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DIGITAL SIGNAL PROCESSING 

Solved Examples  

Prof. Michael Paraskevas 

 

SET #6 – Inverse Z-Transform – Studying Discrete-Time Systems with the Z- Transform 

• Inverse Z-Transform 

• Relationship between Transfer Function and Difference Equation  

• Solving Differential Equations 

• Solving Differential Equations 

 

1. Inverse Z-Transform 

 Example 1 

Calculate the inverse Z-transform of the function: 

𝑋(𝑧) =
3

1 −
1
2

𝑧−1
+

2

1 −
1
3

𝑧−1
 

 

Answer: The given Z-Transform is the sum of two exponential functions of the first de-
gree, that is, it is already in the form of a sum of simple fractions. The poles of the trans-
formations are 𝑧1 = 1/2 and 𝑧2 = 1/3. Because the region of convergence has not been 
determined, there are three possible cases of regions of convergence, as shown in the fig-
ure. 

 

 

Regions of convergence (ROC) 

 

(a) Region of Convergence  𝑹𝑶𝑪𝟏: 𝟏/𝟐 < |𝒛| < ∞: Since the region of convergence of the 
function 𝑋(𝑧)is the outer surface of a circle and its poles lie on the inner side of the circle, 
it follows that the sequence 𝑥[𝑛]is right-sided (causal sign). Using the corresponding pair 
for right-hand exponential sequences from Table 9.1 or equation (9.41), we find: 
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𝑥[𝑛] = 3 (
1

2
)

𝑛

𝑢[𝑛] + 2 (
1

3
)

𝑛

𝑢[𝑛] = {3 (
1

2
)

𝑛

+ 2 (
1

3
)

𝑛

} 𝑢[𝑛] 

 

(b) Region of Convergence  𝑹𝑶𝑪𝟐: 𝟎 < |𝒛| < 𝟏/𝟑: Since the region of convergence of the 
𝑋(𝑧)function is the inner surface of a circle and its poles are on the outer side of the circle, 
the sequence 𝑥[𝑛]is left-sided (anticausal sign). Using the corresponding pair for left-
hand exponential sequences from Table 9.1 or equation (9.41), we find: 

𝑥[𝑛] = −3 (
1

2
)

𝑛

𝑢[−𝑛 − 1] − 2 (
1

3
)

𝑛

𝑢[−𝑛 − 1] = − {3 (
1

2
)

𝑛

+ 2 (
1

3
)

𝑛

} 𝑢[−𝑛 − 1] 

 

(c) Region of Convergence  𝑹𝑶𝑪𝟑: 𝟏/𝟑 < |𝒛| < 𝟏/𝟐: Since the region of convergence of the 
function 𝑋(𝑧)is the inner surface of a circular ring, the pole 𝑧1is on the outer side of the 
great circle while the pole 𝑧2is on the inner side of the small circle, the sequence 𝑥[𝑛]is 
double sided formed by the sum a left side sequence and a right side sequence. Similarly 
to above, we find: 

𝑥[𝑛] = −3 (
1

2
)

𝑛

𝑢[−𝑛 − 1] + 2 (
1

3
)

𝑛

𝑢[𝑛] 

 

Example 2 

To calculate the convolution of the signals: 

𝑥[𝑛] = 3𝑛𝑢[−𝑛] και ℎ[𝑛] = (
1

2
)

𝑛

𝑢[𝑛]  

 

Answer: The sequence ℎ[𝑛]is right-sided (causative) and has a Z-transformation: 

𝐻(𝑧) =
1

1 −
1
2

𝑧−1
, 𝑅𝑂𝐶(𝛨): |𝑧| >

1

2
 

The sequence is left-handed (anti-causal) and the 𝑥[𝑛]Z- transform can be found using 
the time-shift and time-reversal properties: 

𝑋(𝑧) = ∑ 𝑥[𝑛] 𝑧−𝑛

+∞

𝑛=−∞

= ∑ 3𝑛𝑧−𝑛

0

𝑛=−∞

= ∑ (
1

3
𝑧)

𝑛+∞

𝑛=0

=
1

1 −
1
3 𝑧

= −
3𝑧−1

1 − 3𝑧−1
, 𝑅𝑂𝐶(𝛸): |𝑧| < 3 

So, the Z- transform of the convolution 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛], is: 

𝑌(𝑧) = −
1

1 −
1
2 𝑧−1

∙
3𝑧−1

1 − 3𝑧−1
 

The region of convergence is 𝑅𝑂𝐶(𝑌) = 𝑅𝑂𝐶(𝛸) ∩ 𝑅𝑂𝐶(𝛨), for which |𝑧| > 1 2⁄  and 
|𝑧| < 3. Therefore, the region of convergence of the sequence 𝑦[𝑛] is 𝑅𝑂𝐶(𝑌): 1 2⁄ < |𝑧| <
3. 

Because of the particular shape of the region of convergence we expect the sequence 
𝑦[𝑛]to be the sum of a right-hand side sequence and a left-hand side sequence. 
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Its 𝑌(𝑧)inverse Z- transform is obtained by expanding the function 𝑌(𝑧)into some frac-
tions: 

𝑌(𝑧) =
𝑅1 

1 −
1
2 𝑧−1

+
𝑅2

1 − 3𝑧−1
 (1) 

where the rest 𝑅1 and 𝑅2 of the polynomial division for the corresponding poles are given 
by relations (9.38) and are: 

𝑅1 = [(1 −
1

2
𝑧−1) 𝑌(𝑧)]

𝑧=
1
2

= [(1 −
1

2
𝑧−1)

1

1 −
1
2

𝑧−1
∙

3𝑧−1

1 − 3𝑧−1]

𝑧=
1
2

= [
3𝑧−1

1 − 3𝑧−1
]

𝑧=
1
2

=
6

5
 

𝑅2 = [(1 − 3𝑧−1) 𝑌(𝑧)]𝑧=3 = [(1 − 3𝑧−1)
1

1 −
1
2

𝑧−1
∙

3𝑧−1

1 − 3𝑧−1]

𝑧=3

= [
3𝑧−1

1 −
1
2 𝑧−1

]

𝑧=3

= −
6

5
 

Considering that the first fraction of 𝑌(𝑧) (equation 1) is left-hand side, while the second 
is right-hand side and using Table 9.1 or equation (9.31), we obtain: 

𝑦[𝑛] = (
6

5
) (

1

2
)

𝑛

𝑢[𝑛] + (
6

5
) 3𝑛𝑢[−𝑛 − 1] 

 

2. Relationship between Transfer Function and Difference Equation  

Example 3 

An initially relaxed LSI system has a transfer function: 

𝐻(𝑧) =
𝑧 − 1

𝑧2 − 𝑧 + 0.25
 

Calculate: 

(a) The difference equation describing the system. 

(b) The impulse response of the system. 

(c) The system output for input 𝑥[𝑛] = 𝑢[𝑛] 

 

Answer: (a) We will calculate the transfer function from the equation 𝐻(𝑧) = 𝑌(𝑧)/𝑋(𝑧), 
so we have: 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝑧 − 1

𝑧2 − 𝑧 + 0.25
=

𝑧−1 − 𝑧−2

1 − 𝑧−1 + 0.25𝑧−2
 

We cross-multiply the fractions and get: 

𝑌(𝑧) − 𝑧−1𝑌(𝑧) + 0.25𝑧−2𝑌(𝑧) = 𝑧−1𝑋(𝑧) − 𝑧−2𝑋(𝑧) 

We apply inverse Z- transformation and get the LDECC: 

𝑦[𝑛] − 𝑦[𝑛 − 1] + 0.25𝑦[𝑛 − 2] = 𝑥[𝑛 − 1] − 𝑥[𝑛 − 2]
 

⇒ 



4 

𝑦[𝑛] = 𝑦[𝑛 − 1] − 0.25𝑦[𝑛 − 2] + 𝑥[𝑛 − 1] − 𝑥[𝑛 − 2] 

 

(b) Because in the expression of the transfer function 𝐻(𝑧) in terms 𝑧−𝑛 the degree of the 
numerator is the same as the degree of the denominator we will develop the function in 
some fractions 𝛨̃(𝑧): 

𝛨̃(𝑧) =
𝐻(𝑧)

𝑧
=

𝑧 − 1

𝑧(𝑧2 − 𝑧 + 0.25)
=

(𝑧 − 1)

𝑧(𝑧 − 0.5)2
 

The development is: 

𝛨̃(𝑧) =
𝐻(𝑧)

𝑧
=

𝑅1

𝑧
+

𝑅2

(𝑧 − 0.5)2
+

𝑅3

(𝑧 − 0.5)
 (1) 

Using equation (9.38) we find the rest 𝑅1 and 𝑅2: 

𝑅1 = [𝑧 𝛨̃(𝑧)]
𝑧=0

=  [
(𝑧 − 1)

(𝑧 − 0.5)2
]

𝑧=0

= −4 

𝑅2 = [(𝑧 − 0.5)2 𝛨̃(𝑧)]
𝑧=0.5

= [
(𝑧 − 1)

𝑧
]

𝑧=0.5

= −1 

To find the remainder 𝑅3 we substitute random values of 𝑧, which must not be poles. We 
put 𝑧 = 1 in equation (1) and we have: 

𝛨̃(1) =
𝐻(1)

1
=

(1 − 1)

1(1 − 0.5)2
= 0

 
⇒

−4

1
+

−1

(1 − 0.5)2
+

𝑅3

(1 − 0.5)
= 0

 
⇒

= −4 − 4 +
𝑅3

0.5

 
⇒  𝑅3 = 4 

Therefore: 

𝐻(𝑧) =
𝑅1 𝑧

𝑧
+

𝑅2 𝑧

(𝑧 − 0.5)2
+

𝑅3 𝑧

(𝑧 − 0.5)

= −4 − 2
0.5 𝑧

(𝑧 − 0.5)2
+ 4

𝑧

(𝑧 − 0.5)
 

Based on Table 9.1 the impulse response is: 

ℎ[𝑛] = −4𝛿[𝑛] − 2𝑛(0.5)𝑛 𝑢[𝑛] + 4(0.5)𝑛 𝑢[𝑛] 

 

(c) We can compute the output by either convolution 𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] or inverse trans-
formation 𝑦[𝑛] = 𝑍−1{𝑋(𝑧)𝐻(𝑧)}. We will follow the second way. The Z-transform of the 
input is: 

𝑋(𝑧) =
1

1 − 𝑧−1
=

1

𝑧 − 1
, |𝑧| > 1 

Therefore: 

𝑌(𝑧) = 𝑋(𝑧)𝐻(𝑧) =
1

𝑧 − 1
.

𝑧 − 1

𝑧2 − 𝑧 + 0.25
=

1

𝑧2 − 𝑧 + 0.25
=

𝑧−2

(1 − 𝑧−1 + 0.25𝑧−2)

=
𝑧−2

(1 − 0.5𝑧−1)2
 

Since the expression in the denominator is quadratic we use equation (9.39) and obtain 
the expansion: 
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𝑌(𝑧) =
𝑅1

1 − 0.5𝑧−1
+

𝑅2𝑧−1

(1 − 0.5𝑧−1)2
, (1) 

We calculate it 𝑅2from the equation (9.38): 

𝑅2 = [(1 − 0.5𝑧−1)2 𝑌(𝑧)]𝑧=2 = [𝑧−2]𝑧=2 =
1

4
 

To calculate it 𝑅1we choose a value of 𝑧which is not a pole of the function 𝑌(𝑧). Let's say 
that 𝑧 = 1. We calculate it 𝑌(1)from the definition. Is: 

𝑌(1) =
1−2

(1 − 0.5 1−1)2
=

1

0.52
= 4 

We calculate it 𝑌(1)from the expansion (equation 1). Is: 

𝑌(1) =
𝑅1

1 − 0.5 1−1
+

𝑅2 1−1

(1 − 0.5 1−1)2
=

𝑅1

0.5
+

0.25

0.25
=

𝑅1

0.5
+ 1 

Apply: 

𝑅1

0.5
+ 1 = 4

 
⇒ 𝑅1 =

3

2
 

So the development is: 

𝑌(𝑧) = (
3

2
)

1

1 − 0.5𝑧−1
+ (

1

2
)

0.5 𝑧−1

(1 − 0.5𝑧−1)2
 

and from Table 9.1 we find: 

𝑦[𝑛] =
3

2
(0.5)𝑛 𝑢[𝑛] +

1

2
(0.5)𝑛 𝑛𝑢[𝑛] =

1

2
[3 + 𝑛] (0.5)𝑛 𝑢[𝑛] 

 

Example 4 

To solve the LDECC with zero initial conditions and input 𝑥[𝑛] = 𝑢[𝑛]: 

𝑦[𝑛] = 1.6 𝑦[𝑛 − 1] − 0.64 𝑦[𝑛 − 2] + 𝑥[𝑛] 

 

Answer: We write the LDECC, transferring the terms 𝑦[ ] to the left member: 

𝑦[𝑛] − 1.6 𝑦[𝑛 − 1] − 0.64 𝑦[𝑛 − 2] = 𝑥[𝑛] 

The Z-transform of the input is: 

𝑋(𝑧) =
1

1 − 𝑧−1
=

1

𝑧 − 1
, |𝑧| > 1 

We calculate the Z transformation of both members of the LDECC. Using the time shift 
property of the Z-transform we get: 

𝑌(𝑧) − 1.6 𝑧−1𝑌(𝑧) − 0.64 𝑧−2𝑌(𝑧) = 𝑋(𝑧)
 

⇒ 𝑌(𝑧)[1 − 1.6𝑧−1 − 0.64𝑧−2] =
1

1 − 𝑧−1

 
⇒ 

𝑌(𝑧) =
1

(1 − 𝑧−1)(1 − 1.6𝑧−1 − 0.64𝑧−2)
=

1

(1 − 𝑧−1)(1 − 0.8𝑧−1)2
 

We use equation (9.39) and obtain the expansion: 

𝑌(𝑧) =
𝑅1

1 − 𝑧−1
+

𝑅2

1 − 0.8𝑧−1
+

𝑅3𝑧−1

(1 − 0.8𝑧−1)2
, (1) 
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We calculate 𝑅1 and 𝑅3 from the equation (9.38): 

𝑅1 = [(1 − 𝑧−1)2 𝑌(𝑧)]𝑧−1=1 = [
1

(1 − 0.8𝑧−1)2]
𝑧−1=1

= ⋯ = 25 

𝑅3 = [(1 − 0.8𝑧−1)2 𝑌(𝑧)]𝑧−1=1/0.8=1.25 = [
1

(1 − 𝑧−1)
]

𝑧−1=1.25

= ⋯ = −4 

To calculate it 𝑅2we choose a value of 𝑧which is not a pole of the function 𝑌(𝑧). Let's say 
that 𝑧 = 2. We calculate it 𝑌(2)from the definition. Is: 

𝑌(2) =
1

(1 − 2−1)(1 − 0.8 2−1)
= ⋯ =

1

0.18
 

We calculate it 𝑌(2) from the expansion (equation 1). Is: 

𝑌(2) =
25

1 − 2−1
+

𝑅2

(1 − 0.8 2−1)
−

4 2−1

(1 − 0.8 2−1)2
=

25

0.5
+

𝑅2

0.6
−

2

0.36
 

Doing the operations, we find: 

𝑅2 = −
5

6
 

So the development is: 

𝑌(𝑧) = 25
1

1 − 𝑧−1
+ (−

5

6
)

1

1 − 0.8𝑧−1
+ (−5)

0.8 𝑧−1

(1 − 0.8𝑧−1)2
 

and from Table 9.1 we find: 

𝑦[𝑛] = 25(1)𝑛𝑢[𝑛] −
5

6
(0.8)𝑛𝑢[𝑛] − 5(0.8)𝑛𝑛 𝑢[𝑛] = [25 − 5 [𝑛 +

1

6
] (0.8)𝑛] 𝑢[𝑛] 

 

3. Solving Differential Equations 

 Example 5 

An LSI system is described by LDECC: 

𝑦[𝑛] = 0.2𝑦[𝑛 − 1] + 0.8𝑦[𝑛 − 2] + 𝑥[𝑛] 

Find the system's response to input 𝑥[𝑛] = (0.5)𝑛 𝑢[𝑛] and initial conditions 𝑦[−1] =
5 and 𝑦[−2] = 10. 

 

Answer: We calculate the one-sided transformation 𝑍+of each of the LDECC terms: 

𝑌+(𝑧) = 0.2 [𝑧−1𝑌+(𝑧) + 𝑦[−1]] + 0.8[𝑧−2 𝑌+(𝑧) + 𝑧−1𝑦[−1] + 𝑦[−2]] + 𝑋+(𝑧) 

 

Substituting the values of the initial conditions, we have: 

𝑌+(𝑧) = 0.2 [𝑧−1 𝑌+(𝑧) + 5] + 0.8 [𝑧−2 𝑌+(𝑧) + 5𝑧−1 + 10] + 𝑋+(𝑧)
 

⇒ 

𝑌+(𝑧) = 0.2 𝑧−1 𝑌+(𝑧) + 1 + 0.8 𝑧−2 𝑌+(𝑧) + 4𝑧−1 + 8 + 𝑋+(𝑧) 

Transferring the terms containing the 𝑌+(𝑧) to the left member, we have: 

𝑌+(𝑧)[1 − 0.2𝑧−1 − 0.8𝑧−2] = 9 + 4𝑧−1 + 𝑋+(𝑧) 

The sequence 𝑥[𝑛] = (0.5)𝑛𝑢[𝑛] has a one-sided transformation 𝑋+(𝑧) where is given by 
the equation: 
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𝑋+(𝑧) =
1

1 − 0.5𝑧−1
 

So it holds: 

𝑌+(𝑧)[1 − 0.2𝑧−1 − 0.8𝑧−2] = (9 + 4𝑧−1) +
1

1 − 0.5𝑧−1
 

Solving for 𝑌+(𝑧) we have: 

𝑌+(𝑧) = 𝑌𝑧𝑖(𝑧) + 𝑌𝑧𝑠(𝑧) =
(9 + 4𝑧−1)

1 − 0.2𝑧−1 − 0.8𝑧−2
+

1
1 − 0.5𝑧−1

1 − 0.2𝑧−1 − 0.8𝑧−2
 (1) 

By adding the fractions and then factoring the denominator, we have: 

𝑌+(𝑧) =
10 − 0.5𝑧−1 − 2𝑧−2

(1 − 0.2𝑧−1 − 0.8𝑧−2)(1 − 0.5𝑧−1)
=

10 − 0.5 𝑧−1 − 2𝑧−2

(1 − 𝑧−1)(1 + 0.8𝑧−1)(1 − 0.5𝑧−1)
 

The region of convergence is |𝑧| > 1 and the poles of the system are 𝑧1 = 1, 𝑧2 =
−0.8, 𝑧3 = 0.5. Because one pole lies on the unit circle (and the rest are inside the unit 
circle) the system is marginally stable. 

For its development 𝑌+(𝑧) in some fractions we will need to calculate the remainders 
𝑅1, 𝑅2and 𝑅3: 

𝑌+(𝑧) =
𝑅1

1 − 𝑧−1
+

𝑅2

1 + 0.8𝑧−1
+

𝑅3

1 − 0.5𝑧−1
 

Since the poles are simple and distinct ( ), we 𝑧1 = 1, 𝑧2 = −0.8, 𝑧3 = 0.5 also 𝑅3 calculate 
remainders 𝑅1, 𝑅2 from the equation (9.38) and we have: 

𝑅1 =  [𝑌+(𝑧)(1 − 𝑧−1)]𝑧=1 = [
10 − 0.5 𝑧−1 − 2𝑧−2

(1 + 0.8𝑧−1)(1 − 0.5𝑧−1)
]

𝑧=1

=
25

3
 

𝑅2 =  [𝑌+(𝑧)(1 + 0.8𝑧−1)]𝑧=−0.8 = [
10 − 0.5 𝑧−1 − 2𝑧−2

(1 − 𝑧−1)(1 − 0.5𝑧−1)
]

𝑧=−0.8

=
80

39
 

𝑅3 =  [𝑌+(𝑧)(1 − 0.5𝑧−1)]𝑧=0.5 = [
10 − 0.5 𝑧−1 − 2𝑧−2

(1 − 𝑧−1)(1 + 0.8𝑧−1)
]

𝑧=0.5

= −
10

26
 

Therefore, its development 𝑌+(𝑧) in some fractions it is: 

𝑌+(𝑧) = (
25

3
)

1

1 − 𝑧−1
+ (

80

39
)

1

1 + 0.8𝑧−1
+ (−

10

26
)

1

1 − 0.5𝑧−1
 

Performing an inverse Z-transform yields the requested solution: 

𝑦[𝑛] =  (
25

3
) (1)𝑛𝑢[𝑛] + (

80

39
) (−0.8)𝑛𝑢[𝑛] + (−

10

26
) (0.5)𝑛𝑢[𝑛]

= [(
25

3
) + (

80

39
) (−0.8)𝑛 + (−

10

26
) (0.5)𝑛] 𝑢[𝑛] 

 

Comments: The overall solution can be expressed in the following ways: 

• As a sum of homogeneous solution and the partial solution : 

𝑦[𝑛] =  [(
25

3
) + (

80

39
) (−0.8)𝑛] 𝑢[𝑛] + (−

10

26
) (0.5)𝑛𝑢[𝑛] 

The homogeneous solution is due to the poles and the partial solution to the zeros 
of the input signal. 



8 

• As the sum of the transient state and the permanent state : 

𝑦[𝑛] =  [(
80

39
) (−0.8)𝑛 + (−

10

26
) (0.5)𝑛] 𝑢[𝑛] + (

25

3
) 𝑢[𝑛] 

The transient state is due to the poles (single or multiple) lying within the unit 
circle and the permanent state is due to the simple poles lying on the unit circle. If 
there are poles (single or multiple) outside the unit circle, then the response tends 
to infinity. 

• As the sum of the response zero entry (or initial state) and response zero initial 
state . Specifically, the above equation (1) is a sum of two terms. The first term can 
be written as: 

𝑌𝑧𝑖(𝑧) = 𝐻(𝑧) 𝑋𝑖𝑐(𝑧) 

represents the response for the given input, assuming a zero initial state and is 
called the zero-state response. The function 𝑋𝑖𝑐(𝑧) can be thought of as an equiva-
lent initial state input which produces the same output 𝑌𝑧𝑖(𝑧) that is created by the 
initial conditions. In our example and based on equation (1) it follows: 𝑥𝑖𝑐[𝑛] =
{9̂, 4}. 

The second term can be written as: 

𝑌𝑧𝑠(𝑧) = 𝐻(𝑧) 𝑋(𝑧) 

represents the response for zero input, with only the initial state applied, and is 
called the zero-input response. 

Calculating the inverse Z-Transform of equation (1), we have (equation 11.28): 

𝑦[𝑛] = 𝑦𝑧𝑖[𝑛] + 𝑦𝑧𝑠[𝑛] 

where 𝑦𝑧𝑖[𝑛] is the zero-input response and is given by: 

𝑦𝑧𝑖[𝑛] = (
65

9
) (1)𝑛𝑢[𝑛] + (

116

45
) (−0.8)𝑛𝑢[𝑛] = [(

65

9
) + (

116

45
) (−0.8)𝑛]  𝑢[𝑛] 

and 𝑦𝑧𝑠[𝑛] is the zero-state response, which is given by: 

𝑦𝑧𝑠[𝑛] = (
10

9
) (1)𝑛𝑢[𝑛] + (

32

117
) (−0.8)𝑛𝑢[𝑛] + (

5

13
) (0.5)𝑛𝑢[𝑛]

= [(
32

117
) (−0.8)𝑛 + (

5

13
) (0.5)𝑛 + (

10

9
)]  𝑢[𝑛] 

 

4. Solving Differential Equations 

 Example 6 

A continuous-time GHS system that is in a state of initial rest is described by GDESS: 

𝑑2𝑦(𝑡)

𝑑𝑡2
+ 5

𝑑𝑦(𝑡)

𝑑𝑡
+ 6𝑦(𝑡) = 𝑥(𝑡) 

To find the response of the system for input 𝑥(𝑡) = 𝑢[𝑡]. 

 

Answer: Applying Laplace transform to the differential equation we find: 

𝑠2𝑌(𝑠) + 5𝑠𝑌(𝑠) + 6𝑌(𝑠) = 𝑋(𝑠) =
1

𝑠

 
⇒ 𝑌(𝑠) =

1

𝑠(𝑠2 + 5𝑠 + 6)
= ⋯

= (
1

6
)

1

𝑠
− (

1

2
)

1

𝑠 + 2
+ (

1

3
)

1

𝑠 + 3
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Therefore the response for step input is: 

𝑦(𝑡) = [
1

6
−

1

2
𝑒−2𝑡 +

1

3
𝑒−3𝑡] 𝑢(𝑡) 

Applying the first and second derivative approximations given in relations (11.29) and 
(11.30) to the differential equation, we then set 𝑡 = 𝑛𝑇𝑠 and obtain: 

𝑦(𝑡) − 2𝑦(𝑡 − 𝑇𝑠) + 𝑦(𝑡 − 2𝑇𝑠)

𝑇𝑠
2 + 5

𝑦(𝑡) − 𝑦(𝑡 − 𝑇𝑠)

𝑇𝑠
+ 6𝑦(𝑡) = 𝑥(𝑡) 

 
⇒ (6 +

5

𝑇𝑠
+

1

𝑇𝑠
2) 𝑦(𝑡) − (−

5

𝑇𝑠
−

2

𝑇𝑠
2) 𝑦(𝑡 − 𝑇𝑠) + (

1

𝑇𝑠
2) 𝑦(𝑡 − 2𝑇𝑠) = 𝑥(𝑡) 

 
⇒ (6 +

5

𝑇𝑠
+

1

𝑇𝑠
2) 𝑦(𝑛𝑇𝑠) − (−

5

𝑇𝑠
−

2

𝑇𝑠
2) 𝑦((𝑛 − 1)𝑇𝑠) + (

1

𝑇𝑠
2) 𝑦((𝑛 − 2)𝑇𝑠) = 𝑥(𝑛𝑇𝑠)  

 
⇒ 𝑎1𝑦(𝑛𝑇𝑠) + 𝑎2𝑦((𝑛 − 1)𝑇𝑠) + 𝑎3𝑦((𝑛 − 2)𝑇𝑠) = 𝑏1𝑥(𝑛𝑇𝑠)  

where: 

𝑎1 = (6 +
5

𝑇𝑠
+

1

𝑇𝑠
2) , 𝑎2 = − (−

5

𝑇𝑠
−

2

𝑇𝑠
2) , 𝑎3 = (

1

𝑇𝑠
2) , 𝑏1 = 1 

The sampling period must have a sufficiently small value calculated according to the 
Nyquist criterion. For simplicity we set 𝑇𝑠 = 1 and get: 

𝑎1 = 12, 𝑎2 = 7, 𝑎3 = 1, 𝑏1 = 1 

so the following difference equation is obtained: 

12𝑦[𝑛] + 7𝑦[𝑛 − 1] + 𝑦[𝑛 − 2] = 𝑥[𝑛], 𝑛 > 0 

For zero initial conditions we have 𝑦[0] = 1/12 and from the final value theorem we find 
𝑦[𝑛] = 1/20 for 𝑛 → ∞. The Z-transform of the output is: 

𝑌(𝑧)(12 + 7𝑧−1 + 𝑧−2) =
1

1 − 𝑧−1

 
⇒ 𝑌(𝑧) =

𝑧3

(𝑧 − 1)(12𝑧2 + 7𝑧 + 1)
 

Calculating the inverse Z-transform by the method shown in Example 9.15, we find: 

𝑦[𝑛] = [
1

240
+

1

12
(

1

3
)

𝑛

−
1

20
(

1

4
)

𝑛

] 𝑢[𝑛] 

This solution is approximate and not exact because we chose a large value for the sam-
pling period 𝑇𝑠 = 1. Choosing a smaller value makes the solution more accurate. 


