
1 

 

 

DIGITAL SIGNAL PROCESSING 

Solved Examples 
Prof. Michael Paraskevas 

 

SET #1 – Analog to Digital Signal Conversion 

• Sampling 

• Quantization 

 

1. Sampling 

 Example 1 

If the Nyquist rate for the signal 𝑥(𝑡) is 𝛺𝑠, what is the Nyquist rate for the signals: 

  (a) 𝑦(𝑡) = 𝑑𝑥(𝑡)/𝑑𝑡    (b)𝑦(𝑡) = 𝑥(𝑡) cos(𝛺0𝑡) 

  (c) 𝑦(𝑡) = 𝑥(𝑡) 𝑥(𝑡)    (d)𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑥(𝑡) 

 

Answer: (a) From the derivative property of the Fourier transform (see Table 4.1) we 
know that: 

𝑌(𝛺) = 𝑗Ω 𝑋(𝛺) 

Since no change in the frequency field results from the above equation, we conclude that 
the Nyquist rate of the signal 𝑦(𝑡) is the same as that of the signal 𝑥(𝑡). 

 

(b) We know that when we multiply a signal 𝑥(𝑡) with a sinusoidal function cos(Ω0𝑡), a 
modulation occurs and the signal spectrum 𝑥(𝑡) is shifted by ±𝛺0, as its 𝑦(𝑡) Fourier 
transform is: 

𝑌(𝛺) =
1

2
[𝛸(𝛺 − 𝛺0) + 𝑋(𝛺 + 𝛺0)] 

Therefore, the Nyquist rate of the signal 𝑦(𝑡) is 𝛺𝑠 + 2𝛺0. 

 

(c) From the time multiplication property of the Fourier transform (see Table 4.1) we 
know that: 

𝑌(𝛺) =
1

2𝜋
 [𝑋(𝛺) ∗ 𝑋(𝛺)] 

We also know that the convolution of two functions defined on finite intervals of the in-
dependent variable (frequency Ω, in the present case) produces a function defined on an 
interval that is the sum of the edges of the intervals of definition of the original functions. 
Since signal 𝑥(𝑡) is defined in the interval [−𝛺𝑠, 𝛺𝑠], it follows that signal 𝑥(𝑡) is defined 
in the interval [−2𝛺𝑠, 2𝛺𝑠]. Consequently, the Nyquist rate of the signal 𝑦(𝑡) is four times 
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that of the signal 𝑥(𝑡). 

 

(d) From the convolution property of the Fourier transform (see Table 4.1) we know that: 

𝑌(𝛺) =  𝑋(𝛺)𝑋(𝛺) 

Therefore, the Nyquist rate of the signal 𝑦(𝑡) is twice that of the signal 𝑥(𝑡). 

 

 Example 2 

Calculate the Nyquist rate for the following signals: 

 (a) 𝑥(𝑡) = 𝑠𝑖𝑛𝑐2(100𝜋𝑡)  (b) 𝑥(𝑡) = 𝑠𝑖𝑛𝑐(100𝜋𝑡) ∗ 𝑠𝑖𝑛𝑐(200𝜋𝑡) 

Answer: To answer the questions we need to calculate the maximum frequency of each 
signal. We will use the Fourier transform and the findings: 

𝑟𝑒𝑐𝑡 (
𝑡

𝑇
)

 𝐹 
↔  𝑇 𝑠𝑖𝑛𝑐(𝑓𝑇) 𝑇 𝑠𝑖𝑛𝑐(𝑡𝑇)

 𝐹 
↔ 𝑟𝑒𝑐𝑡 (

𝑓

𝑇
) 

𝑡𝑟𝑖 (
𝑡

𝑇
)

 𝐹 
↔  𝑇 𝑠𝑖𝑛𝑐2(𝑓𝑇) 𝛵 𝑠𝑖𝑛𝑐2(𝑡𝛵)

 𝐹 
↔ 𝑡𝑟𝑖 (

𝑓

𝑇
) 

Its 𝑥(𝑡) = 𝑠𝑖𝑛𝑐2(100𝜋𝑡) Fourier transform is: 

𝑠𝑖𝑛𝑐2(100𝜋𝑡)
 𝐹 
↔ 𝑡𝑟𝑖 (

𝑓

100𝜋
) 

Therefore, the spectrum is triangular with range [−100𝜋, 100𝜋]. Since the maximum fre-
quency of the signal is it follows that the 100𝜋 Nyquist rate is 200𝜋. 

 

Its 𝑠𝑖𝑛𝑐(100𝜋𝑡) ∗ 𝑠𝑖𝑛𝑐(200𝜋𝑡) Fourier transform is: 

𝑠𝑖𝑛𝑐(100𝜋𝑡) ∗ 𝑠𝑖𝑛𝑐(200𝜋𝑡)
 𝐹 
↔

1

100𝜋
𝑟𝑒𝑐𝑡 (

𝑓

100𝜋
) 

1

200𝜋
𝑟𝑒𝑐𝑡 (

𝑓

200𝜋
) 

Therefore, the spectrum is the product of two square spectra with amplitudes 
[−50𝜋, 50𝜋] the first and [−100𝜋, 100𝜋] the second. So, the resulting spectrum width is 
[−50𝜋, 50𝜋] and the maximum frequency of the signal is 50𝜋 and the Nyquist rate is 100𝜋. 

 

 Example 3 

An analog signal is created by combining sinusoidal signals at frequencies 𝑓1 =
15 𝐻𝑧, 𝑓2 = 60 𝐻𝑧, 𝑓3 = 220 𝐻𝑧 και 𝑓4 = 310 𝐻𝑧. It is sampled with a frequency of 100 
Hz. 

(a) Which are the aliased frequencies? 

(b) The sampled signal is passed through an ideal low-pass filter with cutoff frequency 
𝑓𝑐 = 35 𝐻𝑧. What frequencies will appear in the reconstructed signal? 

Answer: (a) Because the sampling frequency 𝑓𝑠 = 100 𝐻𝑧 we used is less than the Nyquist 
frequency 𝑓𝑁 = 2𝑓𝑚𝑎𝑥 = 2 𝑥 310 𝐻𝑧 = 620 𝐻𝑧, i.e. the Nyquist criterion is not satisfied, it 
follows that the aliasing effect will appear. For sampling frequency 𝑓𝑠 = 100 𝐻𝑧 the 
Nyquist criterion is satisfied only for the sine signal of frequency 𝑓1 = 15 𝐻𝑧. Therefore, 
only for this frequency the aliasing phenomenon will not appear, as well as for any other 
frequencies that existed in the region [−𝑓𝑠/2, 𝑓𝑠/2] = [−50𝐻𝑧, 50 𝐻𝑧]. The frequencies of 
the remaining sine signals do not satisfy the Nyquist criterion, so they will generate 
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aliased frequencies based on the equation 𝑓𝑖
′ = 𝑓𝑖 − 𝑘𝑓𝑠, where 𝑘an integer is chosen that 

leads to a result within the range [−𝑓𝑠/2, 𝑓𝑠/2]. So is: 

𝑓2
′ = 𝑓2 − 𝑘𝑓𝑠 = 60 − 𝑘100 = 60 − 1𝑥100 = −40𝐻𝑧 

𝑓3
′ = 𝑓3 − 𝑘𝑓𝑠 = 220 − 𝑘100 = 220 − 2𝑥100 = 20𝐻𝑧 

𝑓4
′ = 𝑓4 − 𝑘𝑓𝑠 = 310 − 𝑘100 = 310 − 3𝑥100 = 10𝐻𝑧 

Therefore, the frequencies 𝑓2 = 60 𝐻𝑧, 𝑓3 = 140 𝐻𝑧 και 𝑓4 = 310 𝐻𝑧 will produce aliasing 
frequencies within the range [−50𝐻𝑧, 50 𝐻𝑧] namely the frequencies 𝑓2

′ = −40 𝐻𝑧, 𝑓3
′ =

20 𝐻𝑧 and 𝑓4′ = 10 𝐻𝑧 as well as their mirrors. So, in the frequency domain [0𝐻𝑧, 50 𝐻𝑧] 
there will be the frequencies 𝑓4

′ = 10 𝐻𝑧, 𝑓1 = 15𝐻𝑧, 𝑓3
′ = 20 𝐻𝑧 and 𝑓2

′ = 40 𝐻𝑧. 

 

(b) The ideal low-pass filter with a cut-off frequency 𝑓𝑐 = 35 𝐻𝑧 will pass only the fre-
quencies 𝑓4

′ = 10 𝐻𝑧, 𝑓1 = 15𝐻𝑧, 𝑓3
′ = 20 𝐻𝑧. We notice that only the frequency 𝑓1 =

15𝐻𝑧 was present in the original signal, while the frequencies 𝑓4
′ = 10 𝐻𝑧 and 𝑓3

′ = 20 𝐻𝑧 
are aliased due to low sampling rate. 

 

 Example 4 

The analog signal is given 𝑥𝑎(𝑡) = 2𝑐𝑜𝑠(200𝜋𝑡). 

(a) Determine the Nyquist frequency and the minimum value of the sampling fre-
quency. 

(b) Write the discrete-time signal if the analog signal is sampled with a sampling fre-
quency of 400 Hz. Calculate the frequency of the discrete time signal. 

(c) Same as (b) but for a sampling frequency of 150 Hz. 

 

Answer: (a) The frequency of the analog signal is 2𝜋𝑓 = 200𝜋
 

⇒ 𝑓 = 100 𝐻𝑧. Hence, the 
Nyquist frequency is 𝑓𝑁 = 2𝑓 = 200 𝐻𝑧 and this is the minimum acceptable value of the 
sampling frequency, for which the frequency aliasing effect will not occur. 

 

(b) For a sampling frequency 𝑓𝑠 = 400 𝐻𝑧 (i.e., sampling period 𝑇𝑠 = 1/400 𝑠𝑒𝑐), the dis-
crete-time signal is: 

𝑥(𝑛) = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇𝑠 = 2𝑐𝑜𝑠
200𝜋

400
𝑛 = 2 cos

𝜋

2
𝑛 

 

The frequency of this signal can be calculated as follows: 

𝜔 =
𝜋

2

 
⇒ 𝛺𝛵𝑠 =

𝜋

2

 
⇒ 2𝜋𝑓

1

𝑓𝑠
=

𝜋

2

 
⇒ 𝑓 =

𝑓𝑠

4

 
⇒ 𝑓 =

400

4
= 100 𝐻𝑧 

We notice that the discrete-time signal has the same frequency as the continuous-time 
signal, which is due to the choice of sampling frequency that satisfies the Nyquist crite-
rion. 

 

(c) For a sampling frequency 𝑓𝑠 = 150 𝐻𝑧 (i.e., sampling period 𝑇𝑠 = 1/150 𝑠𝑒𝑐), the dis-
crete-time signal is: 
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𝑥(𝑛) = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇𝑠 = 2𝑐𝑜𝑠
200𝜋

150
𝑛 = 2 cos

4𝜋

3
𝑛

= 2 cos (2𝜋 −
2𝜋

3
) 𝑛 = 2 cos

2𝜋

3
𝑛 

The frequency of the signal is: 

𝜔 =
2𝜋

3

 
⇒ 𝛺𝛵𝑠 =

2𝜋

3

 
⇒ 2𝜋𝑓

1

𝑓𝑠
=

2𝜋

3

 
⇒ 𝑓 =

𝑓𝑠

3

 
⇒ 𝑓 =

150

3
= 50 𝐻𝑧 

We notice that the discrete-time signal has a different frequency (aliased) than the con-
tinuous-time signal, which is due to the improper sampling frequency. 

 

 Example 5 

(a) The analog signal 𝑥𝑎(𝑡) = 2𝑐𝑜𝑠(20𝜋𝑡) cos(30𝜋𝑡) + sin(40𝜋𝑡) is sampled at a rate 
of 20 samples per second. Determine the resulting discrete time signal. 

(b) Repeat question (a) for a sampling rate of 50 samples per second. 

 

Answer: (a) We will express the given signal as a sum of sinusoidal functions. The product 
𝑐𝑜𝑠(20𝜋𝑡)cos(30πt) is written1: 

2𝑐𝑜𝑠(20𝜋𝑡) 𝑐os(30πt) = cos(50𝜋𝑡) + cos(10𝜋𝑡) 

So the analog signal is 𝑥𝑎(𝑡) = cos(50𝜋𝑡) + cos(10𝜋𝑡) + sin(40𝜋𝑡) and contains the fre-
quencies 𝑓1 = 25 𝐻𝑧, 𝑓2 = 5 𝐻𝑧 και 𝑓3 = 20 𝐻𝑧. The Nyquist frequency is 𝑓𝑁 = 2𝑥25 𝐻𝑧 =
50 𝐻𝑧. The discrete-time signal resulting from sampling with frequency 𝑓𝑠 = 20 𝐻𝑧 (𝑇𝑠 =
1/20 𝑠𝑒𝑐), is: 

𝑥(𝑛) = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇𝑠

= cos (
50𝜋

20
𝑛) + cos (

10𝜋

20
𝑛) + sin (

40𝜋

20
𝑛)

= cos (
5𝜋

2
𝑛) + cos (

𝜋

2
𝑛) + sin(2𝜋𝑛) = ⋯

= 0 

The sampling frequency chosen does not satisfy the Nyquist criterion and the frequencies 
produced resulted in a zero-signal value. 

 

(b) The discrete-time signal resulting from sampling with frequency 𝑓𝑠 = 50 𝐻𝑧 (𝑇𝑠 =
1/50 𝑠𝑒𝑐), is: 

𝑥(𝑛) = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇𝑠 = cos (
50𝜋

50
𝑛) + cos (

10𝜋

50
𝑛) + sin (

40𝜋

50
𝑛) 

= cos(𝜋𝑛) + cos (
𝜋

5
𝑛) + sin (

4𝜋

5
𝑛) 

The frequency of the component cos(𝜋𝑛) is: 

𝜔1 = 𝜋
 

⇒ 𝛺1𝛵𝑠 = 𝜋
 

⇒ 2𝜋𝑓1

1

𝑓𝑠
= 𝜋

 
⇒ 𝑓1 =

𝑓𝑠

2

 
⇒ 𝑓1 =

50

2
= 25 𝐻𝑧 

The frequency of the component cos(𝜋𝑛/5) is: 

                                           
1We used the well-known equation: 𝑐𝑜𝑠𝐴 𝑐os𝐵 = (1/2)[cos(𝐴 + 𝐵) + cos(𝐴 − 𝐵)] 
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𝜔2 =
𝜋

5

 
⇒ 𝛺2𝛵𝑠 =

𝜋

5

 
⇒ 2𝜋𝑓2

1

𝑓𝑠
=

𝜋

5

 
⇒ 𝑓2 =

𝑓𝑠

10

 
⇒ 𝑓2 =

50

10
= 5 𝐻𝑧 

The frequency of the component cos(4𝜋𝑛/5) is: 

𝜔3 =
4𝜋

5

 
⇒ 𝛺3𝛵𝑠 =

4𝜋

5

 
⇒ 2𝜋𝑓3

1

𝑓𝑠
=

4𝜋

5

 
⇒ 𝑓3 =

2𝑓𝑠

5

 
⇒ 𝑓3 =

100

5
= 20 𝐻𝑧 

We notice that the frequencies of the discrete-time signal are the same as the frequencies 
of the analog signal, which is because the sampling frequency chosen satisfies the Nyquist 
criterion. 

 

2. Quantization 

 Example 6 

The analog signal is given: 

𝑥𝑎(𝑡) = −
3

2
+ 𝑐𝑜𝑠(100𝜋𝑡)cos(200πt) +

1

2
sin (200𝜋𝑡 −

𝜋

2
) + cos (300𝜋𝑡) 

(a) Determine the Nyquist frequency and the minimum acceptable value of the sam-
pling frequency. 

(b) What frequencies will result if the analog signal is sampled at a sampling frequency 
of 150 Hz. 

(c) What is the discrete-time signal that will result from question (b)? 

(d) If the signal amplitude is expressed in volts and each sample of the discrete signal 
is quantized to 8 bits, how many volts does the quantization step correspond to? 

 

Answer: (a) To determine the Nyquist frequency, the maximum frequency of the signal 
must be found. For this reason, we will express the given signal as a sum of sinusoidal 
functions. The product 𝑐𝑜𝑠(100𝜋𝑡)cos(200πt) is written2: 

𝑐𝑜𝑠(100𝜋𝑡) 𝑐os(200πt) =
1

2
[cos(300𝜋𝑡) + cos(100𝜋𝑡)] 

So, the analog signal is written: 

𝑥𝑎(𝑡) = −
3

2
+

1

2
cos(300𝜋𝑡) +

1

2
cos(100𝜋𝑡) +

1

2
sin (200𝜋𝑡 −

𝜋

2
) + cos(300𝜋𝑡)

= −
3

2
+

1

2
cos(100𝜋𝑡) +

1

2
sin (200𝜋𝑡 +

𝜋

2
) +

3

2
cos(300𝜋𝑡)  (1) 

Therefore, the frequencies of the signal are: 𝑓1 = 0 𝐻𝑧, 𝑓2 = 50 𝐻𝑧, 𝑓3 = 100 𝐻𝑧 and 𝑓4 =
150 𝐻𝑧. So the Nyquist frequency and minimum acceptable value of the sampling fre-
quency is: 

𝑓𝑠(𝑚𝑖𝑛) = 𝑓𝑁 = 2𝑓4 = 300 𝐻𝑧 

 

(b) For sampling frequency 𝑓𝑠 = 150 𝐻𝑧, only frequencies 𝑓1 = 0 𝐻𝑧 και 𝑓2 = 50 𝐻𝑧, that 
lie within the range will be correctly represented [−𝑓𝑠/2, 𝑓𝑠/2] = [−75𝐻𝑧, 75 𝐻𝑧]. The 
frequencies 𝑓3 = 100 𝐻𝑧 και 𝑓4 = 150 𝐻𝑧will be convoluted and appear to correspond to 
the pseudo-labeled frequencies: 

                                           
2We used the well-known relation:𝑐𝑜𝑠𝐴 𝑐os𝐵 = (1/2)[cos(𝐴 + 𝐵) + cos(𝐴 − 𝐵)] 
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𝑓3
′ = 𝑓3 − 𝑘𝑓𝑠 = 100 − 150 = −50𝐻𝑧 

𝑓4
′ = 𝑓4 − 𝑘𝑓𝑠 = 150 − 150 = 0𝐻𝑧 

Based on the above, it follows that the sampled signal will contain a continuous compo-
nent (0 𝐻𝑧) and a sinusoidal frequency component 50 𝐻𝑧, i.e. the frequencies 100 𝐻𝑧 and 
150 𝐻𝑧 will no longer appear in the sampled signal. 

 

(c) For a sampling frequency 𝑓𝑠 = 150 𝐻𝑧 (i.e., sampling period 𝑇𝑠 = 1/150 𝑠𝑒𝑐), the dis-
crete-time signal is: 

𝑥(𝑛) = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇𝑠

= −
3

2
+

1

2
cos (

100𝜋

150
𝑛) +

1

2
sin (

200𝜋

150
𝑛 −

𝜋

2
) +

3

2
cos (

300𝜋

150
𝑛)

= −
3

2
+

1

2
cos (

2𝜋

3
𝑛) +

1

2
cos (

4𝜋

3
𝑛) +

3

2
cos(2𝜋𝑛)

= −
3

2
+

1

2
cos (

2𝜋

3
𝑛) +

1

2
cos (2𝜋 −

2𝜋

3
𝑛) +

3

2

=
1

2
cos (

2𝜋

3
𝑛) +

1

2
cos (

2𝜋

3
𝑛) = cos (

2𝜋

3
𝑛) 

The frequency of this signal can be calculated as follows: 

𝜔 =
2𝜋

3

 
⇒ 𝛺𝛵𝑠 =

2𝜋

3

 
⇒ 2𝜋𝑓

1

𝑓𝑠
=

2𝜋

3

 
⇒ 𝑓 =

𝑓𝑠

3

 
⇒ 𝑓 =

150

3
= 50 𝐻𝑧 

 

(d) From equation (1) it follows that the analog signal takes a maximum value of +1 Volt 
(when each trigonometric term takes a value of +1) and a minimum value of -4 Volts 
(when each trigonometric term takes a value of -1). Therefore, the dynamic range of the 
analog signal is 5 Volts and the quantization step Δ is calculated as: 

𝛥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

2𝐿 − 1
=

1 − (−4)

28 − 1
=

5

255
= 19,61 𝑚𝑉 

Usually quantizers work assuming that the amplitude values of the signal are symmet-
rical, i.e. ±5 𝑉, ±10𝑉, 𝑒𝑡𝑐. In the case of the above signal that the amplitude of the signal 
ranges from +1 Volt to -4 Volts we have to use a quantizer ±5 𝑉. So the quantization step 
for an 8 bits converter is: 

𝛥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

2𝐿 − 1
=

10

28 − 1
=

10

255
= 39,22 𝑚𝑉 

 

 

 Example 7 

(a) An analog signal is sampled at the Nyquist rate 𝑓𝑠and quantized into 𝐿 levels. Calcu-
late the time duration (τ) of 1 bit of the signal encoded in binary. 

(b) If each sample of a quantized analog signal must be known to within ±0.5% of the 
peak-to-peak value, how many bits must each sample be represented by? 

 

Answer: (a) Let 𝛣 is the number of bits per sample. Then, it holds: 

𝛣 = [𝑙𝑜𝑔2𝐿] 
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Where [𝑙𝑜𝑔2𝐿] indicates the next largest integer that will be taken if is 𝑙𝑜𝑔2𝐿 not an integer 
value. 

Binary pulses per sec must be transmitted 𝑛𝑓𝑠. Thus, we will have: 

𝜏 =
1

𝑛𝑓𝑠
=

𝛵𝑠

𝑛
=

𝛵𝑠

[𝑙𝑜𝑔2𝐿]
 

where 𝛵𝑠 is the sampling period. 

 

(b) Suppose that the peak - to - peak value of the signal is 2 𝑚𝑝. Then the maximum error 

is 0.005 (2 𝑚𝑝) = 0.01 𝑚𝑝, and the peak error is 2(0.01 𝑚𝑝) = 0.02 𝑚𝑝 and corresponds 

to the maximum quantization step size 𝛥. The required number of quantization stations 
is: 

𝐿 =
2𝑚𝑝

𝛥
 = 

2 𝑚𝑝

0,02 𝑚𝑝
= 100 ≤ 2𝑛 

Consequently, the number of bits needed for each sample is 𝑛 = 7. 

 

Example 8 

The analog signal is given: 

𝑥(𝑡) = 𝛿(𝑡) −
10

2𝜋
𝑠𝑖𝑛𝑐2 (

10

2𝜋
) 

(a) Calculate the minimum sampling frequency for the signal 𝑥(𝑡). 

The signal 𝑥(𝑡) is passed through an ideal low-pass filter 𝐻𝐿𝑃𝐹(𝛺) and the output of the 
filter is the signal 𝑦(𝑡). 

𝐻𝐿𝑃𝐹(𝛺) = 𝑟𝑒𝑐𝑡 (
𝛺

20
)  

(b1) Calculate the impulse response ℎ𝐿𝑃𝐹(𝑡) of the filter. 

(b2) Calculate and plot the amplitude spectrum 𝑌(𝛺). 

(b3) Calculate the signal 𝑦(𝑡), without using convolution. 

Next, the analog signal is converted 𝑦(𝑡) to digital through an A/D converter. 

(c1) Calculate the minimum sampling frequency for the signal 𝑦(𝑡). 

(c2) The signal 𝑦(𝑡) is sampled at a sampling frequency that is a multiple of 3𝜋the min-
imum sampling frequency and then quantized to 256 levels. Calculate the information 
rate at the output of the A/D converter and find the minimum bandwidth of the output 
signal in order to transmit the signal with PCM modulation. 

(c3) Calculate the analytical relationship in the frequency domain 𝑌𝑠(𝛺) and in the dis-
crete time domain of the sampled signal 𝑦𝑠(𝑛) for a sampling frequency the same as in 
question c2. 

(c4) Calculate and plot the spectrum 𝑌𝑠(𝛺)for 𝑘 = −1,0,1 the same sampling frequency 
as in question c2. 

(c5) Repeat question c4 for sampling frequency 𝛺𝑠 = 4𝜋. 

 

Answer: (a) Because the following Fourier transforms apply (see Table 4.2): 
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𝛿(𝑡)
 𝐹 
↔ 1 and 

𝐵

2𝜋
𝑠𝑖𝑛𝑐2 (

𝐵𝑡

2𝜋
)

 𝐹 
↔ 𝑡𝑟𝑖 (

𝛺

𝛣
) 

the amplitude 𝑋(𝛺) spectrum of the signal is: 

𝑋(𝛺) = 1 − 𝑡𝑟𝑖 (
𝛺

10
) 

The spectrum 𝑋(𝛺) is shown in the following figure: 

 

We observe that the spectrum extends to infinity, so the bandwidth of the signal is infinite, 
so it is not possible to determine any minimum sampling frequency according to the 
Nyquist criterion. So, this particular signal is not possible to sample. 

 

(b1) From Table 4.2 we know that: 

𝐵

2𝜋
𝑠𝑖𝑛𝑐 (

𝐵𝑡

2𝜋
)

 𝐹 
↔ 𝑟𝑒𝑐𝑡 (

𝛺

𝛣
) 

Therefore, the impulse response ℎ𝐿𝑃𝐹(𝑡) of the filter can be calculated by inverse Fourier 
transform of the frequency response and is: 

ℎ𝐿𝑃𝐹(𝑡) =
20

2𝜋
𝑠𝑖𝑛𝑐 (

20𝑡

2𝜋
) =

10

𝜋
𝑠𝑖𝑛𝑐 (

10𝑡

𝜋
) 

 

(b2) The amplitude spectrum 𝑌(𝛺) is calculated from the equation: 

𝑌(𝛺) = 𝑋(𝛺)𝐻(𝛺) = [1 − 𝑡𝑟𝑖 (
𝛺

10
)] 𝑟𝑒𝑐𝑡 (

𝛺

20
) = 𝑟𝑒𝑐𝑡 (

𝛺

20
) −  𝑡𝑟𝑖 (

𝛺

10
) 

The graphical representation of the spectrum 𝑌(𝛺) results from the product of the spectra 
𝑋(𝛺) and 𝐻(𝛺) according to the figure: 

 

 

 

(b3) The spectrum 𝑌(𝛺) is given by the equation: 

𝑌(𝛺) = 𝑟𝑒𝑐𝑡 (
𝛺

20
) −  𝑡𝑟𝑖 (

𝛺

10
) 

Using Table 4.2, it follows that the signal 𝑦(𝑡) is: 

𝑦(𝑡) =
20

2𝜋
𝑠𝑖𝑛𝑐 (

20𝑡

2𝜋
) −

10

2𝜋
𝑠𝑖𝑛𝑐2 (

10𝑡

2𝜋
) =

10

𝜋
𝑠𝑖𝑛𝑐 (

10𝑡

𝜋
) −

5

𝜋
𝑠𝑖𝑛𝑐2 (

5𝑡

𝜋
) 
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(c1) The signal 𝑦(𝑡) has a finite frequency bandwidth and the maximum frequency is 
𝛺𝑚𝑎𝑥 = 10 𝑟𝑎𝑑/𝑠𝑒𝑐or 𝑓𝑚𝑎𝑥 = 5/𝜋 (𝐻𝑧) Therefore, the signal can be sampled. The 
Nyquist frequency (minimum sampling frequency) is: 

𝑓𝑠(𝑚𝑖𝑛) = 𝑓𝑁 = 2𝑓𝑚𝑎𝑥 = 10/𝜋 (𝐻𝑧) 

and in cyclic frequency is: 

𝛺𝛮 = 2𝜋𝑓𝑁 = 20 (𝑟𝑎𝑑/𝑠𝑒𝑐) 

 

(c2) The selected sampling frequency is: 

𝑓𝑠 = 3𝜋𝑓𝑠(𝑚𝑖𝑛) = 3𝜋(10/𝜋) = 30 (𝐻𝑧) 

The cyclic sampling frequency is: 

𝛺𝑠 = 2𝜋𝑓𝑠 = 60𝜋 (𝐻𝑧) 

and the sampling period is: 

𝑇𝑠 =
1

30
 𝑠𝑒𝑐 

Since quantization is done in 256 levels, the word length is: 

𝛣 = [𝑙𝑜𝑔2𝐿] = [𝑙𝑜𝑔2256] = 8 𝑏𝑖𝑡𝑠 

Therefore, the desired information rate at the output of the A / D converter is: 

𝑅 = 𝑓𝑠𝐵 = 30 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠𝑒𝑐 𝑥 8 𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒 = 240 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐 = 240 𝑏𝑝𝑠 

The minimum bandwidth of the output signal in order to transmit the PCM modulated 
signal is given by the equation: 

𝑊𝑃𝐶𝑀 =
1

2
𝑓𝑠𝐵 = 120 𝐻𝑧 

 

(c3) The sampled signal in the frequency domain is given by equation (6.6) and is: 

𝑌𝑠(𝛺) =
1

𝑇𝑠
∑ 𝑌(𝛺 − 𝑘𝛺𝑠)

∞

𝑘=−∞

= 30 ∑ [𝑟𝑒𝑐𝑡 (
𝛺 − 𝑘𝛺𝑠

20
) −  𝑡𝑟𝑖 (

𝛺 − 𝑘𝛺𝑠

10
)]

∞

𝑘=−∞

 

and in the time domain is: 

𝑦𝑠(𝑛) = 𝑦(𝑡)|𝑡=𝑛𝑇𝑠
=

10

𝜋
𝑠𝑖𝑛𝑐 (

10𝑛

30𝜋
) −

5

𝜋
𝑠𝑖𝑛𝑐2 (

5𝑛

30𝜋
) =

10

𝜋
𝑠𝑖𝑛𝑐 (

𝑛

3𝜋
) −

5

𝜋
𝑠𝑖𝑛𝑐2 (

𝑛

6𝜋
) 

 

(c4) For 𝑘 = −1,0,1 the analytical equation of the spectrum is: 

𝑌𝑠(𝛺) =
1

𝑇𝑠
∑ 𝑌(𝛺 − 𝑘𝛺𝑠)

1

𝑘=−1

= 30[𝑌(𝛺 + 60𝜋) + 𝑌(𝛺) + 𝑌(𝛺 − 60𝜋)] =

= 30 [[𝑟𝑒𝑐𝑡 (
𝛺 + 60𝜋

20
) −  𝑡𝑟𝑖 (

𝛺 + 60𝜋

10
)]

+ [[𝑟𝑒𝑐𝑡 (
𝛺

20
) −  𝑡𝑟𝑖 (

𝛺

10
)] + [𝑟𝑒𝑐𝑡 (

𝛺 − 60𝜋

20
) −  𝑡𝑟𝑖 (

𝛺 − 60𝜋

10
)]]] 

The graphical representation of the spectrum of the sampled signal is: 
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We note that there is sufficient empty spectral space between spectrum repetitions (due 
to sampling) so that the spectra do not overlap. We can easily recover the original signal 
by filtering the above spectrum with a deep-pass filter with a cutoff frequency that satis-
fies the equation: 10 < 𝛺𝑐 < 60𝜋 − 10. 

 

(c5) The given sampling frequency 𝛺𝑠 = 4𝜋 rad / sec is less than the Nyquist cyclic fre-
quency 𝛺𝛮 = 2𝜋𝑓𝑁 = 20 𝑟𝑎𝑑/𝑠𝑒𝑐, so we expect frequency aliasing. The sampling period 
is 𝑇𝑠 = 1/2 𝑠𝑒𝑐 and the requested range is: 

𝑌𝑠(𝛺) = 2 ∑ 𝑌(𝛺 − 𝑘4𝜋)

1

𝑘=−1

= 2[𝑌(𝛺 + 4𝜋) + 𝑌(𝛺) + 𝑌(𝛺 − 4𝜋)] 

 

     

                    
  

                                        


