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DIGITAL SIGNAL PROCESSING 

Solved Examples  

Prof. Michael Paraskevas 

 

SET #7 – Series and Fourier Transform of Discrete-Time Signals 

• Fourier series Discrete Time Signals  

• Fourier Transform of Discrete Time Signals 

• DTFT properties  

• Inverse DTFT 

 

1. Fourier Series of Discrete Time Signals 

 Example 1 

To find the exponential Fourier series expansion of the series of Delta functions with 
period 𝛮: 

𝛿𝑁[𝑛] = ∑ 𝛿[𝑛 − 𝑟𝑁]

∞

𝑟=−∞

 

 

Answer: The sequence 𝛿𝑁[𝑛] has the following graph (for 𝛮 = 10): 

 

 

String of impulse functions 𝑥[𝑛] = ∑ 𝛿[𝑛 − 𝑟𝑁]∞
𝑟=−∞  

 

We will calculate the coefficients 𝛥[𝑘] of the exponential Fourier series from equation 
(10.2) choosing for period [−𝛮/2 + 1, 𝛮/2]: 

𝛥[𝑘] =
1

𝑁
∑ 𝛿𝑁[𝑛] 𝑒−𝑗𝑘(2𝜋/𝛮)𝑛

𝑁/2

𝑘=−𝛮/2+1

=
1

𝑁
𝛿[0] =

1

𝛮
 

The exponential series expansion of the sequence 𝛿𝑁[𝑛]is: 
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𝛿𝑁[𝑛] = ∑ 𝛥[𝑘] 𝑒𝑗𝑘(2𝜋/𝛮)𝑛

𝑁−1

𝑘=0

=
1

𝑁
∑ 𝑒𝑗𝑘(2𝜋/𝛮)𝑛

𝑁−1

𝑘=0

 

Therefore, the Magnitude spectrum of the sequence 𝛿𝑁[𝑛] consists of 𝛿[𝑛] Magnitude 
functions 1/𝛮, placed in sequence with each other. 

 

Example 2 

Find the exponential growth of the sequence 𝑥[𝑛] = 1 + cos(𝜋𝑛) + sin(𝜋𝑛/2), −∞ <
𝑛 < ∞. 

 

Answer: Since the exponential growth is calculated only for periodic sequences, we will 
first examine whether the given sequence is periodic. This will only happen if the ratio of 
the periods of the periodic sequences cos(𝜋𝑛) and sin (𝜋𝑛/2) can be written as a quotient 
of integers. Term 1 gives the dc component (dc component). It cos(𝜋𝑛)has a cyclic fre-
quency 𝜔1 = 𝜋and period 𝛮1 = 2𝜋/𝜔1 = 2, while it sin(𝜋𝑛/2) has a cyclic frequency 
𝜔2 = 𝜋/2 and period 𝛮2 = 2𝜋/(𝜋/2) = 4. The signal 𝑥[𝑛] is periodic because it has infi-
nite duration and satisfies the equation: 

𝛮1

𝛮2
=

2

4
=

1

2
 

Its period 𝑥[𝑛]is: 

𝛮 =
𝛮1𝛮2

𝛭𝛫𝛥(𝛮1, 𝛮2)
=

2𝑥4

2
= 4 

Based on the Euler equation it is 𝑥[𝑛] written: 

𝑥[𝑛] = 1 +
1

2
[𝑒𝑗𝜋𝑛 + 𝑒−𝑗𝜋𝑛] +

1

2
[𝑒𝑗𝜋𝑛/2 − 𝑒−𝑗𝜋𝑛/2]

= 1 + 0.5𝑒𝑗𝜋𝑛/2 − 0.5𝑒−𝑗𝜋𝑛/2 + 0.5𝑒𝑗𝜋𝑛 + 0.5𝑒−𝑗𝜋𝑛

= 𝑋[0] + 𝑋[1]𝑒𝑗𝜔0𝑛 + 𝑋[−1]𝑒−𝑗𝜔0𝑛 + 𝑋[2]𝑒𝑗2𝜔0𝑛

+ 𝑋[−2]𝑒−𝑗2𝜔0𝑛 

where 𝜔0 = 𝜋/2. Therefore, the coefficients of the exponential Fourier series are: 

𝑋[0] = 1, 𝑋[1] = 𝑋[−1]∗ = −0.5, 𝑋[2] = 𝑋[−2]∗ = 0.5 

 

2. Fourier Transform of Discrete Time Signals 

Example 3 

Calculate the DTFT of the sequence𝑥[𝑛] = {
0.5𝑛 𝑛 = 0,2,4, …
0      elsewhere

 

Answer: Using the definition of DTFT we have: 

𝑋(𝑒𝑗𝜔) = ∑ 𝑥[𝑛]𝑒−𝑗𝑛𝜔

∞

𝑛=−∞

= ∑ 0.5𝑛𝑒−𝑗𝑛𝜔 = ∑ 0.52𝑛𝑒−2𝑗𝑛𝜔

∞

𝑛=0

∞

𝑛=0,2,4,…

= ∑(0.25 𝑒−2𝑗𝜔)
𝑛

∞

𝑛=0

 =
1

1 − 0.25 𝑒−2𝑗𝜔
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Example 4 

Calculate the DTFT of the sequence 𝑥[𝑛] = 0.5𝑛 𝑢[𝑛 + 3] 

Answer: Using the definition of DTFT we have: 

𝑋(𝑒𝑗𝜔) = ∑ 0.5𝑛

∞

𝑛=−3

𝑒−𝑗𝑛𝜔 = ∑ (0.5 𝑒−𝑗𝜔)
𝑛

∞

𝑛=−3

= (0.5 𝑒−𝑗𝜔)
−3

∑(0.5 𝑒−𝑗𝜔)
𝑛

=
8 𝑒𝑗3𝜔

1 − 0.5 𝑒−𝑗𝜔

∞

𝑛=0

 

 

Example 5 

Calculate the DTFT of the sequence 𝑥[𝑛] = 𝐴(𝑢[𝑛] − 𝑢[𝑛 − 𝑁]). 

 

Answer: Using the definition of DTFT we have: 

𝑋(𝑒𝑗𝜔) = ∑ 𝑥[𝑛]𝑒−𝑗𝑛𝜔

∞

𝑛=−∞

= ∑ 𝐴 𝑒−𝑗𝑛𝜔

𝑁−1

𝑛=0

= 𝐴 ∑ 𝑒−𝑗𝑛𝜔

𝑁−1

𝑛=0

= 𝐴 ∑(𝑒−𝑗𝜔)
𝑛

𝑁−1

𝑛=0

=
𝐴(1 − 𝑒−𝑗𝜔𝑁)

1 − 𝑒−𝑗𝜔
=

𝛢𝑒−𝑗𝜔𝑁/2(𝑒𝑗𝜔𝑁/2 − 𝑒−𝑗𝜔𝑁/2)

𝑒−𝑗𝜔/2(𝑒𝑗𝜔/2 − 𝑒−𝑗𝜔/2)

=
𝛢𝑒−𝑗𝜔𝑁/2 2𝑗 𝑠𝑖𝑛(𝜔𝑁/2)

𝑒−𝑗𝜔/2 2𝑗 𝑠𝑖𝑛(𝜔/2)
= 𝐴𝑒−𝑗𝜔(𝛮−1)/2

sin(𝜔𝛮/2)

sin(𝜔/2)
  

The measure of DTFT is: 

|𝑋(𝑒𝑗𝜔)| = |𝛢| |
sin(𝜔𝛮/2)

sin(𝜔/2)
| (1) 

and the phase is: 

𝜑𝑋(𝜔) = −
𝜔(𝛮 − 1)

2
 (2) 

 

(a) Signal 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 5], (b) Magnitude spectrum,  
(c) Phase spectrum, in one period[−𝜋, 𝜋) 

 

Comments: The following comments apply to the DTFT measure: 

• Since the numerator and denominator of equation (1) are odd functions, it follows 
that the measure of the DTFT is an even function, as expected. 
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• By rule de l ' Hospital we find that for the frequency 𝜔 = 0 the measure takes the 

maximum value which is |𝑋(𝑒𝑗0)| = 𝛢. 

• The zeroing points of the measure are those that satisfy the equation sin(𝜔𝛮/2) =
0, so the measure is zeroed at the frequencies 𝜔 = 2𝑘𝜋/𝛮. 

• The measure of the DTFT is a function of: 

o Period magazine 2𝜋, when it 𝛮 is unnecessary. 

o Non-periodic when it 𝛮 is even. 

 

3. DTFT of Periodic Discrete-Time Signals 

Example 6 

Prove that the DTFT of the signal 𝑥[𝑛] = 𝑒𝑗𝜔0𝑛, όπου 𝜔 ∈ (−𝜋, 𝜋] is given by the equa-
tion: 

𝑥[𝑛] = 𝑒𝑗𝜔0𝑛
 

↔ 𝑋(𝑒𝑗𝜔) = ∑ 2𝜋

∞

𝑚=−∞

𝛿(𝜔 − 𝜔0 + 2𝜋𝑚), 𝑚 ∈ 𝑍 

 

Answer: Because the signal is not absolutely summable the DTFT cannot be calculated 
from its definition. For this reason, we will work in reverse, i.e. we will calculate the in-
verse DTFT. We notice that the function 

𝑋(𝑒𝑗𝜔) = ∑ 2𝜋

∞

𝑚=−∞

𝛿(𝜔 − 𝜔0 + 2𝜋𝑚) 

is an infinite sum of impulse functions spaced apart 2𝜋𝑚 on the frequency axis. In other 
words, its 𝑒𝑗𝜔0𝑛 DTFT contains impulse functions at frequencies 𝜔0 ± 2𝜋𝑚. The inverse 
DTFT is calculated in the frequency domain (−𝜋, 𝜋] from the equation: 

𝑥[𝑛] =
1

2𝜋
∫ 𝑋(𝑒𝑗𝜔) 𝑒𝑗𝜔𝑛

𝜋

−𝜋

𝑑𝜔 =
1

2𝜋
∫ { ∑ 2𝜋

∞

𝑚=−∞

𝛿(𝜔 − 𝜔0 + 2𝜋𝑚)} 𝑒𝑗𝜔𝑛

𝜋

−𝜋

𝑑𝜔 

But in the region (−𝜋, 𝜋] there is only the function 𝛿(𝜔 − 𝜔0), so the integral is: 

𝑥[𝑛] = ∫ 𝛿(𝜔 − 𝜔0) 𝑒𝑗𝜔𝑛

𝜋

−𝜋

𝑑𝜔 = 𝑒𝑗𝜔𝑛|
𝜔=𝜔0

= 𝑒𝑗𝜔0𝑛 

 

Example 7 

Calculate the DTFT of the signal 𝑥[𝑛] = ∑ 𝛢𝑘  𝑒𝑗𝜔0𝑘𝑛∞
𝑘=−∞  

 

Answer: From the previous example we know: 

𝑒𝑗𝜔0𝑛
 

↔ ∑ 2𝜋

∞

𝑚=−∞

𝛿(𝜔 − 𝜔0 + 2𝜋𝑚) 

Taking into account the linearity of the DTFT we have: 
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𝑋(𝑒𝑗𝜔) = 𝐹 { ∑ 𝛢𝑘  𝑒𝑗𝜔0𝑘𝑛

∞

𝑘=−∞

} = ∑ 𝛢𝑘

∞

𝑘=−∞

∑ 2𝜋

∞

𝑚=−∞

𝛿(𝜔 − 𝜔0 + 2𝜋𝑚)

= ∑ 2𝜋 𝛢𝑘

∞

𝑘=−∞

𝛿(𝜔 − 𝜔0 + 2𝜋𝑚) 

 

4. DTFT properties  

Example 8 

Calculate the DTFT of the signal 𝑥[𝑛] = 𝑎𝑛 𝑠𝑖𝑛(𝑛𝜔0) 𝑢[𝑛] and plot the spectra. 

 

Answer: Using Euler's formula we express the sine as a sum of complex functions and then 
calculate the DTFT of each term. We have: 

𝑥[𝑛] =
1

2𝑗
[𝑎𝑛𝑒𝑗𝑛𝜔0 − 𝑎𝑛𝑒−𝑗𝑛𝜔0] 𝑢[𝑛] 

The DTFT of the first term is: 

1

2𝑗
∑ 𝑎𝑛𝑒𝑗𝑛𝜔0𝑒−𝑗𝑛𝜔

∞

𝑛=0

=
1

2𝑗
∑(𝑎𝑒−𝑗(𝜔−𝜔0))

𝑛
∞

𝑛=0

=
1

2𝑗

1

1 − 𝑎𝑒−𝑗(𝜔−𝜔0)
 

The DTFT of the second term is: 

−
1

2𝑗
∑ 𝑎𝑛𝑒−𝑗𝑛𝜔0𝑒−𝑗𝑛𝜔

∞

𝑛=0

= −
1

2𝑗

1

1 − 𝑎𝑒−𝑗(𝜔+𝜔0)
 

Therefore, it is: 

𝑋(𝑒𝑗𝜔) =
1

2𝑗
[

1

1 − 𝑎𝑒−𝑗(𝜔−𝜔0)

1

1 − 𝑎𝑒−𝑗(𝜔+𝜔0)
] =

𝑎 𝑒−𝑗𝜔 sin 𝜔0

1 − 2𝑎 𝑒−𝑗𝜔 cos 𝜔0 + 𝑎2𝑒−2𝑗𝜔
 

 

 

(a) Sequence 𝑥[𝑛] = 𝑎𝑛 𝑠𝑖𝑛(𝑛𝜔0) 𝑢[𝑛], (b) Magnitude spectrum,  
(c) Phase spectrum in the frequency domain[−𝜋, 𝜋] 

 

Example 9 

Calculate the DTFT of the signal 𝑦[𝑛] = 𝑥[𝑛] 𝑐[𝑛], where 𝑥[𝑛] = 𝑢[𝑛 + 𝑛0] − 𝑢[𝑛 −
𝑛0] where 𝑛0 = 5 and 𝑐[𝑛] = cos(𝜔0𝑛) where 𝜔0 = 0.7 (𝑟𝑎𝑑). 

Answer: We know that DTFT of 𝑐[𝑛] = cos(𝜔0𝑛) is: 
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𝐶(𝑒𝑗𝜔) = 𝜋[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)] 

By the property of multiplication in time, the DTFT of the product 𝑦[𝑛] = 𝑥[𝑛]𝑐[𝑛] is: 

𝑌(𝑒𝑗𝜔) =
1

2𝜋
 𝑋(𝑒𝑗𝜔) ∗ 𝐶(𝑒𝑗𝜔)

=
1

2𝜋
 𝑋(𝑒𝑗𝜔) ∗ [𝜋[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)]]          (1) 

Using the convolution property 𝑓(𝑥) ∗ 𝛿(𝑥 − 𝑥0) = 𝑓(𝑥 − 𝑥0) we have: 

𝑋(𝑒𝑗𝜔) ∗ 𝛿(𝜔 − 𝜔0) = 𝑋(𝑒𝑗(𝜔−𝜔0)) 

𝑋(𝑒𝑗𝜔) ∗ 𝛿(𝜔 + 𝜔0) = 𝑋(𝑒𝑗(𝜔+𝜔0)) 

So, equation (1) is written: 

𝑌(𝑒𝑗𝜔) =
1

2
𝑋(𝑒𝑗(𝜔−𝜔0)) +

1

2
𝑋(𝑒𝑗(𝜔+𝜔0))          (2) 

We find that we arrived at the same result as in Example 10.16 but in a different way. 
From Example 10.8 we know that the DTFT of the pulse 𝑧[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 𝛮]for 𝛮 =
10is: 

𝑍(𝑒𝑗𝜔) = 𝑒−𝑗𝜔(𝛮−1)/2
sin(𝜔𝛮/2)

sin(𝜔/2)
= 𝑒−𝑗9𝜔/2

sin(5𝜔)

sin(𝜔/2)
         (3) 

Since the signal 𝑥[𝑛] = 𝑢[𝑛 + 5] − 𝑢[𝑛 − 5] is its displacement 𝑧[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 10] 
by −5 time units, i.e. holds 𝑥[𝑛] = 𝑧[𝑛 + 5], by the time-shift property DTFT of 𝑥[𝑛] is: 

𝑋(𝑒𝑗𝜔) = 𝑒−𝑗(−5)𝜔 𝑍(𝑒𝑗𝜔) = 𝑒𝑗5𝜔𝑒−𝑗9𝜔/2
sin(5𝜔)

sin(𝜔/2)
= 𝑒𝑗𝜔/2

sin(5𝜔)

sin(𝜔/2)
          (4) 

From relations (1) and (4) we obtain: 

𝑌(𝑒𝑗𝜔) =
1

2
[𝑒𝑗(𝜔−0.7)/2

sin(5(𝜔 − 0.7))

sin((𝜔 − 0.7)/2)
+ 𝑒𝑗(𝜔+0.7)/2

sin(5(𝜔 + 0.7))

sin((𝜔 + 0.7)/2)
]  

 

Signals (a) 𝑥[𝑛] = 𝑢[𝑛 + 5] − 𝑢[𝑛 − 5],    (b) 𝑐[𝑛] = cos(𝜔0𝑛),    (c) 𝑦[𝑛] = 𝑥[𝑛] 𝑐[𝑛]. 
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Magnitude spectra (a) |𝑋(𝑒𝑗𝜔)|,    (b) |𝐶(𝑒𝑗𝜔)|,     (c) |𝑌(𝑒𝑗𝜔)|. 

 

Comments: 

• The Example describes both the formation of an information signal 𝑥[𝑛] from a car-
rier signal 𝑐[𝑛] = cos(𝜔0𝑛) and the windowing of a cosine cos(𝜔0𝑛) from a square 
window 𝑥[𝑛] = 𝑢[𝑛 + 𝑛0] − 𝑢[𝑛 − 𝑛0]. 

• Regarding the modulation, we notice that the spectrum of the square pulse was 
transferred to the frequencies ±𝜔0 with half the width of the original one. 

• By the term windowing we describe the multiplication of a signal 𝑐[𝑛] by a window 
(square in our example), so we extract a part from the signal 𝑐[𝑛]. In this case DTFT 
of the part (of the cosine in our example) no longer consists of the two impulse func-
tions at the frequencies −𝜔0 and 𝜔0(spectrum of the cosine), but of two sampling 
functions (spectrum of the square pulse) placed at the frequencies −𝜔0 and 𝜔0.  

• Windowing causes diffusion of the signal ±𝜔0 spectrum at frequencies on either side 
of the cosine frequency. Spreading of the spectrum is an undesirable distortion, es-
pecially in the case where we seek to distinguish cosines with adjacent frequencies 
because the lobes of the spectra are entangled with each other. 

• Minimizing the effect of the square window on the signal spectrum is achieved by 
increasing the duration [−𝑛0, 𝑛0] of the window, because this leads to a reduction 
in the width of the lobes of the window spectrum. A longer window causes less dis-
tortion in the signal spectrum, while an infinite window causes no effect on the sig-
nal spectrum, however this no longer causes signal windowing, as we have dis-
cussed for continuous-time signals. 

 

 Example 10 

We sample the analog signal 𝑥𝛼(𝑡) = 1 + cos(15𝜋𝑡)with a sampling period 𝑇𝑠 =
0,1 𝑠𝑒𝑐 and pass it through a low-pass filter with a cutoff frequency 𝑓𝑐 = 2,5 𝐻𝑧. What 
is the signal produced at the output of the filter? 

 

Answer: The analog signal contains a DC component with zero frequency and a cosine 
component with frequency 2𝜋𝐹 = 15𝜋

 
⇒ 𝐹 = 7,5 𝐻𝑧, which is also the maximum fre-

quency (𝐹𝑚𝑎𝑥) of the analog signal. The sampling frequency is 𝑓𝑠 = 1/𝑇𝑠 = 1/0,1 𝑠𝑒𝑐 =
10 𝐻𝑧. Since, it follows that the 𝑓𝑠 = 7,5 < 10 = 2𝐹𝑚𝑎𝑥 Nyquist criterion is not satisfied, 
so frequency folding will appear for those frequencies that are outside the spectral range 
defined based on the sampling frequency, i.e. the spectral range [−𝑓𝑠/2, 𝑓𝑠/2] =
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[−5𝐻𝑧, 5𝐻𝑧]. Therefore, the frequency 𝐹 = 𝐹𝑚𝑎𝑥 = 7,5 𝐻𝑧 of the signal will be folded and 
show the aliased frequency 𝐹′ = 𝐹 − 𝑘𝑓𝑠 = 7,5 − 𝑘10 = 7,5 − 1𝑥10 = −2,5 𝐻𝑧. So, the 
cos(15𝜋𝑡)7.5 Hz cosine component of the analog signal, when sampled will look like a 2.5 
Hz cosine. The DC component (DC component) is unaffected by sampling. Based on the 
above, the discrete-time signal resulting from the sampling is: 

𝑥𝑠[𝑛] = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇𝑠=𝑛/10 = 1 + cos (
15𝜋

10
𝑛)

= 1 + cos (
3𝜋

2
𝑛) = 1 + cos (2𝜋 −

𝜋

2
) 𝑛 = 1

+ cos (
𝜋𝑛

2
) 

To calculate the signal at the output of the low-pass filter, we need to obtain the spectral 
form of the discrete-time signal. The DTFT of the sampled signal 𝑥𝑠[𝑛] is given by equation 
(6.6) and is: 

𝑋𝑠(𝑒𝑗𝜔) =
1

𝑇𝑠
∑ 𝑋𝑎

∞

𝑘=−∞

(𝛺 − 𝑘𝛺𝑠)

=
1

𝑇𝑠
∑ 2𝜋𝛿(𝜔 − 𝑘𝛺𝑠)

∞

𝑘=−∞

+ 𝜋 [𝛿 (𝛺 − 𝑘𝛺𝑠 −
𝜋

2
) + 𝛿 (𝛺 − 𝑘𝛺𝑠 +

𝜋

2
)] 

where 𝛺𝑠 = 2𝜋 𝑇𝑠. The spectrum of the discrete-time signal and the spectrum of the low-
pass filter are represented in the figure. 

 

Spectrum of a discrete-time signal and spectrum of the low-pass filter. 

 

We notice that the only components of the signal spectrum that come out of the low-pass 
filter are: 

𝑋̂𝑠(𝛺) = 2𝜋𝛿(𝛺) + 𝜋 [𝛿 (𝛺 −
𝜋

2
) + 𝛿 (𝛺 +

𝜋

2
)] 

Fourier transform we find that the analog signal produced at the output of the low-pass 
filter is: 

𝑥𝑠(𝑡) = 1 + cos (
𝜋𝑡

2
) 
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5. Inverse DTFT  

Example 11 

To find the discrete-time signal 𝑥[𝑛]with DTFT the function: 

𝑋(𝑒𝑗𝜔) =
1

1 + 0.2 𝑒−𝑗𝜔 − 0.35 𝑒−2𝑗𝜔
  

 

Answer: We factor the denominator of the function 𝑋(𝑒𝑗𝜔) and we have: 

𝑋(𝑒𝑗𝜔) =
1

1 + 0.2 𝑒−𝑗𝜔 − 0.35 𝑒−2𝑗𝜔
=

1

(1 − 0.5𝑒−𝑗𝜔)

1

(1 + 0.7𝑒−𝑗𝜔)

=
𝛢

(1 − 0.5𝑒−𝑗𝜔)
+

𝛣

(1 + 0.7𝑒−𝑗𝜔)
 

We calculate the coefficients A and B from the relations: 

𝛢 =
1

(1 − 0.5𝑒−𝑗𝜔)

1

(1 + 0.7𝑒−𝑗𝜔)
(1 − 0.5𝑒−𝑗𝜔)|

𝑒−𝑗𝜔=2

=
5

12
 

𝛣 =
1

(1 − 0.5𝑒−𝑗𝜔)

1

(1 + 0.7𝑒−𝑗𝜔)
(1 + 0.7𝑒−𝑗𝜔)|

𝑒−𝑗𝜔=−10/7

=
12

7
 

So, the function is written: 

𝑋(𝑒𝑗𝜔) = (
5

12
)

1

1 − 0.5𝑒−𝑗𝜔
+ (

12

7
)

1

1 + 0.7𝑒−𝑗𝜔
 

Using Table 10.1 we find the inverse DTFT: 

𝑥[𝑛] = [
5

12
(0.5)−𝑛 +

12

7
(−0.7)−𝑛] 𝑢[𝑛] 


