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Description of IIR Systems

Time Domain:

𝑦 𝑛 = ෍

𝑚=0

𝛭

𝑏𝑚𝑥 𝑛 − 𝑚 −෍

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 (1)

Frequency Domain:

𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
=
𝐵 𝑧

𝐴 𝑧
=

σ𝑚=0
𝑀 𝑏𝑚 𝑧−𝑚

1 + σ𝑘=1
𝑁 𝑎𝑘 𝑧

−𝑘

=
𝑏0 + 𝑏1𝑧

−1 +⋯+ 𝑏𝑀𝑧
−𝑀

1 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑁𝑧

−𝑁 (2)

The order of the system is 𝛮 though 𝛼[𝛮] ≠ 0 it is the one that determines the 

number of delay units for the system implementation. This count is important 

because it costs memory locations.
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Direct Form I

• The LDECC of equation (1) can be split into two equations as follows:

𝑣 𝑛 = ෍

𝑚=0

𝛭

𝑏𝑚𝑥[𝑛 − 𝑚]

𝑦 𝑛 = 𝑣 𝑛 −෍

𝑘=1

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘]

• The first equation describes a subsystem with input signal 𝑥[𝑛]and output 𝑣[𝑛]. 
From the form of the equationship it follows that this subsystem is all-pole only.

• The second equation describes an FIR subsystem that accepts the signal as 
input 𝑣[𝑛] and produces the output 𝑦[𝑛]of the overall system. This subsystem 
implements system zeros.

• The two subsystems are serial connected and are described in the frequency 
domain by the following equations:

𝑉 𝑧 = 𝑏0 + 𝑏1𝑧
−1 +⋯+ 𝑏𝑀𝑧

−𝑀 𝑋 𝑧

𝑌 𝑧 = 𝑉 𝑧 − 𝑎1𝑧
−1 +⋯+ 𝑎𝑁𝑧

−𝑁 𝑌(𝑧)

5



Direct Form I

IIR system structure in Direct form I
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Direct Form I

• Subsystem is implemented as a tapped delay line

• For an IIR system of order 𝛮, the total number of delay units is 𝛭 +𝛮(when 

𝛭 ≤ 𝛮) or 2𝛮(when 𝛭 = 𝛮).

• From the figure it follows that the number of calculations in the Direct form I 

is:

o Multiplications: 𝑀 +𝑁 + 1for each output sample

o Additions: 𝑀 +𝑁for each output sample

o Delays: 𝑀 +𝑁
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Direct Form II

• Based on the commutative property, we mutually interchange the order of the 

subsystems of the Direct form I, so the LDECC is written:

𝑤 𝑛 = 𝑥 𝑛 −෍

𝑘=1

𝑁

𝑎𝑘𝑤[𝑛 − 𝑘]

𝑦 𝑛 = ෍

𝑚=0

𝛭

𝑏𝑚𝑤[𝑛 −𝑚]

• The above equations in the frequency domain are written:

𝑊 𝑧 = 𝑋 𝑧 − 𝑎1𝑧
−1 +⋯+ 𝑎𝑁𝑧

−𝑁 𝑊(𝑧)

𝑌 𝑧 = 𝑏0 + 𝑏1𝑧
−1 +⋯+ 𝑏𝑀𝑧

−𝑀 𝑊 𝑧

• With this process, first the zeros and then the poles of the system are realized.
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Direct Form II

Intermediate description of IIR system, considering that 𝛭 = 𝛮
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Direct Form II

• Because the delay units have the same input 𝑊(𝑧) we can erase the one delay 
line, so the number of delay units from 2𝛮, will be reduced to 𝛮.

• The resulting stage diagram is called Direct Form II or normal because the 
minimum amount of delay units is used and is shown in the next figure.

• From the figure it follows that the number of calculations in the Direct form II 
is:

o Multiplications: 𝑀 +𝑁 + 1for each output sample

o Additions: 𝑀 +𝑁for each output sample

o Delays: max(𝑀,𝑁)

• Direct forms I and II are equivalent in terms of input and output and differ only 
in their internal structure.

• These forms in Matlab are implemented with the function filter ()
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Direct Form II

Stage-diagram of IIR system in Direct form II
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Example 1

An LSI system is described by the transfer function:

𝐻 𝑧 =
1 + 0.9𝑧−1

(1 + 0.1𝑧−1 + 0.5𝑧−2)(1 − 0.6𝑧−1)

(a) Draw the step diagrams of Direct form I and II.

(b) For each form calculate the number of multiplications and additions required 
to calculate each output sample, as well as the number of delay registers.

Answer: (a) We do the operations on the denominator, so the transfer function is 
written:

𝐻 𝑧 =
1 + 0.9𝑧−1

1 + 0.7𝑧−1 + 0.44𝑧−2 − 0.3𝑧−3

The step diagrams of Direct Form I and II are shown in the next figure.
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Example 1 (continued)

(a) Stage-diagram of Direct form I
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Example 1 (continued)

(b) Stage-diagram of Direct form II
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Example 1 (continued)

(b) According to stage-diagrams (a) and (b), the number of computations in Direct
form I is:

• Multiplications: 5 for each output sample

• Additions: 4 for each output sample

• Delays: 4

and in Direct form II is:

• Multiplications: 5 for each output sample

• Additions: 4 for each output sample

• Delays: 3
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Cascade form

If ℎ[𝑛] is a real sequence, then 𝐻 𝑧 is resolved into a product of second-order factors 

with real coefficients. Specifically and for 𝑀 = 𝑁(𝑁even), we have:

𝐻 𝑧 =
𝑏0 + 𝑏1𝑧

−1 +⋯+ 𝑏𝑀𝑧
−𝑁

1 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑁𝑧

−𝑁 = 𝑏0ෑ

𝑘=1

𝛮/2
1 + 𝐵 𝑘, 1 𝑧−1 + 𝐵 𝑘, 2 𝑧−2

1 + 𝐴 𝑘, 1 𝑧−1 + 𝐴 𝑘, 2 𝑧−2

where 𝐴 𝑘, 1 , 𝐴 𝑘, 2 , 𝐵 𝑘, 1 , 𝐵 𝑘, 2 are real numbers representing the coefficients of 

the second-order factors. Each factor is written:

𝐻𝑘 𝑧 =
𝑌𝑘+1 𝑧

𝑌𝑘 𝑧
=ෑ

𝑘=1

𝑁/2
1 + 𝐵 𝑘, 1 𝑧−1 + 𝐵 𝑘, 2 𝑧−2

1 + 𝐴 𝑘, 1 𝑧−1 + 𝐴 𝑘, 2 𝑧−2
, 𝑘 = 1,2,…𝑁/2

Also, it applies: 𝑌1(𝑧) = 𝑏[0] 𝑋(𝑧) and   𝑌(𝛮/2)+1(𝑧) = 𝑌(𝑧)

Each term is implemented in Direct Form II and 𝐻𝑘 𝑧 the terms are connected in series 

to create the cascade diagram of the next form (for 𝛮 = 4), which is called Cascade 

Form.
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Cascade form

IIR structure of cascaded system

• The cascade form provides flexibility in how the system is implemented 

because there are different ways to combine the poles and zeros as well as 

the order in which the subsystems are connected.

• To calculate in Matlab the coefficients of the Cascade form we use the function 

tf 2 sos ().
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Parallel Form

It turns out that the transfer function 𝐻 𝑧 can be written as a sum of second-

order factors:

𝐻 𝑧 = ෍

𝑘=1

𝛮/2
𝐵 𝑘, 0 + 𝐵 𝑘, 1 𝑧−1

1 + 𝐴 𝑘, 1 𝑧−1 + 𝐴 𝑘, 2 𝑧−2
+ ෍

0

𝑀−𝑁

𝐶𝑘𝑧
−𝑘

where 𝐴 𝑘, 1 , 𝐴 𝑘, 2 , 𝐵 𝑘, 0 , 𝐵 𝑘, 1 are real numbers representing the 

coefficients of the second-order factors. Each second-order factor is written:

𝐻𝑘 𝑧 =
𝑌𝑘+1 𝑧

𝑌𝑘 𝑧
=

𝐵 𝑘, 0 + 𝐵 𝑘, 1 𝑧−1

1 + 𝐴 𝑘, 1 𝑧−1 + 𝐴 𝑘, 2 𝑧−2
, 𝑘 = 1,2, …𝑁/2

Equally, it works 𝑌𝑘(𝑧) = 𝐻𝑘(𝑧)𝑋(𝑧) and𝑌 𝑧 = σ𝑌𝑘 𝑧 , 𝑀 < 𝑁

Each term 𝐻𝑘 𝑧 is realized in Direct form II and the terms are connected in series 

to create the ladder diagram of the following figure (for 𝑀 = 𝛮 = 4), which is 

called Parallel Form.
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Parallel Form

IIR system structure in parallel form
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Finite Impulse Response (FIR) Filters

• Direct Form

• Cascade form

• Linear Phase Form

• Frequency Sampling Form
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Description of FIR Systems

Time-Domain:

𝑦 𝑛 = ෍

𝑚=0

𝛭

𝑏𝑚𝑥 𝑛 − 𝑚 = ෍

𝑚=0

𝛭

ℎ 𝑚 𝑥 𝑛 −𝑚 (1)

Frequency-Domain:

𝐻 𝑧 = 𝑏0 + 𝑏1𝑧
−1 +⋯+ 𝑏𝑀𝑧

−𝑀 = ෍

𝑚=0

𝑀

𝑏𝑚 𝑧−𝑚 (2)

• 𝑀 multiplications and 𝛭 + 1 additions are required for each output sample. 
The order of the FIR system is 𝛭 − 1while its length is 𝛭.

• FIR systems are always stable (because they have no poles) and can be 
designed to have a linear phase response. Also, they are simpler than IIRs.
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FIR filter implementation structures

They are schematic diagrams of the different but equivalent ways the transfer 
function 𝐻(𝑧) can be organized.

• Direct Form: Resulting from the direct application of the LDECC in a step chart.

• Cascade form: The transfer function is factorized into smaller second-order 
sections. Each part is implemented in a Direct form and the overall system 
results from the combination of the individual parts.

• Linear phase: When the impulse response satisfies some symmetry properties 
then the phase of the system is linear. Due to the symmetry, the number of 
required calculations is reduced.

• Frequency Sampling: Based on the DFT calculation 𝐻[𝑘] of the impulse 
response.
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Direct Form

The Direct form is derived directly from the LDECC and is implemented as a 

branching delay line, as shown in the figure.

FIR system structure in Direct form

• The number of calculations in the Direct form is:

o Multiplications: 𝑀 + 1for each output sample

o Additions: 𝑀for each output sample

o Delays: 𝑀

• If there are symmetries in the impulse response, then the number of actions 
can be reduced.
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Example 2

(a) Draw the Direct form of the FIR system with impulse response:

ℎ[𝑛] = ቊ
𝑎𝑛, 0 ≤ 𝑛 ≤ 5
0, elsewhere

Answer: The impulse response is written:

ℎ 𝑛 = 𝛼𝑛 𝑢 𝑛 − 𝑛 𝑛 − 6

= 𝛿 0 + 𝑎𝛿 1 + 𝑎2𝛿 2 + 𝑎3𝛿 3 + 𝑎4𝛿 4 + 𝑎5𝛿 5

from which the Direct form step diagram (N=6) is derived:
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Example 2 (continued)

(b) Calculate the number of multiplications and additions required to calculate 

each output sample as well as the number of delay registers.

Answer: From the step diagram it follows that the number of calculations in the 
Direct form is:

• Multiplications: 6 for each output sample

• Additions: 5 for each output sample

• Delays: 5
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Cascade Form

• If the impulse response ℎ[𝑛] is a real sequence then the 𝐻 𝑧 can be written as 

a product of second-order factors with real coefficients. For 𝑁even, we have:

𝐻 𝑧 = 𝑏0ෑ

𝑘=1

𝛮/2

1 + 𝐵 𝑘, 1 𝑧−1 + 𝐵 𝑘, 2 𝑧−2

where 𝐵 𝑘, 1 , 𝐵 𝑘, 2 are real numbers representing the coefficients of the 

second-order factors.

• Each term 𝐻𝑘 𝑧 is implemented in Direct form II and the terms are connected 

in series to create the cascade diagram of the next figure (example for 𝛮 = 4), 

which is called Cascade Form.

• To calculate in Matlab the coefficients of the Cascade form we use the function 

tf 2 sos ().
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Cascade Form

FIR system structure in cascade form (N=4)
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Linear Phase Form

• If the impulse response ℎ[𝑛] satisfies symmetry properties then we can 

simplify the form of the stage-diagram.

• The impulse response can be either symmetric or antisymmetric according to 

the respective equations:

ℎ 𝑛 = ℎ[𝑁 − 𝑛] and  ℎ 𝑛 = −ℎ[𝑁 − 𝑛]

• For symmetric impulse response and 𝛮even, the LDECC (1) is written:

𝑦 𝑛 = ෍

𝑚=0

(𝛭/2)−1

ℎ 𝑚 𝑥 𝑛 − 𝑚 + 𝑥 𝑛 − 𝛮 +𝑚 + ℎ
𝑁

2
𝑥 𝑛 −

𝑁

2

• The equation is implemented with the step diagram of the next figure and with 

50% of the operations of the Direct form.

• If the impulse response is antisymmetric and 𝛮 even, we have type II filters.

• Similarly, for odd 𝛮, we have filters of type III and IV, respectively.
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Linear Phase Form

Structure of FIR system in type I filter (𝛮 = 4)
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Frequency Sampling Form

• It is based on the fact that 𝐻(𝑧) can be reconstructed from equidistant samples 

of it on the unit circle, which have been calculated by DFT 𝑀-points 𝐻[𝑘] of the 

impulse response ℎ 𝑛 .

• It turns out that the equation holds (where: 𝑊𝑀
−𝑘 = 𝑒

𝑗2𝜋

𝑁
𝑘):

𝐻(𝑧) =
1

𝛭
(1 − 𝑧−𝑀) ෍

𝑘=0

𝑀−1
𝐻 𝑘

1 −𝑊𝑀
−𝑘𝑧−1

• With this equation we describe an FIR filter in a recursive form. Actually the 

poles 𝑊𝑀
−𝑘 are canceled by the roots of the equation 1 − 𝑧−𝑀 = 0, so the 

system always remains stable.

• The equationship is implemented by the series connection of an FIR filter 

(1 − 𝑧−𝑀)/𝛭 with a parallel network of one-pole filters:

𝐻𝑘 𝑧 =
𝐻 𝑘

1 −𝑊𝑀
−𝑘𝑧−1

30



Frequency Sampling Form

• If the impulse response ℎ[𝑛] is real, then exploiting the symmetry properties of 

𝑊𝑀
−𝑘, it turns out that the transfer function is given by the equation:

𝐻(𝑧) =
1

𝛭
(1 − 𝑧−𝑀) ෍

𝑘=0

𝐿

2 𝐻 𝑘 𝐻𝑘 𝑧 +
𝐻 0

1 − 𝑧−1
+
𝐻 𝑀/2

1 − 𝑧−1

where 𝐿 = (𝑀 − 1)/2 for 𝛭 even and 𝐿 = 𝑀/2 − 1 for 𝛭 odd.

• The second-order factors 𝐻𝑘(𝑧) are given by the equation:

𝐻𝑘(𝑧) =
cos ∡𝐻[𝑘] − 𝑧−1 cos ∡𝐻 𝑘 −

2𝜋𝑘
𝑀

1 − 2𝑧−1 cos
2𝜋𝑘
𝑀 + 𝑧−2
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Lattice Filters

• Lattice FIR filter 

• Lattice All Pole 
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Grid Filters

• The lattice filters are very popular in various applications because they have 

important properties, such as the smaller number of coefficients compared to 

IIR and FIR filters for the same performance, the possibility of modular wiring, 

stability and low sensitivity to the quantization of their coefficients.

• They are widely used in digital speech analysis and synthesis, as their low 

number of coefficients allows real-time implementation of complex processes 

required in speech processing.

• Separated in:

o Type of FIR

o All - pole

o Poles and zeros IIR filters
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Lattice FIR 

• An FIR mesh filter of length M or order M-1 is created by a series connection of 

M-1 elementary quadrupoles (stages).

Elementary quadrupole (stage) lattice

• The following difference equations apply:

𝑓𝑚 𝑛 = 𝑓𝑚−1 𝑛 + 𝐾𝑚 𝑔𝑚−1 𝑛 − 1 , 𝑚 = 1,2, . . . , 𝑀 − 1 (1)

𝑔𝑚 𝑛 = 𝑔𝑚−1 𝑛 − 1 + 𝐾𝑚 𝑓𝑚−1 𝑛 , 𝑚 = 1,2, . . . , 𝑀 − 1 (2)
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Lattice FIR 

• The figure shows the complete connection in series of  M stages and the 
creation of a mesh filter, of length M.

Grid filter of length M

• The coefficients 𝐾𝑚, 𝑚 = 1,2, . . . , 𝑀 − 1 are called reflection coefficients and 

define the grid filter. At the input of the first stage, the input signal 𝑥[𝑛]

multiplied by a scalar coefficient is applied 𝐾0, that is: 𝑓0 𝑛 = 𝑔0 𝑛 = 𝐾0𝑥[𝑛].

• At the output of the last stage the output signal is produced: 𝑦 𝑛 = 𝑓𝑀 𝑛 .
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Lattice FIR 

• If we define as 𝐴𝑚(𝑧)the transfer function connecting the input 𝑥[𝑛]to an 

intermediate output 𝑓𝑚 𝑛 , 𝑚 = 1,2, . . . , 𝑀 − 1, from the equation:

𝐹𝑚 𝑧 = 𝐴𝑚 𝑧 𝑋 𝑧

and solve the difference equations (1) and (2) we obtain the following 

iterative formula for finding 𝐴𝑚 𝑧 , which is called positive step recursion 

(step up down recursion):

𝐴𝑚 𝑧 = 𝐴𝑚−1 𝑧 + 𝐾𝑚 𝑧−𝑚𝐴𝑚−1 𝑧−1 (3)

• The above recursive procedure is initialized with 𝐴0 𝑧 = 1and calculates the 

total transfer function between input and output of the mesh 𝐴𝛭 𝑧 from the 

reflection coefficients 𝐾𝑚, 𝑚 = 1,2, . . . , 𝑀 − 1.

• The regression equation (3) as a function of the coefficients 𝑎𝑚 𝑖 is:

o 𝛼𝑚 𝑖 = 𝑎𝑚−1 𝑖 + 𝐾𝑚 𝑎𝑚−1 𝑚− 𝑖 , 𝑖 = 1,2, … ,𝑚 − 𝑖 (4)

o 𝑎𝑚 𝑚 = 𝐾𝑚 (5)
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Lattice FIR Filter

• In the case where the transfer function is known 𝐴𝛭 𝑧 and the reflection 

coefficients are requested to be calculated 𝐾𝑚, we apply the step down recursion

from the equation:

𝐴𝑚−1 𝑧 =
1

1 − 𝐾𝑚
2 𝐴𝑚 𝑧 − 𝐾𝑚 𝑧−𝑚𝐴𝑚 𝑧−1 , 𝑚 = 𝑀, . . . , 1 (5)

• As in equations (3) and (4), the regression equation (5) expressed in terms of 

coefficients 𝑎𝑚 𝑖 is:

o 𝛼𝑚−1 𝑖 =
1

1−𝐾𝑚
2 𝑎𝑚 𝑖 − 𝐾𝑚 𝑎𝑚 𝑚− 𝑖 , 𝑖 = 1,2, … ,𝑚 − 2 (6)

o 𝑎𝑚−1 𝑚− 1 = 𝐾𝑚−1 (7)
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Lattice FIR Filter

• The mapping of the reflection coefficients of the lattice FIR filter to the transfer 
function coefficients of the Direct form of the FIR filter will be given. If the 
transfer function 𝐻(𝑧) of the FIR filter in Direct form is:

𝐻 𝑧 = ෍

𝑚=0

𝑀−1

𝑏𝑚 𝑧−𝑚

and convert it into the following form, taking the coefficient as a common 
factor 𝑏0:

𝐻 𝑧 = 𝑏0 1 + ෍

𝑚=1

𝑀−1
𝑏𝑚
𝑏0

𝑧−𝑚 = 𝑏0 1 + ෍

𝑚=1

𝑀−1

𝛼𝑀−1 𝑚 𝑧−𝑚

where:

𝛼𝑀−1 𝑚 =
𝑏𝑚
𝑏0

, 𝑚 = 1,2, … ,𝑀 − 1
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Lattice FIR Filter

• then the coefficients of the grid filter 𝐾𝑚, 𝑚 = 1,2, . . . , 𝑀 − 1in terms of the 
known coefficients of the Direct form 𝑏𝑚, 𝑚 = 1,2, . . . , 𝑀 − 1 are given by the 
equations:

𝛫0 = 𝑏0 (8)

𝛫𝛭−1 = 𝛼𝛭−1 𝛭 − 1 =
𝑏𝛭−1

𝑏0
(9)

𝛫𝑚 = 𝛼𝑚 𝑚 , 𝑚 = 𝑀 − 2,… , 1 (10)
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Example 3

The reflection coefficients of a second-order FIR grating filter are 𝐾1 = 1/4and 𝛫2 = 1/8. 
Find the first-order 𝐴1 𝑧 and second-order transfer functions 𝐴2 𝑧 , that relate the input 
𝑥[𝑛] to 𝑓1[𝑛]and 𝑓2[𝑛], respectively.

Answer: To calculate it, 𝐴1 𝑧 we put it 𝑚 = 1 in equation (3) and find:

𝐴1 𝑧 = 𝐴0 𝑧 + 𝐾1 𝑧
−1𝐴0 𝑧−1 (𝑎)

The initial condition is 𝐴0 𝑧 = 1, therefore and 𝐴0 𝑧−1 = 1. From equation (a) it is:

𝐴1 𝑧 = 1 +
1

4
𝑧−1 (𝑏)

From equation (b) we find that:

𝐴1 𝑧−1 = 1 +
1

4
𝑧 (𝑐)

Similarly, for it 𝐴2 𝑧 we put 𝑚 = 2in equation (3) and we have:

𝐴2 𝑧 = 𝐴1 𝑧 + 𝐾2 𝑧
−2𝐴1 𝑧−1 𝑑

We substitute equations (b) and (c) into equation (d) and find:

𝐴2 𝑧 = 1 +
1

4
𝑧−1 +

1

8
𝑧−2 1 +

1

4
𝑧 = 1 +

9

32
𝑧−1 +

1

8
𝑧−2
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Example 4

To find the reflection coefficients of the second order FIR filter with transfer 
function:

𝐴2 𝑧 = 1 −
1

2
𝑧−2

Answer: We put 𝑚 = 2 in equation (3) and we have:

𝐴2 𝑧 = 𝐴1 𝑧 + 𝐾2 𝑧
−2𝐴1 𝑧−1 𝛼

It 𝐴1 𝑧 is found by putting 𝑚 = 1 in equation (3):

𝐴1 𝑧 = 𝐴0 𝑧 + 𝐾1 𝑧
−1𝐴0 𝑧−1 (𝑏)

Since 𝐴0 𝑧 = 1 and 𝐴0 𝑧−1 = 1, equation (a) is written:

𝐴1 𝑧 = 1 + 𝛫1 𝑧
−1 (𝑐)
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Example 4 (continued)

From equation (b) we find that:

𝐴1 𝑧−1 = 1 + 𝛫1 𝑧 (𝑑)

We substitute equations (b), (c) and (d) into equation (a) and find:

𝐴2 𝑧 = 1 + 𝛫1𝑧
−1 + 𝐾2𝑧

−2 1 + 𝐾1𝑧 = 1 + 𝐾1 + 𝐾1𝐾2 𝑧−1 + 𝐾2𝑧
−2 (𝑒)

We equate the corresponding coefficients of the given transfer function 𝛢2(𝑧) and 

equation (e) and find:

𝐾2 = −
1

2
, 𝛫1 = 0
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Lattice All Pole Filter

• A mesh filter of only N poles is created by a series connection of N-1 
elementary quadrupoles.

Elementary lattice quadrupole

• The following recursive equations apply: 

o 𝑓𝑁[𝑛] = 𝑥[𝑛]

o 𝑓𝑚−1 𝑛 = 𝑓𝑚 𝑛 − 𝐾𝑚 𝑔𝑚−1 𝑛 − 1 , 𝑚 = 𝛮,𝛮 − 1,…1

o 𝑔𝑚 𝑛 = 𝐾𝑚 𝑓𝑚−1 𝑛 − 𝑔𝑚−1 𝑛 − 1 , 𝑚 = 𝛮,𝛮 − 1, …1

o 𝑦[𝑛] = 𝑓0[𝑛] = 𝑔0[𝑛]

where the parameters 𝐾𝑚, 𝑚 = 1, 2, … ,𝑀 − 1are the reflection coefficients of 
the pole-only grating filter. 43



Lattice All Pole Filter

• These coefficients are calculated from the recursive equations (7) to (9), 

except for the coefficient 𝐾0, which is equal to 1 (𝐾0 = 1).

• As the quadrupole has no zeros, its frequency response is given by:

𝐻 𝑧 =
1

𝐴𝑁 𝑧
=

1

1 + σ𝑚=1
𝑁 𝛼𝑁 𝑚 𝑧−𝑚

where the transfer function 𝐴𝑁 𝑧 is calculated by the algorithm described in 

equation (3).

• It is clear that the all-pole lattice filter is the inverse of the FIR lattice filter, 

except for the coefficient 𝑏0.

• Therefore, a grid structure of a all-pole IIR filter can be produced by inverting 

a grid structure of an FIR filter.
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Lattice All Pole Filter

N-order all-pole filter of N order
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Lattice IIR Filter

• The transfer function of an IIR filter with N poles and M zeros (generally we 
assume that 𝛮 ≤ 𝛭) is given by the equation:

𝐻 𝑧 =
𝐵𝑀(𝑧)

𝐴𝑁(𝑧)
=

σ𝑚=0
𝑀 𝑏𝑚 𝑧−𝑚

1 + σ𝑚=1
𝑁 𝛼𝑁 𝑚 𝑧−𝑚

• From this equation it follows that an IIR lattice filter consists of two parts:

o The first part corresponds to the term (1/𝐴𝑁(𝑧)) and is a all-pole grid 
filter with reflection coefficients 𝐾𝑚, 1 ≤ 𝑚 ≤ 𝑁.

o The second part is a branched delay line (tapped delay line) with 
coefficients 𝐶𝑚, which produces at the grid output a weighted linear 
combination of the samples 𝑔𝑚[𝑛] according to the equation:

𝑦[𝑛] = ෍

𝑚=0

𝑀

𝐶𝑚 𝑔𝑚 𝑛 (11)
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Lattice IIR Filter

• The coefficients 𝐶𝑚 of the delay line identify the zeros of the transfer function 
𝐻(𝑧) and are shown to be calculated from the coefficients 𝑏𝑚 of the Direct form 
by the equation:

𝐶𝑚 = 𝑏𝑚 + ෍

𝑖=𝑚+1

𝑀

𝐶𝑖 𝑎𝑖 𝑖 − 𝑚 , 𝑚 = 𝑀 − 1,… , 1,0

Lattice IIR filter
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Example 5

Convert the following IIR pole-zero filter to lattice form:

𝐻 𝑧 =
0.25 + 0.5𝑧−1 − 0.4𝑧−2

1 − 0.1𝑧−1 + 𝑧−2

Answer: First we will convert the denominator coefficients to reflection 
coefficients. We apply the methodology presented in Example 4 to the function:

𝛢2 𝑧 = 1 − 0.1𝑧−1 + 𝑧−2

also 𝑚 = 2 put 𝑚 = 2 in equation (3) and correspondingly we get:

𝐴2 𝑧 = 𝐴1 𝑧 + 𝐾2 𝑧
−2𝐴1 𝑧−1 𝛼

𝐴1 𝑧 = 𝐴0 𝑧 + 𝐾1 𝑧
−1𝐴0 𝑧−1 (𝑏)
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Example 5 (continued)

Because 𝐴0 𝑧 = 1 and 𝐴0 𝑧−1 = 1, we find:

𝐴1 𝑧 = 1 + 𝛫1 𝑧
−1 (𝑐)

𝐴1 𝑧−1 = 1 + 𝛫1 𝑧 (𝑑)

We substitute equations (b), (c) and (d) into equation (a) and find:

𝐴2 𝑧 = 1 + 𝛫1𝑧
−1 + 𝐾2𝑧

−2 1 + 𝐾1𝑧 = 1 + 𝐾1 + 𝐾1𝐾2 𝑧−1 + 𝐾2𝑧
−2 (𝑒)

We equate the corresponding coefficients of the original function 𝛢2(𝑧) and 

equation (e) and find:

𝐾2 = 1, 𝛫1 = −0.05
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Example 5 (continued)

The coefficients 𝑎𝑚 and 𝑏𝑚 given in the pronunciation are:

𝑎𝑚 = 𝛼0, 𝛼1, 𝛼2 = {1, −0.1, 1}

𝑏𝑚 = 𝑏0, 𝑏1, 𝑏2 = {0.25, 0.5, −0.4}

Finally, the coefficients 𝐶2 are calculated from the regression equation (11) for 
𝑚 = 2,1,0 and are:

o 𝑚 = 2: 𝐶2 = 𝑏2 = −0.4

o 𝑚 = 1: 𝐶1 = 𝑏1 + 𝐶2 𝑎2 1 = 0.5 + −0.4 1 = 0.1

o 𝑚 = 0: 𝐶0 = 𝑏0 + 𝐶1 𝑎1 1 + 𝐶2 𝑎2 2 = 0.25 + 0.1 −0.1 + −0.4 1 = −0.16

Therefore:

𝐶0 = −0.16, 𝐶1 = 0.1,𝐶2 = −0.4
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Example 5 (continued)

(a)

(b)

IIR filter: (a) Direct form, (b) Lattice form
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