AnylLogic V

User’s Manual

L

© 1992-2004 XJ Technologies Company Ltd.

www.xjtek.com

AnyLogic V User’s Manual

Copyright © 1992-2004 XJ Technologies. All rights reserved.

XJ Technologies Company Ltd
AnyLogic@xjtek.com
http://www.xjtek.com/products/anylogic

i © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Contents
1. CREATING ANYLOGIC MODEL........uiiiiiiiiinniienninennineeeineeeseeeessessssseennns 1
1.1 ANYLOGIC MODELING LANGUAGEccccocoeviiiiiicicce, 1
1.2 STARTING ANYLOGIC ..., 2
1.2.1 W0rRing with Projectsceuvivieueuniniincisiiiicisisisscsissssce s sssssssesns 4
1.3 EDITING THE PROJECTccooiiiiiiiiici s, 8
130 PROJECE WIRADIW ... 9
1.3.2 PFOPFHEs Windom............c.ceveveeeucuveniicieiiinicieieisiee ettt 12
1.3.3 Arranging Windows ... s 14
1.4 MODEL ELEMENTS ..o ssssnaes 16
TediT PPOJECE.....oeeeiiiiiiiiicte ettt e 16
142 PaCRAGE .. 17
TA3 LDEAEY oo s 17
144 EXPOIITENL ...ttt 18
1.5 ACTIVE OBJECT ... sssaasne 20
150 STUCHHTE GIAGTAN. ... 21
1.5.2 Diagram editors. Generic OPErationscevvvevueuviriessmseninssnsssissssessisssessssssens 23
1.5.3 ACHVE OBJECt G00M........eniiiiiiicice e 29
1.5:4 EnCGPSUIALEA OUJECTS...........coveeeiiiiiiiiiciiciicieiisise it 34
1.5.5° ROOF ODJECE ... 36
1.5.6 ACHVE ODJECt ALttt 37
1.5.7 Active 0bject DeDADION.................c.cocucucucuiiiiiiiiiiiiiisisieiresis st 38
1.5.8 Active 0bJects iNIeraction.c.cocuvucueueueviniviviciiisiriiieeiisisieeetste et 40
1.5.9 Writing code for an active 0BJect..................ucuvuecucivinininciiiiiiciciiiccsicc s 43
1.5.10 Active 0bject inDEritance..............c.c.ccueucueueueueueueueissieiririsisisissis sttt 46
2. REPLICATED OBJECTS.......ciiiniiiiiiiiitiiieinnecniecsnecssescssssessssessssssssseens 48

© 1992-2004 XJ Technologies http:/ /www.xjtek.com iii

AnyLogic V User’s Manual

2.1 CREATING A REPLICATED OBJECTcccccocviiiiiiniiicnncccniccicins 48
2.1.1 Replication factor parameterization.....................ccecceeceeeisisississsisississsssnsnens 49

2.2 ACCESSING AND MODIFYING A REPLICATED OBJECT AT RUNTIME 49

2.2.1 Accessing replicated 0DJects froms code...............uuvuiuinciviniiniininiiicisiiicesccesn, 50
222 Adding/ removing objects to/ from a replicated 0bject.............uvwuveceneoninivicninieicncnan. 50
2.3 CONNECTING REPLICATED OBJECTS......ccccoiviiiniiiiiiniceeiecciaes 51
2.3.1 Connecting interface elements of replicated objects graphically..................ccvvwvecuvenevucnnenn. 51
2.3.2 Connecting replicated objects with 0ther 0LJects..............cowvviviniiiciviniiiiininiicsisisicnnn, 52
2.3.3 Connecting individual elements of a replicated 0Dject................ucucuvenicecuvniccerinicneann, 55
234 Connecting replicated objects programmatically......................ccvwveciviviiicivinicicnininicnnnnn. 56
235 Creating a 1ing 0f Cellscccuvuvivivivivininininininiiiiiiiiii e 57
23.6 Creating a to1us Of Cells..........c.cuouuviuiuviniiiiiniiiiiiiiisiiiiicisisisesc e 58
24 VIEWING AND MODIFYING REPLICATED OBJECTS AT RUNTIME60
2.5 ANIMATING A REPLICATED OBJECT ..o 61
3. PARAMETERS.cotiiiiitttiticcttecnrecnr e cesasesesss e ssss s esasssesseseas 63
3.1 PARAMETER TYPES ..o 63
3.2 DEFINING PARAMETERScccocciiiiiiiiiciiccie s 65
3.3 SETTING UP ACTUAL PARAMETER VALUES......cccccccoeviiiiniiicccens 068
34 MODIFYING PARAMETERS AT RUNTIME........ccccoooiiiiincniciciciens 70
3.4.1 Modifying parameters from Model EXPIOTer ..., 70
3.4.2 Modifying parameters from Anylogic animation.ccceveveeeecuvnenscserensocnennen. 70
3.4.3 Accessing and modifying parameters programmatically......................ccvvieciciniiinnnnniin. 71
3.4.4 Defining parameter change Dandlers..................cccccuvvieeevniniceninieesnicenssssenenn. 71
3.5 PARAMETER PROPAGATION.....cccceiiiriiiiiiiiiciciecie e 72
3.6 DYNAMIC PARAMETERS.......cccccoiiiiiiiiiiici s 75
FaSAUNG NOPIL PHIVIOR W DIFTRENT oD
3.8 OPTIMIZING MODEL PARAMETERSccccocoeiiiiiiicnccccecaes 76

iv © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

4. VARIABLES. ...ttt csssse s e ssas e ssssesssss s s ssssssssassanns 77
4.1 DEFINING A VARIABLEccocoiiiiiiiiiiiiciiciciice e 77
4.1.1 Initializing a scalar 0ariable......................c.ccvvevivivenivisicisiiiicccciesceeeeee e 80
4.1.2 Viewing and modifying scalar variables at runtie....................ccvecucivivicncuvinicecenrinians 81

42 BEQUATIONS ...t 87
43 VARIABLE SHARINGcccoiiiiiriiiiicc s 87
431 Variable sBaring 171es..................cccviviiiciiiviiiiniiiiiiciics e 88
4.3.2 COnnecting Dariables...................ccccucuvuvuvivivininivinininisinisisisiiccscsc e 90

44 CHANGING VARIABLES AND REACTING TO THEIR CHANGES 95
5. EQUATIONS.....tiititteititictte et cse e s e ss e sass s e sss s e ssssssssssssnns 98
51 EQUATION TYPES ..o 98
5.2 DEFINING AN EQUATIONcccccoeiiiiiiiiniiniiiicesssssssssssssaes 103
5.3 FUNCTIONS. ... 105
531 Predefined fUnctionsc.covcucuviniiiiininiiiiiiiiicsiises e 106
532 USING GHICUHI-SENSC.....eeneiiiiiiiiicicisiee sttt 108
5.3.3 LOORUD FADIES........ooueeiiiiiiiiiiiiiicciis 109
534 Mathematical fUNCIONS..............c.cccucueuvuvivivinisinisisisieicieeet ettt 114
5.3.5 ALGOTItIINIC [UNCHIONS ...ttt 115

54 ALGEBRAIC LOOPS ..ot 117
5.5 RUNTIME ERRORS CAUSED BY EQUATIONS........ccccoiiiieieiaes 118
5.6 NUMERICAL METHODSccccooiiiiiiiiiiiiiiiiciieiieiseiseicsseseiesssssessesesaes 118
6. MATRICES AND HYPER-ARRAYS.......cciiniiiiiiiiiintieiiieccnnecinecnnnecsnneens 121
0.1 MATRICES ...t 121
G101 DEfINiNg @ mMaAITiX ...t 121
6.1.2 Setting an initial valne for a MAIIIX................ccvwveuviviniiiinniniicisiriiccssssecsss s 121
6.1.3 Accessing and modifying a matrix from Model TV iewer...............ccovvvuvivininciniinncnnnnn. 123
6.1.4 Accessing and modifying a matrixc frons COdecuwucuvevinvvucuvinincniininiesssinicenen. 124

© 1992-2004 XJ Technologies http:/ /www.xjtek.com v

AnyLogic V User’s Manual

0.1.5 USing matrices in eqUATIONScccuvuvuvieuiinisisinisisisisisisisisisisiii s 128
0.1.6 WOrRIng with MAITiCesccuvuviiuviviviiiiiniiiiicisisinicesiss s 130
0.2 HYPER-ARRAYS ..o 132
O.2.1 ERUDICTALIONS ... 133
6.2.2 Defining variables of hyper-array ppecvvevivievcicicciiicieceeeeeeeenennns 134
6.2.3 Setting an initial value for a DYPer-arraycvvnivciiininiiiininieeeenn, 135
C.2.4 AGITGALION FUNCIIONS ...ttt 139
6.2.5 Using hyper-arrays in eqUAtIONs...............ccccuvuviveeususisiiisisisiscssisissssssisssssesssssaesnes 140
7. MESSAGE PASSING......uttiitiiiiiiiiiieiirciireiieeciressseeessseessssessssessssesssseens 144
7L PORTS o 145
7.1 Adding a port to an active 0bJect class................oucueiviiiiiviiiiiiiiiii 145
TA.2 POTE QUEC ...t 149
TA.3 COMMECIING POFES ittt s 150
704 Connecting ports 10 STAtechartsc.c.vvvevucuvivivecinininicisisisisesistsessssssesessssesessnns 153
715 MESSAGE FOUIING FULES ... 155
7.1.6 Sending and processing MmMeSsSages............vuvcucuviviiicuiiniiiiiiiiiise s 156
717 RECOIVING IMESSAGES ...ttt s 159
7.1.8 Inspecting port state Gt TURLIIEcucucucuvuvueiiiiiiieisisiiiiiiiiicicisisssss s 161
7.2 MESSAGES ..o 163
720 Defining message classes.......uvcvivuiuiuiiiiiiiiiiiiiiiiiiiii s 163
7.2.2 Cloning messages to avoid sharing violationcwevivvcvcnininicsisinisnssinninns 166
7.2.3 Messages encapsulating/ inheriting 0ther messagesc.cnveeveecereuneeseesereuneneseceneaneanes 166
7.3 DEFINING CUSTOM PORT CLASSES.cccccoiviiniiiniiiiccniceniens 167
730 Predefined Port classes.............ouucuviiiciciniiiiciiiiiciiic s 167
7.4 MESSAGE PASSING USE CASES......ccooiiiise s 172
7.4.1 Filtering messages by message coNtents...........ccuvuvuvuvuvivivvinirirenisinisisisssssssssssssenenes 172
7.4.2 Filtering messages by message 1pe.............ccuvevivucuviviiicivininiseisinisesisisesessssenesinns 173

vi © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

743 Sending a message with a Gelay ..o 175
744 Sending a message with a delay dependent on the message field.................ccvvuvcuvunnnne. 177
745 Getting information on connected ODJEcts..............ouuvvvcuiuviviniiiiniiiiicisiiisiessisssessinns 178
74.6 Sending m1essages 10 all FECIPIENESc.cevevvecucuvericecuniriieieieineeee e 181
74.7 Sending a message to a specific recipient | a group of r6CiPIeNtS.......ueceveereecerenniniriennenne 182
7.4.8 Verifying port connections at YURLMC.c.cvuvuvevivivivivivisisisisisisiisisssssssssieaenes 192
74.9 Defining message class CoNSIUCLOSooovuviviiuiiviviniiiniiiiicsisiicssssssssssessnans 195
7410 Modeling a ILIFO GUEHe ...ttt ssessaenes 196
74701 Modeling a priority GUEHEc.cccueueueueueuiuieniiieiiieieieieieieieeiesieissesesss e 199
74702 Connecting POrts Gt TURLIIEccuvuvueuiuiuiiciiiiiiiiieiiicisieeeie s 200
7.4.13 Modeling a system with dynanzically changing Structure...........wcevevvvvcecccccenenenenes 204
7.4.14 Implementing instantaneous data feedDackcceveveeveeuvuvinicueerinieenriniseneeneans 205
7.4.15 DImplementing instantaneons message eXcHAnGecuevevevevevererereeereeievsesvsveseceseenenenes 206
7416 Message passing in Enterprise Library ... 211
TS 1 01 1 20 3 TR 218
8.1 DYNAMIC TIMERS. ..ottt ettt eaes 219
8.2 STATIC AND CHART TIMERSocooiiiiiititctcetceicieieieieierereneiesesesesesesesenes 220
9. STATECHARTSouttttttttttittttiiitittieieieeeieteeetstieesstttttttttttttttttttteetteetsmseesssssee 222
9.1 CREATING A STATECHART ..ottt sesesesesesesenes 222
9.2 STATECHART DIAGRAMcctstriiiininecetntreecttrteeete ettt 224
9.3 EXECUTION ORDER......coiiieinncttnteeicctereeetes et 236
9.4 TRIGGERING A TRANSITIONcoosttiiiiiiietceeiticieieiererereserenenenesesesesesesesenes 238
941 Dmmediate QGeringcucvvvvecuiiviiniiiiiiiiiciiiiiic e 239
9.4.2 TTIGEErING GIIer @ LIIEOUL ...t 240
943 Change Vent 1igger............cwuvwvvvevuviviiniiiiiiiiiiciiiire e 240
9dd STGNAL CVENL ...t 243
9.5 OBSERVING STATECHART AT RUNTIMEcccccceceuiiiiinnnnnnnininiecnseenes 247

© 1992-2004 XJ Technologies http:/ /www.xjtek.com vii

AnyLogic V User’s Manual

9.5.1 Animated statechart Qiagrant....................cceveveviviviiiviniisiiiisiiisiss s 247
9.5.2 Debugging @ SIatechart............c.ueveveveveveviviririsisisisisisissesssssseeeeseesesesesesesesesesenenen 248

10. STOCHASTIC MODELINGccooviiiiiiiiiiirintteenieeniiecssnecssseessssessssessssseens 250
10.1 RANDOM NUMBER GENERATOR.......cccoviiiiiiiiiiciciciceceisiesienaes 250
10.2 PROBABILITY DISTRIBUTIONS.......cocoiiiiiiiiiiiiciiciieiiciscesisiaans 251
11. RUNNING AND OBSERVING A MODEL........ccoiiiiirinirecnirecnieennneeennnes 258
11.1 RUNNING THE MODEL WITH ANYLOGIC........ccceceuiviviiiiiiiinicinicisicians 259
11.1.1 Creating and destroying the model..................ccccvuvevcuvevinicvinniicrniccsnieceeeeens 259
11.1.2 Controlling the model exXecution.................c.cecuvivucuviviiiiiiiiiiiiiiiiiccciisens 260
11.1.3 Setting up model simnlation SPEEd...................ccuvuveveucueevineciviriniecieiriceisiseeeeesssens 264
11.2 VIEWING AND CONTROLLING THE MODEL........cccccoccviiinininicnicnians 265
T1.2.1 Model EXPIOTET ...ttt 266
11.2.2 Animated SUCIUIE TIATIANuveveeeeeevivirisiririririsisieiseststtttcesee e sesesens 270
11.2.3 Animated statechart diagram.........................ccvivvvincuviviniiciniiiccinisiccsisccessnns 273
T1.2.4 InSPECt Windomceevveieiiciviiiiiiiiiiicicisiccesc s 275
T1.2.5 10G WIRAOW ...t 276
11.2.6 ChArE WinAOMW ...ttt 278

11.3 DEBUGGING THE MODELcccccoosiiiiiiiiiniiiciciecicsesiecesseaas 280
11.4 SETTING UP MODEL EXECUTION PARAMETERSccccceeiinviniiiriinas 281
11.5 OPTIMIZING A MODEL.....ccccviiiiiiiiiiiiniiniisiesieeisese e 281
12, ANIMATION....uiiiitiiiitiiiiiieiiiie e esss s sssssssssessssesssssessssssssssesas 282
12,1 ANIMATION CONCEPTS ... 282
12.1.1 Reflecting the state of an object in GUIMIALION.c.ccvvevvccciiiieecieieieeieeians 283
12.1.2 Animating hierarchical mOAels............c.c.cevevevevevevevivivinisiisisiicicccceeeeeeeieenenenenns 285
12.1.3 Interactive control Of Gnimationeiveeeeeeesesessssssseeeeesesesesesenesenens 287
12.2 ANIMATION DIAGRAM ..o 287

viii © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

12.2.1 ARIHALION CATLOF ... 287
12.2.2 ARimnation SDAPEScccucucucuiuiiiuiiiiiiiiiiiicieisieisieisisisisis s 292
12.2.3 IBICAIOFS ettt 299
T2.24 COMIOLS ettt 302
12.2.5 Writing code for an animationccvinicninininsisinississsesssssnns 306
12.3 3D ANIMATION DIAGRAM ..o 307
1231 3D anim@tion eafitoruuvicinicinicisicisiicis s 307
12.3.2 3D animation SHAPESccccucucucueucuvieisieinisisisisisisisis st 312
12.3.3 3D animation rendering Principles...............owcevevivucuvivinecusisinisieisinisessisssesessssens 322
1234 Managing @ camera........................ccccueucueueieusususisisisisisisisisisissssisss s 322
12.3.5 Writing code for 3D animmtation.......................cccveeccevinicsininiccisisisessisisesessissans 325
124 RUNNING ANIMATION ...c.coiiiiiiiiiiiiiiiicciieisssssis s 326
12.5 RUNNING 3D ANIMATIONooiiiiiiiiiiiiiicicsc s 327
12.5.1 Moving and rotating the Gnimation........................ccvvivecvivinnesininisssinsssssssssnns 328
12.6 CONFIGURING AN ANIMATION RUN.....cccooeiiiiiiiiniciniciciciciniines 328
12.6.1 Setting up animation UPAALe TALEc.ceveveevecuvirivucuiisiicisisisiscisissse s sessssens 329
12.6.2 Setting up animation anti-aliasingeeeeeeeeeeeeeessssscseeeeeeseenesesesenns 330
13. SIMULATION SETTINGSouiiiiiiiiiiintieiniteiniecctieccnteccseeessssesssseesssssens 331
13.1 SIMULATION SPEEDccoiiiiiiiiiiiiiiiiiiiesiss s 331
13.2° MODEL REPLICATIONS.......cooiiiiiiiiiiicccc s 333
13.3 SIMULATION STOP CONDITIONSc.ccceviiiniiiniiiniciieiicsieiceicieisieisienans 333
13.3.1 Defining a model time stop condition...................ccveuvuviviieivininincniiniiicisisicceieennns 334
13.3.2 Defining additional stop coNGifIoNsccuweeuviviiucuvivinicisisisiccisisisessisssessssssens 334
13.4 CONTROLLING MODEL REPLICATIONSccoeviiiniiiinicinicinicsicieieiiaes 337
13.4.1 Whriting code to be executed between model replications....................ccvvcuvivicvcuvininnnne. 337
13.4.2 APIL 10 cOnrol FePLICATIONs............c.cucuvuvueuiiiiiieiiirisisisisirisisis sttt 337
14. DEBUGGING A MODEL.......ccoiiitiiiiriniieeniieeniieennieeesnseessesssssessssessssseens 340

© 1992-2004 XJ Technologies http:/ /www.xjtek.com ix

AnyLogic V User’s Manual

14.1 CHECKING MODEL SYNTAX ..cittteireiernenieeresseseeeseseeseseeesesseesesessenseesesseneae 340
14.2 VIEWING AND MODIFYING ANYLOGIC EVENTS.......ccccovneinrciennnne 342
14.2.1 Event processing at the Simlation enginecccveeeevevicicrvivinicnusinisensisinsnns 342
14.2.2 EVCRIS WIRAOI ...t 346
14.3 BREAKPOINTS ..ottt ssaenen 348
144 LOGGING A MODEL....ootiiiiiiiccininieeieniecieeeee st ssesssesessasesesesessenes 349
1447 10G WIRAOW ... s 349
14.4.2 WEING 10 1095 ettt 351
14.5 RUNTIME ERRORScoooiiiiccirccierieeieeeeee et sseaenen 351
1451 JaD@ €XCOPIIONS ..ottt 352
14.5.2 "TDrowing runtinie er1o1sc.c.ccucucucueueususinisisisisisisisisisisis sttt esesns 352
T4.5.3 STHUIATION CITOTS ...t 353
14.6 DEBUGGING JAVA CODEcosiiiiiicienreceeeeeereee et ssesssesesenns 353

15. CREATING A MODEL WITH DYNAMICALLY CHANGING STRUCTURE
354

15.1 MANUAL CREATION AND DESTRUCTION OF ENCAPSULATED

OBJECTS ..o 354
15.1.1 Writing code executed on object creation and destruction......................ceecevevvcncuninnnnnnn, 355
15.2 DYNAMICALLY CHANGING CONNECTIONSccoooniiiiininiciniciiciians 357
16. OPTIMIZATIONuuuiiiiiiiiteieiieietieccnteecitesetneessne s anesssseessaesssssessssnessssnenns 358
16.1 SETTING UP AN OPTIMIZATION.....cccouiiiiiiiniiiiiiicsiicicccsssniaes 359
16.1.1 Creating an 0plimigation eXPerimentuuvwveviviivieiiincsciscnsiesesesesssssssssssssns 359
16.1.2 Defining the 0BJective...............cucucucucucuiuiiiiiieieieieisisisisisissis sttt 361
16.1.3 Defining optimiartion Paramerersveviviviviciisiniicscsscsssssssssssssssssssssns 362
16.2 CONSTRAINTS ..oiiiiiicc s 365
16.2.1 Defining a conStrant..............ccucucueuiueueicisisinisisisisisisisissisisissssssssssssss s 365
16.2.2 Feasible and infeasible SOIMIIONS....................cocveucuviviiniiiiiiiiiniiccciiccc s 366
16.3 OPTIMIZATION SETTINGS ..o 367

< © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

16.4 RUNNING THE OPTIMIZATION....c.cooirrrrrrirrririrereereeeeeeeeeseeeiesenenenenenen 369
16.5 HOW TO INCREASE OPTIMIZATION PERFORMANCEccccevvvivrurunee. 372
16.6 TIPS AND NOTESccoiiiii e 374

17. COLLECTING DATA AND PERFORMING STATISTICAL ANALYSIS 375

17.1 COLLECTING DATA IN DATASETS ..o 375
1711 Defining a datasercuuiuiiciviviincininiiiciiisiiccsisssss s 377
17.0.2 Dataset BIPES......cucuvueuiuiuieiiiiiiiiiiiiiiiiiiciicicii e 378
17.1.3 Intervals associated With Gatasers................ceucueiviincisisiniinsisicsceisisscessssssessssssnns 380
1704 STQLSHCS DIOCR ..o 380

17.2 COLLECTING DATASETS FOR VARIABLESccccecoiiiniiniiniiniciciicans 381

17.3 VISUALIZING COLLECTED DATA ...c.ccooiiiiiinicicccc i 382
17.3.1 Visualizing collected data in Model 1V iewer................c.ccvvviuviviicininiiiniiiiciinininnnns 382
17.3.2 Visualizing collected data in Anylogic anima@tion....................cccveveeecevenenecvenenecnns 389

17.4 EXPORTING STATISTICAL DATA TO OTHER APPLICATIONS................ 390

18. STANDALONE MODEL RUNNING......cccoctirrtiiintiiintieinniecnnreccsnecesneeessnees 391

18.1 RUNNING A MODEL FROM THE COMMAND LINE........ccccccoeiviiiiniiininnnns 391

18.2 RUNNING A MODEL AS AN APPLETccoviiiiiiniiiiiciciicicicieisines 392
18.2.1 Configuring your Web browser to view Java applets.................ccocvuvuvevuviviiniiinivninninnne 394

18.3 CONTROLLING THE MODEL SIMULATIONccccccostiiniiineinienicinicinienniaes 394
18.3.1 Controlling the model Simnlation.......................occevvvcuviviniinciniciiiiciiiccisiccenens 395
18.3.2 Setting up model SPeed..................coocucuviviiiiiviniiiiiiiiniiiiisiicei s 395
18.3.3 CONfIGUIING QNITNALION. ... 396

19. LIBRARIES AND EXTERNAL FILESccouiiiniiniiininenirenneennneennneen. 399

19.1 EXTERNAL FILEScoiiiiiiiiiiiiiiiciii s 399

19.2° LIBRARIES ..ot 400
19.2.1 Creating @ liDIary................cccvuvuvivuiuiiviniiiiiiiiiiiciisiscsissssss s 400
19.2.2 Working with OIaries...................ccvvvvivivivinininnininisisisisiisiccccsssscans 401

© 1992-2004 XJ Technologies http:/ /www.xjtek.com xi

AnyLogic V User’s Manual

20. DATABASE SUPPORTccttiiettiietieintienciiesnitescntessteeeesee s saaesssnesssaessssnes 404
20.1 INTRODUCTION ..o e 404
20.2 CREATING A DATA SOURCE........coeiiiiiiiciicisincc s 405

20.2.1 Associating with a database file...................ocvviiuiiviviiiiiiiiiiiiiiiiicneene, 406
20.2.2 Associating with an ODBC data Source............c.cvvevevevevevevesirisisinisisiieiccccceccaenes 407
20.2.3 Viewing data SOUICe CONIENL...........ecvvvnieeuiiininciciiniicisiicee s 411
20.3 WORKING WITH DATA SOURCES ... 412
20.4 CUSTOM QUERIEScocoosiiiiiiiiiiinicinit et 413
20.5 TIPS AND NOTES ..o 414

21. CUSTOMIZING ANYLOGIC Ul.......uuiiiiiitiiiiieiiieiniecnnnecnnneesnneesseeesnnes 415

21.1 CUSTOMIZING TOOLBARS AND MENUSccccccoviiiiiiniiniiicniccsicins 415
2107 T000bars Page...............ccucucuvucucuviviviviciiiiiiiiiiicisisisisi e 416
21.1.2 COMMANGS PAGE ... 417
21.1.3 KeYDOGTA PAGE ...ttt 419
2104 MRt PAGE ... 420
2115 OPLIONS PAGE ...t 421

21.2 CUSTOMIZING COLORS.cocociiiiiiiicinicisicisiciiesise et 422

22. PROJECT BUILDING. MODEL INITIALIZATION AND TERMINATION

ORDER......coitiiiiiiiiiiiitiieciiniecirre s essssse s esssssssesssssassessssnsssesssssssssssssssssssnns 424
22.1 BUILDING A PROJECTcoviieiriceneeerereeieieeseeee e ssesesesesessssenes 424
2211 Project DUlding StAges............c.c.cccueueueueueuvivinininirisisisieie sttt sesesenes 424
22.1.2 BUIIING G PIOJECT ... 426
22.1.3 Project Duilding OPHioNs..............c.c.covvvecuviviiiciiiniiiiicisiiccsicc s 426
22.2 MODEL INITIALIZATION AND TERMINATION ORDER........cccccoevceueunnee 428
22.2.1 Model initia@ligation OFQer.................c.cccuvvicucuveninieieeninieesisteees st 428
22.2.2 Model 1rmtination O1derc.ccoueeueuesenrsieieisiniriseeesisisieieestsssssseseesessssesesesnens 429

23. THREADScooitiiiiiiitteiinintetiiitecnnnsecsssseseessssesssssssessesssssesssssssssssssssnseses 430

<ii © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

© 1992-2004 XJ Technologies http:/ /www.xjtek.com xiil

AnyLogic V User’s Manual

Creating AnyLogic model

1.1

AnyLogic modeling language

The modeling language of AnyLogic is an extension of UML-RT - a collection of the best
engineering practices that have proven successful in the modeling of large and complex

systems.

The main building block of Anyl.ogic model is the active object. Active objects can be used to
model very diverse objects of the real world: processing stations, resources, people,

hardware, physical objects, controllers, etc.

An active object is an instance of an active object class. When you develop an AnylLogic
model, you actually develop classes of active objects and define their relationships. You can

also use ready to use active object classes from AnyLogic libraries.

Active object classes map to Java classes. Therefore, they allow inheritance, virtual methods,
polymorphism, etc. Object-oriented modeling brings evident benefits. Modeling with classes
provides for structural decomposition and active objects reuse. Once an active object class
with the required structure is defined, you can create multiple active object instances in your

model. Class hierarchies allow further expansion of these ideas.
Active objects inheritance

Being Java classes, active object classes may inherit one from another. The subclass inherits
the interface of the superclass and may add specific structure elements and methods.
Inheritance permits the reuse of code and supports easy model modification. Once you have
defined the fundamental class, representing an automobile, its general characteristics can be

inherited by subclasses, representing sport cars and trucks.

Actually all objects of the real world have complex structure. Decomposition is an essential
principle in order to manage and master the complexity of large systems. Breaking up a
whole system into parts, which may then be further decomposed, helps to overcome the

limitations of the human cognition.

Hierarchical decomposition

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 1

Chapter 1. Creating AnyLogic model

1.2

AnyLogic models are hierarchically decomposed, since active objects may encapsulate other
active objects to any desired depth. This enables you to decompose a model into as many
levels of detail as required, since each active object typically represents a logical section of
the model. Each Anyl.ogic model has a root active object which contains encapsulated
objects which, in turn, contain their encapsulated objects, and so on. This way, the
hierarchical tree of active objects is constructed. Encapsulation also enables you to hide all

the complexities of a modeled object.
Structural decomposition

AnyLogic models are structurally decomposed since they have well-defined interaction
interfaces. Active objects interact with their surroundings solely through boundary objects.
Connections between objects are conveniently described by defining connectors which
model physical coupling. This de-coupling of the internal object implementation from any

direct knowledge about the environment makes active objects reusable.
Alctive objects reuse

Besides the use of inheritance, reuse of modeling knowledge is supported by use of libraries
containing model classes. AnylLogic lets you create reusable libraries of active object classes
developed for some particular application area or modeling task. Libraries provide for better
reuse of classes across multiple models. A class can be developed and stored once and used

in several projects.

Starting AnyLogic

You develop and run models using Anylogic development environment — hereinafter
AnyLogic. First, you start Anylogic and create a new project or open an existing one.
Second, you build up the model using constructs provided by AnyLogic. Third, you run the

simulation.

This section provides the reference on how to start AnylLogic.

2 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To start AnyLogic

1.

2.

Invoke the AnyLogic shortcut from Windows S7z7¢ menu (by default it is located on
the following menu path: Start| Programs | AnyLogic 5.0 | AnyLogic).

Registration wizard appears. To build models with AnylLogic you should have an

evaluation (limited time) or fully-functional permanent key.

» To evaluate AnyLogic

1.

Obtain an evaluation key. If you have downloaded AnylLogic for evaluation, the key
is sent to you by e-mail. Otherwise, open the web-page

http://www.xjtek.com/products/anylogic/evaluate/ and fill out the form. The key

will be sent to you by e-mail.

With the registration wizard opened, enter the evaluation key received by e-mail by

selecting the Enter permanent or evaluation ey option of the wizard.

For subsequent runs of AnylLogic, you can select the Continue with evaluation version

option.

» To obtain a fully functional AnyLogic key

1.

With the registration wizard opened, select the Send request for permanent key option
and follow the wizard instructions. You will be prompted to send the request

information to the request processing center by e-mail.

When you receive your personal unlock key by e-mail, open the registration wizard
again (if necessary, point to the He/p menu of AnylLogic and select Register product ...),
then select the Enter permanent or evaluation key option and enter your personal unlock

key.

Once you complete the product registration wizard, AnylLogic is started (see Figure 1).

» To start AnyLogic and open a particular project

Click on the AnyLogic project file (extension .alp, icon =) in the Windows Explorer. If

you already completed the project registration wizard, Anyl.ogic should be running. If not,

complete the product registration wizard and click the icon again.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 3

Chapter 1. Creating AnyLogic model

1.2.1

nirpurt Terminal - AnyLogic =lEx]

S Fle Edit ¥ew Insert Draw Model Tools Window Help

O SHd s pEX A Be@FXiPPOIE (Ul ke x caM[wideow

e o8 | | & oo BRI 0 LGR O ®E 0@ 000w [P e El o] [v]) e Lo
2 O F AN | T[] B @ EEEe SREGYE LR G

[Root |?&Rout | 4 b | [Propertiss
General | Replication | Description |

a x|

=i Classes =
Eﬁ airport_terminal
E@ BaggageHall

Mame: I driveTruckCCud

Type: com, xj.anylogic lib.enterprise

© . aircraftLanding:

p

H Code
B animation

Bl @ BagggageService
L [E code Parameters:
: L animation Mame Walue ‘
#-§f BusStop onEnter
onExit

delayTi.. Root.driveTime[Root....

capacity 100

statsEr.. false

animati... animation_pathDriveC...
animati... Animator. MOVEMENT

animati . tue

B animation
-5 animation3D
if) CheckedInBaggac

schedule without_schedule

B animation

Gate

Code

B animation
% gakeCantrol

=) @ GateArea

I Code

L animation

@ Passengersarrive

i Code

fif) PassportControl

f Code

B animation

™ Exclude from build

= @ Restaurant
H Code - || [utput 2 % ¥ show name
4| | B Description | Location
¥ futa create
@:Mudel & Libraries |
[Ready I I [I I

Figure 1. AnyLogic

Note that clicking on a model file does not result in starting another instance of AnyLogic.
Instead, that file is opened in the same AnylLogic instance (you are prompted to save the

already opened file if necessary).

Working with projects

When opened, AnylLogic displays the S7art Page (see Figure 2). The Start Page prompts you to

create a new project, open an existing one, or open one of the state-of-the-art AnylLogic

examples.

4 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

~ioix
E D File Edit Wiew Insert Draw Model Tools indow Help

| EEE | 4 BE X |4 G & DEIp Ik S#

ER O oG] |G emE S iR 0 AR O N®E®

0RO @T & AN EF | P G W obs | S W O

DStart Page | b X

. 1
Projects Examples Online Resources

Open recent project

Airport Terminal
nufacturing and Logiskic otk Terminal, alp

Last Modified: 01.12.2003 14:54

Leader Election
Last modified: 01.12.2003 11:42

Schelling Segregation
Last modified: 01.12.2003 11:47

C13 Crane and embedded control
Last modified: 01.12.2003 11:32

a Mew Project
Multiple Call Centers

E T Last modified: 01.12,2003 11:32

[bone I I [I I |

Figure 2. AnyLogic Start Page

A project is a workspace for developing your model. To manage AnylLogic projects, use
both the S7art Page and AnylLogic File menu.

» To create a new project

1. On the Projects page of the Start Page, click the New project button, or
Click the New ' toolbar button, or

Choose File| New... from the main menu, or
Press Ctrl+N.
The New project dialog box is displayed.

2. Specify the the name and location of the new project.

© 1992-2004 XJ Technologies http://www.xjtek.com 5

Chapter 1. Creating AnyLogic model

3.

4.

Specitfy whether you want to create a folder for the project.

Click OK.

» To open an existing project

1.

On the Projects page of the Start Page, click Browse button, or
Click the Open = toolbar button, or

Choose File| Open... from the main menu, or

Press Ctrl+O.

The Open dialog box is displayed.

Browse for the project file you want to open,
Double-click this file, or
Click it and click Opern button.

AnylLogic provides easy access to recently opened projects.

» To open a recently opened project

1.

Choose the project you want to open from the project list in the bottom of the
AnyLogic File menu, or

Click the Projects tab of the Start Page, click the project you want to open in the list of
recently opened projects and click Oper button.

If you are working with one particular project, you can tell Anyl.ogic not to display the S7arz

Page on AnylLogic startup, but instead to open the last project you were working with.

» To open last used project/the Start Page on AnyLogic startup

1.

Choose Tools | Options... from the main menu.

The Options dialog box is displayed.
On the Miscellaneous page, select/clear the Reload last project on startup check box.

Click OK.

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

AnylLogic standard distribution includes several state-of-the-art examples, organized by

categories (education, logistics, mechanics, traffic, etc.). Have a look at these examples to get

an idea of how to develop your own models.

» To open an AnyLogic example

1.

4.

Click the Examples tab of the Start Page.
The list of AnyLogic examples appears in the right panel of the S7ars Page.

If needed, choose By category option to sort examples by AnylLogic categories.
The list of example categories appears in the right panel. To show all examples in
the category, click the plus icon to the left of the category item.

If needed, choose Sorted alphabetically option to sort examples alphabetically.

Click the example item.
The example description is displayed.

Click Open button.

From the S7art Page, you can examine AnylLogic online resources and documentation.

» To view online resources

Click the Online Resonrces tab of the Start Page.
The list of AnylLogic online resources and documentation appears in the right panel
of the Start Page.

Click the online resource you want to examine.

Click the Open button.

P To save the current project

1.

Click the Save =l toolbar button, or
Choose File| Save from the main menu, or
Press Ctrl+S.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 7

Chapter 1. Creating AnyLogic model

» To save the current project with a new name

1. Choose File|Save As... from the main menu.

The Save As dialog box is displayed.
2. Specify the new name and location of the project.

3. Click the Save button.

» To save all projects

1. Click the Save A/E toolbar button, or

Choose File|Save A/l from the main menu.

» To close the current project

1. Choose File| Close from the main menu.

AnyLogic can open one project at a time. However, it is possible to run several instances of

AnyLogic and open different projects in different instances.

» To run two or more AnyLogic instances simultaneously

1.3

1. While running Anyl.ogic, invoke .4nylogic shortcut from Windows S7art menu.
2. Inanewly opened instance of AnylLogic, open the desired project.

This is the way to work on several projects simultaneously and to copy classes from one

project to another.

Editing the project

AnyLogic development environment is built up to the state-of-the-art Windows UI level. It

features:
e Customizable windows, toolbars, colors, images

e Drag and drop editing

8 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

e Diagram zooming

e Easy navigation throughout the project using the classes tree

e On-the-fly checking of types, parameters, and diagram syntax

e Graphical errors highlighting
You edit the project using several Anylogic editor windows. When a new project is created,
the Project window and the Properties window are displayed (see Figure 3). The Project

window is used to create, view and manipulate model elements. The Properties window is

used to view and modify the properties of model elements. This section gives the description
of these windows.

al2lx) N
B 4@ gem goen (rew oo [wh wndos b P.num_atlon
1= I &% |0 aanF|ieen s J [= o o w B | b dh editor
|92 spaavoks ¢k [H: 5 e g OANEBOE @
Frogeat % Carshmmmain | ot | Batsen | [Cnken o | Propee
H"ﬂ‘."“ - | Gl | o
a8 sk
Strupture S & Earaluem
editor -—.___&“ Properties
PeTeried Fvent] :
%:‘ﬂ"‘ I L] :// window
Qm kftes inicialize mcci
£ Srad Nefzze atsp actisn
i Expermmaniy
ACtrs atep astien
Nede actiosm
Project
window
: Iapzac Code
LRPEEE J4h, pplet, *) / window
impcat jere.net.THL
L J IRPETE JaTe, TAT, Bl 00 readUR LES CHptacm | |
EEEEE RN [apliements Lnteslases i
|| [Frarvgp caas
L = el e

UBL baseUBL = maw DRL| "5iie” + Spsiem.
Statecharl e ey Output
i e AR, -Ligh, b, e window
aditor prieteribor kv e errevie /
] .
]

Ewscrition | eoeaion]| Ce

B [@owes] _ _ . JES—

Figure 3. Windows used to edit the project

1.3.1 Project window
The Project window (a page in the Workspace window - see Figure 4) provides access to

various project elements such as packages, classes, etc. As the project is organized

hierarchically, it is displayed as a tree: the project itself forms the top level, packages are the

© 1992-2004 XJ Technologies http://www.xjtek.com 9

Chapter 1. Creating AnyLogic model

next level items, active object and message classes — one level down, etc. The workspace tree

provides easy navigation throughout the project.

|Project ax

=ik Model
EI@ cellularphones
=-&fl BaseStation

&y animation
mA Cells

- B animation
----- S handover
----- (= addressMessage
----- (=1 RadioMessage
----- Gil AddressPart.java
Eéﬁ Experiments

%= Simulation

(K- project & Libraries |

Figure 4. Project window

» To show the Project window

1. Click the ijm‘@ toolbar button, or
Choose iew | Project from the main menu, or
Press Alt+0.

There are some common operations you can perform with items in the Project window. You
can copy, move and delete items. Thus, you can easily manage your project. When copying

or deleting, you should select the item.

10 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To select an item

1.

Click on the item.
The Properties window will display the properties of the selection.

» To delete the item

Click the Delete % toolbar button, or

Choose Edit| Delete from the main menu, or

Right-click the item and choose Delete from the popup menu, or
Press Del.

Confirm the deletion by clicking Yes button.

» To copy the item

1.

Click the Copy B3 toolbar button, or

Choose Edit| Copy from the main menu, or

Right-click the item and choose Copy from the popup menu, or
Press Ctrl+Ins.

» To cut the item

1.

2.

Click the Cut'# toolbar button, ot

Choose Edit| Cut from the main menu, or

Right-click the item and choose Cu/ from the popup menu, or
Press Shift+Del.

Confirm cutting by clicking Yes button.

» To paste the item

1.

Select the parent item you want to paste into.

For example, you can paste an active object class into a package.

Click the Paste @ toolbar button, or

Choose Edit | Paste from the main menu, or

Right-click the parent item and choose Paste from the popup menu, or
Press Shift+Ins.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 11

Chapter 1. Creating AnyLogic model

If needed, you can exclude the project element from the model. Thus, you can adjust your

model structure by excluding one element and including other ones at the design time.

» To exclude/include an item from/to a model

1. Right-click the item and choose Exc/ude from Build from the popup menu.
The item image becomes diffuse/sharp.

1.3.2 Properties window

The Properties window is used to view and modify the properties of a currently selected
object. When you select something — e.g., in the Project window or in a diagram editor
window (see section 1.5.2, “Diagram editors. Generic operations”) — the Properties window
(see Figure 5) displays the properties of the selection.

12 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Properkies

General | Irmage | Cescription

Class name: I Parkingfrea

Base class: I

Parameters:
Marne [Tyvpe
lines ink
carSpeed double
menapesd double
createZarTime double
createEnable boalean

| add. .. || Remove || Edlit:... |

™ Exclude From build

¥ | show name

[show ohiect rectangle

v Public {exparted From library)

Figure 5. Properties window
The Properties window consists of several pages. Every page contains controls such as edit

boxes, check boxes, buttons etc., used to view and modify properties. The number of pages
and their appearance depend on the type of a selected object.

You can directly drag an item from the model tree to a field in the Properties window.

» To show/hide the Properties window

1. Click the Properties EF toolbar button, or
Choose ew | Properties from the main menu, or
Press Alt+Enter.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 13

Chapter 1. Creating AnyLogic model

» To display a particular page of the Properties window
1. Click the corresponding tab in the top of the Properties window.

Each model element can have a descriptive text associated with it to make the model easier

to understand.

» To set an element description
1. Select the model element.
2. Enter your text on the Description page of the Properties window.

AnyLogic displays tooltips with the detailed description of properties of a currently selected

element.

» To get an information about a property

1. Point the mouse cursor to the required control on the Properties window and wait

for tooltip to appear.

If needed, you can tell AnyLogic not to show tooltips for properties.

» To show/hide tooltips for properties

1. Choose Tools | Options... from the main menu.
The Options dialog box is displayed.

2. On the Miscellaneons page, select/clear the Enable property tips check box.

3. Click OK.

1.3.3 Arranging windows

When editing your project you actually work with several windows. Names of open windows
are listed at the foot of the AnyLogic Window menu. Use the Window menu options to

arrange open windows.

14 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To display model windows in a cascading style

1. Choose Window | Cascade from the main menu.

» To display model windows vertically across the width of the AnyLogic window

1. Choose Window | Tile V'ertically from the main menu.

» To display model windows horizontally down the length of the AnyLogic window

1. Choose Window | Tile Horizontally from the main menu.

» To close all the windows

1. Choose Window | Close A/l from the main menu.

» To make a window active
1. Choose the window name from the Window menu.

2. If too many windows are opened, the windows list displays only some of them.
Choose Window | More Windows. .. from the main menu, select the window you want

to make active in the Select window dialog and click OK.

» To make the next window from the list active

1. Choose Window | Next from the main menu, or
Press Ctrl+Fo.

» To make the previous window from the list active

1. Choose Window | Previous from the main menu, or
Press Ctrl+Shift+Fo6.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 15

Chapter 1. Creating AnyLogic model

1.4

1.4.1

Model elements

AnylLogic models are hierarchically organized. An Anyl.ogic project consists of packages used
for better structuring of a project. A project may use other projects as /braries — collections
of classes developed for some particular application area. To facilitate your work, Anyl.ogic
enables you to specify several experiments with different model execution parameters

depending on experiments you need to carry out with your model.

This section describes these AnyLogic model elements.

Project

A working unit of AnyLogic is called a project. A project completely defines a model or a

library. A project is a root item in the Project window.

The following project properties are specified on the General page of the Properties window.

General properties

Name — name of the project, usually the same as the model file name.
Loaded from — |read only] the project (.alp) file location.

Target file — [optional] name of the file to which the generated code is packed. You have
to specify this property if you wish to use a project as a library, see Chapter 19,

“Libraries”.

Aldditional library files — Joptional] semicolon-separated list of Java archives you wish to

add to the project at the compile time.

Folder for generated files — [optional] path to the folder where AnyLogic should store
generated files. If not specified, AnyLogic puts generated files into Windows

temporary directory.

16 © 1992-2004 XJ Technologies http://www.xjtek.com

1.4.2

AnyLogic V User’s Manual

Package

A project consists of packages. There may be one or more packages in the project. Packages
contain active objects, messages, other classes, and external files. Packages may be used for

better structuring of a project.

» To add a new package to the project

1.4.3

1. Choose Insert| New Package. .. from the main menu, or
In the Project window, right-click the project and choose New Package. .. from the
popup menu.

The New Package dialog box is displayed.

2. Specify the name of the new package and click OK.

Properties

Name — name of the package.

Excclude from build — if set, the package is excluded from the model.

When AnyLogic generates code, it maps every AnylLogic package to a Java package with the
same name. As a result, classes in different Anyl.ogic packages are put into different Java
packages. The rules of using AnylLogic packages are the same as rules of using Java packages.
To use a class from another package, you have to import that package or prefix the name of
the class with the name of the package. Package import is described in section 1.5.9.1,

“Importing packages”.

If you do not want to deal with namespaces, you may use just one package in your
project — e.g., mypackage. By default, when you create a new project, Anyl.ogic

creates one package with the same name as the project name.

Library

A project may use other projects as libraries. Libraries are collections of classes developed
for some particular application area or modeling task. Several libraries come with the tool,

and you can easily create your own.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 17

Chapter 1. Creating AnyLogic model

1.4.4

Libraries have several benefits:

e Provide for better reuse of classes across multiple models. A class can be developed

and stored once and referenced from several projects.

e Libraries enable you to organize teamwork in AnylLogic projects: a part of the model
developed by a team member may be put into a library, and others use consistent

versions of the library in their work.

e By developing the right library you can convert AnyLogic into a high-level modeling

tool with point-and-click interface for a specific domain.

AnylLogic shows available libraries in the Libraries window. AnylLogic standard distribution
includes several libraries located in the Lib directory. Have a look at these libraries to get an
idea of how to develop your own. The detailed information on creating libraries and using

AnyLogic libraries classes is given in Chapter 19, “Libraries and external files”.

Experiment

An AnyLogic experiment defines the type of experiment you want to carry out with your

model. AnyLogic supports the following types of experiments:

e Simulation experiment

Simulation experiment is used in most cases. It runs model simulation with animation
displayed and model debugging enabled. Running a model simulation is described in Chapter
11, “Running and observing a model”. Other AnyLogic experiments are used only when the
model parameters play a significant role and you need to analyze how they affect the model

behavior, or when you want to find optimal parameters of your model.

e Optimization experiment

If you need to run a simulation and observe system behavior under certain conditions, as
well as improve system performance - for example, by making decisions about system
patameters and/or structure - you can use the optimization capability of AnyLogic.
Optimization is the process of finding the optimal combination of conditions that results in
the best possible solution. Optimization is described in details in Chapter 16,

“Optimization”.

e Custom experiment

18 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Allows defining a custom experiment script using Java language.

Experiment has a set of parameters you can adjust to configure model simulation (simulation
time mode, number of model runs, simulation stop conditions, etc.). Setting up simulation

parameters is discussed in Chapter 13, “Simulation settings”.

When a new project is created, a simulation experiment is created and set as the current
experiment. 'The current experiment defines simulation parameters actual for the current

simulation.

You can simply customize model simulation by creating several experiments with different
simulation parameters set up and simulating your model with different current experiments.
For instance, you may need to execute your model with different values of the root object
parameters. Thus you create several simulation experiments with different parameter values

specified and simulate your model with different experiments set as current.

» To create a new experiment

1. Click the New Experiment @ toolbar button, or
Choose Insert| New Experiment. .. from the main menu, or
In the Project window, right-click the Experiments item and choose New Experiment. . .
from the popup menu.

The Create a new experiment dialog box is displayed.
2. Choose the desired type of the experiment in the group box.
3. Type the experiment name in the Nawe edit box.
4. Select the root object of the experiment from the Roo? object drop-down list.

5. Click OK.

In the Project window, experiments are stored in the Experiments subtree of the workspace

tree, located under the project item.

P> To set an experiment to be a cutrent experiment
1. Right-click the experiment in the Project window and choose Se as Current from the

popup menu.

The current experiment name is emphasized in the Project window with bold.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 19

Chapter 1. Creating AnyLogic model

1.5 Active object

Active objects are the main building blocks of AnyLogic model. Active objects can be used
to model very diverse objects of the real world: processing stations, resources, people,

hardware, physical objects, controllers, etc.

An active object is an instance of an active object class. Active objects classes are developed

by the user, or they can be taken from libraries.

» To add a new active object class to a package

1. Click the New Active Object Class & toolbar button, or
Choose Insert | New Active Object Class. .. from the main menu.
The New Active Object Class dialog box is displayed.
Specify the name of the new active object class, choose the package, which will

contain the active object class, and click OK.

2. Alternatively, in the Project window, right-click the package, which will contain the
active object class, and choose New Active Object Class. .. from the popup menu.
The New Active Object Class dialog box is displayed.

Specify the name of the new active object class and click OK.

Each active object class has the following properties:

Properties

Class name — name of the class.

Base class — [optional] name of the base class. This can be ActiveObject or its
subclass. If not specified, ActiveObject is assumed. See section 1.5.10, “Active

object inheritance” for information on active object inheritance.

Parameters — [optional] a set of formal parameters of the active object class (see Chapter

3, “Parameters”).
Excclude from build — if set, the class is excluded from the project.
Show name — if set, the name of the class is shown on its structure diagram.

Show object rectangle — if set, the rectangle representing the border of this object is shown

on its structure diagram.

20 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Public (excported from library) — if reset, in case this project is used as a library, this class is
not accessible from other projects (you may need this to hide some auxiliary

library classes).

1.5.1 Structure diagram

Each active object class has a structure diagram associated with it. The structure diagram

plays several roles. It:
e Defines the interface of the active object class
e Defines the encapsulated objects and their interconnection

o Defines behavior elements, such as timers and statecharts.

The structure diagram is constructed of various shapes, namely: this object, encapsulated

object, port, variable, connector, chart timer, statechart, and text box (see Figure 0).

Connector Cutput
This ohject ! variable
.\ 1 ff
Encapsulated Y i £ Input
ahject T pill variable
N II /
Port ™ \ /
~—{] <
State
variable
Test box —1
G —
Chart
Qs - e timer
Statechant _p-——"" T

Figure 6. Structure diagram

The structure diagram of an active object is edited in the structure editor using the structure

toolbar (see Figure 7).

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 21

Chapter 1. Creating AnyLogic model

Structure editor

kDO P G mOLABO Y E®EHE

Text box
Statechart
Chart timer
Connector
“warable
Paort
¥ Root =10l x|
B
Roak craneMechanicsLinear
Fid =
[: D—
- = .
o
Rastatechart ! L—
(Rufimer

4

Lo
£} {0) | PasDesired

- v 0N «]acaledPosDesired
conkral

SEMNS0rs

(DvPos
Kl 1 1Y

Figure 7. Structure editor and toolbar

» To open the structure diagram of an active object class

1. Right-click the active object class in the Project window and choose Open Structure
from the popup menu, or

Double-click the active object class in the Project window.

This active object is displayed as a bold frame. It denotes the “border” of the active object
on its structure diagram. The semantics of this shape is that all ports and variables placed on
it become interface elements of the active object class. This shape is optional on the diagram.

The properties of this shape are actually the properties of the active object class.

22 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

You can put a comment on a diagram using a text box. This does not affect the model

behavior.

» To add a text box

1. Click the Text Box &1 toolbar button, or

Choose Draw| Text Box from the main menu.

2. Click the place on the diagram where you want to put the text box.
Then drag to choose the size of the shape.

» To modify the content of a text box

1.5.2

1. Double-click the text box.
2. Edit the content of the text box.
3. Click the empty area of the diagram or press Esc to store the modified text.

You can also modify the text of the text box using its Properties window.

Diagram editors. Generic operations

AnyLogic includes four diagram editors: structure editor, statechart editor, animation editor
and 3D animation editor. They all are based on the same technology and therefore share a
large set of generic editing operations described in this section. The specific operations are
described in section 1.5.1, “Structure diagram”, section 9.2, “Statechart diagram”, section

12.2, “Animation diagram” and section 12.3, “3D animation diagram” correspondingly.

AnyLogic diagrams are constructed of graphical objects — shapes. To draw a shape, you click
the corresponding toolbar button and place the shape on the diagram. Each editor has an

associated toolbar with shapes specific for its diagram type.

Selecting shapes

You can select any shape on a diagram. When you select a shape, the Properties window

displays its properties.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 23

Chapter 1. Creating AnyLogic model

» To select a shape

1. Click the shape.

» To select more than one shape

1. Drag the selection rectangle around the shapes.

» To add/remove a shape to/from the selection

1. Shift-click the shape.

» To select all shapes on the diagram

1. Choose Edit|Select A/l from the main menu, or
Press Ctrl+A.

Copying, moving and deleting shapes

You can copy, move and delete shapes.

» To copy the selection on the Clipboard

1. Click the Copy 53 toolbar button, or
Choose Edit| Copy from the main menu, or
Right-click the selection and choose Cgpy from the popup menu, or
Press Ctrl+Ins.

» To cut the selection

1. Click the Cut'# toolbar button, or
Choose Edit| Cut from the main menu, or
Right-click the selection and choose Cxu# from the popup menu, or
Press Shift+Del.

24 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To paste the content of the Clipboard

1. Click the Paste @ toolbar button, or
Choose Edit| Paste from the main menu, or
Right-click the empty area of the diagram and choose Paste from the popup menu,
or
Press Shift+Ins.
The pasted shapes appear in blue outline.

2. Move the pasted shapes to the desired position.

» To copy the selection

1. Ctrl-drag the selection.

» To move the selection

1. Drag the selection, or

Use arrow keys.

» To delete the selection

1. Click the Delete % toolbar button, or
Choose Edit| Delete from the main menu, or
Right-click the selection and choose Delete from the popup menu, or
Press Del.

» To hide the selection

1. Choose Draw|Hide from the main menu.

» To unhide all hidden shapes

1. Choose Draw | Unbide All from the main menu.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 25

Chapter 1. Creating AnyLogic model

» To get the image of the whole diagram on the Clipboard

1. Choose Draw|Copy Image from the main menu, or
Right-click the empty area of the diagram and choose Copy Izage from the popup

menu.

You can undo previously performed actions.

» To undo the previous action

1. Click the Undo = toolbar button, or
Choose Edit| Undo from the main menu, or
Press Alt+Backspace, or Ctrl+Z.

» To redo the previously undone action

1. Click the Redo ™ toolbar button, or
Choose Edit|Redo from the main menu, or
Press Ctrl+Y.

You can move, center, or zoom in on the diagram to take a good look at some particular

parts of it.

» To move the diagram

1. Click on the diagram with the right mouse button and, while holding the right

mouse button down, move the mouse.

» To center the diagram

1. Choose Draw|Go to Center from the main menu, or
Right-click the the empty area of the diagram and choose Go 0 Center from the
popup menu.

The diagram will be centered.

26 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

To zoom in on the diagram to fit all shapes

1.

Choose Draw | Zoon: | Zoom to Fit from the main menu, or
Right-click the the empty area of the diagram and choose Zoow to Fit from the
popup menu.

The diagram will be centered and zoomed to fit all the shapes.

To zoom in

1.

Click the Zoom In =& toolbar button, or

Choose Draw | Zoon: | Zoom In trom the main menu.

To zoom out

1.

Click the Zoom Out ™% toolbar button, or

Choose Draw | Zoonz | Zoom Out from the main menu.

To zoom to the specified rectangle

1.

2.

Choose Draw | Zoon:| Zoom to Rectangle from the main menu.

Drag the selection rectangle around the area you want to zoom to.

To zoom to the default scale

1.

Choose Draw| Zoon | Zoom to Default from the main menu.

You can control the diagram grid appearance.

To enable/disable the grid

1.

Click the Enable Grid ** toolbar button, or

Choose Draw | Grid| Enable Grid from the main menu.

To show/hide the grid

1.

Choose Draw | Grid| Show Grid from the main menu.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com

27

Chapter 1. Creating AnyLogic model

» To snap a shape to the grid

1. Select the shape.

2. Click the Swap to Grid & toolbar button, ot
Choose Draw | Grid| Snap to Grid from the main menu.

By default, when you resize, drag, or move a shape, other shapes logically related to it also
move. For example, connectors move with ports, encapsulated objects move with this
object, simple states reflect changes of the composite state, etc. Sometimes this is

undesirable, so you always can switch smart dragging off.

» To switch smart dragging off during the operation

1. Hold Shift while finishing the operation.

» To edit the name of a shape

1. Double-click the name of the shape, or
Right-click the shape and choose Edit Name trom the popup menu, or
Press F2.

2. Type the name of the shape.

3. Press Enter or click the empty area of the diagram to store the modified name, or

Press Esc to cancel editing.

The name of a shape can also be edited in the Properties window.

» To rotate a shape

1. Click the Rozate "B toolbar button, or

Choose Draw | Rotate from the main menu.

2. Use rotation handles to rotate a structure element.

» To get compact information on shape properties

1. Point mouse cursor at the shape and wait for tooltip to appear.

28 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

1.5.3 Active objecticon

Each active object class may have specific icon associated with it. Each time an instance
appears as an encapsulated object on a structure diagram, or on animated structure diagram
(see section 11.2.2, “Animated structure diagram”), this icon is displayed. Note that this
image has nothing to do with AnylLogic animation and is not displayed on the structure

diagram of this active object class itself.

1.5.3.1 Icon diagram

The active object icon is defined on the icon diagram. An icon diagram is edited in the icon

editor (Figure 8) using the animation toolbar.

M MineralWaterLine - O] x|

Toric rixer _E% Rates
1 123
I 123

LR

4] [v

Figure 8. Icon editor

» To create an icon for an active object class

1. Click the New Icon s toolbar button, or
Choose Insert | New Icon. .. from the main menu.
The New Icon dialog box is displayed.

Specify the name of the new icon, choose the active object class, which will contain
the icon, and click OK.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 29

Chapter 1. Creating AnyLogic model

2. Alternatively, in the Project window, right-click the active object class, which will
contain the icon, and choose New Icon... from the popup menu.
The New Icon dialog box is displayed.
Specify the name of the new icon and click OK.

3. 'The icon editor window is displayed.

Each active object class may have only one associated icon.

» To open the existing icon of an active object class

1. Right-click the Iron item of the active object class in the Project window and choose
Open Icon from the popup menu.
The icon editor window is displayed.

Icon editor shares a set of generic editing operations described in section 1.5.2, “Diagram

editors. Generic operations”.
The blue cross is the origin point (0, 0) of the icon diagram.

An icon is a drawing composed of various shapes: circles, rectangles, lines, etc., and also
indicators. You can construct your icon from any animation shapes and animation
indicators. See section 12.2.2, “Animation shapes” and section 12.2.3, “Indicators” for the

detailed description of these shapes. The icon size is set automatically to fit all the shapes.

Each shape has a number of properties defining its visual appearance: position, height,
width, color, and so on. The generic properties of the shapes are described in section

12.2.1.2, “Generic properties of animation shapes”.

1.5.3.2 Icon animation concepts

Each shape has a number of properties defining its visual appearance: position, height,

width, color, and so on. These properties are typically organized as shown in Figure 9:

30 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Name of the property

L. I-'I-_ZEI w0+ EEII:IE

Constant corresponding to the
value in the editor (default)

Expression defining the actual
value during simulation

Figure 9. Property of an icon shape

The concepts are similar to the AnyLogic animation concepts — icon diagram links shape

properties to active object data.

The static value on the left shows the value of the property as defined while drawing in the
editor. It is also treated as a default value. The expression on the right defines the actual
value during simulation. This is the place where you can link the appearance of a shape to
any data of the active object. The data may change and it will be reflected in the picture. In
case the expression is empty, the property retains the default static value throughout the

whole simulation.

An example of associating graphical properties of icon shapes with active object data is
shown in Figure 10. Here the coordinates of the circle are dynamically defined by the
variables x and y of the active object, and the rotation angle of the rectangle is defined by
the object member variable alpha.

© 1992-2004 X]J Technologies http://www.xjtek.com 31

Chapter 1. Creating AnyLogic model

..........
. .,

N
..
0
.

X: -60 | 10 *
Y: -35 + 2378

.

Name: @
Type: ouble

.

.

.......

.
P
.
.
.

Name: @ i
Type: ouble

Additional class code: int alpha; |

Rotation: 338 | alpha

Figure 10. Associating graphical properties with model data

Thus, by linking shape properties to active object data, you can animate active objects on the

animated structure diagram at the model runtime.

1.5.3.3 Active object image

Active object icon is the new feature of Anyl.ogic V. In the previous versions of AnylLogic,

you could only associate a static image loaded from file, with an active object class.

In fact, active object image feature is left for compatibility with the previous versions
only. It is recommended that you create an icon for an active object class and add an
image shape to this icon instead of using active object image. Note that the image of
an active object class is suppressed with the icon of this active object, if the latter is
defined.

Active object image is defined on the Image page of the active object’s Properties window

(see Figure 11).

32 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Properties x

General Image | Description |

5

Image... I | Reset

Figure 11. Image page of active object’'s Properties window

» To define an image for an active object class

1.

Click the active object class in the Project window.

Click the Image button on the Image page of the Properties window.

The Choose Image dialog box is displayed. The dialog displays the predefined images.

To use one of predefined images,
Double-click the image, or
Click the image and click OK.

Otherwise, to load the image from file,

Click the Browse button.

The Open dialog box is displayed.

Browse for the image file you want to use.
Double-click the file, or

Click the file and click Oper button to select the file.

The specified image is shown on the Izage page of the Properties window.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com

33

Chapter 1. Creating AnyLogic model

» To remove the specified active object image
1. Click the active object class in the Project window.

2. Click the Reset button on the Image page of the Properties window.

1.5.4 Encapsulated objects

Active objects may encapsulate other active objects to any desired depth. Encapsulated
objects are instances of other active object classes, encapsulated by each instance of this

active object class. Encapsulating a class is the step to create the model hierarchy.

» To add an encapsulated object to an active object class

1. Drag the active object class from the Project window onto the structure diagram of

the parent active object class.

All encapsulated objects should be placed inside this object shape if the latter is

present.

Encapsulated objects are displayed as filled rectangles (see Figure 12). In case AnyLogic
cannot find the referred class, the encapsulated object is displayed red.

Encapsulated Replicated
object object A object B* | |.- encapsulated object

Figure 12. Encapsulated objects

Encapsulated objects have the following properties.

Properties

Name — name of the encapsulated object.

34 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Type — [read only] class of the encapsulated object.

Parameters — [optional] set of actual parameters of the encapsulated object. Every
parameter should be given in form: Name 1 alue, where Name is the name of the

parameter, [alue is the value of the parameter.
Excclude from build — if set, the encapsulated object is excluded from the model.

Show name — if set, the name of the encapsulated object is shown on the structure

diagram.

Auto create — if set, AnyLogic creates the encapsulated object automatically. Otherwise

the object should be created manually.

You can open the structure diagram of an encapsulated object class.

» To open the structure diagram of an encapsulated object

1. Double-click the encapsulated object, or
Right-click the encapsulated object and choose Open Structure from the popup menu.

If needed, you can flip an encapsulated object image on the structure diagram.

» To flip an encapsulated object horizontally

1. Select the encapsulated object.

2. Click the Fiip Horizontal B9 toolbar button, or
Right-click the encapsulated object on the structure diagram and choose F/jp
Horizontal from the popup menu, or

Choose Draw | Flip Horizontal from the main menu.

Encapsulated objects can be single or replicated (do not confuse this with model
replications). A replicated object represents a collection of active objects of the same class.
Object replication provides for very economical representation of complex structures of
objects with arbitrary interconnections. Replicated object name displayed on the structure
diagram of the parent class is followed with an asterisk (see Figure 12). See Chapter 2,
“Replicated objects” for the detailed description of replicated objects.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 35

Chapter 1. Creating AnyLogic model

1.5.5 Root object

An AnyLogic model is a tree of active objects encapsulating each other (see Figure 13). Thus
a model is decomposed into several levels of detail, since each active object typically
represents a logical section of the model. The root of that tree is called the root object. The
root object represents the highest abstraction level of your model. When you specify the

class of the root object, you tell AnyLogic where to start the model creation.

Root object

Figure 13. Tree of active objects

AnyLogic supports easy model modification since you can change the root object of a
model. You can create several experiments with different root objects in the same project.

Thus you can simply adjust your model structure by changing current experiments.

» To set a root object for an experiment
1. Click the experiment in the Project window.

2. In the Properties window, select the root object of the experiment from the Roo?

object drop-down list.

For example, you model an automobile. You define the Automobile class and set this class
to be the root object class since it represents the highest abstraction level of your model.
This class encapsulates objects representing parts of the automobile: wheels, engines,
carburetors, etc. They, in turn, may encapsulate objects representing their parts, and so on.

However, you may need to focus on the automobile engine. Therefore you can simply set

36 © 1992-2004 XJ Technologies http://www.xjtek.com

1.5.6

AnyLogic V User’s Manual

Engine class to be the root object class of your model. Or vice versa, you may want to
model a garage. In this case you need to create the new abstraction level in your model and
make it the top of the model hierarchical tree. Unlike some other simulation tools with well-
defined model root objects, in AnylLogic you can change the model structure in a very

simple manner. For example, for the case described above, do the following:
1. Define the Garage class, representing the garage.
2. Encapsulate developed classes representing automobiles into the class Garage.
3. Create a new simulation experiment and make it current.

4. Make the class Garage the root object class of the created experiment.

Active object data

You can define active object data by specifying parameters and variables. You can also

specify class member variables by writing your own Java code.

1.5.6.1 Parameters

Active objects may have parameters. Commonly, parameters are used to parameterize the
object. It is needed when object instances have the same behavior described in class, but
differ in parameter values. All parameters are visible and changeable throughout the model
execution. Thus you can simply adjust your model by changing parameters at runtime.
Active object parameters can be linked to parameters of encapsulated objects. In this case,
parameter changes are propagated down the active object tree along the parameter

dependencies. See Chapter 3, "Parameters” for the detailed description of parameters.

Use a variable instead of a parameter if you need to model some data unit

continuously changing over time.

1.5.6.2 Variables

If you need to define some data unit (maybe continuously changing over time), you can

define a variable. A variable can be of an arbitrary scalar type, a matrix, or a hyper-array.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 37

Chapter 1. Creating AnyLogic model

Variables may be either internal (state variables) or public (interface variables). The latter
ones can be shared with other active objects. Variables can appear in differential and
algebraic equations and model values changing continuously over time. During the model
execution, variables are observable and changeable from AnyLogic UI. See Chapter 4,

“Variables” for the detailed description of variables.

1.5.6.3 Class member variables

You can declare a Java member variable in the .Additional class code section of the Code
window of an active object class. You can access these data members within this object. See

section 1.5.9, “Writing code for an active object” for details.

Declare a member variable if you just need a data item to be accessed only within an
active object and only at discrete steps (i.e., it is neither shared with other objects nor
changed continuously), and you do not want to observe or change that item during

model execution. Otherwise, declare AnylLogic variable.

1.5.7 Active object behavior

Active objects may have internal behavior. Anylogic enables you to define discrete time,

continuous and hybrid behavior.

e The continuous processes are described with differential and algebraic equations over

continuously changing variables.

e The discrete activities within the object can be defined using timers in very simple cases
or statecharts (extended state machines) in cases when event and time ordering

becomes more complicated.

e When discrete and continuous time behaviors are interdependent, this needs hybrid

modeling. You can define hybrid behavior with hybrid statecharts.

38 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

1.5.7.1 Equations

Continuous time behavior can be defined by equations. You can define a set of differential
equations, algebraic equations, and formulas to describe continuous changes of variables

over time. See Chapter 5, "Equations” for the detailed description of equations.

1.5.7.2 Timers

The activities within the object can be defined using timers. Timers are used to schedule
some user-defined actions. There are static and dynamic timers in AnyLogic. The latter are
used to schedule multiple events. See Chapter 8, “Timers” for the detailed description of

timer usage.

1.5.7.3 Statecharts

During its lifetime, an active object performs operations in response to external or internal
events and conditions. Existence of a state within an active object means that the order in
which operations are invoked is important. For some objects, this event- and time-ordering
of operations is so pervasive that you can best characterize the behavior of such objects in
terms of a state transition diagram — a statechart. A statechart is used to show the state space
of a given algorithm, the events that cause a transition from one state to another, and the
actions that result from state change. AnylLogic supports hybrid statecharts — the most
natural and powerful way to integrate discrete logic and continuous time behavior. In hybrid
statecharts you can associate a set of equations with a statechart state. Then state transitions
will alter the continuous behavior. Also, you can specify a condition over continuously
changing variables as a trigger of a transition. Then continuous process will drive the discrete
logic. See Chapter 9, ”Statecharts” for the detailed description of statecharts.

1.5.7.4 Writing code for an active object

You can write your own Java code for an active object class in the Code window of the
active object class. Namely, you can define arbitrary member variables, nested classes and
methods. Class data members can be accessed anywhere within this object, and methods can
be called on some object activity; e.g., on timer expiration or on triggering statechart

transition. Writing your code, you can also specify arbitrary actions to be executed at the

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 39

Chapter 1. Creating AnyLogic model

1.5.8

model startup. See section 1.5.9, “Writing code for an active object” to get the detailed

information on writing code for an active object.

Active objects interaction

AnylLogic supports continuous and discrete time active object interaction mechanisms.

Combining these mechanisms you can create sophisticated interfaces of active objects.

1.5.8.1 Variable sharing

Variable sharing is the continuous time interaction mechanism in Anylogic. An active object
can have variables, modeling values changing continuously over time. Those variables may
be exposed at the active object interface and shared with other active objects. When two
interface variables of different objects are linked, changes of one variable (set up as the
output one) are immediately propagated to another variable (considered as input). This
provides for continuous and/or discrete time object interaction. See Chapter 4, “Variables”

for the detailed description of variables and variable sharing.

1.5.8.2 Message passing

Message passing is the discrete time interaction mechanism in AnylLogic. The mechanism
concept is passing data units — messages — between active objects. Messages are sent and
received at the special elements of active objects — ports — and routed along connection lines,
which links ports. Message passing may model a notification or signaling mechanism — in
this case, messages represent commands or signals being passed in a control system; or an
entity flow — in this case messages model various objects of the real world — e.g., products,
people, trucks, etc., or data packets being passed in a network. See Chapter 7, “Message
passing” for the detailed description of ports and message passing.

The subsequent section describes how to establish active object interaction in systems

constructed solely from Anylogic library objects.

40 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

1.5.8.3 Establishing inter-object interaction

To establish inter-object interaction you need to connect the respective interface elements of
active objects with connectors. A connector is a line connecting two potts or two variables.
In AnyLogic, connectors are used to construct topologies. Connecting two ports means that
messages will be passed between them. Connecting variables means that they will have the
same value at any moment of time (the output variable value will be passed to input

variable).

Interface elements are displayed on the structure diagram as small shapes on the borders of
encapsulated objects (see Figure 14). Ports are displayed as squares and variables as triangles
(triangles pointing inside the object denote input variables whereas pointing outside — output
ones). You cannot add, delete, or move interface elements, since they reflect the interface of

an encapsulated object class.

Output .
variable -,

InpUt
variable

Figure 14. Interface elements of an encapsulated object

Interface elements of encapsulated objects have the following properties:

Properties

Name — [read only] the name of the interface element.

Show name — if set, the name of the interface element is shown on the structure

diagram.

» To connect interface elements of encapsulated objects

1. Drag the interface element of one encapsulated object onto the interface element of
another encapsulated object, or
Click the Comnector "% toolbar button, click the first interface element and then click
the second interface element, or

Choose Draw | Structure| Connector from the main menu, click the first interface

© 1992-2004 XJ Technologies http://www.xjtek.com 41

Chapter 1. Creating AnyLogic model

element and then click the second interface element.

The connector linking two interface elements appears (see Figure 15).

Connector

Figure 15. Interface elements of encapsulated objects connected

A connector has the following properties:

Properties

Name — |optional] name of the connector.
Exclude from build — if set, the connector is excluded from the project.

Show name — if set, the name of the connector is shown on the structure diagram.

You can edit a connector appearance by editing its salient points.

» To add a salient point
1. Select the connectot.

2. Click the Edit Points a8 toolbar button, or
Choose Draw| Edit Points from the main menu, or
Right-click the connector and choose Edit Points from the popup menu.

The points of the connector should turn yellow.

3. Drag a segment of the connector to create a salient point, or
Right-click the segment and choose -Add Point from the popup menu.

» To move a salient point

1. Drag the point.

42 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To remove a salient point

1. Select the connector.

2. Click the Edit Points e toolbar button, or
Choose Draw| Edit Points from the main menu, or

Right-click the connector and choose Edjit Points from the popup menu.

3. Right-click the point and choose Delete Point from the popup menu, or
Drag the point to an adjacent point of the connector.

The dragged point disappears.

Interface elements of encapsulated objects can be exported to the interface of the parent
object class. It means that the corresponding interface element is added to the parent object
interface and connected to the exported element. Thus the encapsulated object can interact
with its parent object by passing messages via connected ports or propagating connected

variables changes.

» To export an intetface element of an encapsulated object to an interface of this object

1. Right-click the interface element and choose Export to Parent from the popup menu.
The new class interface element is created and connected to the exported interface

element of an encapsulated object.

1.5.9 Writing code for an active object

You can write arbitrary Java code for an active object to be executed on different
occurrences. The code for an active object class is specified in the Code window associated

with this active object.

» To open the Code window of an active object class

1. In the Project window, right-click the Code item in the object class’ subtree of the
workspace tree, and choose Open Code from the popup menu, or
Double-click the Code item in the object class’ subtree of the workspace tree.
The Code window of the active object class is displayed (see Figure 16).

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 43

Chapter 1. Creating AnyLogic model

=101 x|

Tmport
Inplements interfaces

Startup code

Sfadd rocks

rockz.add| animation.rectRockd):

rocks.add| animation.rectRockE):

rocks.add| animation.rectRockC):

rocks.add| animation.rectRockD]:

Equations

diy)/dc = vy

dix)/Adt = wx

Additional class code

fFall rectangular rocks

Wector rocks = new Vector():;

Sizinple distance

double distance(double x0, double ¥0, double x1, double ¥l)
returty Math.sqro| (x1-x0)%(x1-x0)1 + (yvl1-v0)*(yl-v0)] J1:

'

Afpoint hit detection
boolean xLTxL:
boolean vLTvE:

vold setupTraget| double xt, double vT 1 {
xLTxt = ® < Xt;
FLT¥E = ¥ < ¥t}

'

<11

i

Figure 16. Code window of an active object class

The Code window of active object class has the following sections:

Import — import statements needed for correct compilation of the class code. When

Java code is generated, these statements are inserted before definition of the Java

class.

Implements interfaces — comma-separated list of interfaces implemented b

y the class.

44

Startup code — the sequence of Java statements to be executed after all objects

throughout the whole model are constructed, connected, and initialized, and

before anything else is done. This is a place for starting object’s activities such as

statecharts, threads and timers. The order of execution of Startup code of

different objects is not guaranteed.

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Eguations — the set of equations associated with the active object. See Chapter 5,

“Equations” for details.

Additional class code — arbitrary member variables, nested classes, constants and methods
are defined. This code will be inserted into the class definition. You can access
these class data members anywhere within this object. The methods can be
called on some object activity; e.g., on timer expiration or on triggering

statechart transition.

1.5.9.1 Importing packages

If you use a class from another package, you have to import that package using import

statement or prefix the name of the class with the name of the package.

» To add the “import” statement to an active object class

1. In the Import section of the active object class’ Code window, type the sequence of

Java import statements.

» To add the “import” statement to all classes in a project
1. In the Project window, click the project to which you want to import a package.

2. On the Code page of the Properties window, type the sequence of Java import
statements in the Import (applies to all classes) section.

1.5.9.2 Accessing active objects from code

A non-replicated encapsulated object anObject can be accessed simply by its name,
anObject. AnylLogic active objects are instances of the class ActiveObject. Please consult

AnyLogic Class Reference for more information on properties and methods of

ActiveObject.

» To view AnyLogic Class Reference

1. Choose Help | Class Reference from the main menu.
The browser window opens with AnyLogic Class Reference displayed.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 45

Chapter 1. Creating AnyLogic model

The method of the active object class getOwner() returns the parent active object, i.e. the
one that encapsulates this object, or null if called from the root object. This method returns
an object of type ActiveObject and you have to cast it to a particular known object type if

needed.

1.5.10 Active object inheritance

Being Java classes, active object classes may inherit one from another. Any user-defined
active object class inherits from the predefined class ActiveObject directly or transitively.
The class ActiveObject has properties common to all active objects. Please consult
AnyLogic Class Reference for more information on properties and methods of
ActiveObject.

There is one restriction, however. Among an active object class and its superclasses, there
should be exactly one active object class generated by Anyl.ogic and all other classes should

be defined manually; e.g., in external files.

P To set a base class for an active object class
1. Click the active object class in the Project window.
2. In the Properties window, specify the base class name in the Base class edit box.

Figure 17 shows examples of inheritance between active object classes. Classes generated by

AnylLogic —i.e., classes that have structure diagrams — are framed.

46 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

ActiveObject
| ClassA | | ClassB
ActiveObject ActiveObject
ClassB | ClassA | | ClassB |
/ N\
| ClassC | | ClassD | ClassC ClassD
ActiveObject

]

A class generated
by AnyLogic (has
structure diagram)

Figure 17. Inheritance among active object classes

© 1992-2004 XJ Technologies http://www.xjtek.com 47

Chapter 2. Replicated objects

Replicated objects

2.1

AnyLogic supports object replication - very easy and convenient way of modeling regularly
organized structures of objects of arbitrary size and topology, such as vector, mesh, torus,
hypercube, chain, ring, etc. AnyLogic saves you from the boring process of manual creation
of the specified number of objects and establishing connections between them as this
approach is limited, tedious, and forms the system with a predefined and constant number of
objects.

In AnyLogic you simply declare a replicated object and specify the number of instances as a
parameter. A replicated object represents a collection of active objects of the same class.
Object replication provides very economical representation of complex structures of objects
with arbitrary interconnections.

Object replication enables you to:

e Build scalable systems by creating replicated objects with the number of elements
defined by a parameter of the model.

e Create complex structures of objects with sophisticated topologies by establishing
arbitrary interconnections between replicated objects either from Anylogic UI or
programmatically.

e Model systems with dynamically changing structures by adding and removing objects to
the group of replicated objects at runtime.

Do not confuse object replication with model replications. Model replication is a single

model run and has nothing to do with object replication.

Creating a replicated object

In AnyLogic you can create a collection of objects of the same type simply by creating a
replicated object. First, encapsulate an object you want to create a structure from, and then
declare it replicated.

48 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To declare a replicated object
1. On the structure diagram, click the encapsulated object you want to make replicated.

2. On the Replication page of the Properties window, specify the number of individual
elements of the replicated object (the replication factor) in the Number of objects edit
box.

The name of the replicated object is displayed on the structure diagram with the

trailing asterisk.

2.1.1 Replication factor parameterization

You can specify any expression evaluating to integer or double type as a number of
elements of the encapsulated object. Thus, you can parameterize the number of object
instances in a replicated object. You may need this to facilitate modifying the number of
objects of several replicated objects. See Chapter 3, “Parameters” for more information on

parameters.

If you use a parameter as a replication factor of an encapsulated object, AnylLogic
creates a number of instances equal to the initial value of the parameter. However,
AnyLogic does not automatically adjust the number of instances in case you change
the parameter at runtime. If such behavior is needed, you should use the handler
method onChange_myParam() to take care of creation and destruction of instances

(see Chapter 15, “Creating a model with dynamically changing structure”).

2.2 Accessing and modifying a replicated object at
runtime

This section describes accessing individual elements of a replicated object from code and
creation/removing objects to/from a group of replicated objects at runtime. See section
15.1, “Manual creation and destruction of encapsulated objects” for general information

about creating and destroying encapsulated objects at runtime.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 49

Chapter 2. Replicated objects

221

2.2.2

Accessing replicated objects from code

The number of active objects in a replicated object anObject can be retrieved by calling
anObject.size().

In order to get any individual element from anObject vector of replicated objects, you can
use anObject. item(index) method, which takes an index of the object in the vector,
from O to anObject.size() - 1.

Individual elements of a replicated object can find out their indexes by calling getIndex().

Adding/removing objects to/from a replicated object

To add a new object to an anObject replicated object, use the setup_anObject() method
generated by Anylogic. The method adds an object to the array of replicated objects and
registers the object within the simulation framework. If there are any connectors to other
objects designed in the structure diagram, those connections are established for the new
object. The method takes two arguments: an object and an object identifier. The object
identifier must be unique within the replicated object vector to distinguish objects in the
Model Explorer at runtime. For the reasons of simplicity, you can use the hashCode()

method, returning the unique integer value.

For example, write the following code to add c object to clients replicated object.
setup_clients(c, c.hashCode());

Use generated by AnyLogic method dispose_anObject() to remove the object from the

anObject vector of objects.

Related method of ActiveObject

final void setReplication(int index) — the framework method. You can call
it to place the element of a replicated object in the place specified by index

parameter.

50 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

2.3 Connecting replicated objects

AnyLogic provides a convenient mechanism of creating structures of objects with
sophisticated topologies. It supports arbitrary types of interconnections between individual
elements of replicated objects and between a replicated object and other objects (probably,
also replicated).

First, this section describes how to connect ports and variables of replicated objects
graphically. Then the information on establishing arbitrary types of interconnections
between replicated objects is given. As connection rules are the same for variables and ports,

they are described generally for interface elements of replicated objects.

2.3.1 Connecting interface elements of replicated objects
graphically

» To connect interface elements of replicated objects

1. Drag the interface element of one object onto the interface element of another
object, or
Click the Comnector s toolbar button, click the first interface element and then click
the second interface element, or
Choose Draw | Structure | Connector from the main menu, click the first interface
element and then click the second interface element.

The connector linking two interface elements appears (see Figure 18).

objectA*

Figure 18. Interface elements of replicated objects connected

When you connect two replicated objects using a connector, you get configurations shown

in Figure 19, i.e. each element in the client vector is connected with the server object.

© 1992-2004 X]J Technologies http://www.xjtek.com 51

Chapter 2. Replicated objects

System System
client* client
[]
server
System System
client* client client client
server* server server server

Figure 19. Connection of replicated objects

2.3.2 Connecting replicated objects with other objects

A replicated object represents a collection of object copies. When you graphically connect an
interface element of some encapsulated object to an interface element of a replicated object,
it is connected to interface elements of all object copies of the replicated object (see Figure
19). In some cases you may want to connect an interface element of one object to the
interface elements of the certain individual elements of the replicated object only. In

AnyLogic you can establish arbitrary types of connections by adjusting connector properties.

» To set a connection type between intetface elements of a replicated object and another
object

1. In the structure diagram, select the connector, linking the interface element of the

replicated object with the interface element of the other object.

52 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

2. In the Properties window, specify individual elements of the replicated object to be
connected to the interface element of the other object from the Connect from ‘interface
element’ of drop-down list:

All objects — the default value. Interface elements of all individual elements of the
objects replicated object are connected to the interface element of the other
object.

First of objects — the interface element of the first individual element only is connected.

Last of objects — the interface element of the last individual element only is connected.

Figure 20 illustrates all these connection types.

machines*: : network

Cannect From ‘port’ of:
|.ﬁ.|| machines j

Connect from ‘port’ of :
<):I |Fir-sx of machines ﬂ

b)

Conrect from port’ of:
<):I |Last of machines j

c)

Figure 20.

You may connect interface elements of two replicated objects as well. By default, interface
elements of all object copies of one replicated object are connected to interface elements of

all object copies of another replicated object (see Figure 19).

However, you can connect interface elements of certain object copies only. Therefore you

need to specify the object copies of replicated objects you want to connect. This is done in

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 53

Chapter 2. Replicated objects

Connect from ‘interface element’ of and To ‘interface element’ of connector’s properties in the same

way as described above for the connection of a replicated object with an encapsulated object.

Figure 21 illustrates some possible cases of connecting interface elements of two replicated

objects.

—{+— —T —
AN
Connect From ‘port’ of;
ILast of machines EI
To ‘port’ of:
|Frst aff rstweork, ﬂ
—{F— —1F —{
Connect from ‘port” of:
<):I |AI machines j R
To ‘port’ of :
|Frst of network j

Connact From ‘port’ of:

<):I |mal:hines[i] j
To "port’ of:
|netwcnrk[i] LI

a)

Figure 21. Replicated objects connection cases
In the case two replicated objects have the same number of individual elements, you can

connect the i-th element of one replicated object with the i-th element of another replicated

object, choosing objects(i) from both drop-down lists — see ¢ case in Figure 21.

54 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

2.3.3 Connecting individual elements of a replicated object

You may specify arbitrary interconnections between individual object copies of a replicated
object. You can connect the same or different interface elements of some individual
elements of a replicated object. Connect them in the same manner as you connect individual

elements of a replicated object with another object.

» To connect individual elements of a replicated object

1. In the structure diagram, connect the required interface elements of the replicated

object. You can connect an interface element to itself.
2. Select the created connector in the structure diagram.

3. In the Properties window, specify individual elements of the replicated object you
want to connect for each connected interface element in Connect from ‘interface element’
of and To nterface element’ of drop-down lists.

Choose A/ objects, First of objects, or Last of objects to connect all individual elements,
the first individual element, or the last individual element of the objects replicated
object only.

You can connect interface elements of the same object copies in a vector of
replicated objects by choosing obyects(i) from both drop-down lists.

Also, you can connect interface elements of the adjacent object copies by choosing
objects(z) and objects(i+1).

Some connection cases are shown in Figure 22.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 55

Chapter 2. Replicated objects

2.3.4

Connect from input’ of:
|machines[i] j
[.:l To "oukput” of :
|machinesfi+1] |
+ : : : : : : + Root
i it 1
E InP&mned: from ‘port” of : ~ JtpUt
|network[i] j
To "part” of:
|netwnrk[|+1] :]
Roo

Figure 22. Regular interconnections in a vector of replicated objects

Thus, in AnyLogic you can easily create a regularly structured system.

port Root

Connecting replicated objects programmatically

Sometimes you may need to create a complex structure of objects with sophisticated
topologies that cannot be established graphically. Or you may need to model a system with
dynamically changing connections. Use the methods connect() and disconnect() to

establish connections between replicated objects and their individual elements at runtime.

Use the connect()/disconnect() methods of the Port or VariableRef classes to
connect/disconnect ports or variables of two objects. The methods take two arguments: two

pott objects, or two variable objects. The name of a portl__\g)ggatct is the name of the port in

56 © 1992-2004 XJ Technologies http://www.xjtek.com

F_ 1Y

2.3.5

AnyLogic V User’s Manual

the structure diagram. However, the name of a variable object is the name of the variable in

the structure diagram with the _ref prefix.

e Use Port.connect(objectA._portA, objectB.portB), or
objectA.portA.connect(objectB.portB) code for ports

e Use VariableRef.connect(objectA._ref_varA, objectB._ref_varB), or
objectA.ref varA.connect(objectB.ref varB) code for variables.

For more information on connecting ports and variables refer to section 7.4.12, “Connecting
ports at runtime” and section 4.3.2.2, “Connecting variables at runtime”. For more

information on the Port and VariableRef classes, refer to AnyLogic Class Reference.

Creating a ring of cells
Suppose you want to build a ring of cells.

Create the Ring replicated object with the number of individual elements defined by
numberOfCells parameter of int type. Then connect the output port with the input port

and define the interconnection as shown in Figure 22 (the first case).

Connect ports of the leftmost and the rightmost objects manually to form a ring. Type the
onCreate() method in the Additional class code section of the Code window of the Ring

active object class to connect the ports on object creation.

public void onCreate() {
ring.item(0).input.connect(ring.item(ring.size()-1).output);
}

The resulting structure is shown in Figure 23.

%HHHHﬁ

Figure 23. The ring of cells

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 57

Chapter 2. Replicated objects

2.3.6 Creating atorus of cells

Suppose you want to build a torus of cells. Let N be the radix of the torus. You first declare
N*N replicated cells.

Figure 24. A cell for torus

Now you need to connect the opposite interface elements of adjacent elements of a
replicated object, namely up interface element with down, up-right with down-left, right with
left and down-right with up-left.

You connect cells manually in the method onCreate() in the Additional class code code
section of the class System (this method is called on the active object creation):

public void onCreate() {
forCint 1 = 0; 1 <N; i1 ++) {
for(int j =0; jJ <N; j ++) {
cells.item(index(i,j))-nw.connect(cells.item(index(i-1,j-1)).se);
cells.item(index(i,j))-n.connect(cells.item(index(i-1,j))-s);
cells.item(index(i,j))-ne.connect(cells.item(index(i-1,j+1)).sw);
cells.item(index(i,j))-e.connect(cells.item(index(i,j+1)).-w);

Here the method index() maps the two-dimensional index to the one-dimensional index

c.g.:

pd

int index(int r, int c) {
r += N; r =r % N;
c += N; ¢ = c¢c % N;
return r * N + c;

58 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

The resulting configuration of encapsulated objects is shown in Figure 25.

System

Figure 25. Pattern of cell configuration

The technique presented here provides the ability to create periodically organized structures
of objects of arbitrary size and topology.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 59

Chapter 2. Replicated objects

2.4

Viewing and modifying replicated objects at
runtime

You can access and modify a replicated object and its individual elements at runtime like any
other active objects either programmatically (see section 2.2.1, “Accessing replicated objects
from code”) or from the AnyLogic UL

In the Model Explorer, a replicated object is displayed as a branch of the model tree
containing individual elements (see Figure 26). Along with the name of a replicated object,
the number of its elements is displayed. Elements of the machine replicated object are
named machine-0, machine-1, etc. You can expand and collapse object contents by
clicking the plus and minus icons correspondingly.

[
[i@ roaot
-l machine: 13
- i@ machine-0
- i@ machine-1
- i@ machine-10
- i@ machine-11

_‘
]

~(® machineRadius = 190
~(® meanFaiureTime = 1000.0
= (ﬁ meanFecoveryTime = 100,0

Figure 26. Replicated object in the Model Explorer

You can examine structure and current state of individual elements of a replicated object like
any other active objects: open animated structure diagram window for an object, open
inspect and log windows for object elements, etc. Running and debugging a model is
described in Chapter 11, “Running and observing a model” and Chapter 14, “Debugging a
model” correspondingly.

If you dynamically add or remove some elements to/from a vector of replicated

objects, these changes are automatically displayed in the Model Explorer.

60 © 1992-2004 XJ Technologies http://www.xjtek.com

2.5

AnyLogic V User’s Manual

Animating a replicated object

AnyLogic animation is constructed from animations defined for active objects and

composed according to the model hierarchy.

You can display an animation of a replicated object on an animation of a container object,

displaying
e Animations defined for all the elements of a replicated object, or

e Animation(s) of the certain element(s) only.

To animate a replicated object, you define an animation for a replicated object class and
place it on the animation of a container object. It is drawn as a rectangle showing the content
of the animation of either all the individual elements or only of the certain object copies of a
replicated object. You can move, scale, and rotate an encapsulated animation shape in the
animation editor, or you can assign expressions to necessary properties to allow a model to
move, scale, and rotate an encapsulated animation shape at runtime. The detailed
information about animating encapsulated objects is given in section 12.1.2, “Animating

hierarchical models”.

If an animation for an encapsulated object class is already defined when you create an
instance of this class, the encapsulated animation shape automatically appears on the

animation of a container object.

If you create a replicated object, and the replicated object class does not have animation
defined for it, then the encapsulated animation shape is not created. If you define animation
for the encapsulated object class after that, you have to manually create an encapsulated

animation shape.

You may also need to manually place an encapsulated animation shape on the animation of
the container object if you wish to display only the certain elements of the replicated object

on the animation.

There are two options to place animations of a replicated object on the animation of a

container:

e To display all elements of the replicated object, you draw an encapsulated animation

shape with the encapsulated object name set to the whole vector of objects, e.g. cars,

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 61

Chapter 2. Replicated objects

server. In that case positions of different encapsulated animations are usually

specified in the properties of the animation of the replicated object class.

e To display only the selected elements of the replicated object, you draw as many
encapsulated animation shapes as necessary and specify the encapsulated object name
for each shape in the form of <encapsulated object name>-<number>, e.g. cars-5,
server-0, etc. Position of such encapsulated animation is usually specified directly in

the properties of the encapsulated animation shape.

» To draw an encapsulated animation of a replicated object

1. Click the Encapsulated Animation I8 toolbar button, or

Choose Draw | Animation | Encapsulated Animation from the main menu.
2. Click or drag a rectangle area on the animation diagram of a container object.

3. In the Properties window, specify the name of a replicated object (e.g., cars) or of a
particular element (e.g., cars-1) this shape refers to in the Obyect edit box.
The shape shows the content of the animation of the specified object.

In case a replicated object is created and destroyed dynamically, its animation appears

and disappears synchronously with the object.

62 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Parameters

3.1

Active object may have parameters. Using parameters, you can parameterize active objects in
your model. It is needed when object instances have the same behavior described in class,

but differ in parameter values.

All parameters are visible and changeable throughout the model execution. Thus, you can
simply adjust your model by changing parameters at runtime. If you want, you can define a

handler method that is invoked on a parameter change.

A parameter of an active object class can be associated with a parameter of its encapsulated
object. In this case, the class parameter change propagates to the associated object

parameter.

There is a clear difference between variables (see Chapter 4, “Variables”) and parameters. A
variable represents a model state, and may change during simulation. A parameter is
commonly used to describe objects statically. A parameter is normally a constant in a single

simulation, and is changed only when you need to adjust your model behavior.

Use a variable instead of a parameter if you need to model some data unit changing

over time.

Parameter types

Alike other simulation tools Anylogic supports parameters of primitive types: real,
integer, boolean. But only AnyLogic gives you infinite possibilities in parameterizing your

objects by supporting parameters of any Java classes.

You can define parameters of common Java classes — e.g., a parameter of the String class
to represent character strings, or of the Vector class to create a parameter representing a
dynamic array of objects. You can create a parameter of the Object class (the base class for
all Java classes) and assign an instance of any Java class to this parameter. Later on you will
need to check the actual type of this parameter and cast it explicitly to the original Java class.
For details on Java classes, see Java SDK documentation available at

http://java.sun.com/docs.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 63

Chapter 3. Parameters

You can define parameters of your own classes, defined in the active object class code.

Since all AnylLogic objects are instances of Java classes, you can define parameters of these

classes and thus use AnyLogic objects as parameters. Table 1 lists some of AnyLogic objects

along with their class names:

Object Class Description
See section 6.1, “Matrices”. In contrary to matrix
Matrix Matrix variables, automatically initialized with zeros, always
initialize matrix parameters on your own.
Enumeration | Enumeration | See section 6.2.1, “Enumerations”.
Hyper-array HyperArray | See section 6.2, “Hyper-arrays”.
Lookup tables are used for defining some complicated
Lookup table variable dependencies that cannot be described by
) LookupTable o))
function composition of standard functions; e.g., time schedule.
See section 5.3.3, “Lookup tables”.
You can associate a custom animation shape with an
Animati object. Later on, when accessing this parameter in code,
nimation) .
b ShapeBase you will need to check the parameter type and cast it
shape y o
P explicitly from the base animation shape class ShapeBase
to the original animation shape class.
You can associate a custom 3D animation shape with an
o object. Later on, when accessing this parameter in code,
3D animation) _
Shape3DBase | you will need to check the parameter type and cast it

shape

explicitly from the base 3D animation shape class
Shape3DBase to the original 3D animation shape class.

Table 1. AnyLogic types parameters

See AnyLogic Class Reference for more information on AnylLogic classes.

64

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

3.2 Defining parameters

Parameters of active object classes are defined in the Parameter dialog box.

» To add the parameter to an active object class

1. In the Project window, click the active object class.

e

oy
2. In the Properties window, click the New Parameter == button.

The Parameter dialog box is displayed (see Figure 27).

3. In the Parameter dialog box, set up the parameter properties.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com

65

Chapter 3. Parameters

Parameter

Mame: I refreshTime

Type: I double

=

Defaulk value: I 0.5

 Simple " Dynamic

Predefined symbals;

£ Global

-

i Separatar

Symbol

W alue

MIM_PERIOD

0.1

M PERIOD

0.85

Hide if:

Parameter

W alue

ybd an ==

30

Descripkion:

o]

=

[

Cancel |

Figure 27. Parameter dialog box

The following properties of the parameter are set up in the Parameter dialog box:

66

Name — the name of the parameter.

Type — the type of the parameter.

Defanlt value — the default value of the parameter. If any predefined symbols are

defined, they appear in the combo box.

Simple — it set, this parameter is neither global notr dynamic.

Dynamic — if set, the parameter is dynamic. See section 3.6, “Dynamic parameters” for

information on dynamic parameters.

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Global — if set, the parameter is global. The global parameter of the active object class

has the same value for all the instances of this class in the model.

Separator — if set, the parameter is used as a separator. Such a parameter is shown as the
blank row in the Parameters table of actual parameters of the encapsulated object.

It is used for visual separation of some groups of parameters.

Predefined symbols — the set of predefined symbols defined in the Symbol 1 alue form,
where Symbol is the name of the predefined symbol and 1a/xe is its value. Thus
you can define some useful constants and refer to them when specifying the

default value or the actual value of the parameter.

Hide if — the list of conditions defining when the actual parameter of the encapsulated
object is hidden. Specify the Parameter, the == |/= comparison operation and the
Value.

Description — the description of the parameter.

When you’ve finished defining the parameter, the new row appears in the Parameters table of

the active object properties.

You can use predefined symbol “index” as the root object parameter value to refer

the current run number (see section 13.2, “Model replications”).
Later, you can change the properties of the parameter using the Parameter dialog box.

» To change parameter properties
1. In the Project window, click the active object class.
2. In the Properties window, select the parameter in the Parameters table.

3. Double-click the parameter in the Parameters table, or

s
Click the Edit = button.
The Parameter dialog box is displayed.

» To delete a parameter
1. In the Project window, click the active object class.

2. In the Properties window, select the parameter in the Parameters table.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 67

Chapter 3. Parameters

3. Click the Delete X button.

» To move a parameter up
1. In the Project window, click the active object class.

2. In the Properties window, select the parameter in the Parameters table.
3. Click the Move Up ¥ button.

» To move a parameter down
1. In the Project window, click the active object class.

2. In the Properties window, select the parameter in the Parameters table.
3. Click the Move Down ¥ button.

» To duplicate a parameter
1. In the Project window, click the active object class.
2. In the Properties window, select the parameter in the Parameters table.

3. Click the Duplicate 4 button.

3.3 Setting up actual parameter values

An active object class has a set of formal parameters. When the object is encapsulated in
another object, actual parameters may be assigned to its formal parameters; otherwise, the
default values are assumed. Thus, you can set various actual parameter values for different

instances of the same active object class.

» To set actual parameter value of an object instance

1. Select the encapsulated object on the structure diagram.

68 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

2. In the Properties window, specify the parameter value in the a/ue cell of the
Parameters table (see Figure 28).
The changed parameter value is emphasized with bold.

Propetties

General | Replication | Descripkion

Mame: I controller

Type: Itwu:u_tanks;urnblem.Cu:untru:uller

Parameters:
Mame Walue
tirme B0
tirne2 25
Lpper 0.900
lower 0.300

Figure 28. Encapsulated object properties page. Parameters table

If you change parameters of an active object class after creating instances of that class,

check parameters of those instances afterwards.

You can assign actual parameters to parameters of the root object of experiment. Thus, you
can create several experiments with the same root object set up but with differing
parameters. Simulating your model with different current experiments, you can observe and

compare model behavior with different parameters.

» To set actual parameter value for a root object of an experiment
1. In the Project window, click the experiment.

2. In the Properties window, specify the parameter value in the Va/ue cell of the
Parameters table.

The changed parameter value is emphasized with bold.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 69

Chapter 3. Parameters

3.4 Modifying parameters at runtime

You can change parameters at runtime programmatically as well as from the AnyLogic
viewer Ul or from the AnyLogic animation. If a parameter is associated with any parameters
of encapsulated objects, the change is propagated along the parameter dependencies, see
section 3.5, “Parameter propagation”. You can define a handler method that is invoked on a

parameter change.

3.4.1 Modifying parameters from Model Explorer

» To modify a parameter

1. In the Model Explorer, double-click the parameter, or
Right-click the parameter and choose Modify from the popup menu.
The Modify dialog box is displayed.

2. Type new value in the Enter new value edit box.

3. Click OK.

3.4.2 Modifying parameters from AnyLogic animation

AnyLogic offers a set of controls (buttons, text inputs, checkboxes, sliders) for creating
interactive animations. You can modify a parameter of an active object by associating it with

an animation control and changing control at runtime.

You can associate:
e a parameter of boolean type with a button or a check box
e a parameter of String type with an edit box

e a parameter of double type with a slider.

70 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

P To associate a parameter with an animation control

3.4.3

3.4.4

1. Select the control on the animation diagram.

2. In the Properties window, choose the parameter from the [ariable name drop-down
list.

3. If needed, specify the code to be executed when the user changes the control in the
Event handling code edit box.

See Chapter 12, “Animation” for more information on Anyl.ogic animation.

Accessing and modifying parameters programmatically

You can change a parameter programmatically. A parameter myParam of an active object can
be accessed simply as a member variable myParam. Parameter may appear in equations and

code within an active object.

If, however, you are modifying the parameter and want this modification to be propagated
down along the parameter dependencies (see section 3.5, “Parameter propagation”), you
have to call the method — e.g., set_myParam() generated by AnylLogic, passing the value

you want to assign as a method parameter.

The parameters of the root object can be setup from the command line, see section 18.1,

“Running a model from the command line”.

Parameters of an encapsulated object are passed to it right after it has been created by the
new operator. During execution of the constructor, parameters are not yet initialized. Thus,
if you want to use a parameter to initialize, e.g., a member variable of an object, you cannot
do it in the member variable declaration. You should do it somewhere else; for example, in
the method onCreate() of the object. By the time onCreate() is called, all parameters are
already initialized.

Defining parameter change handlers

If you need to perform some action on parameter change, you can define a handler method.

For example, for the myParam parameter AnyLogic calls the method onChange_myParam().

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 71

Chapter 3. Parameters

If you use a parameter as a replication factor of an encapsulated object, AnylLogic
creates a number of instances equal to the initial value of the parameter. However,
AnyLogic does not automatically adjust the number of instances in case you change
the parameter at runtime. If such behavior is needed, you should use the handler
method onChange_myParam() to take care of creation and destruction of instances
(see section 15.1, “Manual creation and destruction of encapsulated objects” for

information on dynamic object creation).

3.5 Parameter propagation

You can associate a parameter of an active object class with a parameter of its encapsulated
object. In this case if you change a class parameter during the model execution, the
associated object parameter depending on it also changes. This holds generally for all

parameter dependencies down the active object tree from the modification point.

Propagate values of parameters down the objects hierarchy when:

® You need to change parameters of several encapsulated objects (perhaps of different
classes). You can simply do this by creating single parameter of the root object and

propagating its value to several parameters you need to change.

e You need to optimize the model by changing the parameter of a non-root object. In
this case, you also need parameter propagation since you can optimize model by

changing only the root object parameters.

You can associate only parameters of the same type.

3.5.1.1 Setting up parameter propagation manually

» To set a propagation manually
1. Select the encapsulated object on the structure diagram.

2. In the Properties window, select the parameter you want to link with the parent

object parameter, in the Parameters table.

72 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

3.

In the Value field, type the name of the parent class parameter you want to

propagate.

3.5.1.2 Setting up parameter propagation using Export Parameter to Owner

dialog

You can also set parameter propagation using the Export parameter to Owner dialog.

» To set a propagation link

1.

Select the encapsulated object.

In the Properties window, right-click the row holding the parameter you want to

propagate in the Parameters table.

Choose Export to Owner from the popup menu.
The Export Parameter to Owner dialog is displayed.

If you want to link object parameter with a new class parameter, choose the Create a
new parameter option, click the Nexz button, and specify the parameter name, type and

default value using the Parameter, Type, Defanlt value controls.

Otherwise, if you want to link object parameter with an existing class parameter,
choose the Select an existing parameter option, click the Nexz button and select a parent

class parameter you want to propagate by clicking it in the parameters table.

Click the Finish button.

3.5.1.3 Removing propagation link

» To remove a propagation link

1.

Select the encapsulated object.

In the Properties window, right-click the row holding the linked parameter in the

Parameters table.

Choose Reset to Defanlt from the popup menu.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 73

Chapter 3. Parameters

Parameter change is propagated only in one direction, down the active object tree

along the parameter dependencies.

Figure 29 illustrates parameter propagation.

ObjectA / Parameters:
Y int paramA 5
objectB /1
. 1 Parameters:
ObjectB o -
) int paramB paramA
paramA @5 paramA 15;
’I ™. I \
1 \
1 A}
’ objectA . objectA i \
\
objectB objectB

1
L 1
paramB‘lS paramB @G5>
a) b)

Figure 29.

The objectB is encapsulated in the ObjectA class. Its paramB parameter is associated with
the paramA parameter of the parent class.

When you change the paramA parameter of the capsule class, the paramB parameter of the
encapsulated object is changed as well. But changing the paramB parameter does not affect
the paramA parameter.

74 © 1992-2004 XJ Technologies http://www.xjtek.com

3.6

3.7

AnyLogic V User’s Manual

Dynamic parameters

Dynamic parameters are special types of parameters. Dynamic parameter value is

recalculated each time you assess the parameter; i.e., this parameter acts as a function.

As a value for a dynamic parameter you can type any expression evaluating to the parameter

type. The example of a boolean expression is:

msg.-weight + 5 > 75

where msg is the predefined variable or Java variable of the active object class. Providing

different codes, you can decide what packs are big for each active class instance individually.

Note that the parameter expression will be reevaluated each time you assess a parameter
value. You obtain the parameter value using function-call notation — e.g., myParameter(),
not myParameter — because dynamic parameters become functions in the generated Java

code.

Using dynamic parameters, you can parameterize active object instances with some code

strings and thus greatly improve the flexibility and reuse of your active object class.

Observing model behavior with different model
parameters

You may need to carry out several simulation experiments to observe and compare model

behavior with different model parameters.

A model simulation comprises one or several single model runs - replications. You can use
several replications in one model simulation and vary model parameters after each model
replication. Thus, you can run your model with different parameters and analyze its behavior.
This can be done by specifying a number of model runs and writing your own code to be

executed between model replications on the Code page of the project’s properties window.

For example, you need to observe the model behavior with the integer rateParameter
parameter of the root object changing from 1 to 10 over 10 model replications. Thus your

model will be run 10 times, each time with increased rateParameter parameter value.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 75

Chapter 3. Parameters

First, specify a number of model runs for the current experiment.

» To set a number of model runs for an experiment
1. In the Project window, click the experiment.

2. In the Properties window, set the number of model replications in the Number of runs
edit box.

Second, specify code you want to be executed before or after each model replication in the
Before replication or After replication section of the project properties correspondingly.
Type the following code in the Affer replication section of the project code properties:

rateParameter ++;

3.8 Optimizing model parameters

If you need to run a simulation and observe system behavior under certain conditions, as
well as improve system performance, for example, by making decisions about system
parameters and/or structure, you can use the optimization capability of AnyLogic. Using
sophisticated algorithms, AnyLogic automatically finds the optimal values of model
parameters, with respect to certain constraints. The optimization process consists of

repetitive simulations of a model with different parameters.

Only a parameter of the root object can be optimized. If you need to optimize

parameters of encapsulated objects, you must use parameter propagation.

For detailed information see Chapter 16, “Optimization”.

76 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Variables

4.1

An active object can contain variables — entities that model data items (may be continuously
changing over time). Variables are generally used to store the results of model simulation or
to model some characteristics and parameters of objects, changing over time. During the

model execution, variables are observable and changeable from the AnyLogic UL

A variable can be of an arbitrary scalar type, a matrix of an arbitrary dimension, or a hyper-
array — a multi-dimensional array of real numbers. This chapter describes scalar variables
only. AnylLogic matrices and hyper-arrays are described in detail in Chapter 6, “Matrices and
hyper-arrays”.

You can define a set of differential equations, algebraic equations, and formulas to describe
continuous changes of variables over time. Thus you can define a continuous time object

behavior. Modifying variables at runtime, you can adjust the model behavior.

Variables can be exposed to the active object interface and shared with other active objects.
In this case, variable changes are immediately propagated to the dependent variable of

another object. This provides for continuous and/or discrete time object interaction.

You can declare a Java member variable in the Additional class code code section of an
active object class. Use member variables instead of variables if you just need a data
item to be accessed only within an active object and only at discrete steps (i.e., it is
neither shared with other objects nor changed continuously), and you do not want to

observe or change that item during model execution.

Use a parameter (see Chapter 3, “Parameters”) instead of a variable if you just need to
model some static parameter of an object changed only at particular moments of time

(e.g., between model runs).

Defining a variable

Variables can be either internal (or state variables) or public (or interface variables). A state
variable is only accessible from within the active object. An interface variable can be shared

with other active objects.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 77

Chapter 4. Variables

Declare interface variable if you need to establish a continuous time object interaction by
sharing it with other objects. Otherwise, if you need just to model some data unit within the

active object, declare a state variable.

» To define a state variable

1. Click the Variable = toolbar button, or

Choose Draw | Structure | Variable from the main menu.

2. Click inside the class border on the structure diagram.

A new variable appears, displayed as the small circle, see Figure 30.

State
variable

Figure 30. State variable

» To define an interface variable

1. Click the Variable = toolbar button, or

Choose Draw | Structure | I ariable from the main menu.

2. Click the class border on the structure diagram.

A new variable appears, displayed as the small triangle, see Figure 31.

Input Output
interface ~.. ;- interface
variable [:> [:> variable

Figure 31. Interface variables

Placing a variable on the class border makes it interface.

78 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

You can simply change the accessibility status of the created variable.

» To make variable interface

1. On the structure diagram, drag the variable on the class border.

» To make variable state
1. On the structure diagram, drag the variable into the class border.

Interface variable is displayed on the structure diagram as a triangle. It can be either input (a
triangle pointing inside the object) or output (a triangle pointing outside). The variable
“direction” is significant in variable sharing — output variable changes will be propagated to
the dependent input variable (see section 4.3, “Variable sharing” for the detailed description

of variable sharing mechanism).

Once the new variable is created, you can specify the variable name in the text line editor

opened on the right of the variable in the structure diagram.

Moving, copying and deleting variables

There are some common operations you can perform with variables on the structure
diagram. You can copy, move and delete variables just as any other class elements. First, you
should select the variable by clicking it.

» To move a variable

1. Drag the variable with the mouse or use arrow keys.

» To copy a variable

1. Ctrl-drag the variable.

» To delete a variable

1. Click the Delete %% toolbar button, or
Choose Edit| Delete from the main menu, or
Right-click the variable and choose Delee from the popup menu, or
Press Del.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 79

Chapter 4. Variables

A variable has the following properties:

Properties

Nuame — name of the variable.

Variable type — type of the variable. Variable can be scalar of an arbitrary type (Scalar), a
matrix (Matrix), or a hyper-array (Array).

Direction — No direction | Input | Output direction of the variable.
Eguation — [optional| equation associated with this variable.

Auto collect dataset — if set, AnyLogic collects variable samples from the beginning of the
simulation. Otherwise data collecting starts only when and if the variable is

added to a chart window.
Excclude from build — if set, the variable is excluded from the model.

Show name — if set, the name of the variable is shown on the structure diagram.
You can declare scalar variables of any Java types, namely:
e variables of primitive types (real, integer, boolean),
e instances of any Java classes (String, Vector, Object, etc.),
e instances of your own classes, defined in the active object class code.
» To define a scalar variable
1. Select the variable on the structure diagram.
2. Go to the [ariable type section of the Properties window.

3. Select the Scalar option.

4. Specify the type of variable in the combo box on the right of the Scalar option.

4.1.1 Initializing a scalar variable

You can define an initial value for a variable. This value can be changed afterwards at

runtime (see section 4.1.2, “Viewing and modifying scalar variables at runtime”).

80 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

P To initialize a scalar variable

4.1.2

1. Select the variable on the structure diagram.

2. Go to the Eguation section of the Properties window.

3. Choose No equation from the Form drop-down list.

4. Specify the initial value of the variable in the Initial value edit box.

If an initial value is not specified, Java rules apply, for example a variable of type double is
set to 0.

If a formula is defined for a variable, its initial value is calculated by this formula.

You cannot initialize input variable, since it commonly plays the role of dependent

variable and its value depends on the value of connected output variable.

Viewing and modifying scalar variables at runtime

AnyLogic supports variable modifying during the model simulation. You can change
variables at runtime programmatically as well as from the AnylLogic viewer Ul or from
AnyLogic animation. If a variable is connected with another variable, the change is
propagated in the shown “direction” of dependency, see section 4.3, “Variable sharing”. You

can define a handler method that is invoked on a variable change.

4.1.2.1 Modifying variables from Model Viewer

» To modify a variable

1. Double-click the variable in the Model Explorer or on the animated structure
diagram, or
Right-click the variable in the Model Explorer or on the animated structure diagram
and choose Modify from the popup menu.
The Modify dialog box is displayed.

2. Type a new value in the Enfer new value edit box.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 81

Chapter 4. Variables

3. Click OK.

In the Model Viewer you can modify scalar variables only of primitive types: integer,

real, boolean.

4.1.2.2 Inspecting variable

You can inspect the current value of a variable at the model runtime from the variable’s

inspect window.

» To open the inspect window

1. Right-click the variable in the Model Explorer or in the animated structure diagram
and choose Inspect from the popup menu.

Variable’s inspect window is displayed.

4.1.2.3 Modifying variables from AnyLogic animation

AnyLogic offers a set of controls for creating interactive animations. You can modify a
variable by associating it with an animation control and changing control at runtime. See

Chapter 12, “Animation” for information on Anylogic animation.

You can associate:
e avariable of boolean type with a button or a check box
e avariable of String type with an edit box

e avariable of double type with a slider.

» To associate a variable with an animation control
1. Select the control on the animation diagram.

2. In the Properties window, choose the variable from the Iariable name drop-down
list.

82 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

3. If needed, specify the code to be executed when the user changes the control in the
Event handling code edit box.

4.1.2.4 Accessing and modifying variables from code

You can treat a variable as a regular Java object and modify, test, and use it at discrete event
steps in any expressions — in actions of states, transitions, ports, timers, from threads, etc. A

variable varl of an active object can be accessed simply as the member variable varil.

For example, write the following code to modify and check varA variable value:
varA = 7;

traceln(“VarA = 7 + varA);

4.1.2.5 Collecting dataset on a variable

AnyLogic supports collecting data on a variable during the model simulation in a dataset.
You can visualize and export data collected in a dataset (see Chapter 17, “Collecting data and

performing statistical analysis”).

Samples of variables can be collected automatically from the beginning of the simulation.

» To collect dataset automatically
1. Select the variable on the structure diagram.
2. In the Properties window, select the Auzo collect dataset check box.

If auto collecting data is not set, data collecting starts only when and if the variable is added

to a chart window.

4.1.2.6 Displaying plots of variables in Viewer

You can visualize variable changes during model simulation using AnyLogic chart windows.
You can visualize data collected for variables in either explicitly created or automatically
collected by AnyLogic datasets. See Chapter 17, “Collecting data and performing statistical

analysis” for details on collecting and analyzing data.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 83

Chapter 4. Variables

» To display a plot of a variable in a chart window

1. Right-click the variable in the Model Explorer and choose Chart from the popup

menu.

You can open a blank chart window and add a variable later.

» To open a blank chart window

1. Click the New Chart Il toolbar button, or

Choose 7w | New Chart from the main menu.

Chart window looks as shown in Figure 32.

rook.x, rook.y !IEI E
1.1
1 -
0,94

T T T T T T T T
6 65 7 75 8 85 9 9510 11 12 13 14 15 16 17 15
I root.x B roob.y
4] i |

Figure 32. Chart window

Variables can be added to a chart window using drag and drop or using the Chart Setup dialog

box.

84 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To add a variable to a chart window

1.

Drag the variable from the Model Explorer onto the chart window.

» To set up the chart

1.

Right-click the chart window and choose Chart Setup... from the popup menu.
The Chart Setup dialog box is displayed (see Figure 33).

To add a variable to the chart, double-click the corresponding item in the [ariables,

parameters and datasets list.

To remove a variable from the chart, double-click the corresponding item in the
Axis Y list.

By default, Time is chosen in the Ax7s X list, that is the chart is timed. If you need to
plot one variable against another variable, dataset, or parameter, make the chart
phased. Set up the variable/dataset/parameter to be displayed on the x-axis by
clicking the corresponding item in the VVariables, parameters and datasets list, and then

clicking the —}l button to the left of the Ax7s X list. To make plot timed again,
remove the variable/dataset/parameter item from the Axzs Y list by double-clicking.

Click OK.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 85

Chapter 4. Variables

Chart Setup

‘tariables, parameters, and datasets; Auxis ¥

(ﬁ root, &doption_Fraction @ root. Customers
@ root.Adoption_From_aAdvertising
@ root. Adoption_From_word_OF_Mouth

@ root. Adoption_Rate -= |
'e] root. Advertising_Effectiveness
(4 root.Contact_Rate = |

U oot Pokential_Customers
¢ root, Tokal_Population

fxis B

il 2 Time:

r—Display:
& Last run
= all runs

Filker:

' One point per run

oK I Cancel

Figure 33. Chart Setup dialog box

4.1.2.7 Displaying plots of variables in animation

Variable plots can also be displayed in Anyl.ogic animation using a special control - chart
indicator. Chart indicator displays a variable in one of the following forms: scatter, Gantt, pie

chart, or bar chart.

» To create a chart indicator

1. Click the Chart Indicator 2= toolbar button, or

Choose Draw | Animation | Chart Indicator from the main menu.
2. Click or drag the indicator area on the animation diagram.

3. In the Properties window, specify the variable you want to indicate in the [a/ue to

indicate combo box.

See section 12.2.3.3, “Chart indicator” for the detailed description of chart indicator.

86 © 1992-2004 XJ Technologies http://www.xjtek.com

4.2

4.3

AnyLogic V User’s Manual

Equations

You can define a set of equations to describe continuous changes of variables over time.
Thus you can define continuous time object behavior. See Chapter 5, “Equations” to know

how to define equations.

An equation can be of three types:
e Differential equation (see section 5.1.1.1, “Differential equations”)
e Algebraic equation (see section 5.1.1.2, “Algebraic equations”)

e Formula (see section 5.1.1.3, “Formulas”)
You can define equations for a set of variables, maybe across several active objects.

AnylLogic supports matrices and hyper-arrays as well as primitive types in equations, see

Chapter 6, “Matrices and hyper-arrays”.

Variable sharing

Variables can be shared with other active objects. Shared variables will have the same value
at any moment of time; i.e., changes of one variable will be immediately propagated to

another variable. This provides for continuous and/or discrete time object interaction.

Only the variables of compatible types can be connected.

To establish variable sharing, you should connect the respective variables (see section 4.3.2,

“Connecting variables”). You can connect:
e interface variables of two encapsulated objects;

e cither state or interface variable of a container object with an interface variable of an

encapsulated object.

Connect variable of encapsulated object with an interface variable of the container object if
you need to share it with container object neighborhood. Otherwise, if you need to share it

only with a container object, use state variable.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 87

Chapter 4. Variables

You cannot connect two variables of the same object.

4.3.1 Variable sharing rules

One of connected variables always acts as the dependent variable and its value depends on
the value of another variable. The variable role in the connection is defined by the direction
type of connected variables. As mentioned above, interface variables have the explicitly
specified direction type: input and output. Output variable changes are propagated to the

connected input variable.

The dependency direction of interface variable is specified in the variable’s properties

window.

» To change the dependency direction of interface variable
1. Select the variable on the structure diagram.

2. In the Properties window, specify the dependency direction in the Direction drop-

down list.

Internal variable does not have the explicit dependency direction. The role of internal

variable depends on the particular connection case.

AnylLogic permits only some well-defined configurations of variable connections to prevent
collisions. The valid configuration cases are shown in Figure 34. The general rule is that for
connecting variables of two encapsulated objects, one variable is always output and another
one is input; while for connecting a variable of an encapsulated object with a variable of a

container object, both variables should be of the same “direction.”

88 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Variables of the same
object cannot be connected

Figure 34. Connection of variables

Variable change is propagated according to the well-defined set of rules (in Figure 34

directions of variable propagation are shown with arrows).

e When variables of two encapsulated objects are connected, output variable change is
propagated to input variable.

e When variables of encapsulated and container objects are connected, the direction of
variable change propagation depends on the dependency direction type of variable of
encapsulated object:

e When it is the output variable, this variable change is propagated outside from the

encapsulated object to the connected variable of the container object.

e Otherwise, if it is the input variable, the change is propagated from the container to
the encapsulated object.

AnylLogic allows connection of several dependent variables to one output variable. But
to prevent collisions, only one output variable can be connected to a dependent
variable; otherwise, AnylLogic raises a compilation error. Some possible cases of

invalid connection configurations are shown in Figure 35.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 89

Chapter 4. Variables

/

\

Dependent variable
cannot have two output
variables connected

Figure 35. Invalid configuration case of variable connection

4.3.2 Connecting variables

You can connect variables either graphically with connectors (see section 1.5.8, “Active

objects interaction” for information about connectors) or programmatically.

4.3.2.1 Connecting variables graphically

Variables can be connected graphically in the structure diagram.

Connecting variables of encapsulated objects

You can establish continuous time interaction between two encapsulated objects by
connecting their interface variables. You can connect only an input variable with an output

variable. The output variable value will be passed to the connected input variable.

90 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To connect variables of encapsulated objects

1. Drag the variable of one encapsulated object onto the variable of another
encapsulated object, or
Click the Comnector s toolbar button, click the first variable and then click the
second variable, or
Choose Draw | Structure | Connector from the main menu, click the first variable and
then click the second variable.

The connector linking two variables appears (see Figure 306).

objectA objectB

[—>

Figure 36. Variables of encapsulated objects connected

Connecting variable of an encapsulated object with a variable of a container object

To establish continuous time interaction between the encapsulated object and the container
active object you should connect a variable of an encapsulated object with a variable of the

parent object.

Connect a variable of an encapsulated object with an interface variable if you want to
establish interaction with parent object neighborhood. However, if you need only to
propagate value of the variable of container object and encapsulated object, use a state

variable.

» To connect a variable of an encapsulated object with a variable of a container object

1. Drag the variable of the encapsulated object onto the variable of the container
object, or
Click the Connector s toolbar button, click the first variable and then click the
second variable, or
Choose Draw | Structure | Connector from the main menu, click the first variable and
then click the second variable.

The connector linking two variables appears (see Figure 37).

© 1992-2004 X]J Technologies http://www.xjtek.com 91

Chapter 4. Variables

objectB
objectA
[

Figure 37. Variables of container and encapsulated objects connected

If connector is shown red on the structure diagram, it means that you have established
an invalid connection (see section 4.3.1, “Variable sharing rules” to check the

connection rules).

Exporting variables to the parent active object

A variable of an encapsulated object can be exported to the parent object class. It means that
the variable is added to the parent object class and connected to the exported variable of the
encapsulated object (see Figure 37). Thus the encapsulated object and the parent object can
interact with each other by propagating variable changes.

» To export a variable of an encapsulated object to the parent active object

1. Right-click the variable on the structure diagram and choose Export to Parent from
the popup menu.

4.3.2.2 Connecting variables at runtime

Variables can be connected and disconnected at runtime using the methods of the
VariableRef class. Call the methods connect() and map() to connect variables and the
methods disconnect() and unmap() to disconnect them. For more information on the
VariableRef class refer to AnyLogic Class Reference.

The methods take the connected variable object as argument. The name of a variable object

is the name of the variable in the structure diagram with the _r¢f_ prefix.

Use the methods connect()/disconnect() to connect or disconnect variables, located on
the same level of containment hierarchy and the map() /unmap() methods otherwise.

92 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

In other words, use the connect()/disconnect() methods to connect or disconnect:

e Variables of encapsulated objects

Use the map()/unmap() methods to connect or disconnect:

e A variable of an encapsulated object with a variable of a container object

4.3.2.3 Using the methods connect()/disconnect()

Figure 38 shows the situation when the connect()/disconnect() methods are used.

objectC

objectA objectB

varA varB

Figure 38. Variables of encapsulated objects

Call the connect() method to connect varA with varB:
objectA. ref _varA.connect(objectB. ref varB);

Call the disconnect() method to disconnect variables in the similar manner:
_ref _varA.disconnect(_ref _varB);

You can write this code anywhere you like in the parent active object class (objectC in the
first case and objectA in the second one) code.

4.3.2.4 Using the methods map()/lunmap()

The method map() is used for connecting variables located on the different levels of the
containment hierarchy, namely a variable of an encapsulated object with a variable of a

container object. Variables are disconnected by calling the unmap() method.

© 1992-2004 XJ Technologies http://www.xjtek.com 93

Chapter 4. Variables

objectA
objectB
[>
varB varA

Figure 39. An interface variable and a variable of an encapsulated object

objectA

objectB

varA

varB O

Figure 40. A state variable and a variable of an encapsulated object

Figure 39 and Figure 40 show the situations when the methods map() /unmap() are used.

To connect these variables, call the method map() of one variable with another variable,

specified as a parameter anywhere you like in the parent active object class (objectA) code:
_ref_varA_map(objectB._ref_varB);

To disconnect these variables, call the method unmap():
_ref_varA_unmap(objectB. ref varB);

AnyLogic also provides you the ability to programmatically disconnect a variable from all
connected variables and to check whether the input variable is connected to the output one.
The related methods of the class VariableRef are listed below. Refer to AnyLogic Class

Reference for details.

Related methods of VariableRef

void breakLinks() — the method disconnects a variable from all connected

variables.

94 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

boolean haslInputConnection() — the method returns true if the input variable

has an incoming connection and false otherwise.

4.4 Changing variables and reacting to their changes

You can also test variables continuously by specifying a Boolean expression as a trigger of a
transition. As soon as the expression evaluates to true (even if this happens in the middle of

a time step), the transition becomes enabled.

We recommend you to specify awaited conditions as triggers and not as guards. This is

because guards are not tested during time steps.

In the example in Figure 41, the transition in object myObj2 fires as soon as the object

myObj1 changes the value of x.

Root
myObj1 myObj2
‘MyCIassl ‘ MyClass2

Name: X
Default value: 0

Statechart of MyClass1 Statechart of MyClass2

... ‘ Trlgger.y >= 5

o O

Action: x = 5;

Figure 41. Responding to variable change (I)

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 95

Chapter 4. Variables

In the example above both objects are discrete. In the example below, continuous behavior
of one object affects discrete behavior of another. The transition in myObj2 fires when the
value of x in myObj1 exceeds 5.

Root

myObjl myQObj2

Name: X .

Initial value: 0

e (30 Integral, Level Statechart of MyClass2
Equation: d(x)/dt =1 y

Name: MyClassl Cb

Equations: d(x)/dt =1 { e ‘ Trigger: y >= 5

)

Figure 42. Responding to variable change (I1)

In case a variable is used in a set of differential and algebraic equations, the connection of
variables means they are treated as single variable by the equation solver. Let us consider the
example. Suppose we have objects connected as shown in Figure 43, and the formulas x=-y

and v=w-2 are currently active in objects myObj1 and myObj2 respectively.

96 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Root

myObj2

Name: y w
Name: X 1 Name: \Y;

Equation type: formula Equation type: formula
Equation: X = -y Equation: Vv=w-2
Name: MyClass1l Name: MyClass2
Equations: X = -y Equations: v = w - 2

Figure 43. Equations over variables

This leads to the following set of algebraic equations:

X=-y

V=w-2

v=y

W= X

and we can easily solve it:
=-y X=-y X=-X+2 x=1
V=w-2 y=x-2 y=X-2 y=-1
= = = :

=y v=y v=y v=y
W =X W =X W =X W =X

The values of the variables are set exactly to these values irrespective of their initial values.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com

97

Chapter 5. Equations

o Equations

5.1

You can define a set of differential equations, algebraic equations, and formulas to describe
continuous changes of variables over time. You may associate equations (hereinafter we use

the term equations for both equations and formulas) with:
e An active object;

e A particular state of a statechart.

At any given moment of time there exists the global active set of equations in a model. This
set is constructed of all currently active equations of all objects and all statechart states.
Equations associated with an active object are active during the whole object lifetime.
Equations associated with a statechart state are active while the statechart is at that state. A
statechart contributes to the global set not only the equations of the current simple state, but

also of all its container states.

AnyLogic supports matrices and hyper-arrays as well as primitive types in equations, see

Chapter 6, “Matrices and hyper-arrays”.

Equation types

An equation can be of three types:
e Differential equation (see section 5.1.1.1, “Differential equations”)
e Algebraic equation (see section 5.1.1.2, “Algebraic equations”)

e Formula (see section 5.1.1.3, “Formulas”)

5.1.1.1 Differential equations

Differential equatio@e defined in the form

d(x)/dt=F(x,y,t,..)

98 © 1992-2004 XJ Technologies http://www.xjtek.com

Ilya Grigoriev
ToChange

AnyLogic V User’s Manual

where x is an output or state variable of type double or of matrix type, and F(X,y,t,..) isa
well-formed arithmetic expression which may contain any variables of the active object and
the special symbol t denoting time. The expression F(X,y,t,..) can contain any arithmetic
operations and method calls, such as, e.g. sin(), cos(), sqrt(), etc., or calls to your own

methods.

F(x,y,t,..) should not call those methods that indirectly use variables of the active
object; the methods should take variables as parameters. The best way to ensure this is

to use static methods only.

F(X,y,t,.) should never call those methods that change variables of the active
object.

F(X,y,t,..) should not contain conditional operators e.g. b>0 ? c:d.

You can define any number of differential equations. It is an error if a variable occurs more
than once in the left-hand side in the set of equations. An input variable is not allowed to

appear in the left-hand side.

Example

In the example shown in Figure 44, the behavior of the variable x is defined by the
differential equation d(x)/dt=t.

MyClass

Name: X e e Name: MyClass
Default value: i 0 Equations: d(x)/dt = t

Figure 44. Differential equations (l)
If you solve this equation analytically, you get x(t)=t~2/2 + C, which, if you take into

account the initial value x(0)=1, gives x(t)=t"2/2+1. This is a parabola. Figure 45 shows
this parabola calculated and drawn by AnylLogic.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 99

Chapter 5. Equations

rook.x !IEI E

3_
2.8 1
2.6 1
2.4
2.21

2-
1.5
1.6
1.4
1.2 1

1_
0.4

T T T T T T T T T T
0o 02040608 1 12141618 2
B ook,

Figure 45. Parabola drawn by AnyLogic

Example

The differential equations presented in Figure 46 define a mathematical pendulum; X is the
pendulum coordinate, y is its velocity. The solution calculated by Anylogic is shown in
Figure 47.

Name: X MyClass .

Default value: 1 [} Name: MyCIass
QO Equations:

..................... doxy/dt = y

"""""""""""""" O d(y)/dt = =X

Name: Yo e
Default value: 0

Figure 46. Differential equations (Il)

100 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Statistics [_ |O]

1.1

1A
0.9
0.5 1
0.7
0.6
0.5
0.4 1
0.3
0.2
0.1+

|:|-
_|:|I1 4
-0.2
-0.3 1
-0.4 1
'|:||5'
-0.6 -
-0.7 1
-0.5 1
Dlg

-1 1
-1.1

T T T T T T T T T T T T T T T T
oos115s 25335445 556657752 855995 105 115
B rook.:; B rook,y

Figure 47. Coordinate and velocity of the mathematical pendulum

5.1.1.2 Algebraic equations

Algebraic equations are defined in the form
x=F(x,y.t,..)

where x is an output or state variable of type double or of a matrix type, and F(x,y,t,..) is
a well-formed arithmetic expression. For the rules that apply to F(X,y,t,..) see section
5.1.1.1, “Differential equations”.

Also, you specify the set of unknown variables, assuring that the number of unknown

variables equals the number of algebraic equations:

find(x, y, .)

You can define any number of algebraic equations. You cannot specify an input variable as

an unknown one.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 101

Chapter 5. Equations

Example

Figure 48 shows an example of a set of two equations with two unknown variables.

Name: N MyClass
Default value: 0 |~.]_ Name: MyClass
""""""""" @) | Equations:
......... 02 %+ y
Name: y | O 0=x-y-2
Default value: 0 |~ find(x, y)

Figure 48. Algebraic equations

Obviously, the solutionis: x = 1,y = -1.

5.1.1.3 Formulas

Formulas are defined in the form
x=F(y.t,..)

where X is output or state variable of type double or of vector/matrix type, and F(y, t,..)
is a well-formed arithmetic expression. For the rules that apply to F(y,t,..) see section
5.1.1.1, “Differential equations”. The only additional restriction is that F(y,t,..) cannot not
contain X because then it would be an algebraic equation, which must be defined using

another form.

You can define any number of formulas. It is an error if a variable occurs more than one

time in the left-hand side in the set of equations. An input variable cannot appear in the left-
hand side.

A formula defines a direct dependency between variables. It is a special case of
algebraic equation, but it does not need a time-consuming numerical solution.
Therefore it is recommended to use formulas whenever possible to increase simulation

performance.

102 © 1992-2004 XJ Technologies http://www.xjtek.com

5.2

AnyLogic V User’s Manual

Defining an equation

You specify an equation as a string. For convenience you can specify equations in the

Eguations code section of an active object class or in the Eguation section of a variable. Those

two places are self-synchronized; that is, if you write or remove an equation in one place, the

equation is added or removed in the other place automatically. In the Eguations code section

of an active object class, you can specify all kinds of equations. However, in variable’s

properties, you can define only differential equations and formulas for this particular

variable.

» To define an equation in active object class code

1. In the Project window, right-click the Code item of the active object class and choose

Open Code from the popup menu, or
Double-click the Code item of the active object class.

The Code window of the active object is displayed, see Figure 49.

2. Type the equation in the Eguations section.

B TwoTanks

=101 x|

Inport
Inplemnents interfaces
Startup code

Equations

dihz) /dt = [(wlZ-wOut) faz

dikl)fdt = (wIn-v12) /al

wlut = kZ2¥sgrtihZ)

Additional class code

atatic double al = Math.PI¥dl1%d1/4;
static double aZ = Math.PI¥d=2%d2/4;

kil

Figure 49. Code window of the active object class

» To define a differential equation for a variable

1. Select the variable on the structure diagram.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com

103

Chapter 5. Equations

2. In the Egunation section of the Properties window, choose Integral or Stock from the

Form drop-down list.
3. Type the right hand of the equation in the d(variable)/ dt = edit box.

4. Type the variable initial value in the Initial value edit box.

» To define a formula for a variable
1. Select the variable on the structure diagram.

2. In the Egunation section of the Properties window, choose Formmula trom the Form

drop-down list.
3. Type the formula for a variable in the variable = edit box.

AnylLogic enables you to visualize the resulting dependencies between variables in your
model with arrows (see Figure 50). An arrow pointing from variable A to variable B means

that variable A is mentioned in the equation of variable B.

» To show/hide the dependencies between variables

1. Click the Show/Hide Variable Dependencies ¥ toolbar button, or
Choose Draw |V ariable Dependencies from the main menu.

If dependencies are shown, the toolbar button looks blued.

104 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Potential_Adopk

Adoption_Pate Adopters

o

Adoption_F Advertisi
ORHEn_From_AGvErtiEing (DrAdoption_From_Word_OF_Mouth

Tokal_Population

Figure 50. Dependencies displayed on the structure diagram

You may associate equations with a particular state of a statechart (composite as well as

simple). You define equations for the statechart state into the property Equations of the state.

» To define equations for a statechart state
1. Click the state on the statechart diagram.

2. In the Properties window, type equations in the Eguations section.

5.3 Functions

AnyLogic enables using custom functions in equations, namely:

e AnylLogic provides a set of predefined functions — the most frequently used mathematic

functions.

e AnylLogic supports a special type of function — a lookup table. A lookup table is a
continuous function defined in the table form. You may need it to define a complex
non-linear relationship which cannot be described as a composition of standard

functions, or to bring data defined as a table function to a continuous mode.

e AnylLogic enables you to define custom functions. This is frequently needed when

there is a standard composition of functions used in multiple equations. In this case

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 105

Chapter 5. Equations

5.3.1

you can simply define a function once and reuse it. You can define a mathematical
function if you need to define a mathematical expression or an algorithmic function (a

function written in Java), if you need to code some calculation algorithm.

This section describes using all these types of functions in equations.

Predefined functions

Anylogic provides a set of predefined functions — the most frequently used mathematic

functions. You can use any composition of the predefined functions in a right-hand side of

an equation and in initia@ues.

Table 2 lists the predefined functions.

Predefined functions Description

sin, cos, tan Trigonometrical functions.

asin, acos, atan, . . .
Inverse trigonometrical functions.

atan2

pow, sqrt Power and square root functions.

exp Exponent function.

log Natural logarithm.

abs Absolute value.

min, max Minimal (maximal) value of the two arguments.

round, rint,

- Real-to-integer conversions.
floor, ceil

random Random number uniformly distributed in the interval [0,1).
delay Time shift.
xidz, zidz Division functions.

106 © 1992-2004 XJ Technologies http://www.xjtek.com

Alexander Ulanov
Bug

AnyLogic V User’s Manual

Table 2. Predefined functions

There are two useful constants, which you can use in equations:

Constant Description

Math . E The e number — the base of the natural logarithms and exponent
) function.

vath. Pl The ® number — the ratio of the circumference of a circle to its

diameter.

Table 3. Constants

The constants and the functions except delay, xidz and zidz are defined in the
Java.lang.Math class. So you may use accustomed Math.<function name>() notation

as well. Consult Java documentation available at http://java.sun.com/docs.

Predefined functions are added using Anylogic function wizard (see section 5.3.2, “Using

intelli-sense”).

5.3.1.1 Simulation time

You can refer to the current simulation time in equations. Get the current simulation time
value by typing the symbol “t’ or calling the function getTime().

5.3.1.2 Time shift
The delay function implements the time shifting.

There is a simple example. Variable y should be a time function x shifted by two model time
units. For instance, let X represents an exponent decay process. We specify the formulas for

the variables in the following way:

X = exp(-t)

delay(x, 2.0)

y

The variable y follows x with two time units delay.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 107

Chapter 5. Equations

5.3.2

rookt.x, rook.y ;Iglll
14
0,94
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1+
] T T T T T T T T T T
o 05 1 15 2 2% 3 35 4 45 5 &5 &
I root.: B root.y
< I

Figure 51. Example of a time shift

The call of the function is:
delay (<variable>, <time shift value>, <initial value>)

The first argument should be an AnyLogic variable, but not an expression. The second one
could be either a constant or a numeric expression (e.g. function call). Thus, the time shift
value can change during the simulation. The delay function with zero or negative time shift

returns the variable value without shifting.

Using intelli-sense

AnyLogic supports intelli-sense mechanism. This significantly simplifies typing equations
since you do not need to type the whole names of functions, variables and parameters. You

can use the intelli-sense wizard to insert a variable name or a call of predefined function.

The wizard looks as a list, containing variables (@ icon), parameters (® icon), and functions

(ﬂ icon) ordered alphabetically (Figure 52). You can simply select the name in the list, and it

will be inserted in the expression automatically.

108 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To insert an object name into an equation using the intelli-sense wizard

5.3.3

1. Move cursor at the position in the Eguation edit box where you want to place the

object name.

2. Click the button or press Ctrl+space.

The wizard listing all model variables and predefined functions appears.

—Eqguakion
Faorrm: IIntegraI ar Skock, j ¥ |
diFotential Customers) fdt = ;I

_ Adl

fni nmﬂ | real ddoption_R ate |
0 azin)
@ atantd
@ atanzt
O =il _|L|

ﬂ—l O cos0y 4

I E @ Customers
O delav)

v 4 O expl)

[a @ flocr() j

Figure 52. Intelli-sense function wizard

3. Scroll to the name you want to add, or type the first letters of the name until it

becomes visible in the list.

4. Select the name by clicking. The wizard displays the detailed description of the
selected object in the popup text box.

5. Double-click the name to insert it into the equation expression.

Lookup tables

Sometimes you may need to define a complex non-linear relationship, which cannot be
described as a composition of standard functions. Or you may need to bring experimental
data defined as a table function to a continuous mode. That needs the function being

interpolated somehow.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 109

Chapter 5. Equations

AnyLogic supports special type of functions - lookup tables. A lookup table is a function
defined in the table form. You can simply make it continuous by interpolating and/or

extrapolating.

You can call lookup table function in equations as any other function (see section 5.3.3.3,

“Accessing lookup values” for details).

» To create a new lookup table

1. Click the New Lookup Table B toolbar button, or
Choose Insert| New Lookup Table. .. from the main menu.
The New Lookup Table dialog box is displayed.
Specify the name of the new lookup table, choose the active object class, which will
contain the lookup table, and click OK.

2. Alternatively, in the Project window, right-click the active object class, which will
contain the lookup table, and choose New Lookup Table... from the popup menu.
The New Lookup Table dialog box is displayed.

Specify the name of the new lookup table and click OK.

» To define data for a lookup table

1. Click the Show Scatter... button on the General page of the Properties window.
The Lookup Table dialog box is displayed (Figure 53).

2. Enter the points into the Data grid, namely:
Type the argument value in the Argument cell,

Type the function value in the Function cell.
3. Choose interpolation type in the Interpolation/ Approximation section.

4. Select the required reaction on out-of-range argument values.

110 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

x

Drata: Scatker:
Argument Functicn |
a 3 4.1
1 34 304
15 27 3.7
2 41 ol
25 315
29 37 3]
4 4 319
2.7
2.5 T T T T T T T T T T T T T T T
-1 05 0o o0 1 15 & 25 5 35 4 45 &5 55 & 65 7
— Interpolationfapproximation —————— ~ If argument is ouk of range
" Conskant interpolation ' Raise error
" Linear interpolation " Use nearest valid argument
&+ Spline inkerpolation {* Extrapolate
" Approximation Order:ll " Extrapolate by repeating
" Discrete values " Return custom value I

&dd | Del | Sork | Ok I Cancel |

Figure 53. Lookup Table dialog box

The Lookup Table dialog box has the following controls:

Scatter — the graph displays the resulting function.
Add — the button adds new data point with the last argument value incremented.

Sort — the button sorts data points in the lookup table. In fact, points are automatically

sorted by the argument value in ascending order.
Del — the button deletes the point selected in the table.

Interpolation/ Approximation — specifies the interpolation type for a lookup table function

(see section 5.3.3.1, “Function interpolation”).

If argnment is ont of range — specifies how the function behaves when the argument is out

of range (see section 5.3.3.2, “Function behavior in infeasible area”).

You can access the table’s data at the General page of the lookup table’s Properties window

too.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 111

Chapter 5. Equations

5.3.3.1 Function interpolation

Lookup table function can be interpolated. The possible interpolation types are listed in
Table 4.

Interpolation type | Description

Constant The function value between two points is the same as in the point
interpolation with less argument value.
Linear
_ _ The points are connected with straight-line segments.
interpolation
4™ order spline. The points are connected with 4™ order polynomial
Spline segments. For each point Oth, 1% and 2" derivatives of right and left
interpolation segments are equal. The 2" Jerivative in the ending points equals
zero.
The resulting function is a polynomial of Order you specity in the edit-
Approximation box on the right, formed in order the sum of the root-mean-square

error in the points is minimal.

Discrete values | No interpolation applied.

Table 4. Interpolation types

If you want to get a smooth curve, the spline interpolation is the best. However, it takes
more time to calculate a spline interpolation than a linear one. So, if a discontinuous function

is acceptable, use the linear interpolation.

5.3.3.2 Function behavior in infeasible area

The feasible area of a lookup table function is the function’s range, if the function is
interpolated; or it is the defined set of points only, if no interpolation is set. You should
define what should happen if a lookup argument lies out of feasible area. Therefore, in the If
argument is ont of range section of the Lookup Table dialog box, choose one of the options listed
in Table 5.

112 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Function behavior | Description

) If argument lies out of feasible area, runtime error is raised and a
Raise error

message box reporting about the error is displayed.

Use nearest For all arguments to the left (right) of the range, the function takes
valid argument | the value the function has in the leftmost (rightmost) point.

The function is extrapolated outside the range in accordance to the
Extrapolate . .
interpolation type.

Extrapolate b . o . .
P Y| The function is made periodic with the function range as a period.

repeating
Return custom If argument lies out of feasible area, lookup returns a custom value,
value defined in the edit box on the right of the option.

Table 5. Function behavior in infeasible area

A spline is extrapolated with linear functions. At the left (right) side, the extrapolation
function is a ray which starts in the leftmost (rightmost) point and has the same first
derivative as the spline has in that point. A function with linear interpolation is extrapolated

with the rays which continue the outmost linear segments.

5.3.3.3 Accessing lookup values

To access lookup value with the specified argument use one of the related methods of the
class LookupTable (access lookup simply by its name). Refer to AnyLogic Class Reference
for details.

Related methods of LookupTable

double lookup(double x) — returns the lookup value corresponding to the

argument passed as a parameter.

double getDouble(double x) — returns the lookup value corresponding to the

argument passed as a parameter.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 113

Chapter 5. Equations

double getDouble(Object x) — returns the lookup value corresponding to the

argument passed as a parameter.

Object getObject(double x) — returns the lookup value corresponding to the

argument passed as a parameter.

Object getObject(Object x) — returns the lookup value corresponding to the

argument passed as a parameter.

5.34 Mathematical functions

Mathematical functions are useful if there is a standard composition of functions which you use

in multiple equations and you want to define it once and reuse.

» To define a mathematical function

1. Click the New Mathematical Function ¥+ toolbar button, or
Choose Insert | New Mathematical Function. .. from the main menu.
The New Mathematical Function dialog box is displayed.
Specity the name of the new function, choose the active object class, which will
@ contain the function, and click OK.

2. Alternatively, in the Project window, right-click the active object class, which will
contain the function, and choose New Mathematical Function. .. from the popup menu.
The New Mathematical Function dialog box is displayed.

Specify the name of the new function and click OK.

A mathematical function has the following properties:

Properties

Name — name of the mathematical function.
Function type - type of the function return value.

Arguments — a set of arguments of the function. Every argument should be declared in
form: Type Name, where Type is the type of the argument, Nawe is the name of

the argument. Function arguments may appear in the expression.

Expression — the function expression.

114 © 1992-2004 XJ Technologies http://www.xjtek.com

Ilya Grigoriev
DOES NOT WORK!

AnyLogic V User’s Manual

Function wizard — the button opens the function wizard.
Static — if set, the function is static.

Excclude from build — if set, the function is excluded from the model.

Rules that apply to the mathematical function expression are similar to the rules for
differential equation expression (see section 5.1.1.1, “Differential equations”). You can use
model time symbol, predefined functions, lookups, and non-global parameters. Note that

you cannot use variables there.

The usage of variables in mathematical functions may cause an error. If you hide
reference to B in a custom mathematical function, and call this function in the
equation of A, Anylogic cannot discern the dependency. In this case, there is no

guarantee that the equations will be solved propetly.

If you want to refer to variable B in a function, create a new function argument and pass

variable B as the argument when you call the function in an equation of A.

Entering the expression, you can use the function wizard. The function wizard displays the
list of function arguments @ icon), predefined functions and lookups. You can simply
select the object name in the list, and it will be inserted in expression automatically. See

section 5.3.2, “Using intelli-sense” to know how to work with function wizard.

» To open function wizard
1. In the Project window, click the function item.

2. In the Properties window, click the place in the Expression, where you want to place

an object name.

3. Click the Function wizard button, or
Press Ctrl+space.

5.3.5 Algorithmic functions

The purpose of an algorithmic function is similar to mathematical, but it is more powerful and
allows you to implement functions that are more than a single mathematical expression but

are an algorithm of calculations. You write algorithmic functions in Java, so you have all the

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 115

Chapter 5. Equations

advantages of this language, such as conditional execution (if-then-else), cyclic execution
(while, for), branches (switch) and more. An algorithmic function is commonly used
when you cannot build your function as a composition of predefined functions or with a

lookup table.

» To define an algorithmic function

1. Click the New Algorithmic Function ¥ toolbar button, or
Choose Insert | New Algorithmic Function. .. from the main menu.
The New Algorithmic Function dialog box is displayed.
Specify the name of the new function, choose the active object class, which will

contain the function, and click OK.

2. Alternatively, in the Project window, right-click the active object class, which will
contain the function, and choose New Algorithmic Function. .. from the popup menu.
The New Algorithmic Function dialog box is displayed.

Specify the name of the new function and click OK.

An algorithmic function has the following properties:

Properties

Name — name of the algorithmic function.
Function type - type of the function return value.

Arguments — a set of arguments of the function. Every argument should be declared in
form: Type Name, where Type is the type of the argument, Nawe is the name of

the argument. Function arguments may appear in the function body.
Function body — body of the function.
Function wizard — the button opens the function wizard.

Excclude from build — if set, the function is excluded from the model.

Function body is not the same as the equation expressions. Here you cannot use operators
on hyper-arrays or model time symbol. Entering the function body, you can use the function
wizard, where among the arguments and predefined functions some very useful Java

operators are provided (& icon).

116 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Operator Description
for s .

WhiEZE)i } Cyclic operators.
itTO{ 1.

Conditional operators.

itTOQ{ }else{ }

traceln() Print operator.

Table 6. Java language operators

5.4 Algebraic loops

Sometimes formulas form an algebraic loop. In the example shown in Figure 54 the formula
in object myObj1 defines dependency of x on y, and the formula in the object myObj2 —
dependency of y from x.

Root

myObj2

Name: MyClassl Name: MyClass2
Equations: X = -y Equations: y = X - 2

Figure 54. Algebraic loop

Clearly, these two formulas form a set of two algebraic equations with two unknown

variables. The user, however, should not care about this. AnylLogic automatically detects

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 117

Chapter 5. Equations

5.5

5.6

algebraic loops and substitutes formulas with necessary equations. In our example it looks
like:

0=x+y
O=x-y-2

The solutionis: x = 1,y = -1.

An algebraic loop also happens when initial values of two variables refer to each other. For
example, when varl initializes var2, var2 initializes var3, and var3 initializes varil.
AnyLogic substitutes these expressions into an algebraic equation system, solves this system

numerically, and initializes the variables with the obtained solution.

Runtime errors caused by equations

During time steps (in between discrete event steps), the model engine numerically solves the

global set of equations. This process may cause errors of three types:

e A computational error in an expression specified by the user, e.g. division by zero or

square root of a negative value.

e Incorrectly constructed set of equations, e.g. a variable appears more than once on the
left-hand side.

e The set of equations cannot be solved with the given initial values.

In case of error of the third type, you should analyze the set of algebraic equations to find
out if it has a solution. In case it has, it is recommended to give a good initial approximation
to the solution. You should set up the initial approximation just before the set of equations

is activated; e.g., in the entry action of the state containing equations.

Numerical methods

When a model starts, the equations are assembled into the main differential equation system.
During the simulation, this DES is solved by one of the numerical methods built in

AnyLogic. AnyLogic provides the rich collection of numerical methods for solving ordinal

118 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

differential equations (ODE), algebraic-differential equations (DAE), or algebraic equations
(NAE).

By default, the numerical solver is chosen automatically by AnylLogic at runtime. You can set
up numerical methods used for solving equations in the Numerical methods section on the

Additional page of the experiment’s properties window (see Figure 55).

Murmerical methods

Differential equations: I.ﬁ.utumatic 'I
Algebraic equations: I.ﬁ.utn:nmatin: "I
Mixed equations; IF'.utl:umaI:il: 'I
Absolute accuracy: IW
Relative accuracy: IW
Time accuracy: IF

Fixed time step: .01

Figure 55. Additional page of experiment’s properties window. Numerical methods section

Differential equations — preterred method used to solve ordinary differential equations.
By default, automatic method is selected, which chooses the fastest possible

method for the current equation set.

Algebraic equations — preferred method used to solve algebraic equations. By default,
antomatic method is selected, which chooses the fastest possible method for the

current equation set.

Mixed equations — preferred method used to solve algebraic-differential equations. By
default, automatic method is selected, which chooses the fastest possible method

for the current equation set.

Absolute accnracy — the desired absolute value accuracy for solving equations. Absolute
accuracy is used when it is impossible to use relative accuracy — e.g., when the

value is close to zero.

Relative accuracy — the desired relative value accuracy for solving equations with methods
that change the integration step (e.g. RK45, RK853, RADAUS). Used by default.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 119

Chapter 5. Equations

Time accuracy — the desired time accuracy for finding change events (switch points)

when solving equations.

Fixed time step — fixed time step for methods using the fixed integration step (e.g. Euler,
RK4).

If you do not specify particular solver, AnyLogic chooses the numerical solver automatically
at runtime in accordance to the behavior of the system. For instance, when solving
differential equations, it starts integration with forth-fifth-order Runge-Kutta method. If the
system is stiff, AnyLogic plugs in another solver — RADAUS5, designed for stiff differential
equation systems. Both these methods change the integration step to achieve the given
accuracy. You can set up methods with fixed step (Euler and forth-order Runge-Kutta),
which are not as accurate as the first pair of methods, but perform numerical integration

more rapidly. However, if you need a precise solution, use the Awtomatic solver.

120 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

m Matrices and hyper-arrays

6.1 Matrices

AnyLogic supports variables of vector and matrix type. Since a vector is a special case of a
matrix, the term matrix will refer to both matrices and vectors. In Anyl.ogic you can define

equations over matrix variables.

AnylLogic class Matrix provides means for definition, initialization, access, and major
operations with matrices, including inverse, transpose, trace, LU decomposition, QR
decomposition, Singular value decomposition, Eigenvalue Decomposition, Cholesky
Decomposition, Matrix condition (2 norm), One norm, Two norm, Frobenius norm, Infinity

norm, and others. This class has been adapted from the JAMA set (A Java Matrix Package,
see http://math.nist.gov/javanumerics/jama/). Please consult AnyLogic Class Reference for

more details.

6.1.1 Defining a matrix

» To define a matrix variable
1. Select the variable on a structure diagram.
2. Inthe Variable hipe section of the Properties window, select the Matrix option.
3. Specity the number of rows in the Rows edit box.

4. Specify the number of columns in the Columns edit box.

6.1.2 Setting an initial value for a matrix

By default all elements of a matrix get zeroes. You can set up initial values for elements of a

matrix.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 121

Chapter 6. Matrices and hyper-arrays

P To set initial value for a matrix
1. Select the variable on the structure diagram.

2. In the Eguations section of the Properties window, choose No equation from the Form

drop-down list.
3. Specity the Initial V' alue expression.

Provide an initial value expression using such notation: delimit matrix with braces, enter
value row-by-row, wrapping each row with braces and separating rows and elements in a row
with commas. Be sure all the rows have the same number of elements. For example, a matrix

is the following:

5 7.83 -1
02 -34 0

For two-dimensional matrices these values are assigned in row-first order: Into the Initial
value property, you type:

{5, 7.83, -1}, { 0.2, -3.4, 0 }}

, of

[5, 7.83, -1; 0.2, -3.4, 0]

To increase readability you can split the string into multiple lines:
{{ b5, 7-83, -13},

{0.2, -3.4, 0 }}

You can initialize identity matrices, i.e. matrices with ones on the main diagonal and zeros

elsewhere, by typing identity keyword.

122 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

6.1.3 Accessing and modifying a matrix from Model Viewer

6.1.3.1 Inspecting a matrix variable

You can inspect the current value of a variable at the model runtime from the variable’s

inspect window.

» To open the inspect window

1. Right-click the variable in the Model Explorer or in the animated structure diagram
and choose Inspect from the popup menu.

The Select Item dialog box is displayed, see Figure 56.

selectitem x|

Indesx;
{+ Item[| 1 100] 2

o |
" allitems Cancel |

Figure 56. Select Item dialog box

2. Choose whether you want to inspect some specific element of a matrix or all items.

3. Click OK.
The Inspect window is displayed (Figure 57 shows the inspect window of a matrix).

-i0i]

0.00000a0aao 0. 00000a0aao 0.0000ao00a0
0.00000a0aao 0.00000a0aao T7.0000000000

Figure 57. Inspect window of a matrix

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 123

Chapter 6. Matrices and hyper-arrays

6.1.3.2 Modifying a matrix variable

Elements of a matrix can be modified during the model simulation.

» To modify an element of a matrix

1. Double-click the variable in the Model Explorer or on the animated structure
diagram, or
Right-click the variable in the Model Explorer or on the animated structure diagram
and choose Modify from the popup menu.
The Modify dialog box is displayed (see Figure 58).

2. In the Apply to section, specify whether you want to modify some specific item of a

matrix, or all items once.
3. Type a new value in the New value edit box.

4. Click OK.

Modify: var x|
Mew walue: I 13 ok I

Apply o Carncel |
" Item| | 4 NE]

" allitems

Figure 58. Modifying a matrix variable

6.1.4 Accessing and modifying a matrix from code

6.1.4.1 Defining and initializing a matrix from code

To define a variable of matrix type in Java code (commonly in the Szartup code section of the

active object’s Code window), you use one of the following forms:

124 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Matrix A = new Matrix(<number of rows>, <number of columns>);

to create a two-dimensional matrix the specified number of rows and columns

Matrix A = new Matrix(<integer number>);
to create a vector with the specified number of rows

Matrix A = new Matrix(<real number>);

to create a 1x1 matrix with the single element with the specified value

Matrix A = new Matrix (<number of rows>, <number of columns>,
<real number>)

to create a matrix initialized with a real number

Matrix A = Matrix.random(<number of rows>, <number of columns>)
to create a matrix with elements uniformly distributed in interval [0,1]

Matrix A = Matrix.identity(<number of rows>, <number of columns>)
to create an identity matrix with ones on the main diagonal and zeros elsewhere

Matrix A = new Matrix (new double[][1 { { 5, 7-83, -17%}, { 0.2,
-3.4, 0} 1});
to create a 3x4 matrix initialized as shown in the previous section. Use the same
notation as used for defining matrix variables in the Initial value property: delimit
matrix with braces, enter value row-by-row, wrapping row with braces and

separating rows and elements in a row with commas. Be sure all the rows hold
the same number of elements.

To initialize matrix in code at once, write the following code:
double a = new double[2][3]; // creating a source array of real numbers
a[ol[o] = 5; a[o][1] = 7.83; a[0][2] = -1;
a[1] = new double[] { 0.2, -3.4, 0 }

A = new Matrix (2, 3, a);

If there is a simple algorithm evaluating the elements, you can initialize it using cycles. See
the example below:

Write the following code to initialize this matrix:

int m = 3; // number of rows

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 125

Chapter 6. Matrices and hyper-arrays

int n = 4; // number of columns
A = new Matrix (m, n); // create zero matrix
for (int i=0; i<m; i++){
for (int j=0; j<n; j++){
if g > i) Aset(i, j, 1-i+j);

else A.set(i, j, -5);

6.1.4.2 Modifying and accessing elements of a matrix from code
If you want to operate with a matrix itself, you refer to it simply by its name.

If you need a submatrix (e.g., one of the columns) of the matrix A taking part in an equation,
use the following function:
A_getMatrix(iO, i1, jO, j1)

where the points (i0,j0) and (il,j1) specify the upper left and the lower right elements

of the submatrix to select from the matrix A.

Please note that indexes in matrices are zero-based — i.e., start with “0”.

You can access the individual elements of matrices in the code by calling:
A_get(i,j) // it A is a matrix
A_get(i) // if A is a vector

To modify an element of a matrix, use the set(i,j,value) method, e.g.:
A = Matrix.identity(4,4);
A_set(3,0,7); // set left lower element to 7

A_set(0,3,1); // set right upper element to 1

126 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Sometimes you may need to modify a submatrix. For instance, you have a block matrix X

used in some equations. Blocks A, B, C, and D should be calculated in different ways (by

different formulas).

0 3 4 5
0
A B
2
3
C D
5

The idea is to calculate the blocks separately and then combine them into one matrix using

transforming matrices. To deal the problem with A and B blocks:

1.

9.

Define a matrix variable A with dimensions [3,4] and set a necessary formula to it.
Define a matrix variable Aleft with dimensions [6,3].

Type in the Initial 1 alue property of Aleft the key word identity.

Define a matrix variable Aright with dimensions [4,0].

Type in the Initial 1 alue property of Aright the keyword identity.

Set the formula for X: Aright*A*Aleft.

Now block A of X matrix gets the value from variable A and other blocks hold zeros.
Block B does not lie on the main diagonal, so the right transforming matrix is not an

identity one. We will initialize it in startup code.
Define a matrix variable B with dimensions [3,2] and set a necessary formula to it.

Define a matrix variable Bleft with dimensions [6,3].

10. Type in the Initial 1 alue property of Bleft the keyword identity.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 127

Chapter 6. Matrices and hyper-arrays

6.1.5

11.Define a matrix variable Bright with dimensions [2,0]. Leave Initial 1V alue property
empty.
12.1n the startup code type:

Bright[0,4] = 1; Bright[1,5] = 1;
13. Change the formula for X: Aright*A*Aleft + Bleft*B*Bright.

Now blocks A and B are calculated properly. To complete the task, perform analogous steps
for blocks C and D.

Working with the example, you noticed, perhaps, that matrix Aleft equals Bleft, Aright
equals Cright and so on. Actually, you need only four matrices instead of eight as it may

have appeared.

Using matrices in equations

AnyLogic supports matrices as well as primitive types in equations. You can define a set of
differential equations, algebraic equations, and formulas to describe continuous changes of
variables over time. Thus you can define continuous time object behavior. See Chapter 5,

“Equations” to know how to define equations.

If you use matrices in equations, in the right-hand side you can use the operations listed in

Table 7. Variables A and B are assumed to be matrices, X is a real variable.

Operation Description

A+B, A-B, -A Addition, subtraction, unary minus.

X*A, A*X Scalar multiplication.

A*B Matrix multiplication.

1/B Inverse matrix.

A/B Multiply with inversed matrix, equals to A*(1/B).

128 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

A._transpose() Transpose matrix

Afli,j1] Access to a matrix element.

Afi] Access to a matrix row (element, in case of vector).
fC .., A,) A call to a method accepting Matrix type arguments.

Table 7. Available operations for matrices

While generating code for a right-hand side, AnyLogic follows these rules:

e If all variables are scalars, the simple code like x*y+z is generated, and the result is

treated as scalar.

e Otherwise Anylogic assumes matrices and generates code like
Matrix.add(Matrix.mult(x,y),z).

To change the order of operations, use the round brackets. For instance, there is a matrix

differential equation:

dd—)::—D-(5A+ B')-CT e,

where A, B, X are square matrices n*n; C, D, E — vectors n*1.

The appropriate right-hand side expression of the integral equation is:
- D* (5*A + 1/B) * C.transpose() * E[O]
You can explicitly notify AnylLogic that the equation is of scalar type by placing the

‘# symbol at the beginning of expression, e.g. a=#x*y+z. This may result in

simulation performance improvement.

The right-hand side of a scalar variable may refer to matrices, if the result of the expression

is scalar. In this example, real variable x could be calculated through the formula:

- D * (5*A + 1/B) * C.transpose()

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 129

Chapter 6. Matrices and hyper-arrays

6.1.6 Working with matrices

The Matrix class supports many of linear algebra operations you can use in equations, active
object class code and in discrete event handlers (timer’s Expiry action, or statechart

transition’s Action code). Table 8 gives a quick reference to matrix operations.

Operation Description

A.plus(B) Matrix addition: A+B.

A.minus(B) Matrix subtraction: A-B.

A.uminusQ Unary minus: (-A).

A.times(x) Scalar multiplication: X*A.

A.times(B) Matrix multiplication: A*B.

A.inverse() Inverse matrix: AL,

A_transpose() Transpose matrix: A,

A.norm1() Maximum column sum.

A.norm2() Maximum singular value.

A_normInf(Q) Maximum row sum.

A.normFQ Frobenius norm; square root of sum of squares of all elements.

A.solve(B) Matrix X, which s.atisﬁes A*X = B, if A is not square, X is the
least squares solution.

A.solveTranspose(B) Matrix X, .WhiCh satisfies both A*X = B, A*X' = B, if A is not
square, X is the least squares solution.

A.inverse() Inverse or pseudo-inverse matrix.

A.det(Q) Matrix determinant.

130 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

A KO Effective numerical rank obtained from singular value
.ran o

decomposition.
A.cond O Matrix condition; ratio of largest to smallest singular value.

Table 8. Matrix operations
There is an example. You should get a matrix that is the result of an expression such as:
Z=-D-(5A+B*)-C" -¢,
where A, B, X are square matrices n*n; C, D, E — vectors n*1.

Type the following code to create such a matrix:

Matrix Z = D.uminus()-times(((A-times(5)).plus(B.inverse())))-times(
C.transpose())-times(E.getMatrix(0,0,0,E.getRowDimension())):;

Note that if you write code like A=B, you only let A refer to the same matrix object that B
does. If you change matrix B, A changes too, and otherwise. To avoid this dependency you

must assign matrix A a copy of matrix B. To make a copy of a matrix, type
A=B.copy(Q);

If you need checking the matrix content at some moment, you can print it out to the global

log. Just type in the appropriate place of the event handler the following:

A_print(Engine.log, <number of characters in column>, <number of digits after
the decimal>);

To solve a linear equation, write:

Matrix x = A.solve(B)

To get the eigenvalues of a matrix, write:
EigenvalueDecomposition e = A_eig();

double[] eigRe = e.getRealEigenvalues(); // vector of real parts

double[] eiglm e.getlmagEigenvalues(); // vector of image parts

Matrix V = e.getV(); // matrix of eigenvectors

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 131

Chapter 6. Matrices and hyper-arrays

6.2

Hyper-arrays

Hyper-array is storage of real numbers that has N dimensions. Each dimension has finite
number of indexes - subscripts. There are many operations and functions defined for hyper-

arrays. You can define equations for hyper-arrays in the same way you do for scalar variables.

Hyper-arrays are used when:
e Itis necessary to store a large set of coefficients and access them.

e There are multiple model layers.

The second case is useful when you have defined a model for some subsystem and there are
other subsystems, which have the same structure, as the first one, but other numerical
parameters. It is a model with multiple layers (Figure 59). The layers can be independent or

have some dependencies between their variables.

.....

Figure 59. A scalar model and a model with multiple layers

One can implement such multi-dimensional models making copies of the default diagram
and changing the parameters. Such approach has one great disadvantage: if you want to
change the model, you need do it so much times, as many layers you have; the diagram

grows and becomes incomprehensive.

Hyper-array allows you to create a single diagram for all the layers. Therefore, the model

remains compact, and changes you make will affect the whole model, but not a single layer.

Before studying hyper-arrays, you should know what an enumeration is.

132 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

6.2.1 Enumerations

Sometimes you need a parameter representing an attribute which can take a finite set of
values. For example, you work with colors. You can create an integer parameter representing
a color and, e.g., assign number 1 to red color, 2 to green color, 3 to blue one. However, you
see only integer numbers in code, but not the names of colors. To increase the readability of
code, you should use enumerations. Each enumeration has named elements, each of them
having an integer counterpart that is hidden from you. For example, you can define Color
enumeration with Red, Green, and Blue clements and use these self-descriptive names

instead of integer numbers in code.
Color myColor = Red;
myColor = Green;

if (myColor == Green) traceln(“l’m green”);

6.2.1.1 Defining an enumeration

» To define an enumeration

1. Click the New Enumeration ®& toolbar button, or
Choose Insert| New Enumeration. .. from the main menu.
The New Enumeration dialog box is displayed.
Specify the name of the new enumeration, choose the package, which will contain

the enumeration, and click OK.

2. Alternatively, in the Project window, right-click the package, which will contain the
enumeration, and choose New Enumeration. .. from the popup menu.
The New Enumeration dialog box is displayed.

Specify the name of the new enumeration and click OK.

An enumeration has the following set of properties:

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 133

Chapter 6. Matrices and hyper-arrays

Properties

Nuame — name of the enumeration.
Elements — the set of enumeration elements.

Excclude from build — if set, the enumeration is excluded from the model.

The enumeration elements are specified in the E/lements table on the enumeration’s properties

page. Bach element is specified in an individual row.

» To add an enumeration element
1. In the Project window, click the enumeration.
2. In the Properties window, go to the last row of the Elements table.
3. Type the enumeration element name.

The order of enumeration elements in the table is very significant.

» To move an element up/down in the table
1. In the Properties window, select the element in the Elements table.
2. Press Ctl+Up/Cttl+Down.

When the enumeration is defined, you can:
e Define model parameters of enumeration type.

e Use the enumeration as a dimension of a hyper-array.

6.2.2 Defining variables of hyper-array type

AnyLogic supports both variables and parameters of hyper-array type.

» To define a hyper-array parameter

1. In the Parameter dialog box, specify HyperArray as a parameter type.

134 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

2. Initialize the hyper-array in the Default value combo box.

For example, you can initialize the hyper-array with another one, defined and initialized in

the _Additional class code code section of the active object class.

» To define a hyper-array variable
1. Select the variable on a structure diagram.
2. In the Properties window, choose the variable type Array.

3. Specify as much dimensions as you need in the table on the right of the Array
option. Each row of the table defines one dimension.
To define a new dimension, go to the last row of the table and click the Dimension

field. In the combo box, choose an enumeration to be a hyper-array’s subscript.

A hyper-array cannot have a single enumeration as two or more dimensions.

The order of dimensions is also important. You can reorder the dimensions pressing
Ctrl+Up and Ctrl+Down.

6.2.3 Setting an initial value for a hyper-array

» To set the initial value for a hyper-array
1. Select the variable on the structure diagram.

2. In the Eguations section of the Properties window, choose No equation from the Form

drop-down list.
3. Specity the Initial V' alue expression.

There are two different notations for hyper-array constants. We illustrate both notations by
hyper-array constants used as initial values of some variables. The subscripts are listed before

each constant in the order of dimension declarations in these variables.

Suppose you create a model of a nation’s health, describing some social or health processes

in respect to different groups of population. Separate people by three characteristics: gender,

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 135

Chapter 6. Matrices and hyper-arrays

age group, and social group. The characteristics fit well in the enumeration concept. There
are such enumerations: Gender(male, Tfemale), Age(child, teenager, adult,
aged), and SocialGroup(wealthy, middleclass, deprived).

e Matrix-style. This notation can be used for 1D and 2D arrays.
Age
[1, 0.8, 0.62, 0.2]

Age, Gender

0.2, 0.1 1]

e Java-style. This notation can be used for hyper-arrays with arbitrary dimension number.

Gender

{ 1 /*male*/, 1.2 /*female*/ 7}

Age, Gender

{{ 1, 1.2 3%, // Age: child
{ 0.8, 0.75 }, // Age: teenager
{0.62, 0.57%, // Age: adult
{ 0.2, 0.1% // Age: aged

¥

136 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

SocialGroup, Age, Gender

{

{ // SocialGroup: wealthy
{ 1, 1.213%, // Age: child
{ 0.8, 0.75 }, // Age: teenager
{0.62, 0.57%, // Age: adult
{ 0.2, 0.1% // Age: aged

¥,

{ // SocialGroup: middleclass
{ 1.3, 1.4%, // Age: child
{ 0.3, 0.96 }, // Age: teenager
{ 0.6, 0.52 }, // Age: adult
{ 0.2, 0.05 } // Age: aged

¥

{ // SocialGroup: deprived
{ 1.6 , 1.57%, // Age: child
{ 0.3, 0.81 %}, // Age: teenager
{035, 0.41%, // Age: adult
{0.05, 0.15 } // Age: aged

}

}

To initialize hyper-array elements with a single scalar constant, just type the desired scalar

number in the Initial value property.

If you need an array with elements distributed by some law, you create an appropriate
distribution object (see Chapter 10, “Stochastic modeling”) and pass it to the method
random() of the hyper-array.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 137

Chapter 6. Matrices and hyper-arrays

For instance, if you need array A initialized with elements, uniformly distributed in interval

[min,max), you type the following string in its [nitial value property:

random(new DistrUniform(min,max))

Or you can initialize it in the Startup code code section of the active object class with the

following string:

A_.random(new DistrUniform(min,max));

6.2.3.1 Setting specified elements of a hyper-array
Sometimes, you need setting some group of elements of a hyper-array separately.

Therefore call method set() in the S7artup code or in the event handler:

<hyper-array>.set([<list of subscripts>,] <value>);

The <list of subscripts> identifies, which element(s) of the <hyper-array> should
get the <value>. For example, hyper-array variable SmokingRate has the dimensions:
SocialGroup, Age, Gender. The examples of possible subscript lists for this array are
listed in Table 9.

Subscript lists Description

wealthy, One element gets the <value> - smoking rate for wealthy male
teenagers, male | teenagers.

wealthy, Vector of two elements gets the <value> - smoking rate for wealthy
teenagers teenagers of both genders.

A sub-array of elements gets the <value> - smoking rate for
teenagers .
teenagers of both genders and of all social groups.

<empty list> All array elements get the <value>.

Table 9.

138 © 1992-2004 XJ Technologies http://www.xjtek.com

6.2.4

AnyLogic V User’s Manual

Aggregation functions

Sometimes you need performing aggregation operations on elements of hyper-arrays.

Aggregation functions are listed in Table 10. ‘N’ is the size of the set of the aggregated

elements {xi}.

Function Description
N
Sum The sum of the aggregated elements: S = z X;
i=1
1 N
Avg Average value: X = WZ X;
i=1
max,min Maximum/minimum value of the aggregated elements.
N
Prod The product of the elements: P = H X;
i=1
N
Stddev

Standard deviation: O = %Z(Xi - Y)Z

Table 10. Aggregation functions for hyper-arrays

The function syntax is:

<hyper-array>.<function name>()

Sometimes it is necessary to perform aggregation on a sub-array. You can do it with the

following call:

<hyper-array>.get(<list of subscripts>).<function name>()

The <list of subscripts> defines the sub-array to aggregate in the same manner as for

set() method (see section 6.2.3.1, “Setting specified elements of a hyper-array”).

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 139

Chapter 6. Matrices and hyper-arrays

6.2.5

Using hyper-arrays in equations

AnylLogic supports hyper-arrays as well as primitive types in equations. See Chapter 5,
“Equations” to know how to define equations. You can define differential equations or
formulas for hyper-array variables in a way similar to scalar variables. However, there are

some specifics that we describe in the current section.

6.2.5.1 Arithmetic operations with hyper-arrays

In counterpart to matrices, operations with hyper-arrays do not go by the linear algebra rules,
but are applied to array elements one-by-one. The operands may be of different dimensions.
The result of the operation is a hyper-array with the dimensions that the operand subscripts
union has. The following figures illustrate some cases [symbol # is the operation sign
placeholder — it can be addition (+), subtraction (-), multiplication (¥), or division (/)
symbol].

If both operands have the same dimensions, the resulting hyper-array is of the same
dimensions also. Each element of the resulting hyper-array is the result of operation with

two co-indexed elements of A and B.

Gender Gender Gender
#
#
o-o ¢ o ®
A O O O O O O A
®l oo ARl O O O O |7
@ Q @ O @ O
#
C = A # B

Figure 60. Operation with hyper-arrays having the same dimensions
Another case: the dimension set of one operand (A) contains all the dimensions of the other

one (B). In other words, the intersection of the dimension sets equals the dimension set of B

and their union equals the set of A.

140 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Gender Gender

F*

Age Age Age

oooo;\

OOO.\

@ OO
OOO.//

" NONGN

C = A #

o

Figure 61. Operation with hyper-arrays, where one has less dimensions

The operation with the integer or real scalar value (x) is applied to each element of the

hyper-array A (Figure 62).

Gender

Age

| NON N |
pooe

Figure 62. Operation with a hyper-array and a scalar

In the case shown in Figure 63, the resulting dimension set is the union of subscripts. One
can describe the operation as a sequence of operations with the first array and vectors
extracted from the second one (as shown in the Figure 61). Regarding the figure example,
“wealthy” sub-array of resulting hyper-array (where ‘social group’ subscript is ‘wealthy’,
marked with red color) is calculated in the same way, as by operation with hyper-array A and

vector extracted from B where ‘social group’ is “wealthy.’
group y

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 141

Chapter 6. Matrices and hyper-arrays

Gender Gender Social group

F*

ooo@\

Age Age Age

Social group
oJoJoleN
ORON®
| OO0 O
[OO0 00|
OO OO

O 000

A #

O
I
oy)

Figure 63. Operation with arrays having different dimensions

6.2.5.2 Array functions

All the predefined functions and all the lookup tables you define within your project accept
both scalar and hyper-array arguments. In case of hyper-array, unary function is applied to all
the elements of the array argument, similar to arithmetic operations with a scalar. Binary
functions are applied to two hyper-arrays in the same way as operation with hyper-arrays

having the same subscripts.

6.2.5.3 Getting array elements and sub-arrays

Sometimes you need to access only some specific element or a sub-array. In equations you

get the desired element or sub-array by the following expression:

<hyper-array> “[” <list of subscripts> “]’

The <list of subscripts> identifies the array to get in the same manner as in set()
method (see section 6.2.3.1, “Setting specified elements of a hyper-array”).

For instance, there is a hyper-array Smoking_Rate, which holds the average smoking rate of

people in respect to gender, age, and social group.

To get the value of an element of a hyper-array in an equation, you type the following code

in an equation expression. You should specify subscripts for all the dimensions.

142 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

SmokingRate[female, teenagers, middleclass]

To get a sub-array in an equation, specify subscripts not for all dimensions. For example, you
are interested in smoking rate for all people, pertained to the deprived social group. You get

the corresponding sub-array having (gender, age) dimensions this way:

SmokingRate[deprived]

You can perform conditioned extraction. Therefore you define a parameter whose type is an
enumeration. For instance, it is of type Age, is named ageParam, and has child as default

value.

SmokingRate[Female, ageParam]

Then you can change the value of this parameter on some event (e.g. on timer expiry action):

ageParam = Teenagers;

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 143

Chapter 7. Message passing

Message passing

Commonly you may need to send some information from one active object to another. In
AnyLogic you can establish active object interaction by passing wessages — data units, carrying
some useful information. Messages can model various objects of the real world. You may
implement notification or signaling mechanism in your system — in this case, messages may
represent commands or signals passed in a control system. Or you may need to model entity
flow in your system, where messages represent entities — the items that are being served,
produced, or otherwise acted on by your process: documents in business processes,
customers in service systems, parts and products in manufacturing models. You may have

different types of entities in the same model.

Messages are sent and received via the special elements of active objects — ports. Message
passing is enabled only between ports connected by connectors — paths used by messages to

flow through the model.

This chapter gives the detailed description of the message passing mechanism. It is organized

as follows:

e Section 7.1, “Ports”, describes how to create ports and add them to your own active
object classes. This section also contains the detailed explanation of message routing

rules.

e Section 7.2, “Messages”, describes how to define your own message classes. You
should read it if you need to carry some data in messages being passed between active

objects in your model.

e Section 7.3, “Defining custom port classes”, gives the detailed description of the
predefined AnyLogic port classes. This section describes how to create your own port

classes with customized behavior to change the semantics of message passing.

Consider the chapter organization to study sections meeting your requirements.
If you create your model from Anylogic library objects, please refer to section 1.5.8,

“Active objects interaction” to know how to connect objects and establish message

passing.

144 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

7.1 Ports

Ports play the central role in the message passing mechanism. Messages are sent and received
through ports. Ports are bi-directional and can serve both for input and output. Ports may be
public — i.e., accessible from outside the class; or private — accessible only inside an active
object. To communicate with other objects, you need to add a public port to the active

object; and to establish a communication inside the object, you can use a private port.

7.1.1 Adding a port to an active object class

» To add a public port to an active object class

1. Click the Porz ® toolbar button, or

Choose Draw | Structure | Port from the main menu.

2. Click the class border on the structure diagram.
A new port appears, displayed as the small square, see Figure 64.

1
| -
k=)
o
3

Figure 64. A public port

Placing a port on the class border makes it public.

» To add a private port to an active object class

1. Click the Porz @ toolbar button, or

Choose Draw | Structure | Port from the main menu.

2. Click inside the class border on the structure diagram.
A new port appears, displayed as the small square, see Figure 65.

© 1992-2004 X]J Technologies http://www.xjtek.com 145

Chapter 7. Message passing

Private

04— P

Figure 65. A private port

Once the new port is created, you can specify the port name in the text line editor opened

on the right of the port in the structure diagram.

7.1.1.1 Moving, copying and deleting ports

There are some common operations you can perform with ports on the class structure
diagram. You can copy, move and delete ports just as any other class elements. First, you

should select the port by clicking it.

» To move a port

1. Drag the port with the mouse or use arrow keys.

» To copy a port

1. Ctrl-drag the port.

» To delete a port

1. Click the Delete & toolbar button, or
Choose Edit| Delete from the main menu, or
Right-click the port and choose Delete from the popup menu, or
Press Del.

146 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

7.1.1.2 Port properties

A port has a set of customizable properties. To set the port properties, first select the port
on the structure diagram by clicking, and next set the property values in the Properties

window.

The following properties can be set on the General page of the Properties window (Figure
00):

Properties

General |E|:u:|e I D escription

M amne:
Ipu:urt

hezzage tupe:
IM wMeszage j

Fort type:
|

Huele size:
10

v Haz queue

¥ Show name

Figure 66. General page of the port’s Properties window

General properties

Name — the name of the port.

Message type — [optional] every message received by the port is cast to this type. If the
message cannot be cast, it is discarded. Using combo box you can choose from
all known message classes of this project. Message class definition is described in

section 7.2, “Messages”.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 147

Chapter 7. Message passing

Port hpe — [optional] the type of the port. Port class definition is described in section

7.3, “Defining custom port classes”.

Has quene — if set, incoming messages will be placed in the port queue. See section

7.1.2, “Port queue” for details.

Quene size — [optional] the size of the queue. Leaving it blank makes the size of the

queue “infinite” to store all incoming messages.
Exclude from build — if set, the port is excluded from the model.
> p

Show name — if set, the name of the port is shown on the structure diagram.

The properties listed below can be set on the Code page of the Properties window (Figure
67):

Properties

General Code Descriptinnl

Constructor parameters *I
On receiwve action
On send action

Additional classzs code

w,
1| b

Figure 67. Code page of the port’s Properties window

148 © 1992-2004 XJ Technologies http://www.xjtek.com

7.1.2

AnyLogic V User’s Manual

You can change the default port behavior by writing code on the Code page of the port’s
Properties window. AnyLogic provides you an ability to specify port reactions to different

occurrences by writing your own Java code.

Code properties

Constructor parameters — [optional] parameters to be passed to the port’s constructor,
e.g.: /*count*/ 20, /*load*/ load.

On receive action — [optional] a sequence of Java statements to be executed on every

message reception.

On send action — [optional] a sequence of Java statements to be executed on every

message sending.

Aldditional class code — [optional| Java code to be inserted into the port class definition.

Arbitrary constants, variables, and methods can be defined here.

An active object — owner of the port can be accessed by the getOwner() method of the
port. The detailed description of AnylLogic port classes methods is given in section 7.3.1,
“Predefined port classes”.

When writing your code for an active object — e.g., in its Additional class code — you can access

a port myPort of an active object as its member variable myPort.

Port queue

You can specify that a port has a queue to store incoming messages. Stored messages can be
extracted afterwards. A port queue is commonly used to store port incoming messages while
the active object is busy with processing another message — e.g., while a server processes

client request in the client-server system. A port queue can also model a data storage.

The presence of a port queue and its capacity is specified on the General page of the

Properties window.

You may have noticed that ports with queues and ports without them appear somewhat
differently on the structure diagram. A port with a queue is displayed on the structure

diagram with a dot inside it, see Figure 68.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 149

Chapter 7. Message passing

7.1.3

pot 11 1 | Port with

without - I::l Iil a queue

a queue E
Figure 68.

Port queue is FIFO queue —i.e., the first placed in the queue message is extracted first. If the
specified queue capacity is reached, an incoming message is lost. Queue can be made infinite

to store all incoming messages.

You can access messages stored in the port queue using the methods get() and peek()
automatically generated by AnylLogic for each port with a queue (the get() method extracts
the message from the queue as well). These methods return the message of type specified in

the Message type property of the port.

You can check the queue size using the size() method. You may check portA queue e.g.
on timer expiration. Create timer and type the following code in its Expiry action property:

if (portA_size() > 0)

Object msg = portA.get();

First, the method size() checks if there are any messages stored in the queue. If any, the
get() method extracts the first one.

Connecting ports

To establish message passing you should connect the respective ports by connectors.

Connectors are paths used by messages to flow through the model.

You can establish message passing between:
e Ports of encapsulated objects
e A public port and a private port
e A public port and a port of an encapsulated object

e A private port and a port of an encapsulated object.

150 © 1992-2004 XJ Technologies http://www.xjtek.com

Vitaliy Sapounov
Breakpoint cannot be set on a port now…

AnyLogic V User’s Manual

You can also connect a port to a statechart, see section 7.1.4, “Connecting ports to
statecharts”.

This section describes the technique of establishing connections between ports.

7.1.3.1 Connecting ports of encapsulated objects

To establish message passing between two encapsulated objects, you should connect ports of

encapsulated objects.

» To connect ports of encapsulated objects

1. Drag the port of one encapsulated object onto the port of another encapsulated
object, or
Click the Comnector " toolbar button, click one port, and then click another port, or
Choose Draw | Structure| Connector from the main menu, click one port, and then click
another port.

The connector linking two ports appears.

Connector

Figure 69. Ports of encapsulated objects connected

7.1.3.2 Connecting a public port with a port of an encapsulated object

To establish communication between the encapsulated object and the container object
neighborhood, you should connect a port of an encapsulated object with a public port of the

container active object.

© 1992-2004 XJ Technologies http://www.xjtek.com 151

Chapter 7. Message passing

» To connect a public port with a port of an encapsulated object

1. Drag the port of the encapsulated object onto the public port, or
Click the Connector s toolbar button, click one port, and then click another port, or
Choose Draw | Structure| Connector from the main menu, click one port, and then click
another port.

The connector linking two ports appears.

Public

Figure 70. A public port connected to a port of an encapsulated object

7.1.3.3 Connecting a private port with a port of an encapsulated object

To establish communication between the encapsulated object and the container active object
you should connect a port of an encapsulated object with a private port of the container

object.

» To connect a private port with a port of an encapsulated object

1. Drag the port of the encapsulated object onto the private port, or
Click the Comnector " toolbar button, click one port, and then click another port, or
Choose Draw | Structure| Connector from the main menu, click one port, and then click
another port.

The connector linking two ports appears.

...... Pri\/ate
................... port

Figure 71. A private port connected with a port of an encapsulated object

152 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

7.1.3.4 Connecting a public port with a private port

To establish a communication between a private port and other active objects you should
connect the private port with a public port. However, if you need only to send messages via

the private port to other active objects, it can be made public.

» To connect a public port with a private port

7.1.4

1. Click the Comnector 2a toolbar button, click one port, and then click another port, or
Choose Draw | Structure| Connector from the main menu, click one port, and then click
another port.

The connector linking two ports appears.

Public . Private

port []\EI Priv

Figure 72. Public and private ports connected

Connecting ports to statecharts

Ports can also be connected to statecharts. In that case messages received in a port are
forwarded to a connected statechart, where they are processed as signal events. Using such a
connection, you can react to the message arrival in the statechart. For detailed information

on statecharts see Chapter 9, “Statecharts”.

You can connect a statechart to:
e A public port,

e A private port.
You cannot connect active object’s statechart to a port of its encapsulated object.

This section describes the technique of establishing connections between ports and

statecharts.

© 1992-2004 X]J Technologies http://www.xjtek.com 153

Chapter 7. Message passing

7.1.4.1 Connecting a public port to a statechart

You connect a public port to a statechart if you need to react in the statechart to messages

received in the port from other active objects.

» To connect a public port to a statechart

1. Click the Comnector 2a toolbar button, click the port, and then click the statechart, or
Choose Draw|Structure | Connector from the main menu, click the port, and then click
the statechart.

The connector linking the port and the statechart appears.

Public | Statechart

T
[]\%

Figure 73. A public port connected to a statechart

7.1.4.2 Connecting a private port to a statechart

You can connect a private port to a statechart if you need to react in the statechart to
messages received in the port. It is commonly used when the private port is connected to a
port of an encapsulated object and you want to react in the statechart to messages received

from the encapsulated object.

» To connect a private port to a statechart

1. Click the Comector s toolbar button, click the port, and then click the statechart, or
Choose Draw | Structure | Connector from the main menu, click the port, and then click
the statechart.

The connector linking the port and the statechart appears.

154 © 1992-2004 XJ Technologies http://www.xjtek.com

7.1.5

AnyLogic V User’s Manual

Private

Statechart
port [~

..........
........

Figure 74. A private port connected to a statechart

Message routing rules

Message processing at a port depends on the direction the message is going and on the type

of a port.

Public ports act as relay ports, forwarding messages depending on the direction the message
is going. If the message arrives at a public port from inside the active object, it is forwarded
along all external connections of the port. Otherwise, if it is received from outside, it is

forwarded along all port connections inside the active object.
A message received at a private port is forwarded only to connected statecharts.

Message routing rules are illustrated in Figure 75.

© 1992-2004 XJ Technologies http://www.xjtek.com 155

Chapter 7. Message passing

Legend: @ @ — message origin
A A —message arrival

H B - message is placed into a port queue

Figure 75. Messages routing rules

Note that in case a port has a queue and is also connected to inner ports and
statecharts, then an incoming message is both placed in the port queue and is sent to
connected ports and statecharts. Therefore, you have to take care of processing all of
them.

7.1.6 Sending and processing messages

7.1.6.1 Sending messages

To send a message, you should simply call the method send() of a port, providing the
instance of a message class as a parameter. Defining your own message classes is described
in section 7.2, "Messages”. If you need to just signal an object, you can send an instance of
class Object that does not carry any data by calling the method send() with omitted
parameter.

For example, you can type the following line of code in the Startup code code section of an

active object to send a message of Message type via its portA port at the model startup.

156 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

portA_send(new Message());

7.1.6.2 Processing sent messages

When you send a message via a port, it is processed further. The way the sent message is

processed further depends on the type of the port:

e In the case of a public port, the message is forwarded along all the port connections

outside the active object.

e In the case of a private port it is forwarded to all connected ports.
Arrived message processing at a port also depends on the type of a port.

If a message arrives at a public port from an internal port (from a private port or a port of an
encapsulated object), the public port acts as a relay port and sends the message further along
the external connections of the public port. In this case the method send() of the port is
called and the code specified in the On send action code property of the port is executed (see

section 7.1.6.3, “Defining message sending handler” for more details).

Otherwise, if a message arrives to a public port from the outside or if it arrives to a private
port, the message is received by a port and processed further according to the message
routing rules, described in section 7.1.5, “Message routing rules”. The message received at a
port with a queue is placed in the queue as well. The method receive() of the port is called
and the code specified in the port On receive action code property is executed (see section

7.1.7.1, “Defining message reception handler” for more details).

These rules are illustrated graphically in Figure 70.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 157

Chapter 7. Message passing

receive() "1 Private port
send()
send() —» a [#] ¢ —

“Public port
Port reference can
not be connected to

a statechart %
Private port receive()

receive()—» a [I—l

Public port (has queue)”

C

-~

Two public
ports can not
be connected

o

-

fireEvent) %3 d

A message sent at

Private port
-,

receive()

a private port is not .
received at the send() —» - [:I C _»
statecharts sendQ) |
connected to it

Private port can
not be connected to
another private port

\‘Public port

Private port,

.

-,

receive() —,
a

fireEvent()

A message
received at a
private port is not

-
.,

158

forwarded to the
encapsulated
objects or public
ports

Figure 76. Message processing rules

© 1992-2004 X]J Technologies

http:/ /www.xjtek.com

7.1.7

AnyLogic V User’s Manual

7.1.6.3 Defining message sending handler

You can define the message reception handler in the On receive action code property of the
port. This code is executed each time a message is sent. In that code you can use a local
variable msg, which is a reference of type Object to a just sent message. If true is returned,
the message is processed further as defined by message sending rules, see section 7.1.6.2,
“Processing sent messages”. The same happens by default when Oz send action is left blank. If
false is returned or if you write any code and return nothing, the default processing is

omitted.

Receiving messages

To react to a received message, you can choose one of the ways described below.

7.1.7.1 Defining message reception handler

You can define the message reception handler in the Oz receive action code property of the
port. This code is executed each time a message is received. In that code you can use a local
variable msg, which is a reference to a just received message. The code may contain return
statement returning true or false. If true is returned, the message is forwarded further as
defined by message routing rules, see section 7.1.5, “Message routing rules”. If the port has a
queue, the message is placed in the queue as well. The same happens by default when Oz
receive action is left blank. If false is returned or if you write any code and return nothing, the
default processing is omitted — i.e., the received message is neither forwarded further nor

placed in the queue.

7.1.7.2 Generating signal events for a statechart

You can connect a port to a statechart. Then all messages accepted by the port are placed
into the statechart queue as signal events. Note that they are also placed into the port queue.
The detailed information on statechart’s signal events is given in section 9.4.4, “Signal

event”.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 159

Chapter 7. Message passing

7.1.7.3 Triggering a transition of a statechart by a non-empty port queue

You can trigger a statechart transition if the port has a nonempty queue of messages. If by
the time the statechart comes to the source state of such transition, the port queue already
has messages, the transition becomes enabled immediately. Otherwise the transition
becomes enabled on a message arrival to that port. As usual, the transition is executed only if
the guard condition for this transition is true as well. The detailed information on

statecharts is given in Chapter 9, “Statecharts”.

MyClass ~ Name: myPort

Fire: 1f event occurs
Trigger: myPort._size()>0
Action: myPort.get()

Figure 77. Transition triggered by port event

Please note that triggering of such a transition does not delete the message from the port
queue. If you do not need to keep that message anymore, call the method get() of the port
in the Action section of the transition properties to consume the message from the port

queue, as shown in Figure 77.

7.1.7.4 Receiving messages in a thread

You can react to the message arrival in a thread. Thread is an activity implemented in a Java
method and runs in a separate thread concurrent with all other activities. Threads are less
visual than statecharts or timers, but in rare cases, they may provide for more natural
representation of some algorithms. In general, however, if the activity has a set of states with

different reactions to events, make it a statechart.

160 © 1992-2004 XJ Technologies http://www.xjtek.com

7.1.8

AnyLogic V User’s Manual

You can call the method WaitForMessage() of the class PortQueuing from the thread. If
there are messages in the queue, the first one is extracted. If not, the thread suspends until a

message arrives to this port.

In the example shown in Figure 78 the thread performs an infinite loop: it waits for the

message arrival, then makes 10 time units delay.

Startup code:
startThread("funcActivity");

Additional class code:

MyClass public void funcActivity() {
traceln("'Start");
port I:.] While(true) {

traceln("Step 1");
port.waitForMessage();
traceln("'Step 2");
delay(10);
}
}

Figure 78. Thread

Inspecting port state at runtime

You may want to get some information about the current state of a port at the model
runtime. AnylLogic provides several ways of inspecting port state at runtime. These are:
setting breakpoints on ports and displaying inspect strings associated with the ports in
AnyLogic Inspect window.

7.1.8.1 Setting a breakpoint on a port

You may need to trace all message arrivals to the specific port. Therefore, you can set a
breakpoint on a port. The model execution will be stopped on every message passing
through the port with a set breakpoint.

A breakpoint can be set from the Model Explorer or from an animated structure diagram.

Breakpoints are displayed in animated diagrams dashed red.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 161

Chapter 7. Message passing

You can manage (remove, enable, and disable) breakpoints using the Edit Breakpoints dialog

box. See section 14.3, “Breakpoints” for details.

» To set/clear breakpoint on a port

1. Right-click the port and choose Breakpoint from the popup menu.

7.1.8.2 Inspecting port state

You can inspect the current state of the port at the model runtime from the port’s inspect

window. The inspect window displays the inspect string associated with the port.

» To open the inspect window of a port

1. Double-click the port, or
Right-click the port and choose Inspect from the popup menu.

AnyLogic allows the user to define custom inspect strings for a port. This is done using the
following method of the Port class.

Related method of Port
void setPortlinspect(String s) - sets the inspect string for the port.

For example, you can display a number of messages sent via a port. Define the sentCount

member variable to count sent messages in the port’s Additional class code:

int sentCount = 0;

Enter the following code in the O receive action property of the port:
sentCount++;
setPortlnspect(sentCount + *“ messages were sent via the port.”);

return true;

Thus, the inspect window will display the number of messages sent via the port, as shown in
Figure 79.

162 © 1992-2004 XJ Technologies http://www.xjtek.com

7.2

7.2.1

AnyLogic V User’s Manual

_ioix

4 megsages were sent via the port.

W

Figure 79. Inspect window

Messages

A message is a data packet that is passed between active objects. Messages can model various
objects of the real world. For example, they can represent entities — parts, products, people,
trucks, etc., or data packets being passed in a network, or commands and signals in a control

system.

Messages are instances of arbitrary Java classes. Usually, a message carries some data. To
define such a message, you need to define a message class with necessary member variables

and, may be methods.

In case you need just to signal an object, you can use an instance of the class Object

as a message not carrying any data.

Defining message classes

The easiest way to define a message class is to use the Project window.

» To add a new message class to a package

1. Click the New Message Class ©= toolbar button, or
Choose Insert| New Message Class. .. from the main menu.
The New Message Class dialog box is displayed.
Specify the name of the new message class, choose the package, which will contain

the message class, and click OK.

2. Alternatively, in the Project window, right-click the package, which will contain the

message class, and choose New Message Class. .. from the popup menu.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 163

Chapter 7. Message passing

The New Message Class dialog box is displayed.
Specify the name of the new message class and click OK.

Since a message class is a standard Java class you can define it anywhere in the code; e.g., in
the Additional class code property or in an external file if you need to reuse it in other models

as well.

In AnylLogic a message class has the following properties:

Properties

Name — name of the message class.

Base class — [optional] name of the base class. This can be any Java class. If omitted,
Object is assumed.

Fields — |optional] set of fields of the class. Every field should be declared in form: Type
Name Default, where Type is the type of the field, Name is the name of the field,
Defanlt is the optional default value of the field. When instantiating the class,
field values may be specified or default ones may be left. During the lifetime of a

message fields may be accessed as member variables of the message.

Excclude from build — if set, the class is excluded from the model.

In the Code window of a message class you can define arbitrary code for a message class.

» To open the Code window of a message class

1. In the Project window, right-click the message class item of workspace tree and
choose Open Code from the popup menu, or
Double-click the message class.

The Code window of the message class is displayed (see Figure 80)

164 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

_loix

Import -

Inplements interfaces
Constructor code

to3tring() code
return ["+ n+ " " +nmsg+ "]7:
Addditional class code
public boolean equals(0Object obj){
if (! {ob] instanceof Signal))
return false: |-
return code == [[3ignal)jobj).code;

; -

EXN 2w

Figure 80. Code window of a message class

Code window has the following sections:

Import — [optional] set of import statements needed for correct compilation of the
class code. When Java code is generated, Import property is inserted before

definition of the corresponding Java class.

Implements interfaces — Joptional] comma-separated list of interfaces implemented by the

class.

Constructor code — [optional] sequence of Java statements to be executed on message

construction.

toString() code — |optional] code of the method toString() of the message class
(including the return statement). This method is used by Java to convert the
message into a character string, which can be used, e.g., to print messages in
inspect windows and logs. If no code is specified, a default toString() method

is generated printing the values of all the message fields.

Additional class code — [optional| Java code to be inserted into the class definition.

Constants, variables, and methods can be defined here.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 165

Chapter 7. Message passing

1.2.2

7.2.3

Cloning messages to avoid sharing violation

According to message routing rules, a message is broadcasted to all the recipients. It is
important to understand that all the recipients get references to the same Java object,
representing the message. Therefore, if any of them modifies the message, this affects all

other recipients as well.

If you need to modify the message received in multiple locations, you have to clone it

explicitly and work with a clone to avoid sharing problems with other recipients.

To clone a message, use the method clone() of the message class. The method implements

field-by-field copy of a message.

In fact, each message class automatically implements the standard Java Cloneable interface,
and the clone() method generated by AnyLogic just delegates the actual cloning to the
Object.clone() method doing some wrapping to catch any exception. Thus, the resulting
message clone is the Object class instance, and you may need to cast it explicitly to the

original message class.

For example, we send messages of the Message type. Type the following code in the port’s
On receive action property to clone the received message and cast the message clone to the
Message class:

Message message = (Message)msg.clone();
//modify the message clone

return true;

Messages encapsulating/inheriting other messages

Sometimes — e.g., while modeling communication protocols — it is necessary to pass one

message containing another one. There are two ways to implement this:

® You can encapsulate the message in another one by passing it as a message field. In this
case you can use some generic class for the field type (e.g., Object), so that the
container message does not need to know anything about the encapsulated message —

i.e., it does not need to know its class.

166 © 1992-2004 XJ Technologies http://www.xjtek.com

7.3

7.3.1

AnyLogic V User’s Manual

¢ You can inherit your message class from another base message class. Thus your
message class inherits all fields and methods of the base class. In this case access to
base member fields is straightforward. The message inheritance is set by specifying the
base message class name in the Base class property of your message class. Note that the

derived class members will override the class members of the base class.

The choice among these techniques depends on what you want to achieve. If you want to
have a reusable message that can contain a message of any type, you use the first technique.
If it is vital for your model to have simple access to message parameters, the second solution
is preferable.

Defining custom port classes

You can customize the port behavior by writing your own code in the On send action, On
receive action and Additional class code sections of the port properties. However, if the defined
port functionality is frequently needed, defining your own port class is preferable. Thus,
instead of writing the same code in the properties of all the port instances in your model,
you need just to create port class once and specify the created port class name in the Port #ype
properties of the ports in the model. You can create your own port class in code, external
file, or a library. Defining port class in an external file or in a library has an advantage of
future reuse of your custom ports in other models as well (see Chapter 19, “Libraries and

external files” for details).

This section gives the detailed description of Anyl.ogic port classes and describes how to
create your own port classes to customize the default behavior of ports and change the

semantics of message passing.

Predefined port classes

Anylogic has two predefined port classes: Port for a port without a queue and
PortQueuing for a port with a queue. If you want to customize the default behavior of

ports, you need to define your own port class, derived from one of these base classes.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 167

Chapter 7. Message passing

7.3.1.1 Port class

The Port class is the base class for all port classes in AnylLogic. This class provides basic
functionality for message sending and receiving and also supports port connection and

disconnection.

The methods of the Port class are listed in the table below.

Method Description

void send() The method creates the message of type Object and sends it
via this port. The onSend() method of the port is called to
check whether the port actually should process the message.

void send(Object msg) | The method sends the msg message via this port. The
onSend() method of the port is called to check whether the
port actually should process the message. According to time
semantics of message passing, the method send() finishes
only after the message has been delivered to all final
destinations and onReceive() methods of the message

recipients have finished their work.

boolean onSend(Object | The method is called before the msg message is sent. It can
msg) be overridden in a derived port class to perform additional
message checking and some user-defined actions. Returning
true means that the message must be sent via this port;
false - that the message should be discarded. By default the
method returns true.

void receive(Object The method is called when the port receives a message. The
msg) onReceive() method is called to check if the port should
accept the message. If needed, you can imitate the reception
of a message from outside by calling the receive() method,
e.g., from another active object. This way you can implement

“direct” delivery of messages bypassing the connection lines.

168 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

boolean
onReceive(Object msQ)

The method is called before the msg message is received at a
port. It can be overridden in a derived port class to perform
additional message checking and some user-defined actions.
Returning true means that the message must be received by
this port and processed in default way; false - that the
message should be discarded. By default the method returns
true.

static void
connect(Port a, Port

b)

The method connects two ports, located on the same level of
containment hierarchy, namely a port of encapsulated object
to a private port, or ports of two encapsulated objects. Ports

to be connected are specified as method parameters.

void connect(Port
port)

The method connects two ports, located on the same level of
containment hierarchy. The method connects this port to

another one specified as a parameter.

static void
disconnect(Port a,
Port b)

The method disconnects two ports, located on the same level

of containment hierarchy.

void disconnect(Port
port)

The method disconnects ports, located on the same level of
containment hierarchy, namely this port and the port

specified as a parameter.

void map(Port port)

The method connects ports of active objects, located on the
different levels in the containment hierarchy, namely a public
port to a private port or a public port to a port of an
encapsulated object. The method connects this port object,
located on the upper level of containment hierarchy to

another one specified as a parameter.

void unmap(Port port)

The method disconnects this public port and an internal port

of the active object specified as a parameter.

void map(Statechart
statechart)

The method connects this port to the specified statechart.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 169

Chapter 7. Message passing

void unmap(Statechart
statechart)

The method disconnects the port and the statechart.

void breakLinks(Q)

The method disconnects this port from all connected ports

and statecharts.

void setParams()

The method sets parameters of the port. The default
implementation does nothing. You can override the method
setParams() to implement a desired behavior in your

derived port classes.

void
setBreakpoint(boolean
enable)

The method enables or disables breakpoint on this port by
passing true or false as a parameter.

boolean The method checks whether the breakpoint is set on the
isBreakpoint() pott.

ActiveObject The method returns the active object in which the port
getOwner() resides.

boolean wasActive()

The method returns true whether a message was passed

through it on the previous model step and false otherwise.

String getName()

The method returns the port name.

String
getPortFul IName()

The method returns full name of the port.

void
setPortlnspect(String
value)

The method sets the specified inspect string for this port. If
nulll is specified then a default inspect value will be used.

String
getDefPortlnspect()

The method returns the default port inspect string.

String toString()

The method returns the actual inspect string of the port.

void setup(String
name, ActiveObject
owner)

The method is called after the port has been created to setup

port system data.

170

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Table 11. Port class methods

7.3.1.2 PortQueuing class

The class is derived from the Port class and adds the functionality for message queue

managernent.

The methods of the PortQueuing class are listed in Table 12.

Method

Description

void setQueueSize(int
size)

The method sets queue size.

Object getBase()

The method extracts the message from the queue and returns
it. The queue size is decreased by one. The queue must

contain at least one message or an exception will be thrown.

Object peekBase()

The method returns the message from the port queue
without removing it, thus the queue is not modified by this
method. The queue must contain at least one message or an

exception will be thrown.

int size() The method returns number of messages currently pending
in the port queue.

Object The method is used only in AnyLogic threads. It can be

waitForMessage()

called from a thread to wait for a message arrival to the port.
If there are any messages stored in the queue, the first one
will be returned. Otherwise the thread will be suspended until
a message arrives. When a message arrives, the thread

execution is resumed and the message is returned.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 171

Chapter 7. Message passing

7.4

7.4.1

Object The method is used only in AnyLogic threads. It can be
waitForMessage(

N called from a thread to wait for a message arrival to the port.
double timeout)

If there are any messages stored in the queue, the first one
will be returned. Otherwise the thread will be suspended until
a message arrives. When a message arrives the thread
execution is resumed and the message is returned. If the time
interval specified as a parameter is expired while no messages

arrived to the port, null is returned.

Table 12. PortQueuing class methods

Message passing use cases

Filtering messages by message contents

Sometimes you may need to filter incoming messages — i.e., accept only messages meeting
your requirements and discard other ones. In Anylogic you can implement frequently

needed message contents checking.

Message contents checking at a port can be implemented in the O receive action section of the
pott properties. You can specify your own contents checking code and ignore or accept the
arrived message by writing the return false; or the return true; statement
correspondingly. If you have written any code in the On recezve action section and the return

statement is omitted, the message will be discarded.

Let’s examine the message contents checking implementation by the client-server model
example. The server processes only valid client requests. The requests with some of the
required fields unfilled as well as the outdated requests are ignored. The message validity

time period is defined by the server’s msgLifetime parameter of double type.

Server receives messages of the InfoMsg class with the data structure shown below.

Type Name Default

172 © 1992-2004 XJ Technologies http://www.xjtek.com

71.4.2

AnyLogic V User’s Manual

Double time

String name

String address

The message contents checking operations are specified in the O receive action property of the

port:

if (nsg.-time + msgLifetime < getTime() || msg.name==null |]
msg.address==null)

return false;
else {
// process the request

return true;

}

The outdated requests are detected by comparing the message lifetime with the current
model time. The messages with the invalid timestamp value as well as the messages with

unfilled required fields are discarded.

Filtering messages by message type

Sometimes you may need to filter incoming messages by message type — i.e., accept only
messages of the certain type and discard other ones. It is commonly used when an object
broadcasts messages of different types to a group of recipients and it is necessary to receive
messages of one type only in certain ports, while the messages of another type in another

ones.

Message type checking is implemented by specifying the type of messages that are accepted
by the port in the Message #ype property of the port. Those messages that cannot be cast to
the specified message type are discarded. If Message #pe is left blank, the predefined Java class
Object is assumed — i.e. the port accepts all messages.

Note that message type checking is performed only for messages received at a port,

but not for messages sent through a port.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 173

Chapter 7. Message passing

Let’s examine the example where the message type checking is needed. Suppose you have to
model a car wash. A car wash has two different sections, one for serving automobiles and
one for trucks. You need to prevent trucks delivering to the automobile section and vice

versa.

In our model the car wash is represented by the CarWash active object with two ports,
trucksection and carsection, representing two car wash sections. The trucks and cars
are represented by two different message classes: Truck and Car. We need to implement
message type checking at ports to receive messages of the Truck type only at the
trucksection port, while the messages of the Car type - at the carsection port. Thus,
we need to specify these message classes in the Message #ype properties of the ports as shown
in Figure 81.

Name: trucksection | trucksection
Message type: Truck

CarWash
Name: carsection :
Message type: Car - carsection

Figure 81. CarWash ports

The model works as shown in Figure 82. In the first case the Car message is accepted at the
carsection port and discarded at the trucksection. And vice versa, in the second case
the Truck message is received at the trucksection port and ignored at the carsection

one.

174 © 1992-2004 XJ Technologies http://www.xjtek.com

7.4.3

AnyLogic V User’s Manual

Class: Car

trucksection

carsection

Class: Truck

trucksection

[

carsection

b)

Figure 82. Message filtering by type

Sending a message with a delay

According to the time semantics of the message passing, once sent, the message gets to all
destination ports immediately. However, it is frequently needed to delay message sending
through a port for a specified period of time. In the case of entity flow, delay is typically used
to model time spent on processing an entity at active object — e.g., for serving customers in

service systems or for producing and processing parts or products in manufacturing models.

The delayed message passing can be implemented in different ways: you can model delay by
using dynamic timers (see Chapter 8, “Timers”) or timed transitions in statecharts (see

Chapter 9, “Statecharts”). However, using timers is more efficient.

You can implement delayed message sending in the following way: you create a dynamic
timer that exists for a specified period of time, modeling message processing delay. When

this time elapses, the timer expires and the message is sent via the port.

Therefore, define the sendDelay() method in the Additional class code property of the port.
The method takes a message and a delay as parameters and passes them to the created

instance of SendTimer timer class that you should define in your active object class.

void sendDelay(Object msg, double delay) {

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 175

Chapter 7. Message passing

new SendTimer(delay, msg);

}

Type the following code in the Additional class code code section of the SendTimer class:
SendTimer(double delay, Object msg) {
super(delay);
this.msg = msg;
}

Object msg;

This code defines the new timer constructor and stores a reference to a message that should
be sent in the class member variable msg. The line super(delay); invokes base timer class
constructor. The created dynamic timer schedules message sending on its expiration. This is

defined by writing the following line of code in the Expiry action property of the timer:
port.send(msg);
Thus, you have implemented delayed message sending. Call the sendDelay () method of the

port to send a message with a delay. However, you can simply call the send() method of the

port to send a message immediately.

Since delayed message sending is frequently needed, you can create your own port class and
place it in an external file for the reuse in other models as well. Then the class code should

look like the following:

public class PortDelay extends Port {

public void PortDelay(){
super();

}

void sendDelay(Object msg, double delay) {
new SendTimer(delay, msg);

}

class SendTimer extends DynamicTimer {
public void action() {

port_send(msg);

176 © 1992-2004 XJ Technologies http://www.xjtek.com

7.4.4

AnyLogic V User’s Manual

}

SendTimer(double delay, Object msg) {
super(delay);
this.msg = msg;

}

Object msg;

Sending a message with a delay dependent on the message
field

In section 7.4.3, “Sending a message with a delay” you learned how to model message
sending after a specified delay. It is a common situation when this delay represents the time
spent on message processing at the active object. In the case of entity flow, delay commonly
models entity processing time at active object and may depend on some characteristics of the
processed entity. For instance, in manufacturing models, part processing time at a conveyor
depends on the size of the part; in network models packet transfer time through a channel is
proportional to the size of the sent packet. You can define a custom message field to carry
the parameter affecting the message processing time and delay message sending proportional

to its value.

You can model message sending delay dependent on the message field by implementing the
delayed message sending mechanism, described in section 7.4.3, “Sending a message with a

delay”. Actually, you should do a pair of modifications.

First, you need to create new message class Message, with the attribute field of type
double, representing the characteristics of the passed entity, affecting the entity processing
time.

Then you should define a new method in the .Additional class code property of the port:

void sendDependentDelay(Message msg) {

sendDelay(msg, msg.attribute);

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 177

Chapter 7. Message passing

7.4.5

Calling the sendDependentDelay() method with the message passed as a parameter, you
can delay message sending via a port on the period of time equal to the message’s
attribute field value.

Getting information on connected objects

Sometimes you may need to get information about objects connected to a specific port.
Thus, you can check your system topology. The list of connected objects can also be used as
an object addresses list in message routing when you need to send messages only to the
certain objects rather than to all of them (see section 7.4.7, "Sending a message to a specific

recipient / a group of recipients”).

Connected objects registration can be implemented in different ways. The following is the
simplest: when created, an active object sends a message with identification information. At
the destination port the identification information is extracted from the registration message
and added to the list of connected objects.

The object identifiers must be unique to distinguish objects. Actually, you can use various
data as an object identifier. You can define a class parameter and adjust its value for each
active object. Actually, you can define a parameter of any type, supported by AnyLogic, e.g.
numeric (int, double etc.), symbolic (String) etc. There is, however, one inconvenience:
you will need to ensure the assigned identifiers’ uniqueness. A common situation when the

same identifier was in error assigned to several objects is shown in Figure 83.

Name: objectB
Parameters:
int ID 1

Name: objectA
Parameters:
int ID 5

s

'\'

Name: objectC
----- Parameters:

Name: objectD
Parameters:

-

Figure 83.

178 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

So you need to avoid such situations and provide identifier uniqueness. Since active objects

are standard Java objects, you can use one of the means described below as object identifiers:
e aunique integer value returned by the object method hashCode(),
® a unique object name in your model returned by the active object method getName(),

e aunique reference to the object returned by this command.

An object may have multiple ports. In this case you will need to make up a list of connected
portts, not a list of connected objects to distinguish messages sent from the different ports of
the same object. Since ports in Anyl.ogic are also Java objects, you can use any of the three
described above approaches for defining unique port identifiers (use the port method
getPortFul IName() instead of the getName() method to get the port name).

Let’s examine the example where the object registration is necessary. Suppose you have to
model a distribution center shipping goods to the customers and you need to keep the

customer list.

The model consists of a distributor object and a number of customer objects. Customers
send requests to the distributor via input ports. Goods are sent through the distributor’s

output port and delivered to customers.

customerl

distributor customer2

customer3

@ Distributor Customer
output input

Figure 84. The goods distribution model

Let’s implement customer registration at the distribution center.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 179

Ilya Grigoriev
Port names

Chapter 7. Message passing

First, you need to decide what kind of data to use as an object identifier. Let’s choose a

reference to the object.

Define the RegMsg message class for registration messages. The class has the source field of
the ActiveObject type used to transfer the source object identifier.

Specity the registerCustomer() method in the Additional class code property of the
customer’s input port. This method sends the registration message, carrying the customer
identifier (the reference to the active object is accessed by the method getOwner() of the

port).
void registerCustomer() {
RegMsg msg = new RegMsg Q);
msg.source = getOwner();

send(msg);
}

Type the following line in the S7artup code code section of the Customer class to call the
registerCustomer() method upon the active object creation:

input.registerCustomer();
Define the customers member variable of the Vector type in the _Additional class code
property of the output port to store information on registered customers.

Vector customers = new Vector();
Type the following code in the Oz recezve action property of the output port to check the type
of arrived message. In the case it’s a registration message, the message sender is added to the

list of connected objects. Otherwise, the message is processed according to the logic of your

model.
if(msg instanceof RegMsg){
RegMsg rm = (RegMsg)msg;
customers.add(rm.source); //add unknown customer

}
else {

//it’s not a registration message

180 © 1992-2004 XJ Technologies http://www.xjtek.com

7.4.6

AnyLogic V User’s Manual

}

return true;

Finally, your model should look like as shown in Figure 85:

customer]]

Class: Customer
Startup code:
*, input.registerCustomer();

/| distributor customer2|

— g customer3| }. T
Distributor yd ™, o Customer
. ;’{
e
Name: output Name: input
On receive action: Additional class code:
iT(msg instanceof RegMsg){ void registerCustomer() {
RegMsg rm = (RegMsg)msg; RegMsg msg = new RegMsg Q);
customers.add(rm.source); msg.source = getOwner();
} send(msg);
return true; }

Additional class code:
Vector customers = new Vector();

Figure 85. Customer registration at the distributor center

Thus, you have implemented customer registration at the distribution center. Namely, the
references to all objects connected to output port are stored in its customers member
variable. You can use this list to route messages to the certain addresses from the list, see

section 7.4.7, “Sending a message to a specific recipient / a group of recipients”.

You can use the described mechanism to collect any information about objects you like by

passing the required data in a custom field of a registration message.

Sending messages to all recipients

Sending messages to all the recipients is the default port behavior in AnylLogic. It is
employed when a source object has multiple connected objects and needs to send some

general information or a command to all of them.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 181

Chapter 7. Message passing

1.4.7

All messages sent via a port are automatically forwarded to all the connected ports, as shown
in Figure 86. Namely, the message sent through the portA port is received at recipA,
recipB and recipC ports.

Figure 86. Sending a message to all recipients

It is important to understand that all the recipients get references to the same Java object,
representing a message. Therefore, if any of them modifies the message, this affects all other
recipients as well. Thus, to avoid sharing problems, you have to clone received messages

explicitly, as described in section 7.2.2, “Cloning messages to avoid sharing violation”.

Sending a message to a specific recipient / a group of
recipients

In AnyLogic, the sent message arrives to all ports connected to the sender port. However,
you may need to send a message only to a specific recipient or to a specified group of
recipients, rather than to all of them. You can send messages to specific object(s) by defining
object addresses and marking outgoing messages with destination addresses. At the
destination ports, messages are filtered by this address — i.e. only messages addressed to this

certain recipient are accepted.

Obviously, the sender should have a list of recipient addresses to route messages only to the
certain recipients. There are several ways of making up this list. Somewhat simpler is hard-

coded defining of a connection list at the model design time. Figure 87 shows the example of

182 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

hard-coded object registration: both the ID port identifier values and the connList

connection list are defined at the model design time.

Name: objectA
Parameters:
String ID “first”

Name: objectB
Parameters:
String ID “second”

registrar objectB |

Name: objectC
Parameters:
String ID “third”

object(;"_,.

Registrar Class: Registrar
Startup code:
connList.addElement(“first”);
connList.addElement(“second™);
connList.addElement(“third”);
Additional class code:
Vector connList = new Vector();

Figure 87. Making up connection list at the model design time

Commonly, this approach is unappropriate for the case of scalable models, since you will
need to modify your connection list on every object added. In this case you can build a
connection list programmatically at runtime. This can be done by sending identity messages
with the source object addresses at the model startup. At the destination port the
identification information is extracted from the message and added to the list of connected
objects. This mechanism is described in section 7.4.5, “Getting information on connected

objects”.

Let’s examine the example where sending messages to specific recipients is necessary.
Suppose you have to model a post office. A post office delivers letters to the specified
recipients according to their addresses. Periodicals are delivered to specified groups of
subscribers. The bulletins with the general information on the new post office services are

sent to all known addresses.

This model is shown in Figure 88. It consists of the postOffice object and a set of
recipient objects. Messages are sent through postOffice’s output port and delivered to
recipient’s input ports.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 183

Chapter 7. Message passing

recipientl

postOffice recipient2

recipient3

PostOffice Recipient
output inpu

Figure 88. Post office model

First, implement the mechanism described in section 7.4.5, “Getting information on

connected objects” Use the reference to the sender port as the port address.

Define the registration message class RegMsg, which has source field of the Port type to
carry the recipient address to the post office.

Type Name Default

Port source

Define the Mai IMsg message class for post office mail. The Mai IMsg class has the mail data
member of the custom Mail class representing the mail itself and the address field to carry

the mail destination address.

Type Name Default
Port address
Mail mail

Declare the addresses member variable of the Vector type in the output port’s Additional

¢lass code to keep information on registered addresses at the post office.

Vector addresses = new Vector();

184 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Specify the registerAddress() method in the input port’s Additional class code. This
method sends a registration message, carrying the recipient port address to all objects

connected to this port.
void registerAddress() {

RegMsg msg = new RegMsg(Q);

msg.source = this;
send(msg);
s

Type the following line in the Startup code code section of the Recipient class to send a

registration message to the post office upon the active object creation:
input.registerAddress();

Type the following code in the Oz recezve action property of the output port to check the type

of the arrived message. If it’s a registration message, the message sender address is added to

the address list. Otherwise, the message should be processed according to the logic of your

model.
if(msg instanceof RegMsg){
RegMsg rm = (RegMsg)msg;
addresses.add(rm.source); //add unknown address
}
else {
//it’s not a registration message

}

Now the post office has an addresses list and you can send messages to the certain address
by calling the method sendTo() of the PostOffice class, providing the destination port

address and the message as the parameters.

void sendTo(MailMsg msg, Port destination){
msg.address = destination;

output.send(msg);

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 185

Chapter 7. Message passing

For instance, write the following code to deliver mail to the last registered address:
sendTo(msg, output.addresses.get(addresses.size()-1));
You need to implement message broadcasting in your system to send bulletins with

information on new post office services to all known addresses. This can be implemented by

sending the message with null destination value. Therefore, you should call:
sendTo(msg, null);
Type the following code in the input port Oz receive action to perform message filtering by its
destination address:
if (msg.address == this || msg.address == null) {
return true; //accept message

}

else {

return false; //do not accept message

}

As shown above, the port checks the destination address of the arrived message. If the
destination address is null, which in our implementation means broadcast, or if it is equal to

this port address, the port accepts the message. Otherwise the message is discarded.

186 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

recipientl

Class: Recipient
Startup code:
input.registerAddress();

N

/| postOffice recipient2

. recipient3
PostOffice

Name: output Name: input

On receive action: On receive action:

iT(msg instanceof RegMsg){ if (msg.address == this ||
RegMsg rm = (RegMsg)msg; msg.address == null) {
addresses.add(rm.source); return true;

Additional class code: else {

Vector addresses = new Vector(); return false;

void sendTo(InfoMsg msg, Port

destination){ Additional class code:
msg.-address = destination; void registerAddress() {
send(msQg) ; RegMsg msg = new RegMsg Q)

msg.source = this;
send(msg);
b

Figure 89. Sending messages to specified addresses

You have implemented message sending to the specific recipients in your system: sent

messages are accepted only by the recipients with the specified destination addresses.

7.4.7.1 Sending a message to a specific group of recipients

Now you need to implement periodical delivery to the specified groups of subscribers. You
need to keep subscriber addresses lists at the post office and deliver periodicals only to
members of these lists. The post office announces new periodical and a recipient subscribes

on it by sending a confirmation message on announce reception.

Define the SubscrMsg message class to represent periodical announces. The periodName
member variable carries the periodical name. The address member variable is used to carry

the subscriber destination address in the confirmation message.

Type Name Default

Port address

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 187

Chapter 7. Message passing

String periodName

Define the PeriodicalMsg message class to represent periodicals. The addresses member
variable is used to carry the subscriber addresses list. The periodical member variable

represents the periodical itself.

Type Name Default

Mail periodical

Vector addresses

Type the following code in the _Additional class code property of the output port.
String timesName = new String(“Times™);
String USATodayName = new String(“USA Today™);
Vector timesSubscribers = new Vector();
Vector USATodaySubscribers = new Vector();
void announcePeriodical(String periodicalName){
SubscrMsg msg = new SubscrMsg(Q);
msg.-periodName = periodicalName;
send(msg);
}

The times and USAToday member variables keep information about “Times” and “USA
Today” subscribers. The timesName and USATodayName member variables define periodical
names. The announcePeriodical () method announces a subscription on a periodical. The
periodical name is specified as the method parameter.
Substitute the code in the On receive action properties of input ports with the following code:
if ((nsg instanceof MailMsg)&&((msg-address==this) || (mnsg-address==null))){
//process a mail addressed to this recipient or to all recipients
return true;
}

else if (msg instanceof SubscrMsg) {

188 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

if (subscribe){
msg.address = this;
send(msg); // subscribes to the periodical if subscribe is true
}
return true;
}
else {
PeriodicalMsg message = (PeriodicalMsg)msg;
if message.addresses.contains(this){
// process periodical sent to this subscriber

return true;

}

As shown above, if the recipient wants to subscribe to the announced periodical (it is
defined by its subscribe member variable of boolean type), it returns the message to the

post office in response to announce.

Substitute the code in the On receive action property of the output port with the following
code:

if(msg instanceof RegMsg){

RegMsg rm = (RegMsg)msg;

addresses.addElement(rm.source); //add unknown address
}
else {

SubscrMsg sm = (SubscrMsg)msg;

if (sm.periodName.equals(timesName))

timesSubscribers._addElement(sm.address);
else it (sm.periodName.equals(USATodayName))

USATodaySubscribers.addElement(sm.address);

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 189

Chapter 7. Message passing

Now the subscription messages are processed at the output port. The subscriber addresses

are added to the corresponding address lists.
Specify the sendtoSubscribers() method in the Additional class code property of the
output port.
void sendToSubscribers(Vector subscribers, PeriodicalMsg periodical){
msg.addresses = subscribers;
port_send(msg);

}

Call this method to send periodicals to the specified group of subscribers, providing the
subscriber address list and the message as method parameters. For instance, to deliver new

“USA Today” issue to the subscribers, you should write:

PeriodicalMsg issue = new PeriodicalMsg();

sendToSubscribers(USATodaySubscribers, issue);

7.4.7.2 Receiving a message only from a specific object or a group of
objects

According to the message routing rules, ports accept every incoming message. However, it is
frequently needed to receive a message only from a certain object or a group of objects,

rather than from all of them.

WY

Figure 90. Default message reception

190 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

This task is bisymmetrical to the task described in section 7.4.7, “Sending a message to a
specific recipient / a group of recipients”. Thus the implementation concept is the same: you
need to define unique port identifiers to mark outgoing messages and filter messages at a
recipient port by sender identifiers. Therefore, you need to define the message class with a
custom field to carry the sender identifier and specify the list of authorized senders at the

recipient object.

Name: objectA
Parameters:
String ID “first”

Name: objectB
Parameters:
String ID “second”

_QbjectB recipient

Name: objectC
Parameters:
String ID “third”

_g_bjectC

Class: Recipient Recipient
Startup code:

senders.addElement(“first”);
senders.addElement(“third”);

Additional class code:

Vector senders = new Vector();

Figure 91. Making up authorized senders list

Again, as described in section 7.4.7, “Sending a message to a specific recipient / a group of
recipients” you can build this list manually at the model design time as shown in Figure 91 or
programmatically at runtime by implementing object registration mechanism described in
section 7.4.5, “Getting information on connected objects” at the recipient object. Figure 92

shows one of possible implementations.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 191

Chapter 7. Message passing

7.4.8

objectA objectA
—>

Class: Message
Parameters:
source “first”

objectB recipient objectB recipient
—>

objectC Class: Message
Parameters:
source “second”

objectC

a) b)

Figure 92. Message filtering

Verifying port connections at runtime

Sometimes you may need to verify port connections in your model. Port connection
verifying is commonly used when your model has several port types and it’s essential to
allow message passing only between ports of certain types. When editing your model you can
establish connection with a port of forbidden type that causes a logic error. Therefore, you
need to detect an invalid connection at runtime by implementing your own checking
mechanisms. You can define specific actions to be performed on invalid connection

detection, the most obvious is showing an error message using runtime error ability.

Suppose you need to detect invalid port connections in the simple manufacturing model. In
this model a raw material supplier supplies product processing machines with raw material.
After processing at a processing machine, a resulting product is delivered for the storage to a

warehouse.

The model structure is shown in Figure 93. Raw material supplier is represented by

supplier object, machine - by machine object, warehouse - by warehouse object.

supplier machine warehouse

machin

Figure 93. Simple manufacturing model

192 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Constructing the model from a great number of objects, you may establish invalid
connections. Suppose you have made a mistake when editing your model — e.g., you have
connected two output ports in error. In this case you can hardly detect the error: no error

message will be displayed while your model will work incorrectly.

supplierl machinel

warehouse]

supplier2 machine2

supplier3 machine3

Figure 94. Invalid port connection in the manufacturing model

If you have well-defined input and output ports in your model, you can detect invalid
connection of two output ports by message arrival to an output port. Type the following
code in the On receive action property of the output port to terminate the model simulation

and show the error message on message reception at the port:
Engine.error(Error: The output " + this.getFullName() + " port has invalid
connection. "); //terminates simulation
Generally, you should implement a more sophisticated mechanism to check proper material
flow in this model. According to the model logic, an entity sent by a supplier should be sent

to a machine first and then to a warehouse. Thus, only the prodOut ports can be connected

with the machln ports and the machOut ports can be connected only with the warIn ports.

You can define a dedicated message class for each port class. Then each port class will send
only the messages of the specific type and you can verify port connections by checking

incoming message types.

In our model each entity is represented by its own message class: raw material is represented

by a message of the Material type and a product — by a message of the Product type. The

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 193

Chapter 7. Message passing

messages of the Material type should be received only at the machlIn ports. Similatly, the
messages of the Product type should be received only at the warln port.

The checking procedure is specified in the On receive action property of the port. Type the
following code to detect invalid connections of the machln port:
if(! (msg instanceOf Material)){
Engine.error(Error: The " + this.getFullName() + " port has invalid
connection. '); //terminates simulation

}

return true;

This code checks incoming message types. Only messages of Material type sent by
prodOut ports are accepted. When a message of another type arrives to the port, the error

message is shown.

Another approach consists in transmitting a reference to the sender port along with the
message. Having got a reference to a port you can detect a connection with a port of

forbidden type by checking the sender’s port type.

Let us demonstrate you how to implement this mechanism. Suppose you have ports of
PortA and PortB types in your model and PortA ports can be connected only with the
PortB ones. You need to detect invalid connections of the ports of the same type.

Create Message message class with the source field of type Port to carry a reference to
message sender port. Specify Message message class in the Message type property of the ports.

To send a message via the port port, you should write the following code in the active

object code:
Message msg = new Message();
msg.source = port;

send(msg);
The sent message carries the reference to the sender port.

The checking procedure is specified in the Oz receive action of the port. For instance, write the

following code for the ports of POrtA type to allow connections only with the PortB ports:

194 © 1992-2004 XJ Technologies http://www.xjtek.com

7.4.9

AnyLogic V User’s Manual

if (1(nsg.source instanceOf PortB))

Engine.error(Error: The " + this.getFullName() + " port is eroneously

connected to the

}

return true;

+ msg.-source.getFullName() + port.”);

This code checks the sender’s port type. The message from non PortB port reception

indicates the invalid port connection and the error message is shown.

Defining message class constructors

You can initialize the created message data differently, depending on some external
conditions. In AnylLogic you create a message instance by calling a message class
constructor. The default constructor automatically generated by AnyLogic fills out all the
tields of the created message instance in the same order you defined in the Parameters table.
However, you may need to create the message with only a certain set of fields. For example,
in the distributed database model, the data structure of the server response message depends
on the type of the client query. You can define custom message class constructors to create

messages with only those message fields that are necessary under the certain conditions.

For example, you need to model an elevator. A user controls the elevator by sending
commands to the controller. A command may take a parameter or not, thus the data
structure of the created message varies depending on the type of the command. Specifying

your own constructors, you can create the command message with certain fields only.

Commands are represented by the messages of the Command class. The message class has the
cmd member variable of type String representing the command instruction and the arg

member variable representing the optional command argument.

Type Name Default

String cmd

Double arg

The “Move” command takes the parameter, specifying the movement step. In this case the

default constructor is used to create the message.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 195

Chapter 7. Message passing

The default constructor creates a new message with all the fields initialized:

Command (String cmd, double arg) {

this.cmd = cmd;

this.arg arg;

}
However, the “Stop” command does not take any parameters. Thus you can define the

custom constructor to create a command message without any parameters. The message

class constructor is defined in the Additional class code section of the message class properties:
Command (String cmd) {
this.cmd = cmd;

}

Calling different constructors you can create messages with different data structure. For
example, the following lines of code create messages, representing “Move” and “Stop”

commands correspondingly.

Command movecmd = new Command(“MOVE”, 20.0);
Command stopcmd = new Command(““STOP”);

In the second case, the custom constructor is called to create the message with the cmd field

only.

Note that Java statements you specified in the Constructor code section of the message
class properties will be inserted in the default constructor only. Thus this code will be

executed only in the case of creating a message instance by the default constructor.

7.4.10 Modeling a LIFO queue

The default port queue in AnylLogic is the FIFO queue. However, you may need to model a
LIFO queue — e.g., to model a LIFO buffer in queuing models. Messages are extracted from
the LIFO queue in the Last-In First-Out order — i.e., the last placed in the queue message is

extracted first as shown in Figure 95.

196 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

|

><
>
\

>
>
> < ><

receive(msg) getMessage() receive(msg) getMessage()
receive(msg) getMessage()
getMessage()

A =N
‘N

Figure 95. LIFO queue in a port

LIFO queue can be implemented by defining your own container for incoming messages in

the port and providing a method to extract stored messages in LIFO order.
First, define the messages data variable of the Vector type in the Additional class code of the
port to store incoming messages:

Vector messages = new Vector();
Type the following code in the On recezve action property of the port to place the arrived
message in our message container, representing a LIFO queue:

messages.add(0, msg);

return false;
As shown above, the incoming message is placed at the head of our queue. Note that
returning False we prohibit the default processing of the message to process it in a custom

way. Thus received messages will neither be forwarded further nor stored in the default port

queue.

You can extract the last arrived message from the LIFO queue by calling the getMessage ()
method, specified in the .Additional class code property of the port:

Object getMessage(){

return messages.remove(0);

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 197

Chapter 7. Message passing

Similarly, define the peekMessage() method to access the message without removing it

from a queue:
Object peekMessage(){

return messages.get(0);

Note that the extracted message is the Object class instance and you may need to cast

it explicitly to the original message class.

For instance, we send messages of the Message type. Then we need to cast the extracted

message instance to this class in the following way:

Message message = (Message)getMessage():

Generally, you will need to check the port queue size before accessing the messages from the

queue:
if (messages.size() > 0)

Message message = (Message)getMessage():

If needed, you can implement a limited queue. First, specify the capacity of the queue by
defining capacity member variable in the Additional class code of the port:

int capacity = 44;
Queue would not accept an incoming message if the capacity is reached.
Substitute the code in the On recezve action with the following code to perform the current
queue size checking and discard messages if the queue is full.
if (messages.size() < capacity)
messages.add(0, msg);

return false;

You can further change the queue behavior. For instance, you may want to store the latest
messages in your queue. So when the message arrives to the port with a full queue you can
remove the oldest message stored. Therefore, you should substitute the code in the On receive

action with the following:

messages.add(0, msg);

198 © 1992-2004 XJ Technologies http://www.xjtek.com

7.4.11

AnyLogic V User’s Manual

if (messages.size() > capacity)
messages.remove(messages.size() - 1);

return false;

Modeling a priority queue

The default port queue in AnyLogic is FIFO queue. Messages are extracted from the FIFO
queue in the First-In First-Out order — i.e., the first placed in the queue message is extracted
first. You can model a priority queue in a port. It may be needed, for instance, in queuing
models, to model a priority buffer. Priority queue can be implemented by defining your own
message container in the port and placing incoming messages in this container regarding to
the message priority.

First, define the messages member variable of the Vector type in the Additional class code of

the port to store incoming messages:

Vector messages = new Vector();

Next, define the message class PriorityMsg, which has the priority field of type int,
representing the message priority. The lower values represent higher priorities, O represents
the highest priority.

Type the following code in the On recezve action property of the port to place the arrived
message in the queue, regarding to the message priority: the messages with the highest

priority are placed in the head of our queue to be extracted first.
int i =0;

while(i<messages.size() && msg.priority >=
((PriorityMsg)messages.get(i)).priority)
i++;

messages.add(i, msg);

return false; // do not store in a default queue

Note that returning false we prohibit the default processing of the message to process it in
a custom way. Thus received messages will neither be forwarded further nor stored in the

default port queue.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 199

Chapter 7. Message passing

Extract the message with the highest priority from the priority queue by calling the
getMessage() method, specified in the Additional class code property of the port:

PriorityMsg getMessage(){
return (PriorityMsg)messages.remove(0);

}

Similarly, define the peekMessage() method to access the message without removing it

from a queue:

PriorityMsg peekMessage(){
return (PriorityMsg)messages.get(0);

}

Generally, you will need to check the port queue size before accessing messages from the

queue:
if (messages.size() > 0)

PriorityMessage message = getMessage();

7.4.12 Connecting ports at runtime

You can connect ports programmatically at runtime by calling methods connect() and
map(). To disconnect ports, you call the methods disconnect() and unmap(). Thus you
can easily create complex systems with sophisticated topologies. You can change port
connections at runtime to model systems with dynamically changing connections, in
particular, systems with mobile objects. The example of a system with dynamically changing
connections is given in section 7.4.13, “Modeling a system with dynamically changing

structure”.

Use the connect()/disconnect() methods to connect or disconnect potts, located on the

same level of containment hierarchy and the map() /unmap() methods otherwise.

In other words, use the connect()/disconnect() methods to connect or disconnect:
e Ports of encapsulated objects

e A private port with a port of an encapsulated object

200 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Use the map()/unmap() methods to connect or disconnect:
e A public port with a port of an encapsulated object
e A public port with a private port

e A port with a statechart

Using the connect()/disconnect() methods

Figure 96 and Figure 97 show the situations when the connect()/disconnect() methods

are used.

objectC

objectA objectB

portA portB

Figure 96. Ports of encapsulated objects

objectA
objectB D
portA
portB

Figure 97. A private port and a port of an encapsulated object

In both cases ports are located on the same level of the containment hierarchy.
Call the connect() method to connect portA with portB:

Use Port.connect(portA, portB); statement, or
portA._connect(portB);

Call the disconnect() method to disconnect ports in a similar manner:

© 1992-2004 X]J Technologies http:/ /www.xjtek.com 201

Chapter 7. Message passing

Use Port.disconnect(portA, portB); statement, or
portA.disconnect(portB);

Note that it does not really matter in what order the ports are specified. You can write the

following line as well:
portB._disconnect(portA);

You can write this code anywhere you like in the parent active object class (objectC in the
first case and objectA in the second one).

Using the map()/unmap() methods

The method map() is used for connecting ports located on the different levels of the
containment hierarchy, namely a public port with a private port or a public port with a port

of an encapsulated object. Ports are disconnected by calling the unmap() method.

objectA
objectB
portB portA

Figure 98. A public port and a port of an encapsulated object

objectA

[m]

portA
portB

Figure 99. A public port and a private port

Figure 98 and Figure 99 show the situations when the map() /unmap() methods are used.

202 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

To connect these ports, call the map() method of the public port (portA) with the internal
port (portB), specified as a parameter anywhere you like in the parent active object class
(objectA):

portA._map(portB);
To disconnect these ports, call the unmap() method:

portA_unmap(portB);

Note that it is significant that the method map()/unmap() of the public and not of

the internal port is called. The following line of code is invalid:

portB.map(portA);

You can connect or disconnect a port with a statechart at runtime. The method syntax is the

same both for public and private ports:

port tatechart
[:l statechar

R

Figure 100. A public port and a statechart

port

]

statechart

e

Figure 101. A private port and a statechart

Connect a port with a statechart by writing
port_map(statechart);

Disconnect a port with a statechart by writing

© 1992-2004 X]J Technologies http://www.xjtek.com 203

Chapter 7. Message passing

port._.unmap(statechart);

7.4.13 Modeling a system with dynamically changing structure

AnylLogic enables you to model not only systems with static structure, but also systems
where object interconnections change dynamically. Thus you can easily create complex
models with flexible structures. Anylogic is the only visual tool that supports creation of
truly dynamic models — the ones with dynamically evolving structure and component

interconnection.

You can model systems with dynamically changing structure by changing port connections at
runtime. To connect ports at runtime use the port methods connect() and map(). To
disconnect ports, use the methods disconnect() and unmap(). See section 7.4.12,

“Connecting ports at runtime” for more details on using these methods.

Suppose you are modeling an object moving in 1D space along the array of sensor stations.

The object emits signals, which are accepted by the nearest station.

The model is shown in Figure 102. The mobile object is represented by wanderer object.
Sensor stations are represented by the replicated object sensors.

System System
wanderer wanderer
I 1 I 1
—out I
1 n 1 1
J] J J
sensors* kensors[0] sensors[1] sensors|[2]

Figure 102. A wandering object
The active object wanderer sends messages through its output port out. These messages

are accepted by the sensor that is currently connected to the wanderer. At random time

moments, the class System moves the wanderer.

204 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

You can implement this as described below. Type the following code in the Additional class
code section of the class System properties:

int x = 0;
public void onCreate() {
wanderer.out.connect(sensors.item(X).in);
}
void move() {
wanderer .out.disconnect(sensors.item(x).in); // wanderer is disconnected
X ++;
X = X % sensors.size(); // wanderer location changed

wanderer .out.connect(sensors.item(x).in); //wanderer is connected

}

The x member variable defines the wanderer location.

The initial location of the wanderer is defined in the method onCreate() that is called at
the model startup. Initially wanderer is located near the first sensor station. So it is connected
via its out port with the in port of the first element of the sensors replicated object. The
individual element of a replicated object sensors is accessed by the method
sensors. item(index). See Chapter 2, “Replicated objects” for more details on replicated

objects.

The wanderer displacement is implemented by the method move() of the class System.
Namely, the out port of the wanderer object is disconnected from the in port of the
current element of sensors object and connected to the in port of the next element of

sensors object.

7.4.14 Implementing instantaneous data feedback

In AnylLogic when an object needs to send some data to another object, it sends a message
carrying this data object. You can instantaneously modify the original data stored at the
sender object on this message reception at a recipient port. Thus you can implement

instantaneous data feedback between active objects.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 205

Chapter 7. Message passing

The data feedback technique is the following. Since the data is represented by a Java object,
and the recipient receives the reference to this object, when the recipient modifies this data
object, it affects the original data object stored at the sender as well. Thus you can
instantaneously modify the sender’s data sent within a message without sending any response

message, carrying modified data back to the sender.

For instance, you send the message with the information in the number member variable.
DataMsg dm = new DataMsg();
dm.number = 38;

traceln(“Original number > + dm.number);

port.send(msg);

traceln(“*Modified number ” + dm.number);
You can instantaneously change the value of the sent data object by changing the value of
the passed object in the recipient port’s On receive action property:

DataMsg data = (DataMsg)msg;

data.number=35;

return true;

The dm.number value stored at the sender object will be changed immediately (it is
evidenced with the original and modified values, printed in the AnylLogic Log window). You

do not need to send a supplementary message, carrying the new value to the message sender.

7.4.15 Implementing instantaneous message exchange

You can implement instantaneous message exchange between active objects by sending a
response message on a message reception. It is important that at the time the initial message
sending is finished all the responses from the recipients are already received. Thus, you can
perform some helper operations, e.g. pass messages with some information about the

current state of recipient or implement object polling.

Instantaneous message exchange is implemented by specifying response message sending
back to the message sender in the port’s On receive action property. You can perform several

message exchanging iterations between objects. The message exchange is performed by a

206 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

single message sending act, since code, specified in the On receive action property of the

recipient port is executed amid the sender method send() execution.

Let’s examine the message exchange in the model shown in Figure 103.

objectA.portA objectB.portB

send()
On receive action:
send(this);
On receive action
objectB
msg;

Figure 103. Immediate reply. Method call sequence

Initially objectA sends a message to objectB.

portA.send(msg);

The message is received at the portB port and the code specified in the portB Oz receive
action property is executed. In particular, the portB sends back a message carrying the

reference to this port.
send(this);
The response message is received at the portA and processed in a custom way specified in

the portA O receive action. When this code finishes, the portB O receive action code execution
is proceeded. In turn, after it is finished, the send() method of the portA finishes its work.

The method call sequence is illustrated in Figure 103.

Let’s implement immediate object polling in a product delivering model using the described
mechanism. A factory ships products to a number of warehouses. Products are sent only to
the certain warchouses that have sufficient place to store a product. Therefore, before

sending the product, requests are sent to all the warehouses to determine which warehouse

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 207

Chapter 7. Message passing

is capable of storing the product. A warchouse checks its spare place and sends back a

confirmation only if it is not full. Finally, the product is sent to one of the spare warehouses.

The model structure is shown in Figure 104.

warehousel

warehouse2

warehouse3|

Factory Warehouse
output input

Figure 104.

The request and confirmation messages are represented by the RegMsg message class. The

message class contains the recip field of type Port used for transferring the warehouse
address within a confirmation message.

Type Name Default

Port recip

The products are represented by the Product messages. This class has the product data
member of Product type representing the product itself and the dest member variable of
type Port used to carry the destination warehouse address.

Type Name Default

Port dest

Product product

208 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

The model works in the following way. First, the spare warehouse is searched. Therefore the

request message is sent through the output port of the factory object:

output.send(new RegMsg());

The request message is sent to all the recipients. When the message arrives at the warehouse
the code specified in On receive action property of the input port is executed. This code
checks the current warehouse spare place, defined by the capacity member variable. If the
warehouse has sufficient place to store the product, it sends a confirmation message,

stamped with the address of this warehouse back to the factory.

Name: input
On receive action:
if ((msg instanceof RegMsg)é&&
capacity>0)){
msg.recip = this;
send(msQg) ;

else if (msg instanceof ProdMsg &&
msg.dest==this){
ProdMsg pm = (ProdMsg)msg;
products.add(pm.product) ;
capacity--;
return true;

\Warehouse

}
else
return false;
Additional class code:
int capacity = 30;
Vector products = new Vector();

Figure 105. Warehouse object

When a confirmation is received at the factory, the warchouse address is added to the

warehouses list. The request is sent to the next warehouse and so forth.

After the requests have been sent to all the warehouses and the onReceive() of the last
polled warehouse is finished, the method send() execution is finished.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 209

Chapter 7. Message passing

~ Class: Factory
Parameters:
Product product

Factory =" Name: output
Message type: ReqgMsg

On receive action:
warehouses.addElement(msg.recip);
return true;

Additional class code:

Vector warehouses = null;

Figure 106. Factory object

Finally, the product is delivered to one of the warehouses that has confirmed the delivery
request. Actually, the message is sent to all the warehouses, but is filtered at the recipient
ports by the destination warehouse address, specified in the message dest field. When the
product is delivered to the warehouse, its spare place value is decreased and the product is
stored in the products Vector.

output.send(new RegMsg(Q));

//the warehouses list is already built
ProdMsg pm = new ProdMsg(Q);

pm.product = product;

pm.dest = output.warehouses.get(0);
output.send(pm);

output.warehouses.removeAllElements();

Finally, the warehouses list is cleared.

Figure 107 illustrates how this model works. The request is sent to all the warehouses. In the
concerned case, the first and second warehouses have sufficient place to store the product,
so they send confirmation to the factory. The third warchouse is full and cannot store

product. Finally, the product is sent to the first warehouse.

210 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

warehousel.input warehouse2.input warehouse3.input
factory.output capacity=7 capacity=0 capacity =4

send(new Requg())D

On receive action:

Eépacity——;

send(this);
_I:]On receive action:

On receive action:
capacity--;

L Isend(this);

ProdMsg pm = new ProdMsg()

send(pm,Warehouses.get(oj.).

Legend: - request
<« - confirmation
- - product passing

Figure 107. Method call sequence

7.4.16 Message passing in Enterprise Library

This section contains the detailed information about the Enterprise Library port classes. It
describes the library objects interaction protocol and may be helpful in creating custom
objects in addition to those in the Enterprise Library.

Active objects of the Enterprise Library follow certain rules when they pass entities via ports
one to another. Generally, port can be input or output — i.e., it transfers entities only in one
direction (passing resource units and transporters in the network is not considered). An

input port may only be connected to an output port.

7.4.16.1 Entity passing protocol
When the entity is passed, the objects follow the specific protocol:

1. When an object intends to output an entity, it sends a notification to all connected

inputs.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 211

Chapter 7. Message passing

2. If the object wants to receive an entity, it sends an entity request to all the ports that
have entities. Actually, if an input port is connected to multiple output ports, it can

accept an entity from any of them.
3. The entity is passed via the output port on the first request reception.
Therefore the entity can never exit or enter an object without its prior agreement.

This protocol is implemented on top of standard Anylogic ports by defining two port
classes: EntitylInPort for input ports and EntityOutPort for outputs. There are also two
protocols for resource units exchange between the Resource object and SeizeQ and
Release objects and for transporters exchange between Node and Segment objects, but
they are left out of consideration because of their specificity. See AnyLogic Enterprise
Library Reference Guide for a detailed description of these objects.

Let’s examine how the entity passing protocol works in the model shown in Figure 108.
Entities are passed via the output ports outA, outB, outCl and outC2 to the inK and inL
input ports of objectK and objectL correspondingly.

inK | objectK

objectB

objectL

Figure 108.

Figure 109 shows the method call sequence. At the initial time entities are already pending at
the outA and outCl ports.

212 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

OutA | v/ OUutA | v/
OUtA outB outC1 outC2 inK {outB inL [QuiB
outClf v/ outCll v/
@ @ outC2 outC2
ouA TV OutA | v/
outB | v/
outB | v outCll v
outCl v
tC2
outC2| o
inK.getEntity();
, »| [outA
outA.send(putA.getEntity()); outB | v
outCl| v/
outC2|) .
inL.getEntity();
outA.send()_ut_ATg_et-E-nﬁtQG);_ ---
- OUutA
outB.sendl(outB.getEntity()); outB
outClf v/
outC2
Legend: @ - entity
- notification

— - request
- _entity passing

Figure 109. Entity passing protocol

The objectB passes entity at the outB port for output. The outB port sends the notification
to all connected inputs (namely, inK and inL ports) by calling the haveEntity () method.

The notification is received at all the connected inputs. Each input port stores a table of the
connected outputs. Ports ready to output entities are marked in this table with special flags.
When a notification from the outB port is received at an input port, the corresponding flag

in its table is set up.

If more than one entity is currently pending at the object, the haveMoreEntities()
method is called. It schedules the successive notification sending at the same model

time instant.

After some time objectK requests an entity by calling the getEntity() method of its inK
port. All the connected outputs that have entities to output are requested in a round-robin
manner. It is implemented by sending request messages to the marked outputs from the port

table one by one in a loop.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 213

Chapter 7. Message passing

First the request is received at the outA port. The entity for output is returned by the
getEntity() method of the outA port. Since the outA port has an entity to output, it is
passed to the requestor object. When the entity arrives at the inK port, the entity request
procedure is finished and the entity requestor method getEntity() returns the received
entity to the object.

Then the inL port requests an entity. First, the request is sent to the first marked port in the
inL outputs table, namely to the outA port. But the request arrives by the time there is no
entity at the outA port (the object has already output an entity to objectK on its request), so
null is passed to the entity requestor. Since no entity was received from the outA port, the
request is sent to the next marked port in the inL outputs table, namely to the outB port.
The outB port has an entity to output, so it is passed to the inL port.

In case several objects were ready and sent their requests, the order in which they arrive is

arbitrary, so the entity will be passed to a randomly chosen object.

In the case all the requested outputs already had no entities to output, the request

initiator method getEntity() returns null.

The arbitrary connections allowed in Anylogic Enterprise Library have an important
consequence. It is important to understand how entities are passed in case there are several
alternative possibilities. As long as an object may be accepting an entity from multiple
sources, (which, in turn may be connected to multiple recipients), it can never know for sure
which entity will come or even that an entity will come at all until it actually arrives.
Symmetrically, an object can never know that another object will accept an entity until it

actually requests it.

The important property of the entity exchange protocol is that an object may sometimes be
unable to output an entity because of inability of the other objects to accept it. Therefore,
you should organize your entity flow diagram in such a way that entities are always able to
exit whenever they are not allowed to stay by adding a buffering object, or increasing a
capacity of the existing object. There are only several objects that would allow an entity to
stay and wait until it can be passed out: Queue, Conveyor and Lane. All other objects will

report an error if an entity spends a non-zero time waiting at the output.

214 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

7.4.16.2 Enterprise Library port classes

This section gives the detailed description of AnylLogic Enterprise Library port classes. It
may be helpful for creating your own port classes with customized behavior. AnylLogic has
two predefined port classes: Port for a port without a queue, and PortQueuing for a port
with a queue. If you want to customize the default behavior of ports you need to define your

own port class, derived from one of these base classes.

EntityInPort class

The input ports in the Enterprise Library are represented by the instances of the
EntitylInPort port class.

The methods of the EntitylInPort class are listed in Table 13.

Method Description

void haveEntity() The method is called on notification arrival. You can override
this method in the port instance of your object to specify

custom actions to be performed — e.g., request an entity.

Entity getEntity() The method requests an entity from connected outputs. The
method returns the received entity. If no entities were

received, null is returned.

boolean hasEntity() The method checks if any connected output has an entity. If
so, true is returned; otherwise false is returned.

void processAuxiliary(| Anylogic Enterprise Library enables you to send auxiliary
EntityNsg fm) messages between ports in both directions. You can process
the received auxiliary message in a custom way by redefining

this method in the port instance.

ActiveObject

getConnectedobject() The method returns first connected object, if any are known.

Table 13. EntitylnPort class methods

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 215

Chapter 7. Message passing

EntityOutPort class

The output ports in Enterprise Library are represented by the instances of the

EntityOutPort port class.

The methods of the EntityOutPort class are listed in Table 14.

Method

Description

void haveEntity()

The method notifies connected input ports that this object

has an entity to send via this port.

void haveMoreEntities()

The method schedules sending a notification to the
connected input ports that this object has more entities to

send via this port.

abstract Entity
getEntity()

The method extracts the entity for output. The method is
abstract and is overridden in the port instances of the
Enterprise Library objects, since the entity obtaining logic
may depend on the object work logic.

int getCount()

The method returns the number of entities exited through
the port.

int size()

The method returns the number of pending entities.

void resetStats()

The method resets the collected statistics on exited entities.

boolean isEmpty()

The method checks if there are any entities pending in the
port (the method returns false if there are any pending
entities and true otherwise).

void processAuxiliary(
EntityMsg fm)

AnylLogic Enterprise Library enables you to send auxiliary
messages between ports in both directions. You can
process the received auxiliary message in a custom way by

redefining this method in the port instance.

216

Table 14. EntityOutPort class methods

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

EntityOutPortQueue class

The EntityOutPortQueue port class, derived from EntityOutPort, is used to model

output ports with queues. This port is commonly used in entity processing objects. If more

than 1000 entities are pending, the port signals an error.

The methods of the EntityOutPortQueue class are listed in Table 15.

Method

Description

void take()

The method places the entity passed as the method

parameter in the port queue.

Entity getEntity()

The method extracts the first entity from the port queue.

boolean isEmpty()

The method checks if there are any entities pending in the
queue (the method returns false if there are any pending
entities and true otherwise).

void setCanWait(boolean
cw)

The method allows or forbids the entity waiting at the
output port queue by passing true or Tfalse
correspondingly. (However, multiple entities can be passed
to an output as long as they all are passed further in zero

time).

int size()

The method returns the number of pending entities.

Table 15. EntityOutPortQueue class methods

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 217

Chapter 8. Timers

MTimers

A timer is the simplest way to schedule some action in the model. Thus, timers are used to
model delays and timeouts. Sometimes you do the same using timed transitions in
statecharts, but timers might be more efficient. There are cases when desired behavior can be
modeled only using timers. For example, a communication channel which is able to transmit
an arbitrary number of messages concurrently can be modeled with the help of dynamic

timers that are created for each message.

Static/Chart timers
5
T >|
@ | active | | active *
i i i i
[} [} | [}
I [} | [}
I [} | [}
| : | : Time
| | |
| | |
| M : ; ™
restart(5) U restart(10) reset()
Action
executed
Dynamic timers
3
5 @ >
| |
& — ;
| . : &———X
| I | I I H
1 ! | | | H
H [H | [|
! i ! | i |
: i : ' ' | Time
: O — :
new nevlv U U r|1ew re'set()
timer(5) timer(3) timer(7) timer deleted
Actions
executed,

timers deleted

Figure 110. Static and dynamic timers

218 © 1992-2004 XJ Technologies http://www.xjtek.com

8.1

AnyLogic V User’s Manual

There are two types of timers: dynamic timers and static timers. The latter may be declared
graphically, in which case a timer is called chart timer. The difference between the dynamic
timer and the static timer is that the dynamic timer deletes itself upon expiry, whereas static
timer survives and can be restarted. The timeout of a dynamic timer is passed to its
constructor, whereas the timeout of a static timer is specified by calling the method
restart() of the timer. A chart timer has even more features: you can specify that it

expires either once or cyclically, or works in the manual mode like an ordinary static timer.

A timer has an action associated with it — code that is executed when the timer expires.

Dynamic timers

A dynamic timer is created using the operator new and the timeout is passed to the object’s
constructor. Time counting begins at the moment of timer construction. When the timeout
expires, AnyLogic calls the method action() of the timer and then deletes the timer. If the
method reset() of the timer is called before expiry, the timer is deleted and its method
action() is never called.

The easiest way to define a dynamic timer class is to use the Project window of AnylLogic.
However, you can define a dynamic timer class anywhere in the code — e.g., in the Additional
¢lass code or in an external file. Then you would have to subclass from DynamicTimer and

override the method action().

» To define a new dynamic timer class

1. Click the New Dynamic Timer Class "% toolbar button, or
Choose Insert| New Dynamic Timer Class. .. from the main menu.
The New Dynamic Timer Class dialog box is displayed.
Specify the name of the new dynamic timer class, choose the active object class,

which will contain the timer class, and click OK.

2. Alternatively, in the Project window, right-click the active object class, which will
contain the timer class, and choose New Dynamic Timer Class. .. from the popup
menu.

The New Dynamic Timer Class dialog box is displayed.
Specify the name of the new dynamic timer class and click OK.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 219

Chapter 8. Timers

8.2

A dynamic timer class has the following properties, specified on the General and Code pages
of the Properties window correspondingly:

General properties

Name — name of the dynamic timer class.

Parameters — [optional] set of formal parameters of the class. Every parameter should
be declared in form: Type Name Defanlt, where Type is the type of the parameter,
Name is the name of the parameter, Default is the optional default value of the
parameter. When instantiating the class, actual parameters may be specified or
default ones may be left. The parameters can be accessed as member variables of

the timer object.

Excclude from build — if set, the dynamic timer class is excluded from the model.

Code properties

Constructor code — [optional] sequence of Java statements to be executed on dynamic

timer construction.
Expiry action — [optional] sequence of Java statements to be executed on timer expiry.

Additional class code — [optional] Java code to be inserted into the class definition.

Constants, variables, and methods can be defined here.

Static and chart timers

Unlike a dynamic timer, a static timer can expire any number of times. To start a static timer,
you call its method restart(),specifying the timeout value as a parameter. When the timer
expires, it calls the method action(). By calling the method reset(), you deactivate the
timer until the next call to restart().

The easiest way to define a static timer is to place a chart timer on the structure diagram of
an active object class. However, you can define a static timer class anywhere else in the
model — e.g., in the Additional class code or in an external files. Then you would have to
subclass from StaticTimer class and override the method action(). A chart timer adds
more features to a static timer: you can specify that it expires either once or cyclically, or

works in the manual mode like an ordinary static timer.

220 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To declare a chart timer

1. Click the Chart Timer & toolbar button, or

Choose Draw | Structure| Chart Timer from the main menu.

2. Click the place on the diagram where you want to place the chart timer.

A chart timer appears, displayed as an icon, see Figure 111.

Chart timer

Figure 111. Chart timer

Chart timer defines a static timer within an active object. Chart timer is displayed as an icon

and can be placed anywhere on the structure diagram — inside or outside this object.

Chart timer has the following properties:

Properties

Name — name of the chart timer.

No expiry/ Expire once/ Cyclic — determines whether the timer is in the manual mode, or

expires once, or expires cyclically.

Expire at startup — applies to a cyclic timer only. If set, the timer first expires

immediately at model startup. Otherwise it first expires after a timeout.

Timeont — expression that is evaluated to obtain the timeout. This can be a real number,

call to a method, random expression, etc.
Expiry action — [optional] sequence of Java statements to be executed on expiry.
Excclude from build — if set, the chart timer is excluded from the model.

Show name — if set, the name of the chart timer is shown on the structure diagram.

© 1992-2004 XJ Technologies http://www.xjtek.com 221

Chapter 9. Statecharts

m Statecharts

During its lifetime an active object performs operations in response to external or internal
events and conditions. Existence of a state within an active object means that the order in
which operations are invoked is important. For some objects, this event- and time-ordering
of operations is so pervasive that you can best characterize the behavior of such objects in
terms of a state transition diagram — a statechart. A statechart is used to show the state space
of a given algorithm, the events that cause a transition from one state to another, and the

actions that result from state change.

By using statecharts you can visually capture a wide variety of discrete behaviors, much more

rich than just idle/busy, open/closed, ot up/down status offered by most block-based tools.

AnylLogic statecharts are UML compliant. They preserve graphical appearance, attributes,

and execution semantics defined in UML.

AnylLogic supports hybrid statecharts — the most natural and powerful way to integrate
discrete logic and continuous time behavior. In hybrid statecharts you can associate a set of
differential and algebraic equations with a state on a statechart diagram. When a state
transition is taken as a result of, e.g., some discrete event, the system of equations changes —
this way, discrete logic affects the continuous time behavior. If you specify a condition over
continuously changing variables as a trigger of a transition, you get the opposite effect:

continuous time behavior impacts the discrete part of the system.

9.1 Creating a statechart

A statechart is declared on a structure diagram and implemented using a statechart diagram.

» To create a statechart

1. Click the Statechart 8 toolbar button, or

Choose Draw | Structure | Statechart from the main menu.

2. Click the place on the structure diagram where you want to place the statechart.

A statechart appears, displayed as an icon, see Figure 112.

222 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Statechart

%~

Figure 112. Statechart

Once the statechart is created, you can specify the statechart name in the text line editor

opened on the right of the statechart in the structure diagram.
A statechart has the following set of properties:

Properties

Name — name of the statechart.

Deferred events — [optional] a set of signal event descriptors separated by commas, e.g.:
new SignalEventl(), new SignalEvent2(“param”). Deferred events for

this statechart are events that match the given descriptors.

Alfter initialize action — [optional] the code to be called when the statechart is about to

run after it has been initialized.

Before step action — [optional] the code to be called each time before the statechart

switches from one state to anothet.

Alfter step action — [optional| the code to be called each time after the statechart switches

from one state to another.

Node action — [optional] the code to be called each time before the statechart could
execute an action associated with entering a state or a transition (including
pseudo states, branch transitions, etc.), even if such action is not defined. Please

note that the function may be called several times during a single step.
Excclude from build — if set, the statechart is excluded from the model.

Show name — if set, the name of the statechart is shown on the structure diagram.

© 1992-2004 XJ Technologies http://www.xjtek.com 223

Chapter 9. Statecharts

9.2 Statechart diagram

The behavior of a statechart is defined on a statechart diagram. AnylLogic supports the
following statechart constructs: state (see section 9.2.1.1, “State”), transition (see section
9.2.1.2, “Transition”), initial state pointer (see section 9.2.1.3, “Initial state pointer”), final
state (see section 9.2.1.5, “Final state”), branch (see section 9.2.1.6, “Branch”), shallow and
deep history states (see section 9.2.1.7, “Shallow history and deep history states”), and text
box (see section 9.2.1.8, “Text box”), see Figure 113. In this section all these constructs are
described in detail.

. . Branch
Initial state pointer . Text box

State

Transition (i) C) m
AR
of-o-t+e

<« e —X-

Shallow

history state Eiite(fry state

Final state

Figure 113. Statechart diagram

A statechart diagram is edited in the statechart editor using the statechart toolbar, see Figure
114.

224 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

DTl S OO LR O e EEE

L

Slate

Transition

Initial State Poirter
Firal State

Branch

History State

Text box

& protocol : Machine [leader_election] =]

Active ': Skart Up Tirmeouk
{ Cansisken . o Mast@k

Fail
o O alre Recovery
(Crashed

Kl | ﬁ

Figure 114. Statechart editor and toolbar

» To open the statechart diagram of a statechart

1. Double-click the statechart in the Project window, or
Double-click the statechart on a structure diagram, or
Right-click the statechart on a structure diagram and choose Open Statechart from the

popup menu.

» To open the structure diagram of the statechart owner object

1. Right-click the empty area of the statechart diagram and choose Up 7 Parent from
the popup menu

Statechart editor shares a large set of generic editing operations described in section 1.5.2,

“Diagram editors. Generic operations”.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 225

Chapter 9. Statecharts

9.2.1.1 State

A state represents a location of control with a particular set of reactions to conditions
and/or events. A state can be either simple or, if it contains other states, composite. Control
always resides in one of simple states, but the current set of reactions is a union of those of
the current simple state and of all composite states containing it — i.e., a transition exiting any

of these states may be taken.

Composite
state ..
Simple
; :
Y
~—

state

Simple
state

Figure 115. States

» To draw a state

1. Click the State ' toolbar button, or

Choose Draw | Statechart | State from the main menu.

2. Click the place in the diagram where you want to put the state.
Then drag to choose the size of the state.

A state has the following properties:

Properties

Name — name of the state.

Deferred events — [optional] set of signal event descriptors separated by commas, e.g.:
new SignalEventl(), new SignalEvent2(“param™). Deferred events for

this state are events that match the given descriptors.

Egunations — [optional] set of differential equations, algebraic equations, and formulas
given in form described in Chapter 5, “Equations”. These equations are active

while the statechart stays in the state.

226 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Entry action — [optional] sequence of Java statements to be executed when the

statechart enters the state.

Exit action — [optional| sequence of Java statements to be executed when the statechart

exits the state.
Excclude from build — if set, the state is excluded from the model.

Show name — if set, the name of the state is shown on the statechart diagram.

9.2.1.2 Transition

A transition (see Figure 116) denotes a switch from one state to another. A transition
indicates that if the specified trigger event occurs and the specified guard condition is true,
the statechart switches from one state to another and performs the specified action. When

this occurs, we say that the transition is taken.

The starting point of a transition lies on the border of the transition’s source state. The end
point of a transition lies on the border of the transition’s destination state. A transition may
freely cross simple state and composite state borders. If the source of a transition lies either
on or inside a state, and the destination of that transition lies outside of the state, then that
state is considered exited by the transition. If such a transition is taken, the exit action of the
exited state is executed. If the source of a transition lies outside a state, and the destination
of that transition lies either on or inside the state, then that state is considered entered by the
transition. If such a transition is taken, the entry action of the entered state is executed. In
case a part of a transition lies inside a state, but both source and destination are outside the

state, this state is considered neither entered nor exited.

There is a special type of transition called internal transition. An internal transition lies inside
a state, and both start and end points of the transition lie on the border of this state (see
Figure 116). Since an internal transition does not exit the enclosing state, neither exit nor
entry actions are executed when the transition is taken. Moreover, the current simple state
within the state is not exited too. Therefore, the internal transition is very useful for
implementing simple background jobs, which should not interrupt the main activity of the

composite state.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 227

Chapter 9. Statecharts

I Transition
Transition
— A
Y

Internal
transition

Figure 116. Transitions

» To draw a transition

1. Click the Transition A toolbar button, or

Choose Draw | Statechart| Transition from the main menu.
2. Click the starting point of the transition (the border of a state or pseudo state).
3. Click the points where the transition should turn.

4. Click the ending point of the transition (the border of a state or pseudo state).

Properties

Name — name of the transition.

Fire — the trigger type.
Immediately — the transition is triggered immediately.
After timeont — the transition is triggered after the specified timeout elapses.
If signal event occurs — the transition is triggered on the specified signal event
occurrence.
If change event occurs — the transition is triggered on the specified change event
occurrence.
If event occurs — the transition is triggered on the specified custom event
occurrence.
All these trigger types are described in section 9.4, “Triggering a transition”.

228 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Timeout — [for transitions triggered After timeout only] specifies a timeout that triggers

the transition.

Signal event — [for transitions triggered If signal event occurs only| specifies signal event that

triggers the transition.

Change event — [for transitions triggered If change event occurs only| specifies change event

that triggers the transition.

Trigger — [for transitions triggered If event occurs only] specifies custom event that triggers

the transition.

Guard — [optional| boolean expression that allows (if true) or prohibits (if false) the

transition. If not specified, true is assumed.
Alction — [optional] sequence of Java statements executed when the transition is taken.
Excclude from build — if set, the transition is excluded from the model.

Show name — if set, the name of the transition is shown on the statechart diagram.

» To move a point of a transition

1. Drag the point.

» To add a salient point to a transition

1. Select the transition.

2. Click the Edit Points 2 toolbar button, or
Choose Draw | Edit Points from the main menu, or
Right-click the transition and choose Edzt Points from the popup menu.

The points of the transition should turn yellow.

3. Drag a segment of the transition to create a salient point, or

Right-click the segment and choose .Add Point tfrom the popup menu.

» To remove a salient point from a transition

1. Select the transition.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 229

Chapter 9. Statecharts

2. Click the Edit Points 2 toolbar button, or
Choose Draw | Edit Points from the main menu, or

Right-click the transition and choose Edit Points from the popup menu.

3. Right-click the point and choose Delete Point from the popup menu, or
Drag the point to an adjacent point of the transition.

The dragged point disappears.

9.2.1.3 Initial state pointer

Initial state pointer (see Figure 117) points to the initial state within a particular level of state

hierarchy.

If the control is passed to a composite state, a simple state is found inside it by following the
initial state pointers down the state hierarchy, and this state becomes current. There should

be exactly one initial state on each level — i.e., on the upper level and in each composite state.

Initial state Initial state
pointer .. ? pointer

- 3\ s \

(3?
AL

-

Figure 117. Initial state pointer

» To draw an initial state pointer

1. Click the Initial State Pointer *4 toolbar button, or

Choose Draw | Statechart | Initial State Pointer from the main menu.
2. Click the starting point of the initial state pointer.

3. Click the points where the initial state pointer should turn.

230 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

4. Click the ending point of the initial state pointer (the border of a state or pseudo
state).

The generic transition editing operations (see section 9.2.1.2, “Transition”) can be applied to
g g op > pp

initial state pointers.

Properties

Name — name of the initial state pointer.

Action — [optional] sequence of Java statements executed when the initial state pointer

forwards the control to an initial state.
Excclude from build — if set, the initial state pointer is excluded from the model.

Show name — if set, the name of the initial state pointer is shown on the statechart

diagram.

9.2.1.4 Pseudo states

A pseudo state is a special type of a node on a statechart diagram. Control never stays in a
pseudo state; it always passes through. Therefore, triggers cannot be specified for transitions

exiting pseudo states. When control passes a pseudo state, pseudo state’s action is executed.

There are four types of pseudo states:
e Final state
e Branch
e Shallow history state

e Deep history state

They all have the following set of properties:

Properties

Name — name of the pseudo state.
Exclude from build — if set, the pseudo state is excluded from the model.

Show name — if set, the name of the pseudo state is shown on the statechart diagram.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 231

Chapter 9. Statecharts

Alction — [optional] sequence of Java statements executed when the control passes the

pseudo state.

9.2.1.5 Final state

A final state (see Figure 118) is a termination point of a statechart. When control enters a
final state, its action is executed, and the statechart terminates. Transitions may not exit a

final state.

» To draw a final state

1. Click the Final State ® toolbar button, or

Choose Draw | Statechart | Final State from the main menu.

2. Click the place on the diagram where you want to put the final state.

v

A/

® ——
/ Final state
Final state

Figure 118. Final states

9.2.1.6 Branch

A branch (see Figure 119) represents a transition branching and/or connection point. Using
branches you can create a transition that has more than one destination state, as well as

several transitions that merge together to perform a common action.

232 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

When control passes a branch, its action is executed, and then the guards of transitions
exiting the branch are evaluated. The first enabled transition — i.e., the transition whose

guard evaluates to true — is taken.

» To draw a branch state

1. Click the Branch '=! toolbar button, ot

Choose Draw | Statechart | Branch from the main menu.

2. Click the place on the diagram where you want to put the branch state.

Branch

=
=

=lIr

—_—

Branéh Branch

Figure 119. Branches

A branch may have at most one special outgoing transition marked default branch exit. This

transition is taken in case all other outgoing transitions are closed.

Transitions exiting branch states have the following properties, slightly different from other
transitions properties.

Properties

Name — the name of the transition.

Fire — the trigger type.

If gnard is open — the transition is triggered if the specified guard is open.
If all other gnards are closed — the transition is the default branch exit.

© 1992-2004 X]J Technologies http:/ /www.xjtek.com 233

Chapter 9. Statecharts

Guard — [for transitions triggered If guard is open only] boolean expression that allows (if

true) or prohibits (if false) the transition. If not specified, true is assumed.
Action — [optional] sequence of Java statements executed when the transition is taken.
Excclude from build — if set, the transition is excluded from the model.

Show name — if set, the name of the transition is shown on the statechart diagram.

If all outgoing transitions are closed and there is no default exit from a branch, a

runtime error is issued.

9.2.1.7 Shallow history and deep history states

A composite state may contain shallow history and deep history states. A shallow history
state is a reference to the most recently visited state on the same hierarchy level within the
composite state. Deep history state is a reference to the most recently visited simple state
within the composite state. When the control comes to a shallow/deep history state, its

action is executed, and the control is immediately passed to the “real” state referred by it.

» To draw a history state

1. Click the History state ® toolbar button, or
Choose Draw | Statechart | History State from the main menu.

2. Click the place on the diagram where you want to put the history state.

3. In the Properties window, choose whether the history state is Deep or Shallow.

234 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Shallow Deep
history state B history state

>

Figure 120. Shallow history and deep history states

Figure 120 illustrates the difference between shallow and deep history states. Suppose E is
the most recently visited simple state inside the composite state A. If the control reaches the
deep history state H*, it passes to E, whereas shallow history state H passes the control to C —
the most recently visited state on the same hierarchy level. Then the standard procedure of

tinding the initial state within C is invoked, and the statechart ends up in D.

In case there is no visited state at all within the scope of a history state (no history exists yet),
the control goes to the corresponding initial state, unless there is a transition exiting the
history state and pointing to the so-called default history state (see Figure 121). There may be
at most one such transition (with If zhere is no history trigger type) for a history state.

()
Implicit default
history state |)®<
Y

Explicit default
history state

Figure 121. Default history states

© 1992-2004 XJ Technologies http://www.xjtek.com 235

Chapter 9. Statecharts

9.2.1.8 Text box

A text box is used to put a comment on a statechart diagram. It does not affect the model

behavior.

» To draw a text box

1. Click the Text Box & toolbar button, or

Choose Draw | Text Box from the main menu.

2. Click the place on the diagram where you want to put the text box.
Then drag to choose the size of the shape.

» To modify the content of a text box

9.3

1. Double-click the text box.
2. Edit the content of the text box.
3. Click the empty area of the diagram or press Esc to store the modified text.

You can also modify the text of the text box using its Properties window.

Properties

Text— content of the text box.

Execution order

It is important to know exactly what the order is of the execution of statechart elements'

actions. For this reason we present the following algorithm.
When a transition is taken, transition and state actions are executed in the following order:

1. State exit actions starting with the old simple state up to the outermost exited

composite state.

2. 'Transition action.

236 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

3. State entry actions starting with the outermost entered composite state down to the

new simple or pseudo state.

4. If the control enters a pseudo state, its action code is executed, and then the control
goes out of the pseudo state immediately, and this algorithm applies again from the

beginning.
Actions associated with statechart elements (states and transitions) are executed

atomically and in zero model time. Therefore they cannot contain synchronization and

delay operations, or call methods directly or indirectly containing them.

Example

s
v P
T3 =® (R)

Figure 122. Execution order illustration

Consider the example shown in Figure 122. Suppose N is the current simple state and
transition T1 has been selected to be taken. Then the actions are executed in the following

order:
1. N state exit action
2. M state exit action
3. T1 transition action
4. Branch action

Then the transition T2 or T3 is selected depending on guards of the transitions. In case the

selected transition is T2, the following actions are executed:

5. T2 transition action

© 1992-2004 X]J Technologies http://www.xjtek.com 237

Chapter 9. Statecharts

9.4

11 initial state pointer action (exit and entry actions of the state L are not executed

since that state is not exited)
M state entry action
12 initial state pointer action

N state entry action

In case the selected transition is T3, the following actions are executed:

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L state exit action

K state exit action (actions of the state V are not executed)
T3 transition action

S state entry action

P state entry action

Branch action

P state exit action

T4 transition action (the guard of this transition must be true as this is the only exit
from the branch)

Q state entry action
I3 initial state pointer action

R state entry action

Triggering a transition

When a statechart enters a simple state, the triggers of all outgoing transitions (including the

transitions outgoing all composite states containing the simple state) are collected and the

statecharts begins to wait for any of them to occur. When a trigger event occurs, the guard

238

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

of the corresponding transition is evaluated. If the guard is true, then the transition may be
taken (we say “may be” because there may be alternative simultaneous events at AnylLogic
simulation engine, which may reset the trigger). This algorithm of guard evaluation is called

“guards-after-triggers”.

If several triggers are signaled at the same time, and the corresponding guards are true,
the transition to be taken can be chosen randomly or deterministically, see section

14.2.1, “Event processing at the simulation engine”.

Transition can be triggered as a result of various types of events occurred, namely:
e Immediately;
e After the specified timeout elapses;
e When the change event occurs;

e When the signal event occurs;
You specify the trigger type in the Fire property of a transition.

This section gives the detailed description of all transition trigger types.

Immediate triggering

ransition can be tricoered immediately on enterin. e transition’s source state.
T ti be triggered diately tering the t tion’ tat

» To define immediately triggered transition

1. Click the transition on the diagram.

2. In the Properties window, choose Immediately tfrom the Fire drop-down list.

@

Specify transition guard in the Guard section of the edit box.

>

Specify transition action in the Action section of the edit box.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 239

Chapter 9. Statecharts

9.4.2 Triggering after a timeout

The trigger is interpreted as time if it evaluates to double or Distr. In case of Distr, the
time value is evaluated as a sample of the distribution (see section 10.2, “Probability
distributions”). The transition becomes enabled after the specified amount of time elapses,
since the statechart comes to the source state of the transition. Such transition may be used

to model delays and, combined with alternative transitions, timeouts.

» To define transition triggered after a timeout
1. Click the transition on the diagram.
2. In the Properties window, choose Affer timeout from the Fire drop-down list.

3. Specity Timeout, Guard and Action for the transition.

Example

"""""""""""""""""" Fire: After timEOUt Fire: After timeout
v Trigger: 2.56 Y Trigger: myDistrExponent

Figure 123. Transitions triggered by time

9.4.3 Change event trigger

A trigger is considered as change event if it evaluates to boolean. A transition with such a
trigger is enabled when the expression is true. If by the time the statechart comes to the
source state of such transition the expression is true already, the transition becomes enabled
immediately. Otherwise, it becomes enabled as soon as the expression becomes true
actions — e.g., as a result of equation solving, as a change event may contain variables
changing continuously according to a set of differential and algebraic equations. When the
expression becomes true, AnyLogic determines the switch point — the moment when the

expression becomes true — with the accuracy set by the user.

240 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To define transition triggered by change event
1. Click the transition on the diagram.
2. In the Properties window, choose If change event occurs from the Fire drop-down list.

3. Specity Change event, Guard and Action for the transition.

Example

MyClass

% < ‘ Name: X

Fire: 1f change event occurs

Y Trigger: x >= 5

Figure 124. Transition triggered by change event

When specifying a change event, you should keep in mind the so-called sensitivity problem.
Let the transition wait for the Boolean expression x>=5, and let x changes continuously in
time as shown in Figure 125. As the numeric equation solver works by steps, it may happen
that x will exceed the value 5 and get back in between the two steps. In this case the change
event will not be detected. You should be aware of such situations when modeling systems
where such error might be critical. If you encounter such a problem, you should make

numerical method accuracies smaller (see section 5.6, “Numerical methods”).

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 241

Chapter 9. Statecharts

XA

0 time
Figure 125. Sensitivity problem

Example

You can trigger statechart transition if the specified port has any messages in its queue
(please do not confuse it with the statechart queue), see Figure 126. If by the time the
statechart comes to the source state of such transition the port queue already has messages,
the transition becomes enabled immediately. Otherwise it becomes enabled as soon as a

message is placed in the queue.

MyClass /‘ Name: myPort

Fire. 1f event occurs

\]
Q Trigger: myPort.size()>0

Figure 126. Transition triggered by port

Please note that triggering of such a transition does not delete the message from the
port queue. You can call the method get() of the port to consume messages from the
message queue, or the method peek() (see section 7.1.2, “Port queue” to know how

to manage port queue). You can access the queue e.g. in the Aczon of the transition.

242 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

9.4.4 Signal event

Statechart transition can be triggered by a signal event. A signal event is an instance of an
arbitrary Java class. When someone calls the method fireEvent() of a statechart, a signal
event is added to the statechart event queue (please do not confuse it with a port queue), and

then it can trigger a transition.

You can connect a port and a statechart. Then messages coming into the port will be routed
to the statechart and will generate signal events. See section 7.1.7, “Receiving messages” for
details.

The event that has just triggered the transition is available for further analysis via the
method getEvent() of a statechart. You can access it, e.g., in the transition guard and

action.

Simplified forms

There are two simplified forms of using signal events:

e If you are happy with using strings as signal events, you can simply type, e.g.,
“MYSTRING” in the Signal event property of a transition. Such a transition is triggered
when the method FireEvent(“MYSTRING™) of a statechart is called.

e If you need just to check the type of your signal event to trigger a transition, you can
type MyType in the Signal event property. Such a transition is triggered by a call to
fireEvent() with any object of type MyType as an argument.

» To define transition triggered by signal event
1. Click the transition on the diagram.
2. In the Properties window, choose If signal event occurs from the Fire drop-down list.
3. Specity Signal event, Guard and Action for the transition.

Example

public class SomeEvent {

}

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 243

Chapter 9. Statecharts

myStatechart.fireEvent(myStatechart. fireEvent(
“MYSTRING” new SomeEvent()

);)

MyClass MyClass

% %

Fire: 1 signal event occurs Fire: If signal event occurs

D Trigger: “MYSTRING” @ Trigger: SomeEvent

Figure 127. Transition triggered by a signal event (simplified forms)

General form

In general, to let a transition be triggered by a signal event, you should specify a reference to
an event descriptor in the trigger. Event descriptor is an object, which is compared with a
signal event to decide if a transition should be triggered — a filter for signal events. When a
signal event is fired at a statechart, AnylLogic calls the method equals() of an event
descriptor, giving a reference to the event as a parameter. If it returns true, then the event
matches the descriptor and the transition should be taken. false means no match. The

method equals() may use just event type information, or may look at event parameters.

You can use an instance of the same signal event class — a prototype — as an event descriptor.
To do that, you should define the method equals() in the signal event class, which may e.g.

compare member variables. Sometimes, however, the usage of a prototype is not convenient.

As a signal event can be an object of any class, you do not always need to define a special

class for a signal event. For example, you may (re)use a message class.

Below we give examples of usage of signal events. In these examples an event has a
parameter. The parameter is used to determine the match. In the first example we use a

prototype as the event descriptor. In the second example we use a special class.

244 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Example

public class CharEvent {

public CharEvent(char param) {
this.param = param;

}

public boolean equals(Object obj) {
if(obj instanceof CharEvent) {
CharEvent ev = (CharEvent)obj;
return ev._param == this.param;
}
else {
return false;
}
}

public char param;

MyClass
myStatechart.fireEvent(
QE new CharEvent(“A”)
;T);

Fire: 1f signal event occurs

() Trigger: new CharEvent(“A”)

Figure 128. Transition triggered by a signal event (1)

Example

public class CharEvent {
public CharEvent(char param) {
this.param = param;

}

public char param;

}

© 1992-2004 XJ Technologies http:/ /www.xjtek.com

245

Chapter 9. Statecharts

class CharEventDescr {

public CharEventDescr(char lower, char upper) {
this.lower = lower;
this.upper = upper;

}

public boolean equals(Object obj) {
if(obj instanceof CharEvent) {
CharEvent ev = (CharEvent)obj;
return ev.param >= this.lower && ev.param <= this.upper;
}
else {
return false;
}
}

char lower;
char upper;

}
MyClass
myStatechart.fireEvent(
% new CharEvent(“C”)
Fire: IT signal event occurs

Trigger: new CharRangeEventDescr(“A’,“F”)

Figure 129. Transition triggered by signal event (Il)

9.4.4.1 Statechart queue processing

A statechart handles signal events in the so-called event queue. The event queue is necessary

because signal events may occur at those moments of time in which the statechart cannot

246 © 1992-2004 XJ Technologies http://www.xjtek.com

9.5

AnyLogic V User’s Manual

react to events (e.g. when a transition is executed). The event queue is processed by a
statechart according to the following algorithm:

The event processing starts every time something occurs to the statechart, e.g. FireEvent()
is called or the statechart makes a step.

e If there is one or several transitions outgoing the current simple state or any of its
container states, whose trigger matches the first event in the queue, such transitions

become enabled, i.e. one of it is taken depending on guards.

e If there are no such transitions, but the event matches any of the deferred event
descriptors of the current simple state or any of its container states, or of the whole

statechart, the event is kept in the queue, and the next event is processed.

e If no match is found in the deferred event lists either, the event is deleted from the

queue, and the next event is processed.

A statechart can make several consequent steps processing several signal events from
the queue (these steps take zero model time). When the statechart finishes processing
and starts waiting, the event queue is either empty or contains only currently deferred
events.

Observing statechart at runtime

9.5.1 Animated statechart diagram

A statechart running in the model is visualized in the animated statechart diagram window,
see Figure 130. Animated statechart diagram looks similar to the statechart diagram editor,

but editing is not allowed and color animation, breakpoints, and other viewer features are
enabled.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 247

Chapter 9. Statecharts

¥
/ﬂ—-l-(thinkincjl
¥
waitingLeft

waitingRight

eaking

Figure 130. Animated statechart diagram

You can open the animated statechart diagram either from the Model Explorer or from the

animated structure diagram.

» To open the animated statechart diagram of a statechart

1. Double-click the statechart, or
Right-click the statechart and choose Statechart from the popup menu.

To help you to locate the current activity within the model, AnyLogic highlights active
objects in the animated statechart diagram, see section 11.2.3.1, “Color highlighting of model

items”.

9.5.2 Debugging a statechart

Using the animated statechart diagram window you can set breakpoints on states and

transitions of statecharts.

» To set/clear breakpoint on a state or transition

1. Right-click the state or transition and choose Breakpoint from the popup menu.

» To set/clear breakpoint on a statechart

1. Right-click the statechart and choose Breakpoint from the popup menu.

248 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

You can display the information about the current state of a statechart in statechart’s inspect
window. More precisely, the inspect window displays the inspect string associated with the

object. You can set inspect string for a statechart manually.

» To open the inspect window of a statechart
1. Right-click the statechart and choose Inspect from the popup menu.

You can define custom inspect strings for a statechart. This is done using the following API

(for more information, please consult AnylLogic Class Reference):

Related method of Statechart

void setThreadlnspect(java.lang.String value) — sets the inspect string
for the statechart.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 249

Chapter 10. Stochastic modeling

10.

10.1

Stochastic modeling

A model can be stochastic as well as deterministic. There are many different ways to
incorporate nondeterminism into a model. For example, you can assign a randomly
generated time value to a transition, timer, or delay operation. Or a random value or its
derivative can be used to determine a message destination address, evaluate a guard

expression, or otherwise impact the model behavior.

There is also a case when the model can have stochastic behavior, even if you do not
specify it explicitly using randomly generated values: this is random serialization of
simultaneous events, see section 14.2.1.3, “Event step”. If several events are available
at the same time, AnyLogic can make nondeterministic choice with equal probability

for each event.

Otherwise, the model behavior is deterministic and 100% reproducible irrespective of the

seed of the random number generator.

Random number generator

Stochastic models require a random seed value for the pseudorandom number generator. In
this case model runs cannot be reproduced since the model random number generator is
initialized with different values for each model run. Specifying the fixed seed value, you
initialize the model random number generator with the same value for each model run, thus

the model runs are reproducible.

All AnyLogic distribution classes are implemented on the basis of the standard Java random
number generator java.util.Random. However, if you wish to use your own one, you
should call the static method setRandomGenerator(java.util_Random gen) of the
class Distr.

The seed of the standard random number generator can be defined in the experiment
8
properties, or, if you are running the model from command line, using the command line

option --seed (see section 18.1, “Running a model from the command line”).

250 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To set random/fixed random number generator seed value

1. In the Project window, click the experiment you are setting random number seed

value for.

2. On the Additional page of the Properties window, choose the Randon: seed (unigue
excperiments)/ Fixed seed (reproducible experiments) option.

3. For the fixed seed, enter the seed value in the Seed value edit box.

If the model does not receive any external input (either data or user actions), the
behavior of the model in two simulations with the same initial seeds is identical. The
random number generator is initialized once when the model is created and is not

reinitialized between model replications.

10.2 Probability distributions

You may need to model non-deterministic processes, e.g. weather changing, product
demand changing, or a random choice. Stochastic processes can be modeled using
probability distributions.

AnylLogic comes with a large set of probability distributions. The corresponding classes are
defined in the package com.xj.random. The generic class Distr has just one abstract
method get(), which should return a generated sample. You can create empirical
distributions from your own data - then you should define your own distribution class,
inheriting from Distr.

The probability distribution classes inherit from Distr. They have names like
DistrExponential, DistrChi, DistrNormal, etc. They support two forms of obtaining

random values:

¢ You can instantiate a distribution class with particular parameters,

e.g. Distr myDistr = new DistrExponential(0.3); and then call its method
myDistr.get()

® You can call the static method sample(), defined in each class to obtain random
values without instantiating the distribution class. For the above distribution this looks
like DistrExponential .sample(0.3).

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 251

Chapter 10. Stochastic modeling

This is the API you use (please consult AnylLogic Class Reference for more details):

Related method of Distr

abstract double get() — returns a random value depending on the actual
probability distribution implemented by a derived class.

Related method of Distr<xxx>

static <type> sample(<params>) — returns a random value of either int or
double type distributed according to the distribution. Return type and

parameters depend on the distribution.

Supported distributions are summarized in Table 16.

Type Class Parameters and formulas

Bernoulli DistrBernoulli double p
prob(0) = 1-p, prob(1) = p
Beta DistrBeta double a, double b

p(x) = (Gamma(a + b)/(Gamma(a)*
Gamma(b))) x*(a-1) (1-x)"(b-1)

Binomial DistrBinomial double p, int n

prob(k) = nl!/(kl(n-k)}) * p~k (1-p)*(n-k) for
k=0,1,..n

Cauchy DistrCauchy double mu
p() = (1/(pi mw) (1 + (x/mu)"2)"(-1)

Chi DistrChi int num

252 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Chi2

Constant

Erlang

Exponential

Exponential Power

Gamma

DistrChi2

DistrConst

DistrErlang

DistrExponential

DistrExpPow

DisttF

DistrGamma

© 1992-2004 XJ Technologies http:/ /www.xjtek.com

double nu

p(x) = (1/Gamma(nu/2)) (x/2)"(nu/2 - 1)
exp(-x/2)
for x = 0 ... +infty

double value

double a, int n

px) = x"(n-1) exp (-x/2) / (n-1)la"n)
for x = 0 ... +infty

double mu

p(x) = exp(-x/mu)/mu
for x = 0 ... +infty

double mu, double a

px) = (1/(2 mu Gamma(1+1/2))) * exp(-
|x/mu|”a)

for -infty < x < infty.
double nul, double nu2

p(x) = (nul™(aul/2) nu2”(nu2/2)
Gamma((nul + nu2)/2) / Gamma(nul/2)
Gamma(nu2/2)) * x(aul/2 - 1) (nu2 + nul
*x)"(nul/2 -nu2/2)

double a, double b
px) = {1 / \Gamma(a) b*a } x"{a-1} e"{-
x/b}

for x>0.

253

Chapter 10. Stochastic modeling

Gaussian DistrGaussian -

double sigma

double u = x / fabs (sigma);

double p = (1 / (sqrt (2 * M_PI) * fabs
(sigma))) * exp (-u*u / 2);

return p;

GaussianTail DistrGaussianTail double a, double sigma
Geometric DistrGeometric double p

probk) = p (1 -p)~(k-1) forn=1,2, 3, ...
Gumbell DistrGumbell double a, double b

p(x) dx = a b exp(-(b exp(-ax) + ax)) dx
Gumbel2 DistrGumbel2 double a, double b

px) dx = b a x™-(a+1) exp(-b x™-a)) dx
Hypergeometric DistrHypergeometric int nl, int n2, int t

prob(k) = choose(nl,t) choose(n2, t-k) /
choose(nl+n2,t)
where choose(a,b) = al/(bl(a-b)!)

Laplace DistrLaplace -

double mu

p() = (1/(2 mw)) * exp(-| x/mul)
for -infty < x < infty

Levy DistrLevy double mu, double alpha

px) = (1/(2 pi)) \int dt exp(it(mu-x) -
| ct| ~alpha)
with 0 < alpha <=2

254 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Logarithmic DistrLogarithmic double p

prob(n) = p™n/ (nlog(l/(1-p)) forn =1, 2,
3

5 eoe

Logistic DistrLogistic double mu

px) = (1/mu) exp(-x/mu) / (1 + exp(-
x/mu))*2
for -infty < x < infty

Lognormal DistrLLognormal double zeta, double sigma

p(x) = 1/(x * sqrt(2 pi sigma’2)) exp(-(n(x) -
zeta)™2/2 sigma”2)
forx > 0.

Negative Binomial DistrNegativeBinomial ~ double p, double n

prob(k) = Gamma(n + k)/(Gamma(n)
Gamma(k + 1)) p™n (1-p)°k
fork=0,1,...

Normal DistrNormal -
double sigma

double sigma, double mean

Pareto DistrPareto double a
double a, double b

p(x) = (a/b) / (x/b)"(a+1)

forx >=Db
Pascal DistrPascal double p, int n

probk) = (n-1+Kk!/(alk- D) * p™n (1-
p)kfork=0,1,..,n

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 255

Chapter 10. Stochastic modeling

Poisson DistrPoisson double mu

p(n) = (mu™n / nl) exp(-mu)
forn=0,1,2

s 1y &y een

Rayleigh DistrRayleigh -

double sigma

p(x) = (x / sigma”2) exp(-x"2/(2 sigma”2))
for x = 0 ... +infty

RayleighTail DistrRayleighTail double a

double a, double sigma
Student DistrStudent int num
T DisttT double nu

p(x) = (Gamma((nu + 1)/2)/(sqrt(pi nu)
Gamma(nu/2)) * (1 + x"2)/nu)™-((nu +
1)/2)

Triangular DistrTriangular double a, double b
double a, double b, double ¢

p(x)=2*(x-a)/((b-a)*(c-a)) if a <= x < ¢;
p)=2%(b-x)/((b-a)*(b-c)) : c <= x <=b;

p(x) = 0 : otherwise,

Uniform DistrUniform -
double max

double min, double max

px) =1/(b-a)if a<=x<b
p(x) = 0, otherwise

Weibull DistrWeibull double mu, double a

p(x) = (a/mu) (x/mu)”(a-1) exp(-(x/mu)”a)

256 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Table 16.

To simplify work with probability distributions, AnyLogic ActiveObject class has static
methods (inherited from Func class), wrapping the described above methods of probability
distribution classes. You can simply call the static method of the ActiveObject class to
obtain random values without instantiating the distribution class, e.g.
ActiveObject._exponential(0.6). For more information please consult Anylogic
Class Reference.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 257

Chapter 11. Running and observing a model

Running and observing a model

If you have already built up your model, you may run the model simulation. There are

several ways to run the model generated by AnylLogic. You can run the model:
e Directly from AnyLogic.

e Using command line on any Java-enabled machine, see section 18.1, “Running a model

from the command line”.

e Asan applet, see section 18.2, “Running a model as an applet”.

This chapter describes how to run a model from AnyLogic. This is the simplest way of
running the model. The same instance of AnyLogic that was used for editing and building
the model launches and serves as a model viewer, controller, and debugger. If you wish, you

can specify arbitrary options for Java virtual machine.

AnylLogic gives you the maximum control over the model execution. Anyl.ogic is an ideal
environment for iterating the design and debugging your model (the detailed information on
debugging AnylLogic models is given in Chapter 14, “Debugging a model””). AnyLogic shows
you the running model in terms of design notation. AnyLogic visual model viewer/debugger

features include:
e Step and run modes with a variety of options
e Easy navigation with Model Explorer: any model element is accessible
¢ On-the-fly animation of structure and statecharts
e Graphical breakpoints, log and inspect windows
e Dataset visualization (scatter, histogram, Gantt) and export to other applications
e EBvent viewer

e Variable and parameter modification at runtime.

Please note that you cannot use AnylLogic to view a model running as an applet.

258 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

11.1 Running the model with AnyLogic

View and debug your model using the Mode/ and 7ew items in the main menu and the Mode/
toolbar, Figure 131. Not all of these buttons are present on the toolbar by default. To
add/remove buttons, use the Customize dialog box (see section 21.1, “Customizing toolbars

and menus”).

Pl PdE REBR R s - EW B

Figure 131. Model toolbar

11.1.1 Creating and destroying the model

» To bring the project up to date and create the model (but not start it)

1. Click the S7p Ul toolbar button, or
Choose Model| Step from the main menu, or
Press F10.

» To bring the project up to date and run the model

1. Click the Run ® toolbar button, or
Choose Mode/| Run from the main menu, or
Press F5.

You can tell AnyLogic to save your project every time before creating the model.

P To set project autosave before creating the model

1. Choose Tools | Options... from the main menu.

The Options dialog box is displayed.
2. On the Miscellaneons page, select the Autosave project on model run check box.

3. Click OK.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 259

Chapter 11. Running and observing a model

You can set up a timeout for creating a model. When you are creating the model and the
specified timeout elapses, Anylogic stops model creation and displays the message box, with

the “Error occurred during the model creation” error message.

» To set up a model creation timeout

1. Choose Tools | Options... from the main menu.
The Options dialog box is displayed.

2. Click the IZewer tab of the dialog box.

3. In the Model creation timeont (sec) edit box, specity the timeout for model creation (in

seconds).

» To destroy the created model

1. Click the S7p ™ toolbar button, or
Choose Model| Stgp from the main menu, or
Press Shift+F5.

11.1.2 Controlling the model execution

AnyLogic can execute the model in a variety of modes. The modes differ in how frequently
the viewer windows are updated (e.g., on every simulation step, each 5 seconds, on every

visible change, etc.), and when the model stops to give control back to the user.

The simulation performance depends on the execution mode and on the windows

opened in the viewer. The fewer windows are opened, the faster the simulation runs.

There is a notion of simulation step. Each step corresponds to an event in AnyLogic
simulation engine, see section 14.2.1, “Event processing at the simulation engine”. In
complex models there may be a large density of events, and normally you do not need to
trace the model execution to that level of detail. Moreover, depending on which windows are
opened in AnyLogic viewer, some steps may appear invisible for the user, because they
correspond to events of the objects currently not displayed. Therefore, for user convenience,

“regular” Run and S7p commands make steps with respect to visible changes only. However,

260 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

in case you wish to see all primitive steps, you may use Detailed Play and Primitive Step

commands.

» To run the model

1. Click the Run ® toolbar button, or
Choose Mode/| Run from the main menu, or
Press F5.

When a model starts running, current model time, step and replication values are displayed

in the status bar, see Figure 132.

[l|p1s |[Time: 24.420492 |Istep: 29 |Replication: 1 | //¢|

Figure 132. Status bar

You can change the period of status bar update during model run.

» To set up the status bar update period

1. Choose Tools | Options... from the main menu.
The Options dialog box is displayed.

2. Click the Izewer tab of the dialog box.

3. In the Model status refresh interval (ms) edit box, specify the update period in

milliseconds.

By default, the Rz command executes the model as fast as possible, refreshing windows
rarely with the period of time specified in AnylLogic options. However, you can refresh

windows when needed.

» To refresh windows (excluding animation window) when running the model
1. Choose Model | Refresh Windows from the main menu.

You can configure the viewer update period during model run using the [Zewer page of the
Options dialog box.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 261

Chapter 11. Running and observing a model

» To set up the viewer update period

1. Choose Tools| Options... from the main menu.
The Options dialog box is displayed.

2. Click the [Zewer tab of the dialog box.

3. In the Forced screen refresh interval during play (ms) edit box, specify the viewer update
period (in milliseconds).

You can turn the Views Auto Refresh mode on, in which case the model runs in such a way

that each change in open windows is reflected.

» To turn the Views Auto Refresh mode on/off

1. Click the VVZews Auto Refresh [toolbar button, or
Choose Model| Anto Refresh 1iews from the main menu.
If Views Auto Refresh mode is set, the button is shown pressed.

» To make a step (tun until a change in any window, then stop)

1. Click the S7p I toolbar button, or
Choose Model| Step from the main menu, or
Press F10.

» To pause the model

1. Click the Pause Il toolbar button, or
Choose Model| Pause from the main menu, or
Press Ctrl+F10.

» To play the model with respect to the current window

(as run, screen updated on any change in the current window)

1. Choose Model| Play in Window from the main menu.

262 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

To make one step with respect to the current window

(tun until a change in the current windows, then stop)

1. Choose Model|Step in Window from the main menu.

To make one primitive step

(move to the next event of the simulation engine, then stop)

1. Choose Model | Primitive Step from the main menu, or
Press F11.

To play the model displaying maximum details

(non-stop execution, screen updated on each event of the simulation engine)

1. Choose Model| Detailed Play from the main menu, or
Press Ctrl+F11.

To run the model until a particular time or step condition holds

1. Choose Model| Run to from the main menu.
The Run To Condition dialog box is displayed, as shown in Figure 133.

Run To Condition |

Fur madel until the Fallowing condition is krue:

|7 Timne: IZEIEI IFru:um Mo J
¥ Step | 1000 [Frombow -]
Fun Cancel |

Figure 133. Run To Condition dialog box

2. Check the type of stop condition (T7we, Step, or both).

3. Type the time in the Tiwe edit box. In the corresponding drop-down list specify

whether this time is absolute or relative to the current model time.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 263

Chapter 11. Running and observing a model

4. Type the step in the S7p edit box. In the corresponding drop-down list, specify

whether this step number is absolute or relative to the current model step.

5. Click the Ru#z button.

» To restart the model

1. Click the Restart Model 9 toolbar button, or
Choose Model| Restart from the main menu, or
Press Ctrl+Shift+F5.

The model restart means that all objects in the model are destroyed and created again. The
model time is set to 0. No steps are executed. For more information on initialization order

see section 22.2.1, “Model initialization order”.

The commands Model| Run, Model|Step, etc. become disabled when there is no activity
in the model. This indicates that your model has finished.

11.1.3 Setting up model simulation speed

AnyLogic model can be run either in real time or virtual time mode. In real time mode, the
mapping of AnyLogic model time to the real time is made. It is frequently needed when you
have developed some animation and want it to appear as in real life. In virtual time mode the
model runs at its maximum speed and no mapping is made between model time units and a

second of astronomical time.

P To set virtual/real time mode

1. Click the Enable virtual time mode *A toolbar button.

If virtual time mode is set, the button is shown pressed.

In the real time mode, you can increase or decrease model speed by changing the model
simulation speed scale (see section 13.1, “Simulation speed” to know how to define model
simulation speed). The model speed scale value is displayed in the Mode/ speed toolbar combo
box. The default 1x scale means that the model is simulated with the model simulation speed

defined in the properties of the current AnyLogic experiment, 2x means that model is run

264 © 1992-2004 XJ Technologies http://www.xjtek.com

» To

11.2

AnyLogic V User’s Manual

twice faster than the specified model speed, etc. For instance, if model speed is 6 model time
units per second, 2x means that 12 model time units correspond to 1 second. You can

change the model simulation speed as you like.

change the model simulation speed scale

1. To decrease model speed, click the Decrease model speed & toolbar button, or

Choose from the main menu.

2. To increase model speed, click the Increase model speed & (oolbar button, or

Choose from the main menu.

Viewing and controlling the model

You view and control the running model using the following windows (see Figure 134): the
Model Explorer window, animated structure diagram window, animated statechart diagram

window, inspect, log, chart windows.

The Model Explorer window displays the model elements, organized in a tree, and provides
easy navigation and fast access to any of them. The animated structure diagram window
visualizes the structure diagram of an active object and provides access to its elements. The
variables and parameters changes are automatically displayed and active elements of model

are graphically highlighted.

Using these windows you can:
¢ Open log windows, displaying textual output of a model or of an active object.

e Open inspect windows, displaying the information about the current status of model

elements.
e Modify parameters and variables of active objects.
e Visualize datasets by various types of charts (scatter, histogram, Gantt).

e Set up breakpoints on elements of the model.

The animated statechart diagram window provides on-the-fly animation of a statechart and

provides access to statechart elements.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 265

Chapter 11. Running and observing a model

& UrbanDynamics - AnyLogic I [=1 e

S Fle Edit Yew Draw Project [Model Tools ‘Window Help

S li=1% B A BeEEiprNIX BREBE BRe x - @Hmis Lo
R0 ed @l gleEmmEs BoL a0y @0 |[@ioo o T e [o] [&) o= [
(0O RTE AN T e DM
@ Eiruut |@ruot | Bn:n:lt‘business‘NewEnterpriseJ root. business. MatureBusiness, rook.business, DecliningIndustry |‘|§‘ruut.animatiun Events | 4 b X
g m M [u] B3l ™ root.business.NewEnterprise, root.busi _|Dlﬂ%v_v_v_n__lﬂl
2= @ root S|l —
— [+ assessedvalue M >
= | DJ:—D
[@ business 12000
— . L
[+ @ housing 10000 <—
M T
- @ job S <+
[+ @ jobsTotal <1 \
[+ @@ laborDesired 5000 LS
V-
- @ land 4000 housing Er AP
- @ people 2000
- @ taxes 0
. B e e e S e
g :b'T_B?d‘eDdc'“Tﬁ”s;1121871'250”85(0 20 40 60 B0 100 120 140 160 180 200 220 240 260 [
[laborTrainingRrogRate = 0.0 I root.husiness. MewEnterprise I rook.business.MatureBusiness = =10/ x|
[lowcostHousingPragRate = 0.0 M roct.business. DecliningIndustry b= Location Type Time | Info
el T R P — : root.stepTimer Static 99...
3
City programs
0.z
. Low cost hausing: @:l
0.z
4 rorker housing: @:l
0.z
Premiurn housing: @:l
0.2
Slurn damolition: @:l
Job training
0.z
Underermloyed th:dbl
0.z
Underemployedtrau(ﬂ)z: 0.0 0 Aulp
|Ready I I | |jooE][Time: 92.614100 |[5tep: 1 ||Replication: 1

Figure 134. AnyLogic viewer windows

Use AnyLogic Window menu options to arrange open windows (see section 1.3.3, “Arranging
windows”). If needed, set custom color scheme for the Anylogic viewer using the Colors

page of the Oprions dialog box, see section 21.2, “Customizing colors”.

11.2.1 Model Explorer

The Model Explorer window, see Figure 135, displays the objects currently existing in the
model and provides easy navigation and fast access to any of them. Since an Anylogic
model is hierarchical, the objects are organized in a tree, with the root object at the root. The
structure of an AnylLogic model may change dynamically, and the explorer tree changes to

reflect this.

266 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Note that while items in the Project window are classes, items in the Model Explorer

are instances.

EIZ - olx

g‘

[+

nekyorlk,
B lossRake = 0.0
(B meanLatency = 1.0
----- j_l certaintyPercent
----- rasterZaunkt
----- (@ lossRate = 0.0
----- (M machineradius = 125
----- (¥ meanLatency = 1.0
----- (ﬁ meanFecoveryTime = 100,0
----- (M numberofMachines = 19
----- (# timeoutCorflick = 5.0
----- (M timeoutSynchro = 3.0
----- sefupizants

m

-y machines: 19
- @

Figure 135. Model Explorer

» To open the Model Explorer of the root object

1. Click the Model Root Object fal toolbar button, or
Choose iew| Model Root Object from the main menu.

If you select an item in the Model Explorer, the Properties window displays the inspect
window of the item. The inspect window shows the item’s inspect string obtained from the
model. In addition, if the selected item is an active object, the Properties window displays

the log window.

You can open more explorers having different objects at roots of their trees. The new Model
Explorer displays the subtree of the object the explorer is opened on. This is a way of
shifting the Model Explorer base along the object hierarchy. There is also a backward

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 267

Chapter 11. Running and observing a model

operation: the Model Explorer can go up through the object hierarchy until the root object is

met.

» To explore an active object in a new Model Explorer

1. Right-click the active object in an existing Model Explorer and choose Explore from
the popup menu.

» To shift the Model Explorer up one level
1. Right-click the Model Explorer and choose Up from the popup menu.

The Model Explorer can show a large set of items: active objects, ports, variables,
parameters, statecharts, datasets, threads, chart timers, chart events. Sometimes it is desirable

to hide some of them. AnyLogic allows the user to choose what to show and what to hide.

» To show/hide items

1. Right-click the Model Explorer and choose the corresponding item from the Hide
Items item of the popup menu, e.g. choose Hide Items | Parameters to show/hide

parameter S.

» To show/hide behavior items (statecharts, threads, events, and timers)

1. Right-click the Model Explorer and choose Hide Items | Behavior Items from the popup

menu.

» To show/hide structure items (objects, ports, variables, parameters, and datasets)

1. Right-click the Model Explorer and choose Hide Items | Structure Items from the popup

menu.

» To show/hide all items except objects

1. Right-click the Model Explorer and choose Hide Items | All Except Obejcts from the

popup menu.

268 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Every item in the Model Explorer has a set of actions associated with it, accessible through
the item’s popup menu. For example, an encapsulated object can be explored in a new
Model Explorer, its structure diagram, log, and inspect windows can be opened, and a

breakpoint can be set on it.

11.2.1.1 Modifying variables and parameters

You can modify parameters and variables of active objects from the Model Explorer.

» To modify a variable/parameter

1. Double-click the variable/parameter, or
Right-click the variable/parameter and choose Modify from the popup menu.
The Modify dialog box is displayed.

2. Type a new value in the Enter new value edit box.

3. Click OK.

11.2.1.2 Color highlighting of model items

Objects displayed in the Model Explorer (active objects, ports, threads, timers, etc.) may be
involved in steps executed by the simulation engine. For example, an event step may be
associated with a timer expiry. Such shapes are highlighted in the Model Explorer to help

you to locate the current activity within the model.

The default highlight colors and their meanings are given in the table below. You can change
the default color scheme using the Colors page of the Options dialog box.

Item Color Status
(default)
Timer Red Chosen. Will expire at this step.
Thread Red Chosen. Will advance at this step.
Statechart Red Chosen. One of the statechart’s transitions is
chosen.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 269

Chapter 11. Running and observing a model

Table 17.

Please note that an active object is highlighted only if an activity takes place exactly at
its own statecharts, timers, or threads. The activity of an encapsulated object does not

affect highlighting of its parent objects.

11.2.2 Animated structure diagram

The animated structure diagram window, see Figure 136, visualizes the structure diagram of
an active object. It looks like the structure diagram editor, but editing is not allowed and

color animation, breakpoints, and other viewer features are enabled.

While the structure diagram editor window corresponds to an active object class, the
animated structure diagram window corresponds to an instance of an active object

class.

skatevar

input [

W

= oukpuk

quevingPort [1 port

QE, rainBehavior

tirner

Figure 136. Animated structure diagram window

The animated structure diagram displays chart timers only, whereas the Model
Explorer displays all currently existing timers: chart timers as well as static and

dynamic timers.

270 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

You can open the animated structure diagram from the Model Explorer, or from another

animated structure diagram.

» To open the animated structure diagram of an active object from the Model Explorer

1. Double-click the active object in the Model Explorer, or
Right-click the active object in the Model Explorer and choose S#ucture from the

popup menu.

» To open the animated structure diagram of an encapsulated object from the animated
structure diagram of a parent object

1. Double-click the encapsulated object, or
Right-click the encapsulated object and choose S#ucture from the popup menu.

» To open the animated structure diagram of a parent object from the animated structure
diagram of an encapsulated object

1. Right-click the empty area of the animated structure diagram and choose Up 7 Parent
from the popup menu.

You can get the image of the animated structure diagram (including color highlighting) on
the Clipboard:

» To copy the image of the animated structure diagram on the Clipboard

1. Click on the diagram, and choose Draw | Copy Image from the main menu, or
Right-click the empty area of the diagram and choose Copy Image from the popup

menu.

Every shape on the animated structure diagram has a set of actions associated with it,
accessible through the shape’s popup menu. For example, an encapsulated object can be
explored in the Model Explorer, its structure diagram, log, and inspect windows can be

opened, and a breakpoint can be set on it.

P To explore an active object in the Model Explorer

1. Right-click the active object and choose Explore from the popup menu.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 271

Chapter 11. Running and observing a model

11.2.2.1 Modifying variables and parameters

You can modify parameters and variables of active objects from the animated structure

diagram.

» To modify a variable/parameter

1. Double-click the variable/parameter, or
Right-click the variable/parameter and choose Modify from the popup menu.
The Modify dialog box is displayed.

2. Type a new value in the Enter new value edit box.

3. Click OK.

11.2.2.2 Color highlighting of model items

Objects, involved in steps executed by the simulation engine are highlighted in animated

diagrams. The default highlight colors and their meanings are given in the table below.

Item Color Status
(default)
Active object Red Chosen. One of the statecharts or timers of this

active object is chosen.

Chart timer Red Chosen. Will expire at this step.
Statechart icon Red Chosen. One of the statechart’s transitions is
chosen.
Table 18.

Please note that an active object is highlighted only if an activity takes place exactly at
its own statecharts, timers, or threads. The activity of an encapsulated object does not

affect highlighting of its parent objects.

272 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

11.2.2.3 Animating active objects

If you have developed some icon for an active object (see section 1.5.3, “Active object
icon”), each time an instance of this object appears as an encapsulated object on an animated
structure diagram, this icon is displayed. Since you can link properties of the shapes your
icon is constructed from to active object data, you can animate active objects on the

animated structure diagram.

11.2.3 Animated statechart diagram

The animated statechart diagram window, see Figure 137, visualizes a statechart running in
the model. It looks similar to the statechart diagram editor, but editing is not allowed and

color animation, breakpoints, and other viewer features are enabled.

]

f
i thinkjncjl
f

Figure 137. Animated statechart diagram

You can open the animated statechart diagram from the Model Explorer or from the

animated structure diagram.

» To open the animated statechart diagram of a statechart

1. Double-click the statechart, or
Right-click the statechart and choose Statechart from the popup menu.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 273

Chapter 11. Running and observing a model

» To open the animated structure diagram of a parent object from the animated statechart
diagram

1. Right-click the empty area of the animated statechart diagram and choose Up %

Parent from the popup menu.

You can get the image of the animated statechart diagram (including color highlighting) on
the Clipboard:

» To copy the image of the animated statechart diagram on the Clipboard

1. Click on the diagram, and choose Draw | Copy Image from the main menu, or
Right-click the empty area of the diagram and choose Copy Izage from the popup

menu.

Using the animated statechart diagram window you can set breakpoints on states and

transitions of statecharts.

11.2.3.1 Color highlighting of model items

Objects involved in steps executed by the simulation engine are highlighted in the animated

statechart diagram. The default highlight colors and their meanings are given in the table

below.
Item Color Status
(default)

State Red Active. The control is at this state. If this is a
composite state, the exact location of control is
in one of the inner simple states.

Transition Red Chosen. Will be taken at this step.

Transition Blue Enabled. Could be taken at this step, but some
other event has been chosen. This can be
changed using the events window, see section
14.2, “Viewing and modifying Anylogic
events”.

274 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Table 19.

11.2.4 Inspect window

You can display the information about the current state of a model element in the element’s
inspect window. More precisely, the inspect window displays the inspect string associated
with the object. Some objects (datasets, variables) have hard coded inspect, see Figure 138.

Inspect strings for active objects, statecharts and ports can be set manually.

E® root.certaintyPercent M=l B

Count 41 =
Mean 4. 6025843647145444

Min 0.0

M 6. 3692266084667 306

Variance 5.37608873555441:25
Dewviation 2.3186394154513144
MeanConf 0.9641592607472663

I

Figure 138. Inspect window of a dataset

The inspect window appears in the Properties window when you select a model item. Also, a

standalone inspect window can be opened from the popup menu of an item.

» To open the inspect window of a model item

1. Right-click the item in the Model Explorer or on the animated structure diagram and

choose Inspect from the popup menu.

11.2.4.1 Defining custom inspect

You can define custom inspect strings for an active object, a port and a statechart. This is
done using the following APl (for more information, please consult AnyLogic Class

Reference):

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 275

Chapter 11. Running and observing a model

Related method of ActiveObject

void setlnspect(java.lang.String value) — sets the inspect string for the
active object.

Related method of Port

void setPortlinspect(java.lang.String s) — sets the inspect string for the
port.

Related method of Statechart

void setThreadlnspect(java.lang.String value) — sets the inspect string
for the statechart.

11.2.5 Log window

The log window, see Figure 139, displays textual output of a model (global log) or of an
individual active object. The log is displayed as read-only text which can be copied onto the
Clipboard. The log window of an active object appears in the Properties window when you
select an active object. Also a standalone log window can be opened from the popup menu
of an active object.

276 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

E Global Log M[=]
& soldiers in a chain of shooters 3‘
A oA LA AR AN
B AL iiidil
FHLL”ALALALAMN
FEHLLLLLN
FCHHAZALZALN
FDHHHAZAN
FDEHHHAN
EDCHHHHHN
EDDHHHTIE
EDDEHIALE
EDDCIALAALE
FEDDEERLALE
FD JEERHAER
FJEEEREHER
FEFERCIER
FEEREEREERE
[| III!

|
12 zoldiers in a chain of shooters
AoA LA AR ARADLAMLAAN
F AL ihiididddd it il
FHLMALZLLALLDLLILALHN
FEHAMALRABLELLLLLALN

i1 | |

Figure 139. Log window

The global log is convenient for output of information across several model replications,
because it is not reset in between replications. It can also be used as a debugging tool, for
example, to find out what is the order in which the model executes actions of different

objects.

To write to the global log, you use the object Engine.log or the methods trace() and
traceln() of the class ActiveObject. To write to the active object’s log, you use the
member variable log of an active object. See section 14.4, “Logging a model” to know how

to work with logs.

» To open the global log

1. Click the Global Iog [toolbar button, or
Choose iew| Global 1 og from the main menu.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 277

Chapter 11. Running and observing a model

11.2.6 Chart window

Chart windows are used to visualize and export data collected in a model. You can visualize
data collected explicitly in datasets you have created as well as implicitly since AnyLogic
automatically collects datasets for variables. See Chapter 17, “Collecting data and performing

statistical analysis” for more information about collecting and analyzing data.

» To open a blank chart window

1. Click the New Chart =l toolbar button, or

Choose iew | New Chart from the main menu.

» To open a chart window with a particular dataset displayed

1. Double-click the dataset in the Model Explorer, or
Right-click the dataset in the Model Explorer and choose Chart from the popup

menu.

» To open a chart window with a particular variable displayed

1. Right-click the variable in the Model Explorer and choose Chart from the popup

menu.

278 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

root.x, root.y M=l E3

1.1

1A
0.9
0.3
0.7
0.6
0.5
0.4
0.3
0.2
0.1

|:|_
-0.1 1
|:|I2
'|:||3'
-0.4 4
-0.5 1
|:|I6
-0.7 1
-0.5 1
Dlg

-1 1
-1.1

1 1 1 1 1 1 1 T
6 65 7 75 8 85 9 9510 11 12 13 14 15 16 17 13
I root,x B rook,y
| Ll

Figure 140. Chart window

Chart window looks as shown in Figure 140.

Datasets and variables can be added to a chart window using drag and drop or using the
Chart Setup dialog box.

» To add a dataset or a variable to a chart window

1. Drag the dataset/variable from the Model Explorer onto the chart window.

» To set up the chart

1. Right-click the chart window and choose Chart Setup... from the popup menu.
The Chart Setup dialog box is displayed (see Figure 141).

2. To add a variable to the chart, double-click the corresponding item in the [ariables,

parameters and datasets list.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 279

Chapter 11. Running and observing a model

3. To remove a variable from the chart, double-click the corresponding item in the
Axis Y list.

4. By default, Tzme is chosen in the Axzs X list, that is the chart is timed. If you need to
plot one variable against another variable, dataset, or parameter, make the chart
phased. Set up the variable/dataset/parameter to be displayed on the x-axis by
clicking the corresponding item in the VVariables, parameters and datasets list, and then

clicking the —}l button to the left of the Axzs X list. To make plot timed again,
remove the variable/dataset/parameter item from the Axzs Y list by double-clicking.

5. Click OK.

Chart setup

ariables, parameters, and datasets: Ais ¥

(ﬁ root. Adoption_Fraction @ root. Customers
@ root. Adoption_From_advertising
@ root. Adoption_From_word_OF_Mauth

@ root.Adoption_Rate - |
(¥ root. Advertising_Effectiveness
':ﬁ roat.Contact_Rate = |

1 ¥t Pobential_Cuskomers
e root. Tokal_Population

Axis i

il) Time

—Display:
& Last run
gl runs

Filter:

' One paint per run

oK I Zancel

Figure 141. Chart Setup dialog box

11.3 Debugging the model

AnylLogic provides various tools for convenient model debugging.

280 © 1992-2004 XJ Technologies http://www.xjtek.com

11.4

11.5

AnyLogic V User’s Manual

AnyLogic supports on-the-fly checking of model syntax.

AnyLogic allows you to view what is happening at the simulation engine at the lowest level

details and make some changes to the event processing.

AnyLogic allows you to debug your model by throwing runtime errors and tracing model
execution by setting breakpoints on model elements and writing custom information to

AnyLogic logs.

AnyLogic detects logical errors of model execution and errors in your Java code. If such an

error occurs, AnyLogic stops the model and notifies you with error message.

AnylLogic enables you to debug Java code using a third-party debugger by running the model
within the debugger using command line execution feature or by attaching the debugger to

the currently running model.

The detailed information on debugging a model is given in Chapter 14, “Debugging a

model”.

Setting up model execution parameters

An AnylLogic model is executed with a set of simulation settings (simulation speed, number
of model runs). You can adjust model execution settings by customizing Anylogic
experiments. See Chapter 13, “Simulation settings” to know how to set required model

execution settings.

Optimizing a model

If you need to run a simulation and observe system behavior under certain conditions, as
well as improve system performance, for example, by making decisions about system
patameters and/or structure, you can use the optimization capability of AnyLogic.
Simulating a model with different parameters, Anyl.ogic automatically finds the optimal
values of model parameters, with respect to certain constraints. See Chapter 10,
“Optimization” for details.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 281

Chapter 12. Animation

(A Animation

12.1

AnyLogic offers a unique animation technology that enables you to construct very complex

2D and 3D animations rapidly using the object structure of your model. It features:

o Modular development. Y ou develop animations in a modular way, separately for each
object. AnyLogic takes care of assembling the picture, performs placement and

transformation of its elements.
o Scalability. Animation scales with your model as you vary its size.

e Reuse. Animations are associated with active objects. They can be incorporated into any
higher-level animation scene associated with a container object. If you put an object

into a library, animation is stored there as well.

o [ntegrated animation editor. AnylLogic animation editor is integrated with its model

development environment, sharing the Project and Properties windows.

e Ruch AP For sophisticated cases that cannot be specified using the graphical animation

editor, AnyLogic offers a rich API capable of solving virtually any animation need.
e 700% Java. Anyl.ogic animations are 100% Java.

e [Veb. Animations can be accessed over the Internet and displayed in Web browser as
applets.

o [nteractivity. 2D animations are interactive, offering the user a full range of controls

(buttons, text inputs, checkboxes, sliders, knobs, etc.).

The animation window of the root object of a model automatically appears when the model
starts. The speed of animation and, correspondingly, the speed at which the model runs, can
be set in Anylogic by specifying the mapping of model time units to seconds in real time

mode.

Animation concepts

The basic idea behind Anylogic animation technology is that animations (drawings

constructed of elementary shapes) are associated with model components — active objects —

282 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

and are composed according to the model hierarchy. In this section we describe animation
of a standalone active object (section 12.1.1, “Reflecting the state of an object in
animation”), then animation reflecting a hierarchical model (section 12.1.2, “Animating
hierarchical models”). Interactive animations are considered in section 12.1.3, “Interactive

control of animation”.

12.1.1 Reflecting the state of an object in animation

Each active object can have an associated animation. Animation is a drawing composed of
various shapes: circles, rectangles, lines, etc., and also indicators and controls. Each shape
has a number of properties defining its visual appearance: position, height, width, color, and

so on. These properties are typically organized as shown in Figure 142:

Name of the property ‘

L. I-'I-_ZEI w0+ EEII:I_

Expression defining the actual
value during simulation

Constant corresponding to the
value in the editor (default)

Figure 142. Property of an animation shape

The static value on the left shows the value of the property as defined while drawing in the
editor. It is also treated as a default value. The expression on the right defines the actual
value during simulation. This is the place where you can link the appearance of a shape to
any data of the active object. The data may change and it will be reflected in the picture. In
case the expression is empty, the property retains the default static value throughout the

whole simulation.

The actual values are only evaluated when the shape is visible.

An example of associating graphical properties of animation shapes with active object data is
shown in Figure 143. Here the coordinates of the circle are dynamically defined by the
variables x and y of the active object, and the rotation angle of the rectangle is defined by
the object member variable alpha.

© 1992-2004 X]J Technologies http://www.xjtek.com 283

Chapter 12. Animation

Name: @
Type: ouble

Name: @"
Type: ouble

Additional class code: int/alpha; |

Rotation: 338 |' alpha

Figure 143. Associating graphical properties with model data

The blue cross marks the center (0, 0) point and indicates the axis direction. The meaning of

the blue frame is explained in details in section 12.2.1.1, “Animation origin, axis and frame”.

To define the scale of mapping of the model values to the graphical coordinates, you
should use the properties Scale, X Offset, and Y Offset of the animation diagram.

You can add code to the properties Setup code and Update code of the animation diagram to
define more complex relationships between the animation and the model than fixed setting
of the animation properties to some expression in the model. Animation object names are

used to address the individual objects from code.

Example

This example shows how a simple mechanical model — a pendulum — can be animated.

284 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Name: Linel
End point:
IX: 0] x
Y: 110 | vy

Name: Ovall
Y: 110 | vy

Figure 144. Pendulum animation

12.1.2 Animating hierarchical models

When you create an encapsulated object, its animation automatically appears on the
animation of a container object. This is called the encapsulated animation shape and is drawn
as a rectangle showing the content of the animation of the encapsulated object. You can
move, scale, and rotate an encapsulated animation shape in the animation editor, or you can
assign expressions to necessary properties to allow a model to move, scale, and rotate an

encapsulated animation shape at runtime.

Motion of a shape in an encapsulated animation is a composition of its motion defined
in an encapsulated object and the motion of an encapsulated animation shape defined

in a container object.

The animation of a container object can, in its turn, be encapsulated somewhere else, and so
on to any desired level. This way, you can construct very complex animations in a modular

way, developing individual pictures independently one from another.

Position and size of an encapsulated animation on a container animation can be changed

dynamically. This can be defined in two ways:

® You can assign expressions to the properties of the animation developed for the class

of the encapsulated object, or

® You can assign expressions to properties of the encapsulated animation shape on the

animation diagram of the container.

© 1992-2004 X]J Technologies http://www.xjtek.com 285

Chapter 12. Animation

If an encapsulated object itself knows its position with respect to a parent, then you use the
first technique. In this case, you have to leave properties of the encapsulated animation
shape blank, because properties of an encapsulated animation shape (if they are defined)
override properties of an encapsulated animation. If a container knows position of an

encapsulated object, then you use the second technique.

In case an encapsulated object is created and destroyed dynamically, its animation

appears and disappears synchronously with the object.

In some cases, you have to draw an encapsulated animation shape manually. For example, if
you create an encapsulated object, and the encapsulated object class does not have animation
defined for it, than the encapsulated animation shape is not created. If you define animation
for the encapsulated object class after that, you have to manually create an encapsulated
animation shape. To create an encapsulated animation shape, you click the corresponding
toolbar button, place a shape on the animation diagram of a container object, and specify the
name of an encapsulated object this shape refers to. Once this is done, the encapsulated
animation shape shows the content of the animation of the encapsulated object. Another
example: if you animate replicated objects, you may also need to draw one ore more

encapsulated animation shapes manually.

12.1.2.1 Animating replicated objects

If an encapsulated object is replicated, then there are two options to place its animations on

the animation of a container:

e To display all elements of the replicated object, you draw an encapsulated animation
shape with the encapsulated object name set to the whole “vector” of objects, e.g.,
cars, server. In that case, positions of different encapsulated animations are usually
specified in the properties of the animation of the encapsulated object class (first

technique, see above).

e To display only the selected elements of the replicated object, you draw as many
encapsulated animation shapes as necessary and specify the encapsulated object name
for each shape in the form of <encapsulated object name>-<number>, e.g., cars-5,
server-0, etc. Position of such encapsulated animations is usually specified directly in

the properties of the encapsulated animation shapes (second technique, see above).

286 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

12.1.2.2 Animating structures not matching the model hierarchy

Although in the majority of cases the animation structure naturally reproduces the model
structure, sometimes they do not match. This means that sometimes you compose an
animation of shapes corresponding to active objects lying in different levels of model

hierarchy. There are two ways to do so:

e If those active objects have their own animations defined, and you wish to display
them at some animation several objects up the model hierarchy, then you define
animations for all intermediate active objects, which just contain necessary

encapsulated animations and no other shapes.

e In case you just wish to define animation for one (e.g. root) active object, you can draw
all shapes on its animation diagram, and then associate them with the data of

encapsulated active objects. Obviously, you should make sure those data are accessible.

12.1.3 Interactive control of animation

In AnyLogic 2D animation can be made interactive by adding various types of controls to

the animation diagram: buttons, edit boxes, check boxes, radio buttons, sliders, etc.

12.2 Animation diagram

Each active object class may have an animation diagram associated with it. An animation
diagram is a collection of shapes. An animation diagram links shape properties to active
object data and encapsulated objects, and also defines where the animation of this active

object appears in the animation of a container, if the latter exists.

12.2.1 Animation editor

An animation diagram is edited in the animation editor using the animation toolbar, see
Figure 145.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 287

Chapter 12. Animation

Animation toalbar O0OCWwS - Bl BEEE EE o= &
Elvat. point
Warious -
shapes -_Indicators
Encapsulated - : 1] Vo -
| ra [ea=] = Controls
Center |] :... rre :Lh:. —_—
: o | e | []
Imane .
. f Frarme

Figure 145. Animation editor and toolbar

» To add an animation to an active object class

288

Click the New Animation 8 toolbar button, or

Choose Insert| New Animation. .. from the main menu.

The New Animation dialog box is displayed.

Choose the active object class, which will contain the animation from the Choose

active object drop-down list.

Alternatively, in the Project window, right-click the active object class, which will
contain the animation, and choose New Animation... from the popup menu.

The New Animation dialog box is displayed.
Enter the name of the new animation in the Nawme of the new animation edit box.

If needed, select the .Add encapsulated animations check box to add animations of the
encapsulated objects to this animation.
Moreover, you can add links between encapsulated animations by setting the .4dd

links between encapsulated animations check box.

Click OK.

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To open the existing animation diagram of an active object class

1. Double-click the animation in the Project window, or
Right-click the animation in the Project window and choose Open Animation from

the popup menu.

Animation editor shares a set of generic editing operations described in section 1.5.2,

“Diagram editors. Generic operations”.

An animation diagram is always associated with an active object class and has the following

properties:

Properties

Name — animation name.

X — [optional] dynamic expression of the x-coordinate of the animation on the

container animation (pixels).

Y — Joptional] dynamic expression of the y-coordinate of the animation on the

container animation (pixels).

Rotation — [optional] dynamic expression of the rotation of the animation on the

container animation (radians).

Scale — optional] if defined, the positions and sizes of all shapes on this diagram are
multiplied by this factor.

X Offset — [optional] if defined, the x-coordinates of all shapes on this diagram are

increased by this value.

Y Offset — [optional] if defined, the y-coordinates of all shapes on this diagram are

increased by this value.
Excclude from build — if set, the animation is excluded from the model.

Prevent frame selection — if set, the animation frame becomes non-selectable. This may be
useful if your animation contains, e.g., a rectangle covering the entire animation
and you want to select such a rectangle. The point is that in this case, the
rectangle and the animation frame coincide. So, if this property is not set, you

cannot know for sure what you select: the rectangle or the animation frame.

Flip Y-axis — changes the Y-axis direction.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 289

Chapter 12. Animation

» To

» To

Properties specifying the location and rotation of the animation on the container
animation (X, Y, Rotation) are suppressed by the dynamic expressions of the
corresponding properties of the encapsulated animation shape in the container

animation, if the latter is defined.

12.2.1.1 Animation origin, axis and frame

The blue cross is the origin point (0, 0) of the animation diagram. Origin point also indicates
the axis direction. AnylLogic enables you to change the Y-axis direction since some users got
used to working with a frame with Y-axis directed down, while others, with the up-directed

Y-axis frame.

set up/down Y-axis direction

1. Click the animation item in the Project window.

2. In the Properties window, select/clear the F/ip Y-axis check box.
The blue rectangle, which you cannot delete, is the animation frame.

The animation frame has two meanings. In case this is a root animation, it denotes the
window area. Otherwise, in case this animation is encapsulated in another animation, it is
used for scaling the encapsulated animation: the scale is evaluated as the ratio of sizes of the
animation frame and the encapsulated animation shape in the container animation. Note that

no clipping occurs when animations are encapsulated.

The animation frame has properties generic for all animation shapes (see section 12.2.1.2,

“Generic properties of animation shapes”).

You can specify a background image for the animation.

set a background image for an animation
1. Click the animation frame in the animation window.

2. Click the Frame tab of the Properties window.

290 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

3. Click the Browse button.
The Open dialog box is displayed.

4. Browse for the image file you want to use.
Double-click the file or click the Open button to select the file.

5. Select Stretch | Tile | Center option to choose the manner the background image is
displayed.

12.2.1.2 Generic properties of animation shapes

All shapes of an animation diagram have the following common properties that are displayed

on the General page of the Properties window:

Properties

Name — name of the shape, which may be used to access it from code.
X — static value | [optional] dynamic expression of the x-coordinate (pixels).
Y — static value | [optional] dynamic expression of the y-coordinate (pixels).

Rotation — static value (degrees) | [optional] dynamic expression of the rotation angle

(radians).
Width — static value | [optional] dynamic expression of the width (pixels).
Hezght — static value | [optional] dynamic expression of the height (pixels).

Fill color — static value | [optional] dynamic expression of the fill color
(Java.awt.Color). If the checkbox is not checked, the static color is
transparent. If the expression evaluates to null, the dynamic color is

transparent.

Line color — static value | [optional] dynamic expression of the line color
(Java.awt.Color). If the checkbox is not checked, the static color is
transparent. If the expression evaluates to null, the dynamic color is

transparent.
Line width — static value | [optional] dynamic expression of the line width (pixels).
Visible — [optional] dynamic boolean expression determining if the shape is visible.

Replication — replication factor of the shape.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 291

Chapter 12. Animation

Lock aspect ratio — if set, the aspect ratio is locked for this shape.

Show name — if set, the name of the shape is shown on the animation diagram editor

(but not in the animation).

Excclude from build — if set, the shape is excluded from the animation.

If a generic property is not applicable to a particular shape, it is disabled.

Names of animation shapes are used only for code generation and, correspondingly, to

access shapes from code. Names do not appear in the animation window.

12.2.2 Animation shapes
In this section the detailed description of the shapes that can be drawn on animation

diagram is given.

12.2.2.1 Rectangle

» To draw a rectangle

1. Click the Rectangle L1 toolbar button, or

Choose Draw | Animation | Rectangle from the main menu.
2. Click or drag the rectangle on the diagram.

The rectangle has no specific properties.

12.2.2.2 Rounded rectangle

» To draw a rounded rectangle

1. Click the Rounded Rectangle ') toolbar button, or

Choose Draw | Animation | Rounded Rectangle from the main menu.

2. Click or drag the rounded rectangle on the diagram.

292 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Properties

Radins — static value | [optional] dynamic expression of the corner radius of the

rectangle (pixels).

12.2.2.3 Line

» To draw a line

1. Click the Line ™ toolbar button, or

Choose Draw | Animation | Line from the main menu.

2. Drag the line on the diagram.

Properties

The following properties are set individually for line’s Begin point and End point.

X — static value | [optional] dynamic expression of the x-coordinate of the point
(pixels).

Y — static value | [optional] dynamic expression of the y-coordinate of the point
(pixels).

Style — point style. If Arrow is set, the arrow is drawn.

Size — the arrow size.

12.2.2.4 Polyline

» To draw a polyline

1. Click the Polyline * toolbar button, or

Choose Draw | Animation | Polyline from the main menu.
2. Click at each polyline point on the diagram.

3. Double-click to finish.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 293

Chapter 12. Animation

Properties

points — [optional] dynamic expression of number of points of the polyline.

Xlindex] — [optional] dynamic expression of the x-coordinate of the polyline’s point
(pixels).

Y /index] — [optional] dynamic expression of the y-coordinate of the polyline’s point
(pixels).

Begin | End point style — the style of the begin | end point of the polyline. If Arow is set,

the arrow is drawn.
Begin | End point size — the size of the begin | end point’s arrow.

Closed polyline — if checked, the closing segment is created.

Each point of the polyline can be controlled during the model execution. You can specify
dynamic expression, defining the number of points. The coordinates of the polyline’s points
can also be defined by dynamic expressions. Use the predefined symbol “index” in X, Y
expressions to refer to the current point index. The index value is zero based, i.e., the first

point has index of 0.

» To move a point of a polyline

1. Drag the point.

» To add a salient point to a polyline
1. Select the polyline.

2. Click the Edit Points e toolbar button, or
Choose Draw| Edit Points from the main menu, or
Right-click the polyline and choose Edit Points from the popup menu.
The points of the polyline should turn yellow.

3. Draga segment of the polyline to create a salient point, or

Right-click the segment and choose .Add Point tfrom the popup menu.

» To remove a salient point from a polyline

1. Select the polyline.

294 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

2. Click the Edit Points e toolbar button, or
Choose Draw| Edit Points from the main menu, or

Right-click the polyline and choose Edit Points from the popup menu.

3. Right-click the point and choose Delete Point from the popup menu, or
Drag the point to an adjacent point of the polyline.
The dragged point disappears.

12.2.2.5 Oval

» To draw an oval

1. Click the Ova/ "~ toolbat button, or

Choose Draw | Animation | Oval from the main menu.

2. Click or drag the oval on the diagram.

Properties

Radins 1 — static value | [optional] dynamic expression of the first (horizontal) oval
radius (pixels).

Radins 2 — static value | [optional] dynamic expression of the second (vertical) oval
radius (pixels).

12.2.2.6 Image

» To draw an image

1. Click the Image [2 toolbar button, or

Choose Draw | Animation | Image from the main menu.

2. Click or drag a rectangle area on the diagram.

Properties

Image index exipression — [optional] dynamic expression defining the index of the image in

the list to be displayed (integer, zero-based). If left blank, O is assumed.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 295

Chapter 12. Animation

Images — list of file names containing images. Use .4dd and Remove buttons to edit the
list. The Image index expression property defines which image is currently

displayed.

Original size — if checked, the original image size is preserved.

If you intend to move your project file, first embed your images. Otherwise, you will
need to update paths to all image files used. Embedded images are stored in the
AnyLogic project file. If needed, they can be exported to a graphical file anew.

» To embed an image

1. Select the image filename in the Images list.

2. Click the Embed button.

» To export an embedded image
1. Select the image name in the Izages list.

2. Click the Export button.
The Save As. .. dialog box is displayed.

3. Specify the name of the image file.
4. Browse for the folder where you want to store the file.

5. Click the Save button.

12.2.2.7 Text

» To draw a text

1. Click the Text L toolbar button, or

Choose Draw | Text from the main menu.

2. Click or drag a rectangle area on the diagram.

296 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To modify the content of a text box
1. Double-click the text.
2. Edit the content of the text.

3. Click the empty area of the diagram to store the modified text, or
Press Esc to finish editing.

To create a multiline text, use properties of the text shape.

Following Java convention, the origin point of the text box is the bottom left corner

of the first line.

Properties

Text — [optional] content of the text box.

Color — static value | [optional] dynamic expression of the text color
(Java.awt.Color). If the checkbox is not checked, the static color is

transparent. If the expression evaluates to null, the dynamic color is

transparent.

Font — the text font.

Choose — the button opens the Font dialog box for changing the font properties.

12.2.2.8 Pivot

Pivot is used to group animation shapes, rotate the group, and shift the coordinate system.
By specifying dynamic properties of a pivot (X, Y, Rotation, etc.), you can move a group of

shapes and rotate it around the pivot. A pivot itself is not visible.

» To draw a pivot

1. Click the Pivor %1 toolbar button, or

Choose Draw | Animation | Pivot from the main menu.

2. Click the place on the diagram where you want to put the pivot.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 297

Chapter 12. Animation

» To add/remove shapes from the pivot group

1. Right-click the pivot and choose Add/ Remove Shapes from the popup menu.
2. Click on a shape to add/remove it to/from the pivot group.

3. Click the empty area to finish.

When a shape is added to a pivot group, the pivot becomes the origin of its dynamic
coordinates, instead of the animation origin point (0,0). This can be used to shift the

coordinate system for a part of an animation.

Properties

Custom shape template — if set, the group of shapes added to pivot is considered as a

custom shape. You can create as many such custom shapes as you like at
runtime.

Setup code — [optional] Java statements to be inserted at the end of the method setup()
of the pivot class. The code is called during the set up phase of the pivot group.

The set up phase is executed only once when the animation creates.

Update code — [optional] Java statements to be inserted at the end of the method
update() of the pivot class. The code is called each time the pivot group is

about to be redrawn.
Aldditional class code — [optional] Java code to be inserted into the pivot class declaration.
If a pivot point is used as a custom shape template, the shape is not created automatically,
but you can create as many custom shapes as you need at runtime. For each custom shape,

AnyLogic generates a class derived from the pivot class Group. The class has the shape name

— e.g., for the Pivotl shape, the Pivotl class is generated.

Note that the name of the pivot point used as a custom shape template should be

capitalized.

You can modify properties of a custom shape and its shapes at runtime using the methods of

the Group class (for more information, please consult AnyLogic Class Reference).

298 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

12.2.2.9 Encapsulated animation

» To draw an encapsulated animation

1. Click the Encapsulated Animation I} toolbar button, or

Choose Draw | Animation | Encapsulated Animation from the main menu.

2. Click or drag a rectangle area on the diagram.

Properties

Object — name of the encapsulated object this shape refers to. In case the object is

replicated, you may specify a particular element, e.g., cars-5.

Original size — if checked, the original size of the animation suppresses the size of the
shape.

Lock aspect ratio — applicable to encapsulated animations with non-original size, keeps

the ratio between height and width constant during resize operation.

12.2.3 Indicators

Indicators visualize dynamically changing numerical values in a model.

12.2.3.1 Arc indicator

» To draw an arc indicator

1. Click the Arc Indicator =2 toolbar button, or

Choose Draw | Animation | Are Indicator from the main menu.

2. Click or drag the indicator area on the diagram.

Properties

Value to indicate — dynamic expression whose value is indicated.

Min value — [optional] minimum value of the indicator.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 299

Chapter 12. Animation

Max value — [optional] maximum value of the indicator.

Value color — static value | [optional] dynamic expression of the value text color
(Java.awt.Color). If the checkbox is not checked, the static color is
transparent. If the expression evaluates to null, the dynamic color is

transparent.

Scale color — static value | [optional] dynamic expression of the scale text color
(Java.awt.Color). If the checkbox is not checked, the static color is
transparent. If the expression evaluates to null, the dynamic color is

transparent.

Show value — if checked, the current value is textually displayed at the bottom of the

indicator.

Show scale — if checked, the scale is displayed.

The color setup of an arc indicator is the following. The inner area is filled with Fi// color. The

scale and the pointer are of Line color. The scale text is of Scale color, and the value text is of

Value color.

12.2.3.2 Bar indicator

» To draw a bar indicator

Click the Bar Indicator ¥z toolbar button, or

Choose Draw| Animation | Bar Indicator from the main menu.

Click or drag the indicator area on the diagram.

Properties

300

Value to indicate — dynamic expression whose value is indicated.
Veertical| Horigontal — orientation of the bar indicator.

Min valne — [optional] minimum value of the indicator.

Max value — [optional] maximum value of the indicator.

Value color — static value | [optional] dynamic expression of the value color
(Java.awt.Color). If the checkbox is not checked, the static color is

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

transparent. If the expression evaluates to null, the dynamic color is

transparent.

Scale color — static value | [optional] dynamic expression of the scale text color
(Java.awt.Color). If the checkbox is not checked, the static color is
transparent. If the expression evaluates to null, the dynamic color is

transparent.

Show value — if checked, the current value is textually displayed at the bottom of the

indicator.

Show scale — if checked, the scale is displayed.

The color setup of a bar indicator is the following. The background bar area is filled with F7//
color. The scale and the frame are of Line color. The scale text is of Scale color, and the value

text and the value bar are of Value color.

12.2.3.3 Chart indicator

The chart indicator displays a dataset or a variable in one of the following forms: scatter,

Gantt, pie chart, or bar chart.

» To draw a chart indicator

1. Click the Chart Indicator 2= toolbar button, or

Choose Draw| Animation | Chart Indicator from the main menu.

2. Click or drag the indicator area on the diagram.

Properties
Value to indicate — dynamic expression whose value is indicated.
Type — the type of the chart: Scatter, Gantt, Pie Chart, or Bar Chart.

Window size — displayed time window or number of samples (for scatters and Gantt

charts).
Min valne — [optional] minimum value of the indicator.
Max valne — [optional] maximum value of the indicator.

Min color — minimum color (for Gantt charts)

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 301

Chapter 12. Animation

Max: color — maximal color (for Gantt charts)

Value color — static value | [optional] dynamic expression of the scatter line color
(Java.awt.Color). If the checkbox is not checked, the static color is
transparent. If the expression evaluates to null, the dynamic color is

transparent.

Scale color — static value | [optional] dynamic expression of the scale text color
(Java.awt.Color). If the checkbox is not checked, the static color is
transparent. If the expression evaluates to null, the dynamic color is

transparent.

Show value — if checked, the current value is textually displayed at the bottom of the
indicator.

Show scale — if checked, the scale is displayed.

The color setup of a chart indicator is the following. The background area is filled with Fi//
color. The scale and the frame are of Line color. The scale text is of Scale color, and the scatter
line is of Value color.

12.2.4 Controls

AnylLogic offers a set of controls (buttons, checkboxes, edit boxes, etc.) for creating

interactive animations.

12.2.4.1 Button

» To draw a button

1. Click the Button 2t toolbar button, or

Choose Draw| Animation | Button from the main menu.

2. Click or drag the button rectangle on the diagram.

Properties

Label — [optional] button text displayed on the screen.

302 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Variable name — [optional] name of the variable in a model. The variable must be of
boolean type. It is true if the button is being pressed by the user, and false

otherwise.

Enable expression — [optional] boolean expression determining whether the button is

enabled or disabled.

Event handling code — [optional] code to be executed when the button is clicked.

12.2.4.2 Check box

» To draw a check box

1. Click the Check Box ™ toolbar button, or

Choose Draw | Animation | Check Box from the main menu.

2. Click or drag the check box area on the diagram.

Properties

Label — [optional] check box text displayed on the screen.

Variable name — [optional] name of the variable in a model. The variable must be of

boolean type. It is true if the check box is checked and false otherwise.

Enable expression — [optional] boolean expression determining whether the check box is
enabled or disabled.

Event handling code — [optional] code to be executed when the check box is clicked.

12.2.4.3 Radio buttons

» To draw a group of radio buttons

1. Click the Radio Buttons *' toolbar button, ot

Choose Draw | Animation | Radio Buttons from the main menu.

2. Click or drag the shape area on the diagram.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 303

Chapter 12. Animation

Properties

Label — [optional] text of the group box containing the radio buttons.

Variable name — [optional] name of the variable in a model. The variable must be of
type double. When you choose a radio button, the variable is set to the value
associated with that radio button.

Enable expression — [optional] boolean expression determining whether the group box is

enabled or disabled.

Orientation — either 1Vertical or Horizontal. Determines how the radio buttons are

arranged.
Button-1"alue — list of radio buttons and double values associated with them.

Event handling code — [optional] code to be executed when any of the radio buttons is
clicked.

12.2.4.4 Slider

» To draw a slider

Click the S/der ®= toolbar button, or

Choose Draw | Animation | Slider from the main menu.

Click or drag the slider area on the diagram.

Properties

304

Label — [optional] slider label displayed on the screen.

Variable name — [optional] name of the variable in a model. The variable must be of
type double. It reflects the position of the slider set by the user. The value is a

linear interpolation between Min value and Max value.

Enable expression — [optional] boolean expression determining whether the slider is

enabled or disabled.
Orientation — orientation of the slider, either VVertical or Horizontal.
Min value — [optional] minimum value of the slider.

Max value — [optional] maximum value of the slider.

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Event handling code — [optional] code to be executed when the user changes the slider

position.

12.2.4.5 Edit box

» To draw an edit box

1. Click the Edit Box 2] toolbar button, or

Choose Draw| Animation| Edit Box from the main menu.

2. Click or drag the edit box on the diagram.

Properties

Label — [optional] edit box label displayed on the screen.

Variable name — [optional] name of the variable in a model. The variable must be of
type java. lang.String. It reflects the content of the edit box entered by the

user.

Enable expression — [optional] boolean expression determining whether the edit box is

enabled or disabled.

Event handling code — [optional] code to be executed when the user changes text in the

edit box.

12.2.4.6 Handle

Handle is a moveable rectangle. The user may move a handle in an animation window, and
the variables specified in the properties X and Y of the handle change correspondingly. You
cannot specify expressions in the properties X and Y. You must specify single variables.

» To draw a handle

1. Click the Handle "2 toolbar button, or

Choose Draw | Animation | Handle from the main menu.

2. Click the place on the diagram where you want to put the handle.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 305

Chapter 12. Animation

Properties

Event handling code — [optional] code to be executed when the user moves the handle.

12.2.5 Writing code for an animation

You can write code for the animation object in the Code window of the animation.

» To open the Code window of an animation

1. In the Project window, right-click the Code item in the animation subtree of
workspace tree and choose Oper Code from the popup menu, or
Double-click the Code item in the animation subtree.

The Code window of the animation is displayed (see Figure 140)

i x|

Setup code 3
chartIndicator.setLineWidth{ 3):

Tpdate code

for [int i = 0; 1 < trucksz.zizei); i+ 1 {

TruckInfo info = [(TruckInfo)trucks.getii):;
double pos = getPos(info.timer ;
info.shape.setPosx(| end.x - start.x] * pos 1:
info.shape.getPos¥([end.y¥ - start.¥ 1 ¥ pos 1!

H

Additional class code

clazz TruckInfo {
ShapeBaze shape;
Movement timer;

b

Wector trucks = new Vector():

KN v

Figure 146. Code window of an animation

The Code window has the following sections, where you can specify your own Java code to

be executed on different occurrences:

306 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Setup code — the sequence of Java statements to be executed on the animation setup.

This code is inserted at the end of the method update() of the animation.

Update code — the sequence of Java statements to be executed on each animation update
performed. This code is inserted at the end of the method setup() of the

animation.

Additional class code — arbitrary constants, variables and methods can be defined here.

This code is inserted into the animation class declaration.

12.3 3D animation diagram

Each active object class may have a 3D animation diagram associated with it. A 3D
animation diagram is a collection of 3D shapes. A 3D animation diagram links shape
properties to the active object data and encapsulated objects, and also defines where the 3D

animation of this active object appears in the 3D animation of a container, if the latter exists.

12.3.1 3D animation editor

A 3D animation diagram is edited in the 3D animation editor using the 3D animation
toolbar, see Figure 147.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 307

Chapter 12. Animation

3D animation todlbar (@ @@ O @ ¥ S AN T € B il

E I 0/
PR

Image Yarious
- zhapes
x|
Encapsulated e
A0 animation g - J
Encapsulated | Centar

4] | v 4

Figure 147. 3D animation editor and toolbar

» To add a 3D animation to an active object class

308

Click the New 3D Animation @M toolbar button, or

Choose Insert|New 3D Animation... from the main menu.

The New 3D Animation dialog box is displayed.

Choose the active object class, which will contain the 3D animation, from the Choose

active object drop-down list.

Alternatively, in the Project window, right-click the active object class, which will
contain the 3D animation, and choose New 3D Animation. .. from the popup menu.
The New 3D Animation dialog box is displayed.

Enter the name of the new 3D animation in the Nawe of new 3D animation edit box.

If needed, select the Add encapsulated 3D animations check box to add 3D animations
of the encapsulated objects to this 3D animation.

Moreover, you can add links between encapsulated 3D animations by setting the
Add links between encapsulated 3D animations check box.

Click OK.

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To open the existing 3D animation diagram of an active object class

1.

In the Project window, double-click the 3D animation item, or
Right-click the 3D animation item and choose Open Animation from the popup

menu.

3D animation editor shares a set of generic editing operations described in section 1.5.2,

“Diagram editors. Generic operations”.

A 3D animation diagram is always associated with an active object class and has the

following properties:

General properties

Name — 3D animation name.

X — [optional] dynamic expression of the x-coordinate of the 3D animation on the

container 3D animation.

Y — |optional] dynamic expression of the y-coordinate of the 3D animation on the

container 3D animation.

Z — |optional] dynamic expression of the z-coordinate of the 3D animation on the

container 3D animation.

X rotation — [optional] dynamic expression of the counter clockwise rotation of the 3D

animation on the container 3D animation about the x-axis (radians).

Y rotation — [optional] dynamic expression of the counter clockwise rotation of the 3D

animation on the container 3D animation about the y-axis (radians).

Z rotation — [optional] dynamic expression of the counter clockwise rotation of the 3D

animation on the container 3D animation about the z-axis (radians).

Scale — [optional] if defined, the positions and sizes of all shapes on this diagram are
multiplied by this factor.

X Offset — [optional] if defined, the x-coordinates of all shapes on this diagram are

increased by this value.

Y Offset — [optional] if defined, the y-coordinates of all shapes on this diagram are

increased by this value.

Z Offset — [optional] if defined, the z-coordinates of all shapes on this diagram are

increased by this value.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 309

Chapter 12. Animation

Backgronnd — static value | [optional] dynamic expression of the background color.

Excclude from build — if set, the animation is excluded from the model.

Properties specitying the location and rotation of the 3D animation on the container
3D animation (X, Y, Z, X rotation, Y rotation, Z rotation) are suppressed by the dynamic
expressions of the corresponding properties of the encapsulated 3D animation shape

in the container 3D animation, if the latter is defined.

On the Miscellaneons page of 3D animation’s properties window you specify animation
window size, and light sources properties. AnylLogic 3D animation is lightened with one
ambient and two directional lights. Ambient light is constant low level light. Because ambient
lighting is uniform, it produces uniform shade. Directional light sources make animation
more interesting. Directional light is an oriented light with an origin at infinity. A directional
light has parallel light rays that travel in one direction along the specified vector. The portion
of a scene where visual objects are illuminated by a particular light source is called that light
object's region of influence. The influencing bounds of a light determine, which objects to
light. When a light source's influencing bounds intersect the bounds of a visual object, the

light is used in shading the entire object.

Miscellaneous properties

Window size — the width and the height of 3D animation window.
Ambient — the color of the ambient light.
Direct T — the color of the first directional light.

X, Y, Z — static values | [optional| dynamic expressions of the x, y, z-coordinates of the

vector, in which the first directional light shines.
Direct 2 — the color of the second directional light.

X, Y, Z — static values | [optional| dynamic expressions of the x, y, z-coordinates of the

vector, in which the second directional light shines.

Bounds — light sources influencing bounds.

The blue cross is the origin point (0, 0) of 3D animation diagram.

310 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

12.3.1.1 Generic properties of 3D animation shapes

All shapes of a 3D animation diagram share a set of common properties described below.
General properties are accessible from the General page of the animation shape’s properties

window.

General properties

Name — name of the shape, which may be used to access it from code.

X — static value | [optional] dynamic expression of the x-coordinate of the shape.
Y — static value | [optional] dynamic expression of the y-coordinate of the shape.
Z — static value | [optional] dynamic expression of the z-coordinate of the shape.

X rotation — static value (degrees) | [optional] dynamic expression of the counter

clockwise rotation of the shape about the x-axis (radians).

Y rotation — static value (degrees) | [optional] dynamic expression of the counter

clockwise rotation of the shape about the y-axis (radians).

Z rotation — static value (degrees) | [optional] dynamic expression of the counter

clockwise rotation of the shape about the z-axis (radians).
Width — static value | [optional] dynamic expression of the width of the shape.
Hezght — static value | [optional] dynamic expression of the height of the shape.
Depth — static value | [optional] dynamic expression of the depth of the shape.

Color — static value | [optional] dynamic expression of the color (Java.awt.Color). If
the checkbox is not checked, the static color is transparent. If the expression

evaluates to null, the dynamic color is transparent.
Visible — [optional] dynamic boolean expression determining if the shape is visible.
Replication — replication factor of the shape.
Lock aspect ratio — if set, the aspect ratio is locked for this shape.

Show name — if set, the name of the shape is shown on the animation diagram editor

(but not in the animation).

Excclude from build — if set, the shape is excluded from the animation.

Appearance properties are accessible from the Appearance page of the animation shape’s

properties window

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 311

Chapter 12. Animation

Appearance properties

Enable lighting — it set, the shape is lightened and thus visible.

Shininess — static value | [optional] dynamic expression of the shininess of the lightened
shape, specifies how shiny a material surface is. This value (in the range 1.0 to
128.0) is used in calculating the specular reflection of a light from a visual object.

The higher the value, the more concentrated the specular reflection is.

Transparency — static value | [optional] dynamic expression of the shape’s opacity (where

0.0 denotes fully opaque and 1.0 denotes fully transparent shape).

Polygon mode — Fill| Point | Line the style of how the polygons making up the figure are
rendered. If Fi//is set, polygons are filled, if Point — they are rendered as the
points only, if Iine — with lines only.

Render face — Front| Back | Both type of rendering the faces of 3D animation shapes. For
many visual objects, only one face of the polygons need to be rendered. To
reduce the computational power required to render the polygonal surfaces, the
renderer can cull the unneeded faces.

It Front is set, front facing polygons are rendered only.
If Back is set, back facing polygons are rendered only.
If Both is set, all polygons are rendered, no matter which direction they are

facing.

If a generic property is not applicable to a particular shape, it is disabled.

Names of animation shapes are used only for code generation and, correspondingly, to

access shapes from code. Names do not appear in the animation window.

12.3.2 3D animation shapes

In this section, the detailed description of the 3D animation shapes is given.

312 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

12.3.2.1 Ellipsoid

» To draw an ellipsoid

1. Click the E/ipsoid & toolbar button, or
Choose Draw|3D Animation | Ellipsoid from the main menu.

2. Click or drag the ellipsoid on the diagram.

Properties

Radins X — static value | [optional] dynamic expression of the ellipsoid radius along its

X-axis.

Radins Y — static value | [optional] dynamic expression of the ellipsoid radius along its

Y-axis.

Radins 7 — static value | [optional] dynamic expression of the ellipsoid radius along its

/.-axis.

Slices — the number of the circle elements the ellipsoid surface is formed from.

12.3.2.2 Cylinder

» To draw a cylinder

1. Click the Cylinder & toolbar button, or

Choose Draw|3D Animation| Cylinder from the main menu.

2. Click or drag the cylinder on the diagram.

Properties

Radins — static value | [optional] dynamic expression of the radius of the cylinder.
Length — static value | [optional] dynamic expression of the cylinder length.

Stices — the number of the circle elements the cylinder surface is formed from.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 313

Chapter 12. Animation

12.3.2.3 Cone

» To draw a cone

1. Click the Come & toolbar button, or

Choose Draw|3D Animation | Cone from the main menu.

2. Click or drag the cone on the diagram.

Properties

Radins — static value | [optional] dynamic expression of the radius of the cone.
Length — static value | [optional] dynamic expression of the cone length.

Slices — the number of the circle elements the cone surface is formed from.

12.3.2.4 Parallelepiped

» To draw a parallelepiped

1. Click the Parallelepiped @ toolbar button, or

Choose Draw| 3D Animation | Parallelepiped trom the main menu.
2. Click or drag the parallelepiped on the diagram.

Parallelepiped has no specific properties.

12.3.2.5 Rectangle

» To draw a rectangle

1. Click the Rectangle = toolbar button, or

Choose Draw | 3D Animation | Rectangle from the main menu.
2. Click or drag the rectangle on the diagram.

Rectangle has no specific properties.

314 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

12.3.2.6 Line

» To draw a line

1. Click the Line = toolbar button, or

Choose Draw|3D Animation | Line from the main menu.

2. Drag the line on the diagram.

Properties

The following properties are set individually for the polyline’s Begin point and End point.

Begin | End point X — static value | [optional] dynamic expression of the x-coordinate of

the line’s begin | end point (pixels).

Begin | End point Y — static value | [optional] dynamic expression of the y-coordinate of

the line’s begin | end point (pixels).

Begin | End point Z — static value | [optional] dynamic expression of the z-coordinate of

the line’s begin | end point (pixels).

Line width — static value | [optional] dynamic expression of the line width.

12.3.2.7 Polyline

» To draw a polyline

1. Click the Polyline “% toolbar button, or

Choose Draw | 3D Animation | Polyline from the main menu.
2. Click at each polyline point on the diagram.
3. Double-click to finish.

The generic 2D polyline editing operations (see section 12.2.2.4, “Polyline”) can be applied
to 3D polyline.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 315

Chapter 12. Animation

Properties

points — [read only] static value | [optional] dynamic expression of number of points

of the polyline.
Xindex] — Joptional] dynamic expression of the x-coordinate of the polyline’s point.
Y /index] — [optional] dynamic expression of the y-coordinate of the polyline’s point.
Z[index] — [optional] dynamic expression of the z-coordinate of the polyline’s point.
Line width — static value | [optional] dynamic expression of the polyline width.
Closed polyline — if checked, the closing segment is created.

Points — coordinates of the polyline points, specified in the form #, X, Y, Z, where # is
the point’s index, X, Y, Z — x-, y- and z-coordinates of the point

correspondingly.

Each point of the polyline can be controlled during the model execution. You can specify
dynamic expression, defining the number of points. The coordinates of the polyline’s points
can also be defined by dynamic expressions. Use the predefined symbol “index” in X Y, Z
expressions to refer to the current point index. The index value is zero based — i.e. the first

point has index of 0.

12.3.2.8 Mesh

You can use mesh to define custom geometry shapes. The mesh is defined as follows: you
define the vertices of the mesh and then choose the mesh type — the way the array of

vertices is drawn (individual groups of vertices can form lines, triangles, quadrilaterals, etc.).

» To draw a mesh

1. Click the Mesh % toolbar button, or

Choose Draw|3D Animation | Mesh from the main menu.
2. Click at each mesh vertex on the diagram.
3. Double-click to finish.

The generic polyline editing operations (see section 12.2.2.4, “Polyline”) can be applied to

mesh.

316 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Properties

Point array — the array of vertices is drawn as individual points.

Line array — the array of vertices is drawn as individual line segments. Each pair of
vertices defines a line to be drawn. The number of vertices of a line array mesh
must be divisible by 2.

Triangle array — the array of vertices is drawn as individual triangles. Each group of
three vertices defines a triangle to be drawn. The number of vertices of a triangle

array mesh must be divisible by 3.

Quad array — the array of vertices is drawn as individual quadrilaterals. Each group of
four vertices defines a quadrilateral to be drawn. The number of vertices of a

quad array mesh must be divisible by 4.

Line strip array — the array of vertices is drawn as a set of connected line strips. An array
of per-strip vertex counts specifies where the separate strips appear in the vertex
array. For every strip in the set, each vertex, beginning with the second vertex in
the array, defines a line segment to be drawn from the previous vertex to the

current vertex.

Triangle strip array — the array of vertices is drawn as a set of connected triangle strips.
An array of per-strip vertex counts specifies where the separate strips appear in
the vertex array. For every strip in the set, each vertex, beginning with the third
vertex in the array, defines a triangle to be drawn using the current vertex and

the two previous vertices.

Triangle fan array — the array of vertices is drawn as a set of connected triangle fans. An
array of per-strip vertex counts specifies where the separate strips (fans) appear
in the vertex array. For every strip in the set, each vertex, beginning with the
third vertex in the array, defines a triangle to be drawn using the current vertex,
the previous vertex and the first vertex. This can be thought of as a collection of

convex polygons.

points — [read only] static value | [optional] dynamic expression of number of vertices
of the mesh.

Xlindex] — [optional|] dynamic expression of the x-coordinate of the mesh’s vertex.
Y [index] — [optional] dynamic expression of the y-coordinate of the mesh’s vertex.

Z|index] — [optional] dynamic expression of the z-coordinate of the mesh’s vertex.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 317

Chapter 12. Animation

Points — coordinates of the mesh vertices, specified in the form #, X Y, Z, where # is
the vertex’s index, X Y, Z — x-, y- and z-coordinates of the vertex

correspondingly.

Each vertex of the mesh can be controlled during the model execution. You can specify
dynamic expression, defining the number of vertices. The coordinates of the mesh’s vertices
can also be defined by dynamic expressions. Use the predefined symbol “index” in X, Y, Z
expressions to refer to the current vertex index. The index value is zero based, i.e., the first

vertex has index of 0.

12.3.2.9 Text

» To draw a text

1. Click the Text L toolbar button, or

Choose Draw| Text from the main menu.

2. Click or drag a rectangle area on the diagram.

» To modify the content of a text box
1. Double-click the text.
2. Edit the content of the text.

3. Click the empty area of the diagram to store the modified text, or
Press Esc to finish editing.

To create a multiline text use properties of the text shape.

Following Java convention, the origin point of the text box is the bottom left corner
of the first line.

Properties

Text — static value | [optional] dynamic expression of the content of the text box.

318 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Color — static value | [optional] dynamic expression of the text color
(Java.awt.Color). If the checkbox is not checked, the static color is

transparent. If the expression evaluates to null, the dynamic color is

transparent.
Font — the font of the text.

Choose — the button opens the Font dialog box for changing the font properties.

12.3.2.10 Pivot

Pivot is used to group animation shapes, rotate the group, and shift the coordinate system.
By specifying dynamic properties of a pivot (X, Y, Rozation, etc.), you can move a group of

shapes and rotate it around the pivot. A pivot itself is not visible in an animation.

» To draw a pivot

1. Click the Pivot % toolbar button, or
Choose Draw| 3D Animation | Pivot from the main menu.

2. Click the place on the diagram where you want to put the pivot.

» To add/remove shapes from the pivot group
1. Right-click the pivot and choose .Add/ Remove Shapes from the popup menu.
2. Click on a shape to add/remove it to/from the pivot group.

3. Click the empty area to finish.

When a shape is added to a pivot group, the pivot becomes the origin of its dynamic
coordinates, instead of the animation origin point (0, 0). This can be used to shift the

coordinate system for a part of an animation.

Properties

Custom shape template — if set, the group of shapes added to pivot is considered as a

custom shape. You can create as many such custom shapes as you like at

runtime.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 319

Chapter 12. Animation

Setup code — [optional] Java statements to be inserted at the end of the method setup()
of the pivot class. The code is called during the set up phase of the pivot group.

The set up phase is executed only once when the animation creates.

Update code — [optional] Java statements to be inserted at the end of the method
update() of the pivot class. The code is called each time the pivot group is

about to be redrawn.

Additional class code — [optional] Java code to be inserted into the pivot class declaration.

If a pivot point is used as a custom shape template, the shape is not created automatically,
but you can create as many custom shapes as you need at runtime. For each custom shape,
AnyLogic generates a class derived from the pivot class Group3D. The class has the shape
name — e.g., for the Pivotl shape, the Pivotl class is generated.

Note that the name of the pivot point used as a custom shape template should be

capitalized.

You can modify properties of a custom shape and its shapes at runtime using the methods of

the Group3D class (for more information, please consult Anylogic Class Reference).

12.3.2.11 Image

» To draw an image

1. Click the Image [2 toolbar button, or

Choose Draw | Animation | Image from the main menu.

2. Click or drag a rectangle area on the diagram.

Properties

Image index excpression — [optional] dynamic expression defining the index of the image in

the list to be displayed (integer, zero-based). If left blank, 0 is assumed.

Images — list of file names containing images. Use .Add and Remove buttons to edit the
list. The Image index expression property defines which image is currently
displayed.

320 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Original size — if checked, the original image size is preserved.

If you intend to move your project file, first embed your images. Otherwise, you will
need to update paths to all image files used. Embedded images are stored in the
AnyLogic project file. If needed, they can be exported to a graphical file anew.

» To embed an image

1. Select the image filename in the Inzages list.

2. Click the Embed button.

» To export an embedded image
1. Select the image name in the Iages list.

2. Click the Export button.
The Save As. .. dialog box is displayed.

3. Specify the name of the image file.
4. Browse for the folder where you want to store the file.

5. Click the Save button.

12.3.2.12 Encapsulated 3D animation

» To draw an encapsulated 3D animation

1. Click the Encapsulated 3D Animation 0 toolbar button, or

Choose Draw| 3D Animation | Encapsulated Animation from the main menu.

2. Click or drag a rectangle area on the diagram.

Properties

Object — name of the encapsulated object this shape refers to. In case the object is

replicated, you may specify a particular element, e.g., cars-5.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 321

Chapter 12. Animation

Scale — static value | [optional] dynamic expression of the scale factor applied to the

original size of the animation.

12.3.3 3D animation rendering principles

To form the rendered image, the animation content is projected onto an image plate. Figure
148 shows the relationship between the image plate, the camera position, and the animation
wortld. The camera position is behind the image plate. The visual objects in front of the
image plate are rendered to the image plate. Rendering can be thought of as projecting the
visual objects to the image plate. This idea is illustrated with the four projectors in the image

(dashed lines).

rojectors

anitration shape

image plate

Figure 148. 3D animation rendering principles

The coordinate system is right-handed.

12.3.4 Managing a camera

The AnyLogic 3D animation world is combined from the group of animation shapes. Only
the specific part of the world is visible — it is defined by the camera’s parameters: field of

view, position and orientation.

Camera can be positioned automatically by AnylLogic. In this case, camera is positioned to

make the animation appear as in the animation editor. The orientation of axis is the same as

322 © 1992-2004 XJ Technologies http://www.xjtek.com

» To

AnyLogic V User’s Manual

in the animation editor (Figure 148 shows the orientation with respect to the viewer (the x-
axis is positive to the right, y-axis is positive down, and z-axis is negative toward the viewer).
To fit all animation shapes into the image plate and to make them appear with the same sizes

as in animation editor, the camera is moved along the z-axis back to negative values.

However, you may need to position the camera differently; therefore, Anylogic enables you

to specify the camera’s parameters on your own.

calculate camera parameters automatically/manually
1. Click 3D animation in the Project window.
2. Click the Camera tab of the Properties window and go to the Position section.
3. Select/clear the Automatically calenlate camera parameters check box.

Note that when you set the camera’s parameters on your own, camera orientation differs
from the orientation set for automatically managed camera. In this case the default axis
orientation is the following: the x-axis is positive to the right, y-axis is positive up, z-axis is
positive toward the viewer. The default camera location is the image plate center ((0,0,0)
point). Since the camera must be positioned behind the image plate to see animation shapes

rendered onto the image plate, you need to move the camera to positive z values.

You can define the clip distances and the camera’s position and orientation on the Camera

page of the 3D animation’s properties page.

12.3.4.1 Defining clip distances

The back clip distance specifies the distance from the camera in the direction of gaze to
where objects begin disappearing. Objects farther away from the camera than the back clip

distance are not drawn. The default value is 10.0 meters.

The front clip distance specifies the distance away from the eyepoint in the direction of gaze
where objects stop disappearing. Objects closer to the eye than the front clip distance are

not drawn. The default value is 0.1 meters.

There are several considerations that need to be taken into account when choosing values

for the front and back clip distances:

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 323

Chapter 12. Animation

e The front clip distance must be greater than 0.0 in physical eye coordinates.

e The front clipping plane must be in front of the back clipping plane; that is, the front

clip distance must be less than the back clip distance in physical eye coordinates.

e Try not to assign large values to the front and back clip distances, since they are in

physical eye coordinates, not in pixels.

e The ratio of the back distance divided by the front distance, in physical eye coordinates,
affects Z-buffer precision. Values of 100 to less than 1000 will produce better results.

Violating any of the above rules will result in undefined behavior. In many cases, no picture

will be drawn.

» To define clip distances
1. In the Project window, click 3D animation item in the workspace tree.
2. Click the Camera tab of the Properties window and go to the Position section.

3. Specify static values or dynamic expressions of front and back clip distances in the

Front and Back edit boxes correspondingly.

12.3.4.2 Defining camera position

» To define camera position
1. In the Project window, click 3D animation item in the workspace tree.
2. Click the Camera tab of the Properties window and go to the Position section.

3. Specify static values or dynamic expressions of x-, y- and z-coordinate of the camera

in the X, Y and Z edit boxes correspondingly.

12.3.4.3 Defining camera orientation

If needed, you can define the orientation of the camera by specifying either camera rotation

angles, or the point the camera is looking at.

324 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To rotate the camera

In the Project window, click 3D animation item in the workspace tree.
Click the Camera tab of the Properties window and go to the Orientation section.
Choose the Rotation option.

Specify static values (in degrees) or dynamic expressions (in radians) of the counter
clockwise rotations of the camera about the x-axis, y-axis and z-axis in the X, Y and

Z edit boxes correspondingly.

» To define a point the camera is looking at

1.

In the Project window, click 3D animation item in the workspace tree.
Click the Camera tab of the Properties window and go to the Orientation section.
Choose the Look at option.

Specity static values or dynamic expressions of the x-, y- and z-coordinates of the

point the camera is looking at in the X, Y and Z edit boxes correspondingly.

Specij:'—'?j‘e camera’s up direction vector in the Up X, Up Y, Up Z edit boxes. The
defau

image upside-down.

ection vector is (0,1,0). Changing it, e.g., to (0,-1,0) flips the rendered

12.3.5 Writing code for 3D animation

You can write code for 3D animation object in the Code window of 3D animation.

» To open the Code window of 3D animation

1.

In the Project window, right-click the Code item in the animation subtree of the
workspace tree and choose Open Code from the popup menu, or
Double-click the Code item in the animation subtree.

3D animation’s Code window is displayed (see Figure 149)

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 325

Ilya Grigoriev
Signal

Chapter 12. Animation

_lojx

SJetup code ﬂ
Voltage.setValue [Double, to3tring(14000 1):
Speed. set¥Walue(Double, Coltring(0));

Tpdate code
if (filling) !
line.zetPointi(cTank.®, cTank.v 1:
b2
Ldditional class code
volid JendCmd(3tring command)1 {
controller.inCmd, receive| command);

h

KN vl 4

Figure 149. Code window of 3D animation

This window has the following sections, where you can specify your own Java code to be

executed on different occurrences:

Setup code — the sequence of Java statements to be executed on the animation setup.

This code is inserted at the end of the method update() of the animation.

Update code — the sequence of Java statements to be executed on each animation update
performed. This code is inserted at the end of the method setup() of the

animation.

Additional class code — arbitrary constants, variables and methods can be defined here.

This code is inserted into the animation class declaration.

12.4 Running animation

An AnylLogic animation is run synchronously with the model simulation. Animation is

displayed in the standalone animation window (see Figure 150).

B

326 © 1992-2004 XJ Technologies http://www.xjtek.com

Ilya Grigoriev
Port thread event

AnyLogic V User’s Manual

‘=i Animation: Movement 10 x|
f P — — Travel time
Tanks refueling
The model simulates movement of 40,0
tarks through the desart, The tanks
mave from left ta right changing 30.0
their trajectaries framm time to time, 20,0
The area has several regions with I :
specific meaning:! tanke can not 10.0
driwe through red ones, brown -—' 00 10,0 20.0
reqgions can roam not more than - X
some particular number of tanke, I Waiting tirne
green increase or decraasa the
tark. welocity . The tanks nead ‘ el
refueling, that is performed by buo 6.0
refulzing wehiclas,
4.0
‘You can change the size and 20
positions of the regions and fuel- :
related pararneters, 0o 10.0 20,0
i This AnvLogic TM? rmodel is
() 200z)(Ii Technologies Tank parameters
AW tel .cam
Fuel consumption rate: 19.86
Current region: @ =
Type: Fac tank capacity: 100,365
|Limiting region | I) y
Tanks limit
|1 0 | Refueler parameters
Welocity: 149,523
Mexk region ==}

Figure 150. Animation window
The animation window is automatically displayed when the model starts running. Sometimes

you may need to close the window to reduce data display overhead. You can open it later
when needed.

» To open an animation window

1. Click the Animation 8 toolbar button, or

Choose View| Animation from the main menu.

12.5 Running 3D animation

AnyLogic 3D animation is run synchronously with the model simulation. 3D animation is

displayed in the 3D animation window.

© 1992-2004 XJ Technologies http://www.xjtek.com 327

Chapter 12. Animation

The 3D animation window is automatically displayed when the model starts running.
Sometimes you may need to close the window to reduce data display overhead. You can

open it later when needed.

» To open 3D animation window

1. Choose VView|3D Animation from the main menu.

12.5.1 Moving and rotating the animation

You can rotate the animation scene and change the camera position: move the camera in the
XY-plane to shift the animation scene or move it toward/off the scene to zoom the scene

in/out.

» To rotate the scene

1. Click in the 3D animation window and, while holding the left mouse button down,

move the mouse in the required rotation direction.

» To shift the animation scene

1. Right-click in the 3D animation window and, while holding the right mouse button

down, move the mouse in the direction you want to move your camera.

» To zoom the scene in/out

1. Click in the 3D animation window and, while holding Alt and the left mouse button

down, move the mouse up/down.

12.6 Configuring an animation run

Configure and control Anyl.ogic animation using the animation settings toolbar (see Figure
151). Namely, you can set up the animation update rate and toggle the anti-aliasing option

on/off. These settings apply both to the AnyLogic animation and 3D animation windows.

328 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

@ W x - @

Figure 151. Animation settings toolbar

12.6.1 Setting up animation update rate

AnylLogic enables you to set up the animation update rate. The greater update rate you

specify, the smoother animation will appear. However, animation rendering takes longer, and

frequent animation update will slow the model simulation. So, choose between smooth

animation and fast simulation and set up the animation update rate according to your needs.

You can explicitly specify fixed update rate in frames per second. Alternatively, you can

specify adaptive update rate. Adaptive update rate will be recalculated during the model

simulation to fix up the specified ratio between simulation speed and animation smoothness.

» To set up the animation update rate

1.

Click the Animation Settings B toolbar button, or
Choose Model| Animation Settings. .. from the main menu.

The Animation Settings dialog box is displayed, as shown in Figure 152.

To define the fixed update rate, choose the Fixed option and explicitly specify the

update rate (in frames per second) with a slider.

Otherwise, to define adaptive update rate, choose the Adaptive option and specify the
update rate with a slider. Choose between smooth animation ($#00th) and fast

simulation (Fas?).

Click Apply to apply changes.
The animation will appear with the specified update rate.

If needed, repeat steps 2-4 to specify another update rate and click OK when
finished.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 329

Chapter 12. Animation

Animation Settings 5'

—Refresh rate

¥ adaptive

Allaws ko choose between smaath animation and Fast simulakion
1

/

Smookh Mormal Fast

i Fixed

Explicit amimation update rate (frames per second)
1

1 10 20 10| 40

[Enable anti-aliasing

K I Zancel apply

Figure 152. Animation Settings dialog box

12.6.2 Setting up animation anti-aliasing

AnylLogic animation supports anti-aliasing — one of the most important techniques in
making graphics more smooth and pleasing to the eye. Anti-aliasing is a process of
smoothing the drawing of points or lines that would otherwise appear jagged. However, note

that more time is spent on rendering the animation with the anti-aliasing set.

» To enable/disable anti-aliasing

1. Click the Animation Settings B2 toolbar button, or
Choose Model | Animation Settings. .. from the main menu.

The Animation Settings dialog box is displayed, see Figure 152.
2. Select/clear the Enable anti-aliasing checkbox.

3. Click OK.

330 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Simulation settings

13.1

AnyLogic enables you to control model simulation.

You can set up model simulation speed, specifying the mapping between the model time
units and seconds. This is frequently needed when you need your animation to appear as in

real life. See section 13.1, “Simulation speed” for details.

You can define the number of model replications — single model runs the model simulation

contains of. See section 13.2, “Model replications” for details.

You may also stop the simulation at some event (at specified model time, or simulation stop

condition). See section 13.3, “Simulation stop conditions” for details.

All these settings are defined individually for each Anylogic experiment. Thus you can
simply control your model simulation by creating several experiments with different

simulation settings and simulating your model with different current experiments.

Simulation speed

An AnylLogic model can be run either in real time or virtual time mode. In real time mode,
the mapping of AnyLogic model time to the real time is made. It is frequently needed when
you have developed some animation and want it to appear as in real life. In virtual time
mode, the model runs at its maximum speed and no mapping is made between model time

units and a second of astronomical time.

» To set virtual/real time mode

1. Click the Enable virtual time mode "A toolbar button.

If virtual time mode is set, the button is shown pressed.

» To specify model simulation speed

1. In the Project window, click the experiment, for which you want to specify model

simulation speed.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 331

Chapter 13. Simulation settings

2. Specify the model simulation speed in the Szzulation speed section of the Additional
page of the Properties window (see Figure 153).

Simulation speed
£~ Wirtual time mode (Fastest speed)
¥ Real kime mode (specified speed)

Maodel time units per second; I 6, 6E66T

Mulkiple runs

Murmber of runs: I 1

Figure 153. Simulation speed and Multiple runs experiment’s properties

In the Simulation speed section you can set up the following settings:

Viirtual time mode (fastest speed) — if set, the model is run in virtual time mode, the model
runs at its maximum speed and no mappings are made between model time unit

and seconds of astronomical time.

Real time mode (specified speed) — if set, the model is run in real time mode, i.e., one second

takes Model time units per second model units.

Model time units per second — for real time mode, specifies how many model time units

one second takes.

Note that in the case you specify excessive speed your model cannot keep, a real-time
violation occur. You can handle it by overriding the dedicated method in the Additional class

code of the root active object class (please consult AnylLogic Class Reference for more
details):

Related method of ActiveObject

boolean onRTViolation (double delay) — the method is called for the root
object when a real-time violation has occurred; that is, the difference between

the expected and the actual model time exceeds delay milliseconds.

332 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

13.2 Model replications

Model simulation contains of one or several single model runs — model replications. You can
define how many replications to execute. Using several replications in one simulation, you
can, for example, vary model parameters to plot a chart of output versus model parameter.
Repetitive runs of a model are particularly useful for periodic models and for stochastic

models where many runs are required to assess the effect of random factors.

» To define a number of model replications
1. In the Project window, click the experiment to set number of replications for.

2. Type the number of model replications in the Number of runs edit box in the Multiple
runs section of the General page of the Properties window (see Figure 153).

13.3 Simulation stop conditions

Sometimes you need simulation stopped at some specific event.

You can set up your model to be stopped:
e At the specified model time.
e When the mean confidence of the specified dataset is less than the threshold.
e When the specified variable steps over the threshold.

e When the specified boolean condition becomes true. Expression can include checks

of dataset mean confidence, variable values, etc.
If no stop condition is defined, model works until you stop it manually.

Simulation stop conditions for an experiment are defined in the Mode/ stop condition section of

the Additional page of experiment’s properties window (Figure 154).

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 333

Chapter 13. Simulation settings

Propetties

General Additional |

Maodel stop condition

¥ Stop at time: | 100

Additional skop conditions:

Stop when variable ' becomes greater than 100

Change. .. || Remove

Figure 154. Additional property page of an experiment. Model stop condition section

13.3.1 Defining a model time stop condition

» To define time the model should stop at

1. In the Project window, click the experiment to specify the simulation stop condition

for.
2. Select the Stop at time check box on the Additional page of the Properties window.

3. In the edit box on the right, specify the model stop time in model time units.

13.3.2 Defining additional stop conditions

Other stop conditions (based on checks of a variable value, a dataset mean confidence or a

boolean condition) are named additional stop conditions.

334 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Additional stop conditions of an experiment are listed in the Additional stop conditions list on
the experiment’s properties window. You define them in the Additional stop condition dialog

box.

» To open the Additional stop condition dialog box

1. In the Project window, click the simulation experiment to define additional stop

conditions for.

2. Click the Add button on the Additional page of the Properties window.
The Additional stop condition dialog box is displayed, see Figure 155.

Additional stop condition

—Stop condikion:

" wWhen dataset I vI mean conhidence is less Ehan IIZI.l

% wWhen variable I.ﬁ.dnpters j is Igreater than j IE'E+5|

™ when the Following conditional expression is trus

=
[

K, Cancel

Figure 155. Additional stop condition dialog box

» To define a statistics confidence level as a stop condition
1. Open the Additional stop condition dialog box.
2. Choose the When dataset. .. option.
3. Specify the dataset in the combo box on the right.

4. Type the confidence level value in the edit box on the right.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 335

Chapter 13. Simulation settings

» To define a variable level as a stop condition
1. Open the Additional stop condition dialog box.
2. Choose the When variable. .. option.
3. Choose a variable from the drop-down list on the right.

4. Choose the /ess than | less than or equal to | greater than | greater than or equal fo comparison

operation from the drop-down list on the right.

5. Type the threshold value in the edit box on the right.

» To define a boolean expression as a stop condition
1. Open the Additional stop condition dialog box.
2. Choose the When the following conditional expression is true option.
3. Specify the boolean expression in the edit box below the option.

You can simply disable the additional stop condition. The disabled stop condition is not

applied but remains in the project.

» To enable/disable an additional stop condition

1. Select/clear the check box to the left of the stop condition description in the
Additional stop conditions list.

You can modify stop conditions and delete them.

» To modify an additional stop condition
1. Select the condition in the Additional stop conditions list.
2. Click Change button.

3. Change the condition in the Additional stop condition dialog box.

336 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To remove an additional stop condition
1. Select the condition in the Additional stop conditions list.

2. Click the Remove button.

13.4 Controlling model replications

AnylLogic enables you to control model replications either using AnyLogic experiment’s

properties, or programmatically.

13.4.1 Writing code to be executed between model replications

AnyLogic enables you to specify arbitrary actions to be performed between model
replications. You can write any Java code to be executed before and after each model

replication on the Code page of the project’s properties window.

P To write code to be executed between model replications

1. In the Project window, click the project item (the top-most item in the workspace

tree).

2. On the Code page of the Properties window, type code to be executed before each

model replication in the Before replication section.

3. Type code to be executed after each model replication in the After replication section.

13.4.2 APIto control replications

You can control simulations and replications programmatically by overriding the method
executionControl () of the root object of the model. The mechanism of controlling

replications is based on the following feature of the root object:

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 337

Chapter 13. Simulation settings

The tree of active objects is constructed before each replication and deleted
afterwards. The root object is responsible for creation and destruction of the tree. The

root object itself survives between subsequent replications.

This means that the member variables of the root object remain untouched. You can use this
property of the root object, for example, to collect datasets across multiple replications or

perform parameter iteration.

Please do not confuse the terms simulation and replication. Replication is one
execution of a model. Simulation is an execution of one or more replications. The
result of a simulation is the value of the observable to be optimized by AnylLogic
optimization subsystem. Several simulations take place only if you invoke
optimization. Otherwise, only one simulation takes place. By overriding the method
executionControl (), you control how much replications are executed in one

simulation. The root object does not survive between simulations.

By default, a simulation performs one replication and stops. To tell AnyLogic to execute
multiple replications, you override the method executionControl() of the root object. In
this method, you call Engine.execute() to perform a replication. You can program any
algorithm (e.g. nested loops, an optimization strategy) around replications. To override the
method executionControl (), you use the Additional class code code section of the root

object class.

The default implementation of executionControl () calls Engine._execute() once.

Example

In the following example, one replication calculates the result result depending on the
parameter param. The optimization algorithm defined by the method
executionControl () finds the parameter value (with the given accuracy eps), with which
the result equals 0.

public void executionControl() {
double a 0;
double b 10;
double eps = 0.01;

param = a;
Engine.execute();

338 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

double fa = result;

param = b;
Engine.execute();
double fb = result;

assert(
fa * fb < 0,
“The function sign must be different on the interval ends”

);

while (b —a >eps) {
param = (a + b) 7/ 2;
Engine.execute();
if (result == 0)
break;
if (result * fa >0) {
fa = result;

a = param;
}
else {

fb = result;

b = param;
}

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 339

Chapter 14. Debugging a model

Debugging a model

AnyLogic supports model debugging. This chapter provides information on AnyLogic

debugging tools.

AnyLogic supports on-the-fly checking of types, parameters, and diagram syntax. The
errors found during code generation and compilation are displayed in AnylLogic

Output window and graphically highlighted in error location windows.

Using AnyLogic Events window, you can view the event queue of AnyLogic simulation
engine to view what is happening at the simulation engine at the lowest level details and

to make some changes to the event processing,.

You can debug your model by setting a breakpoint on a model element to stop the
model execution when this element becomes active, examine the model state, and

perform some actions in response.

AnylLogic supports runtime error ability. You can throw runtime error and terminate

model execution as a reaction to different undesirable occurrences.

You can trace model execution by writing custom information to AnylLogic log

windows on different occurrences.

AnyLogic detects errors in Java code written by the user and logical errors of model
execution (simulation errors). If such an error occurs, AnylLogic stops the model and

notifies you with error message.

You can debug Java code using a third-party debugger by running the model within the
debugger using command line execution feature or by attaching the debugger to the

currently running model.

14.1 Checking model syntax

AnyLogic supports on-the-fly checking of types, parameters, and diagram syntax. The errors

found during code generation and compilation are displayed in AnylLogic Output window

(see Figure 1506). For each error, the Output window displays description and location.

340

© 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

| Lacation

i<identitier = expected

P AnvLogict Setup TargebExxamplest Computers & Metworksileader _election\Machine. java, 406:2

nok a statement

' expected

<identifier = expected

<identifier = expected

"' expected

cannot resolve symbal: class a

cannot resolve symbaol: class a

cannot resolve symbal: class a

cannot resolve symbol: class c

cannot resolve symbol: method initGhantts ()
cannot resolve symbol: method updatestatistic, ..
cannot resolve symbol: variable masterCount
cannot resolve symbol: variable masterCount

Computers & Metworksileader _electioniMachine. java, 450:1
Computers & Networksileader _election\iMachine.java, 450:27
Computers & Metworksileader _electioniMachine. java, 501:2
Computers & Networksileader _election'Root.java, 1444:2
Computers & Metworksileader_election'Root.java, 15343
Computers & Networksileader _electioniiMachine. java, 406:1
Computers & Metworksileader _electionietwork, java, 121:1
Computers & Networksileader_electioniRoot.java, 1444:1
Computers & Metworksileader_electioniMachine. java, 501:1
Computers & Networksileader _election\Machine. java, 47:1
Computers & Metworksileader _electioniMachine. java, 491:10
Computers & Networksileader _electioniiMachine. java, 841:1
Computers & Metworksileader_electionRoot.java, 78:17

Pl anvLogichSetup Target\Examples
VanyLogichSetup’ Target Examples
\anvLogichSetup’ Target Examples
VanyLogichSetup’ Target Examples
\anvLogichSetup’ Target Examples
VanyLogichSetup’ Target Examples
\anvLogichSetup’ Target Examples
VanyLogichSetup’ Target Examples
\anvLogichSetup’ Target Examples
VanyLogichSetup’ Target Examples
\anvLogichSetup’ Target Examples
VanyLogichSetup’ Target Examples
\anvLogichSetup’ Target Examples

P:
P
P:
P
P:
P
P:
P
P:
P
P:
P

Figure 156. Output window

» To show/hide the Output window

1. Click the Ousput i1 toolbar button, or

Choose View | Output from the main menu, or

Press Alt+2.

You can open an error. Depending on the error, opening it may result in displaying different

windows If, for example, it is a graphical error, the corresponding diagram is opened with

invalid shapes highlighted.

» To open an error

1. Double-click the error in the Output window.

and it is up to you to track

» To copy etror messages on the

down the real error location in AnyLogic.

Clipboard

1. Select the error messages you want to copy.

© 1992-2004 XJ Technologies

http:/ /www.xjtek.com

It is not always possible to give an exact error location in AnyLogic windows. For
example, if you are trying to use an identifier Java cannot resolve, it could be an
undeclared variable, or a parameter, or anything else. In such cases, AnylLogic displays

a . java file and positions the cursor at the error location. This file is opened read-only

341

Chapter 14. Debugging a model

2. Click the Copy 53 toolbar button, or
Choose Edit| Copy from the main menu, or
Right-click the error message and choose Copy from the popup menu, or
Press Ctrl+Ins.

14.2 Viewing and modifying AnyLogic events

AnyLogic simulates the model as a sequence of time steps and event steps. The information
presented in section 14.2.1, “Event processing at the simulation engine”, might be useful for
better understanding of how the AnyLogic engine simulates discrete events and continuous

behavior. Section 14.2.2, ”Events window”, describes how to view the event queue of

b

AnyLogic simulation engine to view what is happening at the simulation engine at the lowest

level details and to make some changes to the event processing.

14.2.1 Event processing at the simulation engine

AnyLogic simulates the model as a sequence of time steps and event steps. During a time

step:
o The model clock is advanced.

e The “discrete” state of the model (the statechart, port, event, thread, etc. states)

remains unchanged.

e Active equations, if any, are being solved numerically and the variables are changed

correspondingly.

e Awaited change events are tested for occurrence.

During an event step:
e No model time elapses.

e The actions of states, transitions, timers, ports, etc. corresponding to this event are

executed.

e The state of the model may change.

342 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

e Some scheduled events may be deleted, and the new events may be scheduled in the

AnyLogic Engine event queue.

14.2.1.1 Engine events

AnyLogic engine events are events that occur at runtime. Please do not confuse them with
static/dynamic events that are a part of AnyLogic modeling language. There are several types

of engine events:
e current — events that can be executed at the time now
e chosen — one of the enabled events that is chosen to be executed next
e cnabled — other current events (those that potentially could be executed next)
e scheduled — events scheduled at some particular known time in the future

e pending — events that may occur in the future, but the time is not known

Engine events reside in the engine event queue. Any event present in the engine event queue

may be associated with:
e An active timer
e A transition triggered on a timeout expiry

e A thread executing a delay() statement

In addition, current events may be associated with something that has just happened as a

result of other event execution:

e A transition being triggered by a port, immediately, or by a static, signal or change

event

e A thread successfully exiting its wai tEvent() or waitForMessage() statement

14.2.1.2 Time step

If there are no current events, Anyl.ogic makes a time step to the nearest event (or events) in
the queue, 1.e., advances its clock. During a time step a change event may occur. The discrete
part of AnyLogic engine does not know when a change event associated with a transition

occurs: it depends on the equation set being solved numerically by a continuous part of the

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 343

Chapter 14. Debugging a model

engine. Once this happens, the clock is advanced to the time reported by the continuous-

time equation solver, and the event step is executed.

14.2.1.3 Event step

Several events may be scheduled to occur at the same moment of time. If there are several
current events, AnylLogic chooses one and executes it. This is repeated until there are no
current events. Thus, several event steps may be made in succession, whereas a time step is
always followed by an event step. Simultaneous events may depend on each other or be truly

concurrent. The serialization of concurrent events is called interleaving a model.

Depending on your task, you can tell AnyLogic simulation engine to do random or
deterministic serialization of events. Random instead of deterministic serialization
ensures that a bigger part of the system state space is covered by a simulation, so it is
more likely that an undesirable behavior will be detected. Note that random event

serialization slightly slows your model simulation.

» To set up deterministic/random event serialization

1. In the Project window, click the project item (the top-most item in the workspace

tree).

2. On the General page of the Properties window, choose Deterministically/ Randonly
trom the Event scheduling algorithm drop-down list.

The execution of a timer event is actually the execution of the timet’s action code. The
execution of a transition event is the execution of a set of actions associated with the
transition. As a result of the event execution, the discrete state of the model may change:
statecharts may change their states, other equations may be activated, other transitions may
begin waiting, and other timers may be activated. Thus, some events may be deleted from

the event queue and other events may be added to it.

The example of AnyLogic event queue processing is shown in Figure 157.

344 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

Events scheduled
to occur at the
B a same time

<«Past Now Future+» time

Time step: the clock is advanced to A and B - the head of the event queue. Active
algebraic-differential equations are being solved. The event queue remains unchanged.

Chosen
event
Current events E
B
—
<«Past Now Future» time

Event step: B is chosen and occurs. No time elapses. Model state changes.
A, E and G are deleted from the event queue. J and K are scheduled.

o
]

<«Past Now Future» time

o

Time step: the clock is advanced to C and D. Active algebraic-differential equations are
being solved. Suddenly change event Q is detected.

o
i

<« Past Now Future—» time

|

Event step: Q is chosen and occurs. No time elapses. Model state changes.
C and K are deleted from the event queue. L is scheduled.

B e,

<«Past Now Future-» time
Time step: the clock is advanced to D ...

Figure 157. AnyLogic event queue (pending events not shown)

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 345

Chapter 14. Debugging a model

14.2.2 Events window

The events window, see Figure 158, displays the event queue of Anyl.ogic simulation engine
cither for the whole model or for a particular active object. You can use the events window
for debugging purposes to view what is happening at the simulation engine at the lowest
level details and to make some changes to the event processing. The user often works with

the events window using the Primitive Step and Detailed Play commands, see section 11.1.2,

“Controlling the model execution”.

Events [_ |0}

Location Tvpe Tirne Info
® root.machines-9.protocal Tr... (2) Dynamic leader_election.Machi. ..
B roob.machines-6.synchro Skatic 1]
$ rook.machines-13.synchro Skatic 1]
% roct.machines-18.protocal. T... & Dynamic leader_election.Machi. ..
rook, network, timer-341 Dy niamic 0,821531
roak . nekwark, timer-340 D niamic 0131256
roak . nekwark, tmer-339 Dy niamic 0.033353
roak . nekwark, timer-335 Dy namic 0.276951
rook . nekwark, bmer-334 D niamic 0.0256791
roak. nekwark, fmer-331 Dwniarnic 0.0F1ae02
rook.machines-7 . svnchro Skatic 2.23512

Figure 158. Events window

» To open the global events window

1. Choose View|Model Events from the main menu.

Each event in the events window is displayed in the following form:

Flag — = for the chosen event, *for enabled events, no flag for other events.

Location — model path to the object that is associated with this event.

Type — “Dynamic” for dynamic events and dynamic timers, “Static” for static timers,

“Change” for change events, and “Timeout” for timed transitions.

346

© 1992-2004 X]J Technologies

http:/ /www.xjtek.com

AnyLogic V User’s Manual

Time — relative or absolute occurrence time for scheduled events, no value for other

events.

Info — inspect string for the event. E.g., if this is a message acting as a dynamic event,
this field displays the string returned by the method toString() of the
message.

At the event steps of the simulation, there exist current events — those that can be executed
at the time now. Among the current events, there is one chosen to be executed next and
others are considered as enabled (potentially could be executed next). You can control

manually the choice among the current events:

» To change the chosen event
1. Right-click the enabled event and choose Sef chosen from the popup menu.

Among the non-current events (those that cannot be executed at the time now) there may be
events scheduled at some particular time known in the future, and others that do not know
their times (for example, a transition waiting for a change event or a port). The latter ones
are called pending, and are not shown in the Events window by default, although you can

view them if you wish:

» To show/hide pending events
1. Right-click the events window and choose Hide Pending Events from the popup menu.

The occurrence times of the scheduled events may be displayed either as relative to “now”

or as absolute values.

» To display the occurrence times in relative/absolute values
1. Right-click the events window and choose Show Absolute Time from the popup menu.

The occurrence time of a scheduled event may be modified.

» To change the occurrence time of a scheduled event

1. Right-click the scheduled event and choose Modify from the popup menu.
The Modify Event Scheduling dialog box opens.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 347

Chapter 14. Debugging a model

2. Specify the new relative time of the event occurrence in the Tzze edit box.

3. Click OK.

14.3 Breakpoints

You can debug your model by setting a breakpoint on almost any element of the model — on
active object, statechart, state, transition, chart timer, dynamic timer. When an element with
a breakpoint on it becomes active during the model execution, the model stops, and the icon
M is displayed in the status line. Thus you can trace model execution, detect some undesired

activities or events in your model and perform some actions in response to the occurrences.

A breakpoint can be set from the Model Explorer or from an animated diagram. Breakpoints
are displayed in animated diagrams dashed red. They are not displayed in the Model
Explorer.

» To set/clear breakpoint on a model element
1. Right-click the element and choose Breakpoint from the popup menu.

You can manage (remove, enable, and disable) breakpoints using the Edit Breakpoints dialog
box, see Figure 159.

Edit Breakpoints

root. machines-0.protocol, Master (o] 4
root. machines-0.protocol, Mo Master Timeout
root. machines-17. protocaol, Master

roat. machines-17. protocal Mo Master Timeout
roat. machines-17. protocal Failure

Cancel

3

Open

Remaove

i

Remove All

Figure 159. Edit Breakpoints dialog box

348 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

» To open the Edit Breakpoints dialog box

1. Choose Model | Edit Breakpoints from the main menu, or
Click Alt+F9.
The Edit Breakpoints dialog box is displayed.

» To enable/disable a breakpoint

1. Select/clear the checkbox to the left of the breakpoint.

» To remove a breakpoint
1. Select the breakpoint.

2. Click Remove button.

» To remove all breakpoints

1. Click Remove A/l button.

» To open the location of a breakpoint
1. Select the breakpoint.

2. Click Open button.

14.4 Logging a model

14.4.1 Log window

You can output textual information for a model (global log) or for an individual active object
during the model execution in AnylLogic log windows, see Figure 160. You can use it in
debugging purposes to trace model execution by writing specific text to the log on different
occurrences. The log is displayed as a read-only text, which can be copied onto the

Clipboard. The log window of an active object appears in the Properties window when you

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 349

Chapter 14. Debugging a model

select an active object. Also a standalone log window can be opened from the popup menu

of an active object.

E Global Log M=l E3

6 soldiers in a chain of shooters

4 o4 oLoh AR AN

F i b isiddal
FHLLMALEALAAN
FEEHLLMALALLN
FECHHAZLZLLHN
FEDHHHALLHN
FEDEHHHALAN
FEDCHHHHHN
FDDHHHIE
FEDDDEHTIAR
FEDDCIAAR
EDDEERLALE

ED JEERHALE
FEJEEEREBEHE
FEEFEERLCIE
FEREEREEREERE
el

12 soldiers in a chain of shooters
Loh LA AR AAL DAL AAN
B AL i iididddddiddiM
FHLAMALRABALLALLLALMNM
FEEHLLZMALZLRLARALLLLALALNM

E

Figure 160. Log window

» To open the global log

1. Click the Global Log [toolbar button, or
Choose View| Global 1 og from the main menu.

» To open the log window of an active object

1. Right-click the active object in the Model Explorer or on the animated structure

diagram and choose Log from the popup menu.

350 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

14.4.2 Writing to logs

14.5

Each active object has a log. This is the variable log of type PrintWriter defined in the
class ActiveObject. You write to log in the same way as you write to, e.g., System.out.
Usually, you use the methods print() and printin().

In addition, a model has the so-called global log. This is the variable log of the same type
PrintWriter defined as a static member variable of the class Engine. You can access the
global log as Engine. log, or simply call the methods trace() and traceln() of the class
ActiveObject. The method trace() calls Engine.log.print(), and the method
traceln() calls Engine.log.printin().

The global log is convenient for output of information across several model
replications, because it is not reset in between replications. It can also be used as a
debugging tool, for example, to find out what is the order in which the model executes

actions of different objects.

You work with logs using the following API (for more information, please consult AnyLogic
Class Reference):
Related member variables and methods of ActiveObject

Java.io.PrintWriter log - log of the active object.

static void trace(java.lang.String value) — prints a string to the global
log.

static void traceln(java.lang.String value) — prints a string with a line
delimiter to the global log.

Related member variables of Engine

Java.io.PrintWriter log — the global model log.

Runtime errors

Various errors may occur during the model execution. Runtime errors can be of two types:

e Java exceptions

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 351

Chapter 14. Debugging a model

e Simulation errots.

You can throw runtime error and terminate model execution as a reaction to different

undesirable occurrences.

14.5.1 Java exceptions

Java code written by the user may contain unintentional errors like division by zero,
accessing null pointer and so on. Such errors are detected by Java runtime environment. If

such an error occurs, Java throws an exception.

AnylLogic catches all exceptions. If an exception occurs, Anylogic stops the model,
notifies the user with a message box and dumps the exception to the global log. You

can examine the log to find out where there is a bug.

14.5.2 Throwing runtime errors

You can debug your model at runtime by throwing runtime errors as a reaction to
undesirable occurrences using the static methods error() and assert() of the class
Engine. The error() method throws runtime exception to the simulation engine. The
assert() method checks if the model behaves normally by checking the specified Boolean
condition to be true and throws a runtime exception if it is false. Consult AnyLogic Class

Reference for more details.

Related methods of Engine

static void error(String message) — the method throws a runtime exception
to the simulation engine. AnyLogic immediately stops model execution, shows
the window, displaying the message and dumps the exception to the AnyLogic
global log.

static void assert(boolean assertion, String message) — the method
checks the assertion condition, and in case it's false, calls the error()

method with specified message to raise a runtime error.

352 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

14.5.3 Simulation errors

Simulation errors are logical errors of model execution. For example, if a statechart is unable
to exit a branch because all exiting transitions are closed, it is a simulation error. Simulation
errors are detected by AnyLogic rather than by Java runtime environment. If a simulation

error occurs, Anylogic stops the model and notifies the user with an error message.

14.6 Debugging Java code

AnylLogic does not have a built-in Java code debugger. However, you can debug Java code
using a third-party debugger. The user is free to run a model within the debugger using
command line execution feature (see section 18.1, “Running a model from the command
line”) or to attach the debugger to the currently running model. Using the debugger control,

you can trace the code, set breakpoints, output debug information, and so on.

The source code of AnyLogic Engine is not included in the distribution set. You are

able to debug your own Java code, and not the engine code.

© 1992-2004 XJ Technologies http:/ /www.xjtek.com 353

Chapter 15. Creating a model with dynamically changing structure

Creating a model with dynamically
changing structure

AnyLogic is the only visual tool that supports creation of truly dynamic models — the ones

with dynamically evolving structure and component interconnection.

AnylLogic supports:

e Dpynamic creation and removing of encapsulated objects. It is described in subsection
15.1, “Manual creation and destruction of encapsulated objects”. Moreover, dynamic
creation and removing elements of a vector of replicated objects is enabled. See section

2.2, “Accessing and modifying a replicated object at runtime” for details.

e Dpynamic changing of interface elements connections. It is described in subsection 15.2,

“Dynamically changing connections”.

15.1 Manual creation and destruction of encapsulated
objects

There are several situations when you may need to take care of the creation of encapsulated

objects and tell AnyLogic not to do it automatically:

e The object has a limited lifetime and should be created and destroyed dynamically as

the model evolves.

e The object has several constructors and it is not known in advance which one should
be called.

e The actual class of the object is not known in advance.

To create an encapsulated object manually, it is sufficient to write the code equivalent to the

one generated by Anylogic. The algorithm of writing the code is the following:

1. Prepare the place where you will store the reference to the encapsulated object. This

can be a member variable of the corresponding type, an array, a vector, etc. In case

354 © 1992-2004 XJ Technologies http://www.xjtek.com

AnyLogic V User’s Manual

the encapsulated object is present on the structure diagram, but its property .4uto
¢reate is not set, the member variable for the reference is generated by AnylLogic, but
the encapsulated object is not created. Thus you can create the encapsulated object

manually and store the reference in the member variable generated by AnyLogic.

2. When you wish to create an encapsulated object, construct an instance