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DIGITAL SIGNAL PROCESSING 

Solved Examples 
Teacher's Examples: M. Paraskevas 

 

SET #2 – Discrete Time Signals 

• Periodic Discrete-Time Signals 

• Even and Odd discrete-time signals 

• Energy Signals and Power Signals 

• Complex Exponential Sequence 

• Sine Sequence 

 

1. Periodic Discrete-Time Signals 

 Example 1 

The sampling of a continuous-time signal 𝑥(𝑡) = 𝑠𝑖𝑛(𝑡 + 𝜋/6) , −∞ < 𝑡 < ∞ with a 
sampling period 𝑇𝑠 = 1 𝑠𝑒𝑐. 

(a) To check if the signal 𝑥[𝑛] is periodic and if positive to calculate its fundamental 
period. 

(b) In the negative case, determine the values of the sampling period that satisfy the 
Nyquist criterion and make the signal periodic 𝑥[𝑛]. 

 

Answer: The discrete-time signal 𝑥[𝑛] is derived by sampling it 𝑥(𝑡) according to the 
equation: 

𝑥[𝑛] = 𝑥(𝑡)|𝑡=𝑛𝑇𝑠 = 𝑠𝑖𝑛(𝑛 + 𝜋/6) 

and has frequency ω = 1 𝑟𝑎𝑑. This value cannot be expressed in the form 2𝜋𝑚/𝛮 with 
positive integers 𝑚 that 𝑁are not divisible by each other, due to the existence of the im-
plicit 𝜋. Therefore, the signal 𝑥[𝑛] is not periodic. 

The frequency of the continuous-time signal 𝑥(𝑡) = 𝑠𝑖𝑛(𝑡 + 𝜋/6)is 𝛺0 = 1 𝑟𝑎𝑑/𝑠𝑒𝑐, so 
the sampling period according to the Nyquist criterion is: 

𝑇𝑠 ≤
𝜋

𝛺0
= 𝜋 

If we sample the continuous-time signal with a sampling period 𝑇𝑠 we get the discrete-
time signal: 

𝑥[𝑛] = 𝑥(𝑡)|𝑡=𝑛𝑇𝑠 = 𝑠𝑖𝑛(𝑛𝑇𝑠 + 𝜋/6) 

For this signal to be periodic, the equation must be satisfied: 

𝑠𝑖𝑛((𝑛 + 𝛮)𝑇𝑠 + 𝜋/6) = 𝑠𝑖𝑛(𝑛𝑇𝑠 + 𝜋/6) 
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that is, it is necessary for it to be valid 𝛮𝑇𝑠 = 2𝑘𝜋 for an integer 𝑘. Thus, the sampling 
period 𝑇𝑠 = 2𝑘𝜋/𝑁 ≤ 𝜋 must satisfy the Nyquist criterion and at the same time ensure 
the periodicity of the signal. For example, if we want a sine wave with a fundamental pe-
riod 𝛮 = 10, then 𝑇𝑠 = 𝑘𝜋/5 for a value of 𝑘 that satisfies the Nyquist criterion 

0 < 𝑇𝑠 =
𝑘𝜋

5
≤ 𝜋

 
⇒0 < 𝑘 ≤ 5 

From all possible values of 𝑘 we choose the values 1 and 3 that are not divisible by 𝛮 =
10 (we exclude 2 and 4 because they are divisible by 10). For 𝑘 = 1, which satisfies the 
Nyquist criterion and produces the discrete-time signal, it follows: 𝑇𝑠 = 𝜋/5 < 𝜋 

𝑥[𝑛] = 𝑠𝑖𝑛(𝑛𝜋/5 + 𝜋/6) = 𝑠𝑖𝑛 (
2𝑛𝜋

10
+
𝜋

6
) 

Accordingly 𝑇𝑠 = 3𝜋/5 < 𝜋, for 𝑘 = 3, which satisfies the Nyquist criterion and produces 
the discrete-time signal, we obtain: 

𝑥[𝑛] = 𝑠𝑖𝑛(3𝑛𝜋/5 + 𝜋/6) = 𝑠𝑖𝑛 (
2𝜋 𝑥 3

10
+
𝜋

6
) 

 

Comments: When we sample a continuous time sinusoidal signal: 

𝑥(𝑡) = 𝐴 𝑐𝑜𝑠(𝛺0𝑡 + 𝜃),  − ∞ < 𝑛 < ∞ 

we get a periodic discrete-time sinusoidal signal: 

𝑥[𝑛] = 𝐴 𝑐𝑜𝑠(𝛺0𝑛𝑇𝑠 + 𝜃) = 𝐴𝑐𝑜𝑠 (
2𝜋𝑇𝑠
𝑇0

𝑛 + 𝜃) 

only if: 

𝑇𝑠
𝑇0
=
𝑚

𝑁
 

where 𝑚 and 𝑁are positive integers that are not divisible by each other. In order for 
the phenomenon of frequency folding not to appear, the sampling period must also sat-
isfy the Nyquist criterion: 

𝑇𝑠 ≤
𝜋

𝛺0
=
𝛵0
2

 

 

2. Even and Odd Discrete Time Signals 

 Example 2 

To calculate the even and the odd part of the discrete-time signal 𝑥[𝑛] = 𝑢[𝑛] 

Answer: The even part is given by the equation: 

𝑥𝑒[𝑛] =
1

2
[𝑥[𝑛] + 𝑥[−𝑛]]  =

1

2
[𝑢[𝑛] + 𝑢[−𝑛]] = {

1, 𝑛 = 0
1

2
, 𝑛 ≠ 0

 =
1

2
+ 𝛿[𝑛] 

The odd part is given by the equation: 

𝑥𝑜[𝑛] =
1

2
[𝑥[𝑛] − 𝑥[−𝑛]] =

1

2
[𝑢[𝑛] − 𝑢[−𝑛]] =

{
 
 

 
 
1

2
, 𝑛 > 0

0, 𝑛 = 0

−
1

2
, 𝑛 < 0

 =
1

2
 sgn(𝑛) 
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where sgn(𝑛) is the sign function, which returns: +1 when 𝑛 > 0, 0 when 𝑛 = 0 and 1 
when 𝑛 < 0. 

 

 

 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 
 

(a) Unit step sequence 𝑢[𝑛], (b) Even part 𝑢𝑒[𝑛], (c) Odd part𝑢𝑜[𝑛] 

 

 Example 3 

Find the conjugate symmetric (even) and the conjugate antisymmetric (odd) part of 
the complex signal 𝑥[𝑛] = 𝑗𝑒  𝑗𝜋/4. 

 

Answer: Its conjugate symmetric part 𝑥[𝑛] is: 

𝑥𝑒[𝑛] =
1

2
[𝑥[𝑛] + 𝑥∗[−𝑛]] =

1

2
[ 𝑗𝑒𝑗𝜋/4 − 𝑗𝑒𝑗𝜋/4] = 0 

The antisymmetric conjugate is: 

𝑥𝑒[𝑛] =
1

2
[𝑥[𝑛] − 𝑥∗[−𝑛]] =

1

2
[ 𝑗𝑒𝑗𝜋/4 + 𝑗𝑒𝑗𝜋/4] = 𝑗𝑒𝑗𝜋/4 

So, the signal is conjugate antisymmetric (odd). 

 

3. Energy Signals and Power Signals 

 Example 4 

To examine whether the signal 𝑥[𝑛] = 0.5𝑛𝑢[𝑛] is an energy or power signal or both. 

 

Answer: The signal energy 𝑥[𝑛] is calculated from the equation:  

𝐸𝑥 = ∑ 0.5𝑛𝑢[𝑛] =

∞

𝑛=−∞

∑0.5𝑛
∞

𝑛=0

=
1

1 − 0.5
=

1

0.5
= 2 

So it is an energy signal. The average signal strength is zero, as follows from the equation: 
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𝑃 = 𝑙𝑖𝑚
𝑁→∞

1

2𝑁 + 1
𝐸𝑥 = 𝑙𝑖𝑚

𝑁→∞

1

2𝑁 + 1
2 = 0 

 

4. Complex Exponential Sequence 

 Example 5 

Calculate for which values of the parameters 𝛽, 𝛺0 και 𝑇𝑠 a discrete-time signal  
𝑦[𝑛] = 𝑎𝑛 cos(𝑛𝜔0) , 𝑛 ≥ 0 is obtained from the continuous-time signal  
𝑥(𝑡) = 𝑒−𝛽𝑡 cos(𝛺0𝑡) 𝑢(𝑡).  

Answer: If we sample the continuous time signal with a sampling period 𝑇𝑠 we get: 

𝑥(𝑛𝑇𝑠) = 𝑥(𝑡)|𝑡=𝑛𝑇𝑠 = 𝑒
−𝛽𝑛𝑇𝑠 cos(𝛺0𝑛𝑇𝑠) 𝑢[𝑛] = (𝑒

−𝛽𝑇𝑠)
𝑛
cos((𝛺0𝑇𝑠)𝑛)𝑢[𝑛] 

Comparing the sampled signal 𝑥(𝑛𝑇𝑠) with 𝑦[𝑛] we find that they are equal when: 

𝛼 = 𝑒−𝛽𝑇𝑠   (1)   and  𝛺0𝑇𝑠 = 𝜔0 (2) 

In these equations we have two known parameters 𝛼 𝑎𝑛𝑑 𝜔0 and three unknown ones 
𝛽, 𝛺0 και 𝑇𝑠. So, no unique solution can emerge. However according to the Nyquist crite-
rion the sampling period must satisfy the equation: 

𝑇𝑠 ≤
𝜋

𝛺𝑚𝑎𝑥
 

Assuming that the maximum frequency is 𝛺𝑚𝑎𝑥 = 𝑁𝛺0, για 𝛮 ≥ 2 we have: 

𝑇𝑠 =
𝜋

𝛮𝛺0
 

Substituting it 𝑇𝑠 into equations (1) and (2) we get: 

𝛼 = 𝑒−𝛽𝜋/𝛮𝛺0   (3)   and    𝜔0 =
𝜋

𝛮
 (4) 

From equation (4) we have 𝛮 = 𝜋/𝜔0. Substituting 𝛮 into equation (3), we solve for 𝛽 
and find: 

𝛽 = −
𝛺0
𝜔0
log 𝑎 

Considering 𝛺0 = 2𝜋, 𝜔0 = 𝜋 and 𝛼 = 0.8, we find 𝛽 = −2 log 0.8 and 𝑇𝑠 = 𝜔0/𝛺0 =
𝜋/2𝜋 = 0.5. 

 

5. Sine Sequence 

 Example 6 

To examine whether sinusoidal sequences of infinite duration ( −∞ < 𝑛 < ∞) are pe-
riodic: 

(a)𝑥1[𝑛] = 𝑠𝑖𝑛(0.1𝜋𝑛)    (b)𝑥2[𝑛] = 𝑠𝑖𝑛(0.2𝜋𝑛)  

(c) 𝑥3[𝑛] = 𝑠𝑖𝑛(0.6𝜋𝑛)   (d)𝑥4[𝑛] = 𝑠𝑖𝑛(0.7𝜋𝑛) 

Can these sequences be sampled versions of the corresponding continuous-time func-
tions? 

Answer: The given sequences are written: 

𝑥1[𝑛] = 𝑠𝑖𝑛(0.1𝜋𝑛) = sin (
2𝜋

20
𝑛) 



5 

𝑥2[𝑛] = 𝑠𝑖𝑛(0.2𝜋𝑛)= sin (
2𝜋

20
2𝑛) 

𝑥3[𝑛] = 𝑠𝑖𝑛(0.6𝜋𝑛) = sin (
2𝜋

20
6𝑛) 

𝑥4[𝑛] = 𝑠𝑖𝑛(0.7𝜋𝑛) = sin (
2𝜋

20
7𝑛) 

Therefore, the sequences are periodic and harmonically connected to each other. 

  

Sine sequence for different frequency values of 𝑓0 

 

In the figure above, their graphical representations are shown. Plotting the four se-
quences shows that the first two, namely 𝑥1[𝑛] and 𝑥2[𝑛] are the sampled versions of the 
corresponding continuous-time functions. But this does not apply to the sequences 𝑥3[𝑛] 
and 𝑥4[𝑛]. It would be wrong to assume that this is due to a violation of the Nyquist rule, 
i.e. due the incorrect sampling rate. 

Let's explain why this happens: To obtain the discrete sequence we must 𝑠𝑖𝑛(𝜔0𝑛) sam-
ple the 𝑇𝑠 = 1 continuous-time function with a sampling period 𝑠𝑖𝑛(𝛺0𝑡) according to the 
Nyquist condition: 

𝑇𝑠 = 1 ≤
𝜋

𝛺0
 

where 𝜋/𝛺0 is the maximum allowed value of the sampling period for which the aliasing 
does not occur. For the sequence 𝑥3[𝑛] = 𝑠𝑖𝑛(0.6𝜋𝑛) = 𝑠𝑖𝑛(0.6𝜋𝑡)|𝑡=𝑛𝑇𝑠=𝑛 when 𝑇𝑠 = 1, 

it holds: 

𝑇𝑠 = 1 ≤
𝜋

0.6 𝜋
≈ 1,66 

Conversely, in the case of the sequence 𝑥2[𝑛] we have: 𝑥2[𝑛] = 𝑠𝑖𝑛(0.2𝜋𝑛) =
𝑠𝑖𝑛(0.2𝜋𝑡)|𝑡=𝑛𝑇𝑠=𝑛when 𝑇𝑠 = 1, then we have: 

𝑇𝑠 = 1 ≤
𝜋

0.2 𝜋
= 5 
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Therefore, generating the sequence 𝑥2[𝑛] is done by taking a larger number of samples 
from the function 𝑠𝑖𝑛(0.2𝜋𝑡), than generating the sequence 𝑥3[𝑛] from the function 
𝑠𝑖𝑛(0.6𝜋𝑡), using in both cases the same sampling period. This results in the sequence 
𝑥2[𝑛]being more like an analog sine wave than 𝑥3[𝑛], but in both cases no aliased fre-
quency occurs. 

 

Comments: 

• The analog frequency 𝛺 of analog sines varies in the range [0, ∞), while the discrete 
(digital) frequencies 𝜔 are radial and vary in the range [0, 𝜋]. 

• Negative frequencies are needed in the analysis of real - valued signals and thus we 
end up with frequency ranges: (a) for continuous-time signals: −∞ < 𝛺 < ∞ and 
(b) for discrete-time signals: –𝜋 < 𝜔 ≤ 𝜋. 

 

 Example 7 

Check whether the following sequences of infinite duration are periodic: 

(a) 𝑥1[𝑛] = 𝑒
𝑗(𝜋𝑛/2+𝜋/4) (b) 𝑥2[𝑛] = 𝑒

−𝑗𝜋𝑛/8 + 𝑒−𝑗𝑛/2 (c) 𝑥3[𝑛] = 𝑒
−𝑗𝜋𝑛/2 + 𝑒−𝑗𝜋𝑛/2 

If positive, calculate the period. 

 

Answer: (a) From the Euler equation we have: 

𝑥1[𝑛] = cos(𝜋𝑛/2 + 𝜋/4) + 𝑗 sin(𝜋𝑛/2 + 𝜋/4) 

The frequency of the cosine and the sine is 𝜔1 = 𝜋/2 = (1/4)2𝜋, that is, 𝑚 = 1 and  
𝛮 = 4, so the frequency is expressed as a quotient of positive integers that are not divisi-
ble by each other. So the given sine and cosine and their sum are periodic sequences with 
fundamental period 𝛮 = 4 samples. 

 

(b) We have: 

𝑥2[𝑛] = 𝑒
−𝑗𝜋𝑛/8 + 𝑒−𝑗𝑛/2 = cos(𝜋𝑛/8) − 𝑗 sin(𝜋𝑛/8) + cos(𝑛/2) − 𝑗 sin(𝑛/2) 

The frequency of the first cosine and sine pair can be expressed as a quotient of integers 
that are not divided by each other. But, this is not true for the frequency of the second 
cosine and sine, for which is 𝜔2 = 𝑛/2 = (1/4𝜋)2𝜋, that is, 𝑚 = 1and 𝛮 = 4𝜋. Since N is 
an irrational number, it follows that the second pair is not periodic, so the overall se-
quence is not periodic. 

 

(c) The sequence is written: 

𝑥3[𝑛] = 𝑒
−𝑗𝜋𝑛/4 + 𝑒−𝑗𝜋𝑛/4 =

1

2
cos (

𝜋𝑛

4
) 

Since 𝜔3 = 𝜋/4 = (1/8) 2𝜋, that is, 𝑚 = 1and 𝛮 = 8, the sequence is periodic with fun-
damental period 𝛮 = 16 samples. 

 


