Linear Programming in Excel

Linear Programming is a widely used mathematical technique designed to help managers and engineers in planning and decision making relative to resource allocation. Linear programming (LP) model essentially consists of 3 components.

- Decision Variables
- Objective function
- Constraints

This article shows how to develop LP model in Excel.

Example

Multipurpose plant is used to manufacture three products A, B and C from raw materials Y and Z. Amount of raw materials required, batch times and profits per batch are shown as below. Determine number of batches to be processed every week for each product to maximize the profit. Plant is operating for 150 hours per week. Raw material available per week is Y : 216 units and Z : 200 units.

Product	Profit per Batch	Plant time per batch	Raw mat Ba	erial per tch
		(hrs)	Y	Z
Α	30	5	18	20
В	8	10	12	5
С	15	20	5	10

Decision Variables

Number of batches for each product X_{A} , X_{B} and X_{C}

Objective Function

Maximize profit for production.

Maximize (30 X_A + 8 X_B + 15 X_C) Constraints

Total time available for production.

 $5 X_A + 10 X_B + 20 X_C \le 150$ Raw material Y available for production.

 $18 X_{A} + 12 X_{B} + 5 X_{C} \le 216$ Raw material Z available for production.

20 X_A + 5 X_B + 10 X_C <= 200 Excel Solver

	Α	В	С	D	E	F	G	Н	I.	J
19		Decision V	/ariables		Batches fo	or each prod	uct			
20					X _A	X _B	Xc			
21		Optimal n	umber of E	Batches						
22		Objective	Function		30	8	15			
23		Maximum	Profit		0					
24										
25		Constraint	ts					Actual		
26	1	Available	Time per V	Veek	5	10	20	0	≤	150
27	2	Raw Mate	rial Y		18	12	5	0	≤	216
28	3	Raw Mate	rial Z		20	5	10	0	≤	200
20										

Identify Cells E21,F21,G21 which hold values of decision variables.

Calculate objective function in cell E23 as following.

=SUMPRODUCT(E22:G22,E21:G21) Identify Cells H26,H27,H28 to hold values of constraints.

Cell H26 =SUMPRODUCT(E26:G26,\$E\$21:\$G\$21) Cell H27 =SUMPRODUCT(E27:G27,\$E\$21:\$G\$21) Cell H28 =SUMPRODUCT(E28:G28,\$E\$21:\$G\$21) Click "Solver" in Data ribbon (Excel 2010) and fill data as in below

screenshot.

Ser Obje	ective:	\$E\$23			
To:	◙ <u>M</u> ax) Mi <u>n</u>	© <u>V</u> alue Of:	0	
By Chan	ging Variable Ce	ells:			
\$E\$21:\$	G\$21				
Subject (to the Constrair	nts:			
\$E\$21 = \$F\$21 =	integer integer			*	Add
	= integer \$H\$28 <= \$J\$26	5:\$J\$28			Change
					Delete
					Reset All
				-	Load/Save
V Make	e Unconstrained	Variables Non-	Negative		
S <u>e</u> lect a	Solving Method	GF	G Nonlinear	•	Options
Solving	Method				
engine				are smooth nonlinea ary engine for Solve	r. Select the LP Simplex r problems that are

Add constraints by clicking "Add" Button. Number of batches

needs to be integer, click on add constraint and select cell E21,

F21, G21 and select "Int" to make these variable integer. After

adding constraints click Solve to get results.

X _A = 8		
$X_B = 4$		
$X_{\rm C} = 2$		
Profit = 302		

Example

A refinery has four type of crude oils available that have the yields shown in the following table. Because of maximum demand, production of gasoline, heating oil, jet fuel and lube oil must be limited as shown in the table. Find the optimum weekly requirement of crude oils to maximize the refinery profit.

			Product	Yield bbl / k	obl crude		Product	Maximum
			Fuel I	Process		Lube	Value	Demand
Products/ Crude	≥s	1 2 3 4 4(5)			4 (5)	\$/bbl	kbbl/wk	
Gasoline		0.6	0.5	0.3	0.4	0.4	45	170
Heating Oil		0.2	0.2	0.3	0.3	0.1	30	85
Jet Fuel		0.1	0.2	0.3	0.2	0.2	15	85
Lube Oil		0.0	0.0	0.0	0.0	0.2	60	20
Losses		0.1	0.1	0.1	0.1	0.1	-	-
Crude Cost	\$/bbl	15	15	15	25	25		
Operating Cost	\$/bbl	5	8.5	7.5	3	2.5		
	kbbl/wk	100	100	100	l	00		

Profit from crude oil 1 is obtained by adding value of products

formed and subtracting crude and operating cost.

Crude 1 Profit = 45(0.6) + 30(0.2) + 15(0.1) - (15 + 5) = 14.5 kSimilarly profits of 8.0, 4.5, 2.0, 8.5 k\$ for crude options 2,3,4,5.

Decision Variables

Weekly crude oil requirement X1, X2, X3, X4 and X5

Objective Function

Maximize refinery profit.

Maximize (14.5 X1 + 8 X2 + 4.5 X3 + 2 X4 + 8.5 X5)

Constraints

Limits on production of gasoline, heating oil, jet fuel and lube oil.

0.6 X1 + 0.5 X2 + 0.3 X3 + 0.4 X4 + 0.5 X5 <= 170 0.2 X1 + 0.2 X2 + 0.3 X3 + 0.3 X4 + 0.1 X5 <= 85 0.1 X1 + 0.2 X2 + 0.3 X3 + 0.2 X4 + 0.2 X5 <= 85 0.2 X5 <= 20 Limits on availability of crude oils.

X1 <= 100 X2 <= 100 X3 <= 100 X4 + X5 <= 200

Define the problem in excel solver and get following results.

	Α	В	С	D	E	F	G	Н	I.	J	К
31 32				X1	X2	X3	X4	X5			
32		Crude Oil Requi	ired								•
33		Objective Funct	tion	14.5	8	4.5	2	8.5			
34		Maximum Profi	t	0	k\$/ wk						
35					-						
36		Constraints							Actual		
37	1	Gasoline Limit		0.6	0.5	0.3	0.4	0.4	0	≤	170
38	2	Heating Oil Lim	it	0.2	0.2	0.3	0.3	0.1	0	≤	85
39	3	Jet Fuel Limit		0.1	0.2	0.3	0.2	0.2	0	≤	85
40	4	Lube Oil Limit		0.0	0.0	0.0	0.0	0.2	0	≤	20
41	5	Crude 1 Supply		1					0	≤	100
42	6	Crude 2 Supply			1				0	≤	100
43	7	Crude 3 Supply				1			0.00	≤	100
44	8	Crude 4 Supply					1	1	0	≤	200

JUIVEL FALAILIELEIS	Solver	Parameters
---------------------	--------	------------

x	

Set Objective:	\$D\$34			E
To: <u>O M</u> ax	. () Mi <u>n</u>	© <u>V</u> alue Of:	0	
By Changing Varia	ble Cells:			
4D422-4U422				E
\$D\$32:\$H\$32				
Subject to the Cor	nstraints:			

X1 = 100	
X2 = 100	
X3 = 66.67	
X4 = 0	
X5 = 100	
Profit = 3400 k\$/wk	