 0. 

(c) Differentiate y = Cle" + C2x twice to obtain y'  = Cle" + C, and y" = C,e". Substitute in the differen- 
tial equation to obtain the identity Cle"(l - x) + (Clex + C,)x - (Clex + C,x) = 0. 
Solution (c) is the general solution of the differential eqution because it satisfies the equation and 

contains the proper number of essential arbitrary constants. Solutions ( a )  and (6) are called particular 
solutions because each may be obtained by assigning particular values to the arbitrary constants of the 
general solution. 

2. Form the differential equation whose general solution is ( a )  y = Cx2 - x ;  ( b )  y = C,x3 + 
c2x + c3. 
( a )  Differentiate y = Cx' - x once to obtain y'  = 2Cx - 1. Solve for C = - ("T - ' )  and substitute in 

(6) Differentiate y = C,x3 + C2x + C, three times to obtain y' = 3Cp '  + C,, y" = 6C,x, y"' = 6C1. Then 
= 0 

the given relation (general solution) to obtain y = - ( Y ' :  - ' ) x 2  - x or y 'x  = 2y + x .  

y" = xy"' is the required equation. Note that the given relation is a solution of the equation 
but is not the general solution, since it contains only three arbitrary constants. 

3. Form the second-order differential equation of all parabolas with principal axis along the x 
axis. 

The system of parabolas has equation y 2  = Ax + B, where A and B are arbitrary constants. 
Differentiate twice to obtain 2yy' = A and 2yy" + 2(y')'  = 0. The latter is the required equation. 

dy 1 + y 3  
dx 4. Solve - + 

xy2(1 + x ' )  = O .  

dr = 0 with the variables separated. Y' Here xy'( 1 + x ' )  d y  + (1 + y 3 )  dr = 0, or - 
1 + y 3  d ~ +  x ( i + x 2 )  

Then partial-fraction decomposition yields 

and integration yields 

or 

from which 

f In 11  + y31 + In 1x1 - t In ( 1  + x ' )  = c 
2 In 11 + y 3 )  + 6 In 1x1 - 3 In (1 + x') = 6c 

- e6c - - - c  x6( 1 + y3)' 
(1 + x 2 ) 3  

= 6 c  and 
x6(1 + y3)' 
(1 + x 2 ) 3  

In 

dy 1 + y 2  
5. Solve - = - 

dx 1 + x 2 '  

Then integration yields arctan y = arctan x + arctan C, and Here dy_i = - dx 
l + y  1 + x 2 '  

x + c  
y = tan (arctan x + arctan C) = - 

1 - cx 
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d y  cos2 y 
dx sin’x 

6. Solve - = -. 

or sec2 y dy = csc2 x dx, and integration 
dY dx 

The variables are easily separated to yield 7 = - 
cos y sin’x 

yields tan y = -cot x + C. 

7. Solve 2xy dy  = (x’ - y ’ )  dx. 

The equation is homogeneous of degree two. The transformation y = u x ,  dy = u dx + x du yields 
2 v d v  dx 

(2x)(ux)(u dx + x du) = (x2 - u2x)  dx or - = - . Then integration yields 
1 - 3 ~ ‘  x 

- f In 11 - 311’1 = In 1x1 + In c 

from which In 11 - 3 u 2 (  + 3 In 1x1 + In C’ = 0 or C’lx’( 1 - 3u2))( = 1. 
Now ?C’x3( 1 - 3 u 2 )  = Cx3(l - 3u2) = 1, and using u = y / x  produces C(x3 - 3xy2) = 1. 

Y Y 8. Solve x sin - ( y  dx + x d y )  + y cos - (x d y  - y dx) = 0. 
X X 

The equation is homogeneous of degree two. The transformation y = u x ,  dy = u dr + x du yields 

or 

or 

x sin u(ux dx + x2 du + ux dx)  + ux cos u ( x 2  du + ux dx - ux dx) = 0 
sin u(2u dx + x du) + xu  cos u du = 0 

dx 
u sin u X 

sin u + U cos u 
du + 2 - = 0 

Y Then In Iu sin ul + 2 In 1x1 = In C’, so that x 2 u  sin u = C and xy sin - = C. 
X 

9. Solve (x’ - 2 y 2 )  d y  + 2xy  dx = 0. 

The equation is homogeneous of degree two, and the standard transformation yields 

( 1  - 2v2)(u dx + x du) i- 2u dx = 0 

or 
1 - 2u2 dx 

u(3 - 2u2) X 
d u + - = O  

du 4udu dx 
+ - = O  - -  or 

3~ 3(3-2u2) x 

Integration yields $ In Iul + 5 In 13 - 2u21 + In 1x1 = In c, which we may write as In Iul + In 13 - 2u21 + 
3 In 1x1 = In C’. Then ux3(3 - 2u2) = C and y(3x2 - 2 y 2 )  = C. 

10. Solve (x’ + y )  d~ + ( y 3  + x )  d y  = 0. 

x3 Y 4  Integrate xz dx + ( y  dx + x dy) + y3  dy = 0 ,  term by term, to obtain - + xy + - = C 3 4 

11. Solve (x + e-’sin y )  dx - ( y  + e-* cos y )  d y  = 0. 

Integrate x dx - y dy - (e -”  cos y dy - e-I sin y dx) = 0 ,  term by term, to obtain 
1 2  zx - $ y 2  - e-”sin y = c 

12. Solve x d y  - y dx = 2x3 dx. 
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13. 

14. 

The combination x dy - y dx suggests d - = . Hence, multiplying the given equation 
1 (3 x d y ; 2 y d x  

by ( ( x )  = 1, we obtain dy - = 2x dx, from which = x2 + C or y = x3 + Cx. 
X X 2  X 

Solve x dy + y dx = 2x2y dx. 

x d y + y d x  
The combination x dy + y dx suggests d(1n xy) = . Hence, multiplying the given equation 

1 XY 
by e ( x ,  y )  = -, we obtain dy + dx = 2x dx, from which In IxyI = x 2  + C.  

XY XY 

Solve x dy + (3y - e x )  dx = 0. 

Multiply the equation by ( ( x )  = x2 to obtain x3 dy + 3x2y dx = x2ex dx. This yields 

x3y = x2ex dx = x2ex - 2xex + 2e" + c I 
dY 2 Solve - + - y = 6x3. 

Here P(x) = -, P(x) dx = In x2, and an integrating factor is ( ( x )  = e"' = x . We multiply the 

given equation by ( ( x )  = x 2  to obtain x 2  dy + 2xy dx = 6x5 dx. Then integration yields x2y = x6 + C. 
Note 1 :  After multiplication by the integrating factor, the terms on the left side of the resulting 

equation are an integrable Combination. 
Note 2 :  The integrating factor for a given equation is not unique. In this problem x', 3x', i x2 ,  etc., 

are all integrating factors. Hence, we write the simplest particular integral of P(x) dx rather than the 
general integral, In x2  + In c = In cx2. 

15. 
dx x 

2 2  

X 2 I  

dY 16. Solve tan x - + y = sec x. 
dx 

- /sin X I .  Since - + y cot x = csc x ,  we have I P(x) dx = cot x dx = In lsin XI ,  and ( (x )  = e'" "In "I - dY 
dx 

Then multiplication by ( ( x )  yields 

sin x - + y cot x = sin x csc x or sin x dy + y cos x dx = dx (2 1 
and integration gives y sin x = x + C. 

dY 17. Solve - - xy = x. 
dx 

Here P ( x )  = - x ,  P(x) dx = - $x2, and &(x)  = e -  ix'. This produces 

e -  t*' dy - xye- t** = xe- t x '  

I 
and integration yields ye- t X 2  = -e- 1x2 + C, or y = Cetx2 - 1. 

dY 18. Solve - + y = xy". 
dx 

dY The equation is of the form - + Py = Qy", with n = 2. Hence we use the substitution y'-" = y-'  = 

- 2  dY - -dr  For convenience, we write the original equation in the form y-*  dy + y-'  = x ,  
dx 

z , y  dx - d x -  di 
dz dz 
dx dx obtaining - - + z = x or - - z = - x .  
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The integrating factor is ( ( x )  = e' d" = e - I  d x  = e-". It gives us e T X  d z  - ze-" dx = - x e C  dx,  from 
1 

Y 
which ze-" = xe-" + e-x  + C. Finally, since z = y - ' ,  we have - = x + 1 + Ce". 

dY 19. Solve - + y tan x = y 3  sec x .  
dx  

dY Write the equation in the form y - 3  - + y - 2  tan x = secx. Then use the substitution y - 2  = z ,  
1 dz d z  dx  

- cqs2 x .  It gives cos2 x dz  - 22 cos x sin x dx = 
dx 2 d x  
The integrating factor is ( ( X I  = eP2  ' tan dx - 

- 3  3 = - - - to obtain - - 22 tanx = -2secx. dx 

COSL x 

Y 
-2  cos x dx,  from which z cos2 x = - 2  sin x + C, or 7 = - 2 sin x + C. 

20. When a bullet is fired into a sand bank, its retardation is assumed equal to the square root of 
its velocity on entering. For how long will it travel if its velocity on entering the bank is 
144 ft /sec? 

Let U represent the bullet's velocity tseconds after striking the bank. Then the retardation is 

When t = 0, U = 144 and C = 2 m  = 24. Thus, 2 f i  = - t  + 24 is the law governing the motion of 

dv dv 
= 6, so 

dt 
= -dt and 2 f i  = - t  + C .  -- 

the bullet. When U = 0, t = 24; the bullet will travel 24 seconds before coming to rest. 

21. A tank contains 100 gal of brine holding 200 lb of salt in solution. Water containing 1 lb of salt 
per gallon flows into the tank at the rate of 3gal/min, and the mixture, kept uniform by 
stirring, flows out at the same rate. Find the amount of salt at the end of 90 min. 

dq Let q denote the number of pounds of salt in the tank at the end of t minutes. Then - is the rate of 

Three pounds of salt enters the tank each minute, and 0.034 pounds is removed. Thus, - = 

dt 
change of the amount of salt at time t. 

3 - 0.03q. Rearranged, this becomes 

dq 
In (0.03q - 3) - dt 

- - t  + C .  
0.03 

dq = dt ,  and integration yields 
3 - 0.03q 

In 3 
0.03 When t = 0, q = 200 and C = - so that In (0.03q - 3 )  = -0.03t + In 3. Then 0.01q - 1 = e-'.03', 

and q = 100 + 100e-0.03'. When t = 90, 4 = 100 + lWe-2.7 = 106.72 Ib. 

22. Under certain conditions, cane sugar in water is converted into dextrose at a rate proportional 
to the amount that is unconverted at any time. If, of 75 grams at time t = 0 ,  8 grams are 
converted during the first 30 min, find the amount converted in 1 hours. 

dq dq 
dt 75 - q Let q denote the amount converted in t minutes. Then - = k(75 - q) ,  from which - = k dt ,  

When t = 0, q = 0 and C = In 75, so that In (75 - q )  = -kt + In 75. 
When t = 30 and q = 8, we have 30k = In 75 - In 67; hence, k = 0.0038, and q = 75(1 - e-0.0038'). 
When t = 90, q = 75( 1 - e-0.34) = 21.6 grams. 

and integration gives In (75 - q)  = - kt + C .  



CHAP. 751 DIFFERENTIAL EQUATIONS 475 

Supplementary Problems 

23. Form the differential equation whose general solution is: 
(a) y = cx2 + 1 
( d )  xy = x 3  - c 
(g) y = C, sinx + C2cosx 

Ans. 

(6)  y = c2x + c 
(e) y = C, + C,X + c3x2 
( h )  y = Clex cos (3x + C,) 

(c)  y = Cx’ + c2 
(f) y = Clex + C2e2* 

(a)  xy’ = 2( y - 1 ) ;  ( 6 )  y‘ = ( y  - ~ y ’ ) ~ ;  (c )  4x’y = 2x3y’ + ( y ’ ) ’ ;  ( d )  xy’ + y = 3 x 2 ;  (e) y‘” = 0;  
(f) y” - 3y’ + 2y = 0;  (8) y” + y = 0 ;  ( h )  y” - 2y‘ + 1oy = 0 

24. Solve: 
(a) y dy - 4x dx = 0 
( 6 )  y2 dy - 3 2  dx = 0 
(c )  x3y‘ = y’(x - 4 )  
( d )  (x - 2y)  dy + ( y  + 4x)  dx = 0 
(e) (2y2 + 1)y’ = 3x’y 
(f) XY’(2Y - 1 )  = Y(1-  4 
( 8 )  (x’ + y ’ )  dK = 2xy dy 
( h )  (x + Y)  dY = (x - Y)  dx 
(i) x(x + y )  dy - y2 dx = 0 
( j )  x dy - y dx + xe-y’x dx = o 
(k) dy = (3y + eZx)  d~ 
( I )  x’y’ dy = ( 1  - xy3)  dx 

AnS. 
AnS. 
AnS. 
AnS. 
Ans. 
AnS. 
Ans. 
AnS. 
Ans. 
Am. 
Am. 
AnS. 

y2 = 4x2 + c 
2y3 = 3~ + c 
x 2  - xy + 2y = Cx’y 
xy - y’ + 2x2 = c 
y 2  + I n  ly l  = x 3  + c 
In l xy l=  x + 2y + C 
x2 - y’ = cx 
x’ - 2xy - y 2  = c 

eYlx + In I c x ~ =  o 
y = (Ce” - l)e’x 

y = ce-Y’x 

2x3y3 = 3x2 + c 

25. The tangent and normal to a curve at point P(x ,  y )  meet the x axis in T and N, respectively, and the y 
axis in S and M , respectively. Determine the family of curves satisfying the condition: 
( a )  TP = PS (6) NM = MP (c) TP= OP (d) NP = OP 

Ans. (a )  xy = C; (6 )  2x2 + y2 = C; (c)  xy = C, y = Cx; ( d )  x 2  2 y’ = C 

26. Solve Problem 21, assuming that pure water flows into the tank at the rate 3 gal/min and the mixture 
flows out at the same rate. Ans. 13.44 lb 

27. Solve Problem 26 assuming that the mixture flows out at the rate 4 gal/min. ( H i n t :  dq  = 

-- di)  Am. 0.02 lb 4q 
1 0 0 - t  
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Differential Equations of Order 

THE SE~OND-ORDER DIFFERENTIAL E Q ~ A T I O ~ S  that we shall solve 
following types: 

Two 

n this chapter are of the 

d'y 
7 = f ( x )  (See Problem 1.) 
dx- 2 = f ( x ,  z) dY (See Problems 2 and 3.) 

d ' y  
- = f( y )  (See Problems 4 and 5.) 
dx' 

d'y dy 
- + P - + Q y  = R ,  where P and Q are constants and R is a constant or function of x only 

(See Problems 6 to 11 .) 
dx' dx 

If the equation rn' + Prn + Q = 0 has two distinct roots m ,  and m 2 ,  then y = ClemtX + 
C2em?' is the general solution of the equation d?y + P - + Q y  = 0. If the two roots are 

identical so that rn, = rn, = rn, then y = ClemX + C2xemx is the general solution. 

dY 
dx2 dx 

d2Y dY The general solution of 7 + P - + Q y  = 0 is called the complementary function of the 

equation 11 + P - + Q y  = R ( x ) .  If f ( x )  satisfies the latter equation, then y = complementary 

function + f(x) is its general solution. The function f ( x )  is called a particular solution. 

dx dx 
d 2 y  dy 
dx dx 

Solved Problems 

d'Y 1. Solve 7 = xer + cos x .  
dx- 

Here $ (3) = xe' + cos x .  Hence, (xe' + cos x )  dx = xex - ex + sin x + C,, and another 
dx 

integration yields y = xe' - 2e' - cos x + C,x + C,. 

d'y dy 
dx- dx 

2. Solve x- 7 + x - = a .  

4) d 2 y  dp dP 
dX dx' dx dx X 

Let p = - ; then - = - and the given equation becomes x 2  - + xp = a or x dp + p dx = dr. 
Then integration yields x p  = a In 1x1 + C , ,  or x !!! = a In 1x1 + C , .  When this is written as dy = 

U In 1x1 
d r  dX dx 

+ C, -, integration gives y = ! a  in2 1x1 + C, In 1x1 + c,. 
X 

3. SoIve xff + y f  + x = 0. 

476 
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dY d2Y dP dP 
dx dx2 dx Let p = -. Then - = - and the given equation becomes x - + p + x = 0 or x d p  + p dx = 

- x  dx. Integration gives xp = - Ix’ + C , ,  substitution for p gives !!! = - 5 x + l, and another 
integration yields y = - $ x 2  + C ,  In 1x1 + C,. 

dx 
1 c  

dx X 

d2Y 
dx2 

4. Solve - - 2y = 0. 

d 
dx Since - [( y ’ ) ’ ]  = 2y’y’’, we can multiply the given equation by 2y‘  to obtain 2y’y” = 4yy ’ ,  and 

I 
dy = dx and In l f i y  + v-1 = f i x  + In C:. The last 

I integrate to obtain ( y ’ ) ,  = 4 yy ‘  dx = 4 y d y  = 2y2 + C , .  

V5-T Then dy = v m ,  so that dx 
equation yields a y  + v m  = C,et%;. 

5. Solve y” = - 1 /y3. 

Multiply by 2y’  to obtain 2y‘y“ = - 2y‘. Then integration yields 
Y 

1 d y  - v 1 +  C,Y’ Y dY 
Or j / i T g = &  ( y ’ ) ’ +  7 + C ,  so that - - 

dx Y 

Another integration gives v m  = C , x  + C,, or ( C , x  + c2)’ - c , y 2  = 1 .  

dY 
dx2 dx 

6. Solve d2y + 3 - - 4y = 0.  

Here we have m2 + 3 m  - 4 = 0, from which m = 1, - 4 .  The general solution is y = C , e ‘  + C,ePJx. 

d2Y dY 7. Solve 7 + 3 - = 0.  
dx dx 

Here m2 + 3 m  = 0,  from which m = 0, - 3 .  The general solution is y = C ,  + C2e-”.  

dY 8. Solve d2y - 4 - + 13y = 0. 
dx2 dx 

Here m2 - 4rn + 13 = 0 ,  with roots m, = 2 + 3 i  and rn, = 2 - 3 i .  The general solution is 

= c l e ( 2 + 3 i ) x  + c 2 e ( 2 - 3 1 ) ”  - - e2*(C,e”x + C2e-’lx) 

Since eiax = cos ux + i sin ux, we have e3ix = cos 3x + i sin 3x and e-3 ‘x  = cos 3x - i sin 3 x .  Hence, 
the solution may be put in the form 

y = e2x[  c,(cos 3x + i sin 3x1 + C,(COS 3x - i sin 3 x ) ]  
= e 2 x [ ( C ,  + c,) cos 3x + i ( C ,  - c,) sin 3x1 
= e 2 ” ( A  cos 3x + B sin 3 x )  

dY 9. Solve fi - 4 - + 4y = 0. 
dx2 dx 

Here m2 - 4 m  + 4 = 0, with roots m = 2 ,  2 .  The general solution is y = C,e2” + C,xe2‘. 
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From Problem 6, the complementary function is y = C,e" + C2e-4x. 
To find a particular solution of the equation, we note that the right-hand member is R(x) = x2. This 

suggests that the particular solution will contain a term in x 2  and perhaps other terms obtained by 
successive differentiation. We assume it to be of the form y = Ax2 + Bx + C, where the constants A,  B, 
C are to be determined. Hence we substitute y = Ax2 + Bx + C, y '  = 2Ax + B, and y" = 2A in the 
differential equation to obtain 

2A + 3(2Ax + B )  - 4(Ax2 + Bx + C )  = x 2  or -4Ax2 + (6A - 4B)x + (2A + 3B - 4C) = x 2  

Since this latter equation is an identity in x ,  we have -4A = 1 ,  6A - 4B = 0 ,  and 2A + 3B - 4C = 0.  
These yield A = - a ,  B = - 2 ,  C = - g, and y = - $ x z  - i x  - E is a particular solution. Thus, the 
general solution is y = C,ex + ~ ~ e - ~ ~  - f x 2  - $ x  - $. 

d2Y dY 11. Solve - - 2 - - 3y = cos x .  
dx2 d . ~  

Here mz - 2m - 3 = 0, from which m = - 1, 3 ;  the complementary function is y = C,e-" + C,e3'. 
The right-hand member of the differential equation suggests that a particular solution is of the form 
A cos x + B sin x .  Hence, we substitute y = A cos x + B sin x ,  y' = B cos x - A sin x ,  and y" = 
- A  cos x - B sin x in the differential equation to obtain 

( - A  cosx - B sin x )  - 2(B c o s x  - A sin x )  - 3(A cosx + B sinx) =cos x 

-2(2A + B) cos x + 2(A - 2B) sin x = cos x or 

The latter equation yields -2(2A + B) = 1 and A - 2B = 0 ,  from which A = - , B = - & . The general 
solution is C,e-" + c2e3" - $ cos x - & sin x .  

12. A weight attached to a spring moves up and down, so that the equation of motion is 

- + 16s = 0, where s is the stretch of the spring at time t. I f s  = 2 and - = 1 when t = 0, find d c  dt 
s in terms of t. 

d2s dr 

Here m2 + 16 = 0 yields m = + 4 i ,  and the general solution is s = A cos 4t + B sin 4t. Now when 

Also when t = 0, ds/dt = 1 = - 8  sin 4t + 4B cos 4t = 4B, so that B = a .  Thus, the required equation 
t = 0,  s = 2 = A, so that s = 2 cos 4t + B sin 4t. 

is s = 2 cos 4t + a sin 4t. 

d21 
13. The electric current in a certain circuit is given by 7 + 4 dl + 25041 = 110. If I = 0 and d1 dt dt 

- = 0 when t = 0, find 1 in terms of t. dt 
Here mz + 4m + 2504 = 0 yields rn = - 2  + 50i, - 2  - 50i; the complementary function is 

e-"(A cos 50t + B sin 50t). Because the right-hand member is a constant, we find that the particular 
solution is I = 110/2504 = 0.044. Thus, the general solution is I = e-2'(A cos 50t + B sin 50t) + 0.044. 

When t = 0, I = 0 = A + 0.044; then A = -0.044. 
Also when t = 0, dI/dt  = 0 = e-2'[(-2A + 50B) cos 5Ot - (2B + 50A) sin 50t] = -2A + 50B. Then 

B = -0.0018, and the required relation is I = -e-2'(0.044 cos 50t + 0.0018 sin 50t) + 0.044. 

14. A chain 4 ft long starts to slide off a flat roof with 1 ft hanging over the edge. Discounting 
friction, find ( a )  the velocity with which it slides off and (6) the time required to slide off. 

(a )  The force F causing the chain to slide off the roof is the weight of the part hanging over the edge. 
Let s denote the length of the chain hanging over the edge of the roof at time t. 
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That weight is mgsI4. Hence, 

F = mass x acceleration = ms" = imgs or s" = J ' R. s 

Multiplying by 2s' yields 2s"'' = t gss' and integrating once gives ( s r ) '  = gs' + c', . 
When t = 0, s = 1 and s'  = 0. Hence, C ,  = - $ g  and s '  = i f i n .  When s = 4, s '  = 

( 6 )  Since ~ = $fi dt, integration yields In 1s + -1 = ! f i r  + C,. When t = 0. s = 1 .  Then 

ft/sec. 
ds 

v7=7 
C,  = 0 and In (s + n) = i f i f .  

2 
When s = 4, t = - In (4  + m) sec. fi 

15. A speedboat of mass 500 kilograms has a velocity of 20 meterlsecond when its engine is suddenly 
stopped (at t 0). The resistance of the water is proportional to the speed of the boat and is 2000 
newtons when t = 0. How far will the boat have moved when its speed is 5 meterlsecond? 

Let s denote the distance traveled by the boat f seconds after the engine is stopped. Then the force F 
on the boat is 

F = ms" = - Ks' from which s ' ~  = - ks' 

500 
- -~ -2000 = -4.  Then k = -s" / .s '  = k .  force 

mass 
To determine k ,  we note that at t = 0, s' = 20 and s" = - - 

du U 

dt 5 ds 
dt 

Now s" = - = - - , and integration gives In U = - i t  + C , ,  or U = C,e ' '. 
When t = 0,  U = 20. Then C ,  = 20 and U = - = 20e ' '. Another integration yields s = - 100e ' ' + 

When t = 0, s = 0; then C2 = 100 and s = 100( 1 - e- '  '). We require the value of s when U = 5 = 

c, . 

20e-"', that is, when e - ' ' 5  = a .  Then s = 100( 1 - a ) = 75 meters. 

Supplementary Problems 

In Problems 16 to 32,  solve the given equation. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

d 'y  
- = 3 x + 2  
dx ' 

d'y dy 
dx' dx 

x 7 - 3  - + 4 x = 0  

d2Y dY = z x  - - X z  

dx2 dx 

d2y dy 
dx2 dx 
- - 3 - + 2 y = 0  

d2y dy 
- + 5  - + 6 y = 0  
dx' dx 

Ans. y = i x '  + x.' + C , s  + C ,  

Ans. y = e" + e '' + C , s  + C ,  

Ans. y = sin 3x + C,x + C, 

y = x2 + C,x4 + C, Ans. 

X 3  

3 
Ans. y = - + C,e" + C,  

Ans. y = x' + C,xz  + C,  

y = C,e'  + C,e2' Ans. 

Ans. y = C,e-"  + C,e 3 '  

. 
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24. 

25. 

26. 

27. 

2%. 

29. 

30. 

31. 

32. 

33. 
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Am. y = C ,  + C,e" 

y = C,xex + C2ex 

y = C ,  cos 3x + C,  sin 3x 

Am. 

Am. 

Ans. y = e"(C, cos 2 x  + C,  sin 2 x )  

y = e2"(C1 cos x + C,  sin x )  Am. 

+ 4  3 + 3y = 6 x  + 23 Ans. y = C,e-" + C2eP3" + 2 x  + 5  
dr2 dr 

e3" 
y = C ,  sin 2x + C,  cos 2x + - 

13 
Am. 

x 2  d2y - 6 y = C,e3" + C,xe3" + e2" + - + - 
d i 2  dr 9 27 

7 - y = cos 2x - 2 sin 2x 
dr 

+ 9y = x + eZX Am. 

d 2Y Am. y = Cle" + C2CX - 5 cos 2 x  + 3 sin 2x 

[CHAP. 7 6  

A particle of mass m, moving in a medium that offers a resistance proportional to the velocity, is subject 
to an attracting force proportional to the displacement. Find the equation of motion of the particle if at 

d2s ds d's a3 
dt2 dt dt dt 

time t = 0, s = 0 and s' = U,. 

Ans. If b2 = c2, s = 

Hint: Here m - = - k ,  - - k,s or 7 + 2 6  - + c s  = 0 ,  b > 0. 

if b2 < c2, s = U, e-br sin m t ;  if b2 > c2, 

( 
v F i 7  
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by integration, 260 
in polar coordinates, 316 
of a curved surface, 451 
of a surface of revolution, 309 

Area: 

Asymptote, 40, 201 
Average rate of change, 73 
Average ordinate, 267 
Axis of rotation, 272 

Binormal vector, 424 
Bliss’s theorem, 252 

Center of curvature, 149 
Centroid: 

of arcs, 213, 321 
of plane area, 284, 316, 442 
of surface of revolution, 321 
of volume, 457 

Chain rule, 80, 386 
Circle, 31 

equation of, 31 
of curvature, 149 
osculating, 149 

Circular motion, 112 
Comparison test, 338 
Complementary function, 476 
Completing the square, 32 
Components : 

of acceleration, 166 
of a vector, 156 

Composite functions, 80 
Concavity, 97, 187 
Conditional convergence, 345 
Conic sections, 40 
Constant of integration, 206 
Convergence of series, 333 

absolute, 345 
conditional, 345 

Coordinate system: 
cylindrical and spherical, 456 
linear, 1 
rectangular, 8 
polar, 172 

Continuity, 68, 380 
Cosecant, 120 
Cosine, 120 
Cotangent, 120 
Critical numbers, points, values, 96 
Cubic curve, 42 
Curl, 427 
Curvature, 148, 174 
Curve tracing, 201 
Curvilinear motion, 165, 174 
Cylindrical coordinates, 456 

Decay constant, 269 
Definite integral, 251 
Delta neighborhood, 4 
Derivative, 73 

directional, 417 
higher order, 81, 88 
of arc length, 148, 174 
partial, 380 
second, 81 
total, 387 

Differentiability, 74 
Differential, 196 

approximation by, 196 
partial, 386 
total, 386 

second-order, 476 
Differential equations, 470 

48 1 
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Differentiation, 79 
implicit, 88 
logarithmic, 133 
of exponential functions, 133, 269 
of hyperbolic functions, 141 
of inverse hyperbolic functions, 141 
of inverse trigonometric functions, 129 
of logarithmic functions, 133, 268 
of trigonometric functions, 122 
of vector functions, 158 
partial, 380 

Direction cosines, 399, 402 
Direction numbers, 402 
Directional derivative, 417 
Directrix of a parabola, 43 
Disc method, 272 
Discontinuity, 68 
Distance formula, 10 
Divergence of a vector function, 427 
Domain of a function, 52 
Double integral, 435 

e, 133, 268 
Ellipses, 39 

of, 45 
Equations, graphs of, 39 
Evolute, 149 
Expansion in power series, 360 
Exponential functions, 133, 269 
Exponential growth and decay, 269 
Extended law of the mean, 184 
Extent of a graph, 201 

center, eccentricity, foci, major axis, minor axis 

First-derivative test, 97 
Fluid pressure, 297 
Focus of a parabola, 43 
Foci: 

of an ellipse, 45 
of a hyperbola, 46 

Force, work done by a, 301 
Functions, 52 

composite, 80 
continuous, 68 
decreasing, 96 
domain of, 52 
exponential, 133, 269 
graphs of, 33 
homogeneous, 393 
hyperbolic, 141 
implicit, 88, 394 
increasing, 96 
inverse, 79 
inverse trigonometric, 129 

Functions (continued) 
logarithmic, 133, 268 
one-to-one, 79 
range of, 52 
trigonometric, 120 

Fundamental theorem of integral calculus, 252 

Generalized law of the mean, 184 
Gradient, 417, 426 
Graphs of equations, 39 
Graphs of functions, 53 
Growth constant, 269 

Halflife, 269 
Homogeneous bodies, 284 
Homogeneous: 

equation, 470 
function, 393, 470 

Hyperbolas, 40 
asymptotes of, 40 
center, conjugate axes, eccentricity, foci, trans- 

equilateral, 49 

differentiation, 141 
integration of, 244 
inverse, 141 

verse axes, vertices of, 46 

Hyperbolic functions, 141 

Implicit differentiation, 88 
Implicit functions, 88, 394 
Improper integrals, 326 
Increment, 73 
Indefinite integral, 206 
Indeterminate forms, 190 
Inequalities, 2 
Infinite sequences, 58, 322 

general term of, 58 
limit of, 58 

Infinite series, 333 
Infinity, 60 
Inflection point, 97 
Instantaneous rate of change, 73 
Integrand, 206, 251 
Integral: 

definite, 251 
double, 435 
improper, 326 
indefinite, 206 
iterated, 436 
line, 427 
test for convergence, 338 
triple, 456 

Integrating factor, 470 



INDEX 483 

Integration: 
approximate, 375 
by partial fractions, 234 
by parts, 219 
by substitution, 207, 239 
by trigonometric substitutions, 230 
of exponential functions, 269 
of hyperbolic functions, 244 
of trigonometric functions, 225 
standard formulas of, 206 

Intercepts, 201 
Interval of convergence, 354 
Intervals, 2 
Inverse function, 79 
Inverse hyperbolic functions, 141 
Inverse trigonometric functions, 129 
Irreducible polynomial, 234 
Iterated integral, 436 

Latus rectum of a parabola, 43 
Law of the mean, 183 
Length of arc, 305, 321 
L’Hospital’s rule, 190 
Limit: 

of a function, 58, 380 
of a sequence, 58 
right and left, 59 

Line, 17, 402 
equations of, 19, 402 
slope of, 17 

Line integral, 427 
Linear differential equation of the first order, 470 
Logarithmic differentiation, 133 
Logarithmic functions, 133, 268 

Maclaurin’s formula, 367 
Maclaurin’s series, 360 
Mass, 284, 466 
Maximum and minimum: 

applications, 106 
of functions of a single variable, 96 
of functions of several variables, 418 

Mean, law of the, 183 
Midpoint formulas, 10 
Moments of plane areas and solids, 284 
Moments of inertia: 

of arcs, 213 
of plane area, 292, 442 
of surface of revolution, 213 
of volume, 292, 458 

circular, 112 
curvilinear, 165 
rectilinear, 112 

Motion: 

Natural logarithm, 268 
Normal line to a plane curve, 91 

Normal line to a surface, 411 
Normal plane to a space curve, 411, 424 

equation of, 91 

Octants, 398 
One-to-one function, 79 
Operations on series, 349 
Ordinate, 8 
Osculating circle, 149 
Osculating plane, 424 

Pappus, theorems of, 285, 213 
Parabolas, 39 

Parallel-axis theorem, 292 
Parametric equations, 145, 424 
Partial derivatives, 380 
Partial differential, 386 
Partial fraction, 234 
Particular solution, 476 
Plane, 402 
Point of inflection, 97 
Point-slope equation of a line, 20 
Polar coordinates, 172 
Pole, 172 
Polynomial test for convergence, 343 
Position vector, 398 
Power series, 354 

focus, directrix, latus rectum, vertex of, 43 

approximations using, 372, 376 
differentiation of, 355 
integration of, 355 
interval of convergence of, 354 
uniform convergence of, 355 

Principal normal, 424 
Prismoidal formula, 376 

Quadrants, 9 

Radian measure, 120 
Radius: 

of curvature, 148 
of gyration, 292 

Range of a function, 52 
Rate of change, 73 
Ratio test, 338, 345 
Real numbers, 1 
Rectangular coordinate system, 8 
Rectifying plane, 424 
Rectilinear motion, 112 
Reduction formulas, 219 
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Related rates, 116 
Relative maximum and minimum, 96, 418 
Remainder after n terms of a series, 350, 367 
Right-handed system, 398 
Rolle’s theorem, 183 
Root test for convergence, 344 

Scalars, 155 
Secant function, 120 
Second-derivative test, 97 
Sequences, 58, 332 

bounded, 332 
convergent and divergent, 332 
limit of, 332 
nondecreasing and nonincreasing, 332 

Series, infinite, 333 
alternating, 345 
computations with, 371 
convergent, 333 
divergent, 333 
geometric, 335 
harmonic, 335 
Maclaurin’s, 360 
partial sums of, 333, 354 
positive, 338 
power, 354 
remainder after n terms of, 354 
Taylor’s, 360 
sum of, 333 
terms of, 333 

Shell method, 274 
Simpson’s rule, 376 
Sine, 120 
Slope of a line, 17 
Slope-intercept equation of a line, 20 
Solid of revolution, 272 
Space curve, 41 1, 423 
Space vectors, 398 
Speed, 112, 165 
Spherical coordinates, 456 
Stationary points, 96 
Surface, 411, 424 
Surface of revolution, 309 
Symmetry, 201 

Tangent function, 120 
Tangent line to a plane curve, 91 

Tangent line to a space curve, 411 
Tangent plane to a surface, 411 
Taylor’s formula, 367 
Taylor’s series, 360 
Time rate of change, 116 
Total derivative, 387 

equation of, 91 

Total differential, 386 
Trapezoidal rule, 375 
Triangle inequality, 1 
Trigonometric functions, 120 

Trigonometric integrals, 225 
Trigonometric substitutions, 230 
Triple integral, 456 

differentiation of, 122 

Uniform convergence, 355 

Variables, separable, 470 
Vector(s): 

acceleration, 165 
addition of, 155 
components of, 156 
cross product of, 400 
direction cosines of, 399 
dot product of, 157 
equation of a line, 402 
equation of a plane, 402 
magnitude of, 155 
plane, 155 
position, 398 
scalar product of, 157 
scalar projection of, 157 
space, 398 
triple scalar product of, 401 
triple vector product of, 402 
unit, 156 
unit tangent, 159 
vector p;oduct of, 400 
vector projection of, 157 
velocity, 165 

Vector functions: 
curl of, 427 
differentiation of, 158, 423 
divergence of, 427 
integration of, 427 

angular, 112 
in curvilinear motion, 165 
in rectilinear motion, 112, 247 

Velocity: 

Vertex of a parabola, 43 
Volume : 

given by an iterated integral, 448 
of solids of revolution, 272 
under a surface, 448 
with area of cross section given, 280 

Washer method, 273 
Work, 301 




