University of the Peloponnese

Electrical and Computer

Engineering Department

DIGITAL SIGNAL PROCESSING

Solved Examples

Prof. Michael Paraskevas

SET \#12 - Structures of discrete-time systems

- IIR filters
- FIR filters
- Lattice Filters

1. IIR filters

Example 1

An LSI system is described by the transfer function:

$$
H(z)=\frac{1+0.9 z^{-1}}{\left(1+0.1 z^{-1}+0.5 z^{-2}\right)\left(1-0.6 z^{-1}\right)}
$$

(a) Draw the step diagrams of straight form I and II.
(b) For each format calculate the number of multiplications and additions required to calculate each output sample, as well as the number of delay registers.

Answer: (a) We do the operations on the denominator, so the transfer function is written:

$$
H(z)=\frac{1+0.9 z^{-1}}{1+0.7 z^{-1}+0.44 z^{-2}-0.3 z^{-3}}
$$

The step diagrams of straight form I and II are shown in the next figure.
(b) According to step diagrams (a) and (b), the number of computations in straight form I is:

- Multiplications: 5 for each output sample
- Additions: 4 for each output sample
- Delays: 4
and in straight form II is:
- Multiplications: 5 for each output sample
- Additions: 4 for each output sample
- Delays: 3

Step diagram: (a) Direct form I, (b) Direct form II

2. FIR filters

Example 2

(a) Draw the straight form of the FIR system with impulse response:

$$
h[n]= \begin{cases}a^{n}, & 0 \leq n \leq 5 \\ 0, & \text { elsewhere }\end{cases}
$$

(b) Calculate the number of multiplications and additions required to calculate each output sample as well as the number of delay registers.

Answer: (a) The impulse response is written:

$$
h[n]=\alpha^{n}[u[n]-n[n-6]]=\delta(0)+a \delta(1)+a^{2} \delta(2)+a^{3} \delta(3)+a^{4} \delta(4)+a^{5} \delta(5)
$$

from which it follows that the straight form step diagram is:

FIR system structure in straight form ($\mathrm{N}=6$)
(b) From the step diagram it follows that the number of calculations in the straight form is:

- Multiplications: 6 for each output sample
- Additions: 5 for each output sample
- Delays: 5

3. Lattice FIR Filters

[D] Example 3

The reflection coefficients of a second-order FIR grating filter are $K_{1}=1 / 4$ and $K_{2}=$ $1 / 8$. Find the transfer functions of prime $A_{1}(z)$ and second order $A_{2}(z)$, which connect the input $x[n]$ with $f_{1}[n]$ and $f_{2}[n]$, respectively.

Answer: We put $m=1$ in the relationship $A_{m}(z)=A_{m-1}(z)+K_{m} z^{-m} A_{m-1}\left(z^{-1}\right)$ and find:

$$
\begin{equation*}
A_{1}(z)=A_{0}(z)+K_{1} z^{-1} A_{0}\left(z^{-1}\right) \tag{1}
\end{equation*}
$$

The initial condition is $A_{0}(z)=1$, therefore and $A_{0}\left(z^{-1}\right)=1$. So relation (1) is calculated as:

$$
\begin{equation*}
A_{1}(z)=1+\frac{1}{4} z^{-1} \tag{2}
\end{equation*}
$$

From relation (2) we find that:

$$
\begin{equation*}
A_{1}\left(z^{-1}\right)=1+\frac{1}{4} z \tag{3}
\end{equation*}
$$

We put $m=2$ in the relation $A_{m}(z)=A_{m-1}(z)+K_{m} z^{-m} A_{m-1}\left(z^{-1}\right)$ and we have:

$$
\begin{equation*}
A_{2}(z)=A_{1}(z)+K_{2} z^{-2} A_{1}\left(z^{-1}\right) \tag{4}
\end{equation*}
$$

Substituting relations (2) and (3) into relation (4) we find:

$$
A_{2}(z)=\left(1+\frac{1}{4} z^{-1}\right)+\frac{1}{8} z^{-2}\left(1+\frac{1}{4} z\right)=1+\frac{9}{32} z^{-1}+\frac{1}{8} z^{-2}
$$

(1)d Example 4

To find the reflection coefficients of the second order FIR filter with transfer function:

$$
A_{2}(z)=1-\frac{1}{2} z^{-2}
$$

Answer: We put $m=2$ in the relationship $A_{m}(z)=A_{m-1}(z)+K_{m} z^{-m} A_{m-1}\left(z^{-1}\right)$ and we have:

$$
\begin{equation*}
A_{2}(z)=A_{1}(z)+K_{2} z^{-2} A_{1}\left(z^{-1}\right) \tag{1}
\end{equation*}
$$

We put $m=1$ in the relation $A_{m}(z)=A_{m-1}(z)+K_{m} z^{-m} A_{m-1}\left(z^{-1}\right)$ and we have:

$$
\begin{equation*}
A_{1}(z)=A_{0}(z)+K_{1} z^{-1} A_{0}\left(z^{-1}\right) \tag{2}
\end{equation*}
$$

Since $A_{0}(z)=1$ and $A_{0}\left(z^{-1}\right)=1$, relation 1 is written:

$$
\begin{equation*}
A_{1}(z)=1+K_{1} z^{-1} \tag{3}
\end{equation*}
$$

From relation (2) we find that:

$$
\begin{equation*}
A_{1}\left(z^{-1}\right)=1+K_{1} z \tag{4}
\end{equation*}
$$

We substitute relations (2), (3) and (4) into relation (1) and find:

$$
\begin{equation*}
A_{2}(z)=1+K_{1} z^{-1}+K_{2} z^{-2}\left(1+K_{1} z\right)=1+\left(K_{1}+K_{1} K_{2}\right) z^{-1}+K_{2} z^{-2} \tag{5}
\end{equation*}
$$

We equate the corresponding coefficients of the given transfer function $A_{2}(z)$ and relation
(5) and find:

$$
K_{2}=-\frac{1}{2}, \quad K_{1}=0
$$

4. Filters Lattice IIR

[1] Example 5

Convert the following IIR pole-zero filter to lattice form:

$$
H(z)=\frac{0.25+0.5 z^{-1}-0.4 z^{-2}}{1-0.1 z^{-1}+z^{-2}}
$$

Answer: First we will convert the denominator coefficients to reflection coefficients:

$$
A_{2}(z)=1-0.1 z^{-1}+z^{-2}
$$

also $m=1$ set $m=2$ in the relationship $A_{m}(z)=A_{m-1}(z)+K_{m} z^{-m} A_{m-1}\left(z^{-1}\right)$ and correspondingly we get:

$$
\begin{align*}
& A_{2}(z)=A_{1}(z)+K_{2} z^{-2} A_{1}\left(z^{-1}\right) \tag{1}\\
& \quad A_{1}(z)=A_{0}(z)+K_{1} z^{-1} A_{0}\left(z^{-1}\right) \tag{2}
\end{align*}
$$

Since $A_{0}(z)=1$ and $A_{0}\left(z^{-1}\right)=1$, we find:

$$
\begin{align*}
& A_{1}(z)=1+K_{1} z^{-1} \tag{3}\\
& A_{1}\left(z^{-1}\right)=1+K_{1} z \tag{4}
\end{align*}
$$

We substitute relations (2), (3) and (4) into relation (1) and find:

$$
\begin{equation*}
A_{2}(z)=1+K_{1} z^{-1}+K_{2} z^{-2}\left(1+K_{1} z\right)=1+\left(K_{1}+K_{1} K_{2}\right) z^{-1}+K_{2} z^{-2} \tag{5}
\end{equation*}
$$

We equate the corresponding coefficients of the original function $A_{2}(z)$ and relation (5) and find:

$$
K_{2}=1, \quad K_{1}=-0.05
$$

The coefficients a_{m} and b_{m} given in the pronunciation are:

$$
\begin{gathered}
a_{m}=\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}\right\}=\{1,-0.1,1\} \\
b_{m}=\left\{b_{0}, b_{1}, b_{2}\right\}=\{0.25,0.5,-0.4\}
\end{gathered}
$$

Finally, the coefficients C_{2} are calculated form $=2,1,0$ from the recursive relation:

$$
y[n]=\sum_{m=0}^{M} C_{m} g_{m}[n]
$$

and it is:

$$
\begin{array}{ll}
m=2: & C_{2}=b_{2}=-0.4 \\
m=1: & C_{1}=b_{1}+C_{2} a_{2}[1]=0.5+(-0.4) 1=0.1 \\
m=0: & C_{0}=b_{0}+C_{1} a_{1}[1]+C_{2} a_{2}[2]=0.25+0.1(-0.1)+(-0.4) 1=-0.16
\end{array}
$$

Therefore:

$$
C_{0}=-0.16, C_{1}=0.1, C_{2}=-0.4
$$

The figure below shows the straight form and the lattice form of the given IIR filter.
(a)

(b)

IIR filter: (a) Straight form, (b) Grid form

