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Fourier Series of Discrete Time Signals

A periodic discrete-time signal 𝑥[𝑛] with period 𝛮 and fundamental 
frequency 𝜔0 = 2𝜋/𝛮, is resolved into an exponential Fourier series 
with the equation:

𝑥 𝑛 = 

𝑘=0

𝑁−1

𝑋[𝑘] 𝑒𝑗
2𝜋
𝛮 𝑘𝑛 , 0 ≤ 𝑛 ≤ 𝑁 − 1

where the coefficients 𝑋[𝑘] of the exponential Fourier series are calculated 
from the equation:

𝑋[𝑘] =
1

𝑁


𝑛=0

𝑁−1

𝑥[𝑛] 𝑒−𝑗
2𝜋
𝛮

𝑘𝑛 , 0 ≤ 𝑛 ≤ 𝑁 − 1
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Fourier Series of Discrete Time Signals

If the input of a LSI system is a complex exponential signal 𝑥 𝑛 = 𝛢𝑒𝑗𝑛𝜔0 , −∞ < 𝑛 < +∞
of frequency 𝜔0, then the output of the system is given by the convolution:

𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛 = 

𝑘=−∞

+∞

ℎ 𝑘 𝑥 𝑛 − 𝑘

= 

𝑘=−∞

+∞

ℎ 𝑘 𝛢𝑒𝑗𝜔0 𝑛−𝑘 = 𝛢𝑒𝑗𝑛𝜔0 

𝑘=−∞

+∞

ℎ 𝑘 𝑒−𝑗𝜔0𝑘 = 𝐻 𝑒𝑗𝜔0 𝑥[𝑛]

where 𝐻 𝑒𝑗𝜔0 is the value of the frequency response of the system to the frequency 𝜔0.

If the input of the system is a sum of complex exponential signals 𝑥 𝑛 = σ𝑘=−∞
+∞ 𝛢𝑘𝑒𝑗𝜔0𝑛

then the output of the system will be:

𝑦 𝑛 = 

𝑘=−∞

+∞

𝛢𝑘𝑒𝑗𝜔0𝑛 𝐻 𝑒𝑗𝜔0

Therefore, the analysis of a periodic signal in the form of an exponential Fourier series, gives 
us the possibility of easy calculation of the output of discrete-time Linear Shift Invariant  
(LSI) systems.

6



Remarks (1/2)

• The analysis of a real periodic discrete-time signal into Fourier series 
allows us to write this signal as a sum of complex discrete-time 
exponential sequences, or equivalently as a sum of sines in conjugate 
pairs.

• The Fourier series expansion of a periodic discrete-time signal always 
converges, since it consists of a finite number of terms according to its 
definition.

• Because discrete Fourier Series always converge, the Gibbs effect does 
not occur, in contrast of continuous-time signals.

• Both the signal sequence 𝑥[𝑛] and the coefficients 𝑋[𝑘] are periodic 
sequences with the same period N.

• A non-periodic signal (continuous or discrete time) has a continuous 
spectrum.

• A periodic signal (continuous or discrete time) has a discrete spectrum.
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Remarks (2/2)

• The fact that we can describe a periodic signal (continuous or discrete 

time) and its spectrum in discrete form is of great practical value 

because it can be easily implemented in a computer.

• The basis vectors 𝑒−𝑗(2𝜋/𝛮)𝑘𝑛 and 𝑒𝑗(2𝜋/𝛮)𝑘𝑛 are periodic with period 

𝑁 and are orthonormal to a period, i.e. they satisfy the equation:

1

𝑁


𝑛=0

𝑁−1

𝑒𝑗
2𝜋
𝛮 𝑘𝑛 𝑒−𝑗

2𝜋
𝛮 𝑚𝑛

∗

= ቊ
1 𝑚 = 𝑘
0 𝑚 ≠ 𝑘

• The term orthonormal means that the basis vectors𝑒−𝑗(2𝜋/𝛮)𝑘𝑛 and 

𝑒𝑗(2𝜋/𝛮)𝑚𝑛 are orthogonal when 𝑚 ≠ 𝑘, i.e. their sum in one period is 

zero. It is also normal, i.e. for 𝑚 = 𝑘 the same sum it is one.

• Likewise, the vectors cos 2𝜋/𝛮 𝑛 and sin 2𝜋/𝛮 𝑛.
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Discrete-Time Fourier 
Transform (DTFT)
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Discrete Time Fourier Transform

• The Discrete Time Fourier Transform (DTFT) is applied to discrete signals and 

produces their (usually complex) representation in the frequency domain.

• If 𝑥[𝑛] a discrete signal, then the straight DTFT is defined by the equation:

𝑋 𝑒𝑗𝜔 = 

𝑛=−∞

+∞

𝑥[𝑛] 𝑒−𝑗𝜔𝑛 , −𝜋 ≤ 𝜔 ≤ 𝜋

• The digital (cyclic) frequency𝜔 (𝑟𝑎𝑑) is a continuous variable resulting from 

the equation 𝝎 = 𝜴𝑻𝒔, where 𝛺 (𝑟𝑎𝑑/𝑠𝑒𝑐) is the proportional (cyclic) 

frequency.

• To calculate the DTFT the sum must converge to an absolute value, that is:

𝑋 𝑒𝑗𝜔 = 

𝑛=−∞

∞

𝑥[𝑛] 𝑒−𝑗𝑛𝜔 = 

𝑛=−∞

∞

𝑥[𝑛] = 𝑆 < ∞

• In the next section we will show how we can calculate the DTFT of signals that 

are not completely summable, i.e. they do not satisfy the above equation.
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Discrete Time Fourier Transform

• The function 𝑋 𝑒𝑗𝜔 is generally complex.

• Cartesian form:

𝑋 𝑒𝑗𝜔 = 𝑋𝑅 𝑒𝑗𝜔 + 𝑗𝑋𝐼 𝑒𝑗𝜔

𝑋𝑅(𝑒𝑗𝜔) and 𝑋𝐼(𝑒𝑗𝜔) is the real and imaginary part of DTFT.

• Polar form:

𝑋 𝑒𝑗𝜔 = 𝑋 𝑒𝑗𝜔 𝑒𝑗𝜑𝑥(ω)

o Magnitude:

𝑋 𝑒𝑗𝜔 = 𝑋𝑅
2 𝑒𝑗𝜔 + 𝑋𝐼

2(𝑒𝑗𝜔)

o Phase:

𝜑𝑋 𝜔 = 𝑡𝑎𝑛−1
𝑋𝛪(𝑒𝑗𝜔)

𝑋𝑅(𝑒𝑗𝜔)

• The graphical representations of the above functions are called magnitude 
spectrum and phase spectrum.
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Spectral Symmetries of the DTFT

If the signal 𝑥[𝑛] is real then its spectra have the same spectral properties of 
symmetry with those of the spectra of continuous-time signals, namely:

• The magnitude |𝛸 𝑒𝑗𝜔 | and real part 𝑅𝑒{𝑋(𝑒𝑗𝜔)} are even functions of 

frequency 𝜔,

• The phase ∡𝛸 𝑒𝑗𝜔 and imaginary part 𝐼𝑚{𝑋(𝑒𝑗𝜔)} are odd functions of 

frequency 𝜔,

𝛸 𝑒𝑗𝜔 = |𝛸 −𝑒𝑗𝜔 |

𝑅𝑒 𝑋 𝑒𝑗𝜔 = 𝑅𝑒{𝑋(−𝑒𝑗𝜔)}

∡𝛸 𝑒𝑗𝜔 = −∡𝛸 −𝑒𝑗𝜔

𝐼𝑚 𝑋 𝑒𝑗𝜔 = −𝐼𝑚{𝑋(−𝑒𝑗𝜔)}

• The discrete-time Fourier transform (DTFT) is a periodic function. The 
periodicity of the DTFT is due to the fact that discrete-time complex 
exponential signals when they differ in frequency by multiples of 2π are 
identical to each other.
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Inverse DTFT

• The inverse discrete-time Fourier transform (IDTFT) produces the sequence 

𝑥[𝑛]when the function is known 𝑋 𝑒𝑗𝜔 , from the equation:

𝑥[𝑛] =
1

2𝜋
න

−𝜋

𝜋

𝑋(𝑒𝑗𝜔) 𝑒𝑗𝑛𝜔 𝑑𝜔

• The inverse DTFT can be thought of as the resolution of the signal 𝑥[𝑛] into a 

linear combination of all complex exponential terms that have frequencies in 

space −𝜋 < 𝜔 < +𝜋.

• DTFT expressions:

o 𝑋 𝑒𝑗𝜔 = 𝐷𝑇𝐹𝑇{ 𝑥 𝑛

o 𝑥 𝑛 = 𝐷𝑇𝐹𝑇−1 𝑋 𝑒𝑗𝜔

o 𝑥[𝑛]
DTFT

𝑋 𝑒𝑗𝜔
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Practical utility of DTFT

• It turns the computationally difficult operation of convolution into the 

computationally simple operation of multiplication.

• It is used to solve Linear Differential Equations with Constant Coefficients 

(LDECC).

• The DTFT of the impulse response ℎ[𝑛] of an LSI system gives the frequency 

response 𝐻 𝑒𝑗𝜔 of the system.
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Example 1

Find the DTFT of the discrete-time signal 𝑥 𝑛 = {1, −1, 0, 4, 2}.

Answer: From the definition of DTFT we have:

𝑋 𝑒𝑗𝜔 = 

𝑛=−∞

+∞

𝑥 𝑛 𝑒−𝑗𝑛𝜔

= 1𝑒−𝑗 −1 𝜔 + −1 𝑒−𝑗0𝜔 + 0𝑒−𝑗1𝜔 + 4𝑒−𝑗2𝜔 + 2𝑒−𝑗3𝜔

= 1𝑒𝑗𝜔 + −1 1 + 0 + 4𝑒−𝑗2𝜔 + 2𝑒−𝑗3𝜔

= 𝑒𝑗𝜔 − 1 + 4𝑒−𝑗2𝜔 + 2𝑒−𝑗3𝜔
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Example 2

To find the DTFT of the discrete-time signals:

(a) 𝑥 𝑛 = 𝛿 𝑛 (b)𝑥 𝑛 = 𝛿 𝑛 − 𝑛0

Answer: (a) We calculate the DTFT from the definition of:

𝑋 𝑒𝑗𝜔 = 𝛥 𝑒𝑗𝜔 = 

𝑛=−∞

+∞

𝛿[𝑛] 𝑒−𝑗𝑛𝜔 = 𝛿 0 𝑒0 = 1

• The impulse 𝛿 𝑛 has a DTFT with unit magnitude and zero phase for all 

frequencies. That  is, the sequence 𝛿 𝑛 contains equally all (infinite) 

frequencies in range −𝜋 < 𝜔 < 𝜋.

(b) Similarly to case (a) we have:

𝑋 𝑒𝑗𝜔 = 

𝑛=−∞

+∞

𝛿[𝑛 − 𝑛0] 𝑒−𝑗𝑛𝜔 = 𝛿 𝑛0 𝑒−𝑗𝑛0𝜔 = 𝑒−𝑗𝑛0𝜔

• In this case the DTFT has unit magnitude (as before), but its phase is now non-

zero and proportional to frequency for all (infinite) frequencies in the range 

− 𝜋 < 𝜔 < 𝜋.
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Example 3

Find the DTFT of the discrete-time signal𝑥 𝑛 = 𝛼𝑛 𝑢 𝑛 , α < 1

Answer: DTFT is:

𝑋 𝑒𝑗𝜔 = 
𝑛=−∞

+∞

𝑥[𝑛] 𝑒−𝑗𝑛𝜔 = 
𝑛=−∞

+∞

𝛼𝑛 𝑢 𝑛 𝑒−𝑗𝑛𝜔

= 
𝑛=0

+∞

𝛼𝑛𝑒−𝑗𝑛𝜔 = 
𝑛=0

+∞

𝛼 𝑒−𝑗𝜔 𝑛

Since 𝛼 < 1, the sum converges, so the DTFT is:

𝑋 𝑒𝑗𝜔 =
1

1 − 𝑎𝑒−𝑗𝜔
=

1

𝑒−𝑗𝜔 𝑒𝑗𝜔 − 𝑎
=

𝑒𝑗𝜔

𝑒𝑗𝜔 − 𝑎
=

1

1 − 𝑎 cos 𝜔 + 𝑗𝑎 sin𝜔

The magnitude of the transform is:

𝑋 𝑒𝑗𝜔 =
1

1 − 𝑎𝑒−𝑗𝜔
=

1

1 + 𝛼2 − 2𝛼 cos𝜔

and the phase is:

𝜑𝑋 𝜔 = 𝑡𝑎𝑛−1
𝑋𝛪(𝑒𝑗𝜔)

𝑋𝑅(𝑒𝑗𝜔)
= 𝑡𝑎𝑛−1

−𝑎 sin𝜔

1 − 𝛼 cos 𝜔
= −𝑡𝑎𝑛−1

𝑎 sin𝜔

1 − 𝛼 cos 𝜔

where 𝑋𝑅(𝑒𝑗𝜔) is 𝑋𝛪(𝑒𝑗𝜔) the real and imaginary part of DTFT.
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Example 4

Find the DTFT of the discrete-time signal 𝑥 𝑛 = −𝛼𝑛 𝑢 −𝑛 − 1 , α > 1

Answer: DTFT is:

𝑋 𝑒𝑗𝜔 = 
𝑛=−∞

+∞

𝑥[𝑛] 𝑒−𝑗𝑛𝜔 = − 
𝑛=−∞

+∞

𝛼𝑛 𝑢 −𝑛 − 1 𝑒−𝑗𝑛𝜔

= − 
𝑛=−∞

−1

𝛼𝑛𝑒−𝑗𝑛𝜔 = − 
𝑛=1

+∞

𝛼−1 𝑒𝑗𝜔 𝑛
= 1 − 

𝑛=0

+∞

𝛼−1 𝑒𝑗𝜔 𝑛

Since 𝛼 > 1, the sum converges, so the DTFT is:

𝑋 𝑒𝑗𝜔 = 1 −
1

1 − 𝑎−1𝑒−𝑗𝜔
=

α−1𝑒𝑗𝜔

1 − 𝑎−1𝑒−𝑗𝜔
=

1

1 − 𝑎 𝑒−𝑗𝜔

The magnitude of the transform is:

𝑋 𝑒𝑗𝜔 =
1

1 − 𝑎𝑒−𝑗𝜔
=

1

1 + 𝛼2 − 2𝛼 cos𝜔

and the phase is:

𝜑𝑋 𝜔 = −𝑡𝑎𝑛−1
𝑎 sin𝜔

1 − 𝛼 cos 𝜔

The solution is the same as Example 2, with the only difference being the value of the 
coefficient (a).
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Example 3 and Example 4 spectra

Magnitude and phase spectra of the signal 𝑥 𝑛 = 0.7𝑛𝑢 𝑛

Magnitude and phase spectra of the signal 𝑥 𝑛 = 1.7𝑛𝑢 𝑛
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Example 5

Calculate the DTFT of the sequence 𝑥[𝑛] = 𝐴 𝑢 𝑛 − 𝑢 𝑛 − 𝑁 .

Answer: Using the definition of DTFT we have:

𝑋 𝑒𝑗𝜔 = 

𝑛=−∞

∞

𝑥[𝑛]𝑒−𝑗𝑛𝜔 = 

𝑛=0

𝑁−1

𝐴 𝑒−𝑗𝑛𝜔 = 𝐴 

𝑛=0

𝑁−1

𝑒−𝑗𝑛𝜔 = 𝐴 

𝑛=0

𝑁−1

𝑒−𝑗𝜔 𝑛
=

𝐴 1 − 𝑒−𝑗𝜔𝑁

1 − 𝑒−𝑗𝜔

=
𝛢𝑒−𝑗𝜔𝑁/2(𝑒𝑗𝜔𝑁/2 − 𝑒−𝑗𝜔𝑁/2)

𝑒−𝑗𝜔/2(𝑒𝑗𝜔/2 − 𝑒−𝑗𝜔/2)
=

𝛢𝑒−𝑗𝜔𝑁/2 2𝑗 𝑠𝑖𝑛 𝜔𝑁/2

𝑒−𝑗𝜔/2 2𝑗 𝑠𝑖𝑛 𝜔/2
= 𝐴𝑒−𝑗𝜔(𝛮−1)/2

sin(𝜔𝛮/2)

sin(𝜔/2)

The magnitude of DTFT is:

𝑋 𝑒𝑗𝜔 = 𝛢
sin(𝜔𝛮/2)

sin(𝜔/2)
(1)

and the phase is:

𝜑𝑋 𝜔 = −
𝜔 𝛮 − 1

2
(2)
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Example 5 (continued)

(a) Signal 𝑥[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 5], (b) Magnitude spectrum, (c) Phase spectrum, in one period

For the magnitude of the DTFT, the following observations apply:

• Since the numerator and denominator of equation (1) are odd functions, it follows that the 
magnitude of the DTFT is an even function, as expected.

• According de l' Hospital 's rule we find that for the frequency 𝜔 = 0 the magnitude takes its

maximum value, which is 𝑋 𝑒𝑗0 = 𝛢.

• The points of zero magnitude are those that satisfy the equation sin(𝜔𝛮/2) = 0, so the magnitude 
becomes zero at these frequencies 𝜔 = 2𝑘𝜋/𝛮.

• The magnitude of the DTFT is a function:

– Periodic with a period of 2𝜋, when 𝛮 is odd.

– Non-periodic when 𝛮 is even.
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Example 6

Find the inverse DTFT of the 𝑋 𝑒𝑗𝜔 with orthogonal form function, given by:

𝑋 𝑒𝑗𝜔 = ቊ
1, 𝜔 < 𝛣
0, 𝛣 < 𝜔 < 𝜋

, where 𝛣 = 𝜋/2

Answer: The inverse DTFT by definition is:

𝑥 𝑛 =
1

2𝜋
න

−𝜋

𝜋

𝑋 𝑒𝑗𝜔 𝑒𝑗𝑛𝜔 𝑑𝜔 =
1

2𝜋
න

−𝛣

𝛣

1 𝑒𝑗𝑛𝜔 𝑑𝜔 =
1

2𝜋

1

𝑗𝑛
𝑒𝑗𝑛𝜔

−𝐵

𝐵

=
1

2𝜋𝑗𝑛
𝑒𝑗𝑛𝐵 − 𝑒−𝑗𝑛𝐵 =

sin 𝐵𝑛

𝜋𝑛
, 𝑛 ≠ 0

For 𝑛 = 0 the value 𝑥 0 is calculated by the rule of de L'Hospital and is:

𝑥 0 = lim
𝑛→0

𝐵 cos 𝐵𝑛

𝜋
=

𝐵

𝜋
= 0.5

Therefore, the sequence 𝑥 𝑛 is:

𝑥[𝑛] = ቐ

0.5, 𝑛 = 0
sin 𝜋𝑛/2

𝜋𝑛
, 𝑛 ≠ 0
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Example 6 (continued)

(a) Square shape magnitude spectrum at the normalized frequency [−𝜋, 𝜋]

(b) Plot of sequence 𝑥 𝑛 = sin(𝜋𝑛/2)/𝜋𝑛
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Example 6 (continued)

• We observe that the inverse DTFT of an orthogonal spectrum produces a non-
causal sequence. The maximum value of the sequence is 𝛣 = 0.5 and its zero 
points are 𝑛 = 𝑘𝜋/𝐵 = 2𝑘.

• If the orthogonal function 𝑋 𝑒𝑗𝜔 corresponds to the spectrum of an ideal low-

pass filter that we want to construct, then the time sequence corresponds to the 
impulse response ℎ[𝑛] of the filter. According to the above solution the shock 
response is a sequence of infinite duration and non-causal. So the ideal depth 
filter is not feasible.

• In the next lecture we will see an approximate method of generating the impulse 
response of a practical filter, according to which: 
(a) we limit (arbitrarily) the infinite length of the impulse response 
symmetrically to zero, and 
(b) we shift the remaining part of the sequence by one amount of time shift so as 
to remove the non-causality of the impulse response. 
This solution leads to the creation of a practical filter which is close to the ideal.
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DTFT Transform 
of Periodic Signals
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DTFT of Periodic Discrete-Time Signals

The periodic discrete-time signals do not tend to zero when 𝑛 → ∞, so they are not 
absolutely summable and the DTFT cannot be calculated from its definition. We 
calculate the DTFT of the periodic SDX if we allow (in its calculation) the existence 
of shock functions with amplitudes equal to the coefficients of the exponential 
Fourier series.

Fourier series expansion of the train 𝛿𝑁[𝑛] is:

𝛿𝑁[𝑛] =
1

𝑁


𝑘=0

𝑁−1

𝛥[𝑘] 𝑒𝑗𝑘𝜔0𝑛

where 𝛥[𝑘] = 1/Ν.

Since 𝐹 𝑒𝑗𝜔0𝑛 = 2𝜋𝛿 𝜔 − 𝜔0 , the DTFT of the periodic signal 𝛿𝑁[𝑛]is:

𝛥 𝑒𝑗𝜔 = 𝐹 𝛿𝑁 𝑛 = 𝐹
1

𝑁


𝑘=0

𝑁−1

𝛥[𝑘] 𝑒𝑗𝑘𝜔0𝑛 =
2𝜋

𝑁


𝑘=0

𝑁−1

𝛿 𝜔 − 𝑘𝜔0

From a periodic signal 𝑥[𝑛] we extract a period of 𝑥[𝑛, 𝑁], for which the DTFT is 

𝑋𝑁 𝑒𝑗𝜔 . The periodic signal can be produced from the equation: 

𝑥 𝑛 = 𝑥 𝑛, 𝑁 ∗ 𝛿𝑁[𝑛]
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DTFT of Periodic Discrete-Time Signals

• Applying DTFT to the above equation we get:

𝑋 𝑒𝑗𝜔 =
2𝜋

𝑁


𝑘=−∞

∞

𝑋𝑁(𝑒𝑗𝑘𝜔0) 𝛿 𝜔 − 𝑘𝜔0

• Based on the above, the DTFT of a periodic discrete-time signal can be 
obtained by multiplying the DTFT of one period 𝑥[𝑛, 𝑁]with the DTFT of the 
periodic sequence 𝛿𝑁[𝑛].

• In other words the DTFT of the periodic discrete-time signal is obtained by 
sampling with a sampling  period 𝜔0 of  DTFT of one period.
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Example 7

Prove that the DTFT of the signal 𝑥 𝑛 = 𝑒𝑗𝜔0𝑛, 𝜔 ∈ −𝜋, 𝜋 , is given by the equation 

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛 𝑋 𝑒𝑗𝜔 = σ𝑚=−∞
∞ 2𝜋 𝛿 𝜔 − 𝜔0 + 2𝜋𝑚 , 𝑚 ∈ 𝑍.

Answer: Since the signal is not absolutely summable the DTFT cannot be calculated 
from its definition. For this reason we will work in reverse, i.e. we will calculate the 
inverse DTFT. We notice that the function:

𝑋 𝑒𝑗𝜔 = 

𝑚=−∞

∞

2𝜋 𝛿 𝜔 − 𝜔0 + 2𝜋𝑚

is an infinite sum of shock functions spaced apart 2𝜋𝑚 on the frequency axis. In other 
words, its 𝑒𝑗𝜔0𝑛 DTFT contains impulse functions at frequencies 𝜔0 ± 2𝜋𝑚.

The inverse DTFT  is calculated in the frequency domain −𝜋, 𝜋 from the equation:

𝑥 𝑛 =
1

2𝜋
න

−𝜋

𝜋

𝑋 𝑒𝑗𝜔 𝑒𝑗𝜔𝑛 𝑑𝜔 =
1

2𝜋
න

−𝜋

𝜋



𝑚=−∞

∞

2𝜋 𝛿 𝜔 − 𝜔0 + 2𝜋𝑚 𝑒𝑗𝜔𝑛 𝑑𝜔

But in the region −𝜋, 𝜋 there is only the function 𝛿 𝜔 − 𝜔0 , so the integral is:

𝑥 𝑛 = න

−𝜋

𝜋

𝛿 𝜔 − 𝜔0 𝑒𝑗𝜔𝑛 𝑑𝜔 = ቚ𝑒𝑗𝜔𝑛

𝜔=𝜔0

= 𝑒𝑗𝜔0𝑛
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Useful DTFT pairs

Signal 𝒙[𝒏] DTFT transform 𝑿(𝒆𝒋𝝎)

𝛿[𝑛] 1,−∞ < 𝜔 < ∞

𝛿[𝑛 − 𝑛0] 𝑒−𝑗𝑛0𝜔

1 2𝜋𝛿 𝜔

𝑒𝑗𝑛0𝜔 2𝜋𝛿 𝜔 − 𝜔0

𝛼𝑛𝑢[𝑛], 𝑎 < 1
1

1 − 𝑎𝑒−𝑗𝜔

−𝛼𝑛𝑢 𝑛 − 1 , 𝑎 > 1
1

1 − 𝑎𝑒−𝑗𝜔

[𝑛 + 1]𝛼𝑛𝑢[𝑛], 𝑎 < 1
1

(1 − 𝑎𝑒−𝑗𝜔)2

𝑢[𝑛] − 𝑢[𝑛 − 𝑛0]
𝑠𝑖𝑛(𝜔𝑛0/2)

𝑠𝑖𝑛(𝜔/2)
𝑒−𝑗(𝑛0−1)/2
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Useful DTFT pairs

Signal 𝒙[𝒏] DTFT transform 𝑿(𝒆𝒋𝝎)

𝑐𝑜𝑠[𝑛𝜔0] 𝜋 

𝑘=−∞

∞

𝛿 𝜔 − 𝜔0 + 2𝜋𝑘 + 𝛿 𝜔 + 𝜔0 + 2𝜋𝑘

𝑠𝑖𝑛[𝑛𝜔0]
𝜋

𝑗


𝑘=−∞

∞

𝛿 𝜔 − 𝜔0 + 2𝜋𝑘 − 𝛿 𝜔 + 𝜔0 + 2𝜋𝑘

𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔0 𝑢[𝑛]
1 − 𝑎 𝑒−𝑗𝜔 cos 𝜔0

1 − 2𝑎 𝑒−𝑗𝜔 cos 𝜔0 + 𝑎2𝑒−2𝑗𝜔

𝑎𝑛 𝑠𝑖𝑛 𝑛𝜔0 𝑢[𝑛]
𝑎 𝑒−𝑗𝜔 sin 𝜔0

1 − 2𝑎 𝑒−𝑗𝜔 cos 𝜔0 + 𝑎2𝑒−2𝑗𝜔
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DTFT properties
• Periodicity

• Symmetry and Conjugation

• Linearity

• Reversing Time

• Shift in Time

• Shift in Frequency

• Differentiation in Frequency

• Convolution Theorem

• Periodic Convolution

• Correlation

• Parseval's theorem
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Periodicity

• DTFT is a periodic function with period 2𝜋, i.e. it satisfies the equation:

𝑋 𝑒𝑗𝜔 = 𝑋 𝑒𝑗(𝜔+2𝑘𝜋)

• Periodicity is a result of the fact that discrete-time complex exponential signals 

when they differ in frequency by multiples of 2𝜋, are identical to each other.

• This property does not apply to the Fourier transform of continuous-time signals.

• Application: Based on the property of periodicity it follows that for the analysis of 

the DTFT we need only one period of the function 𝑋 𝑒𝑗𝜔 , e.g. [0,2𝜋] or [−𝜋, 𝜋], 

and not the whole interval −∞ < 𝜔 < ∞. This saves a lot of computation effort.
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Linearity

• The DTFT is linear, that is, the DTFT of a linear combination of signals is equal to 

the sum of the DTFTs of the individual components of the linear combination.

• If the individual DTFT transforms are:

𝑥1 𝑛
𝐷𝑇𝐹𝑇

𝑋1 𝑒𝑗𝜔

𝑥2 𝑛
𝐷𝑇𝐹𝑇

𝑋2 𝑒𝑗𝜔

then the DTFT transform of the linear combination 𝑎1𝑥1[𝑛] + 𝛼2𝑥2[𝑛] will be:

𝛼𝑥1[𝑛] + 𝑏𝑥2[𝑛]
𝐷𝑇𝐹𝑇

𝑎𝑋1 𝑒𝑗𝜔 + 𝑏𝑋2 𝑒𝑗𝜔

• From this property it follows that the DTFT is a linear transform, suitable for the 

study of discrete-time linear systems.
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Example 8

Calculate the DTFT of the signal 𝑥[𝑛] = cos(𝜔0𝑛).

Answer: We know that:

𝑒𝑗𝜔0𝑛 

𝑚=−∞

∞

2𝜋 𝛿 𝜔 − 𝜔0 + 2𝜋𝑚 ,

By setting 𝜔 = −𝜔0 we have:

𝑒−𝑗𝜔0𝑛 

𝑚=−∞

∞

2𝜋 𝛿 𝜔 + 𝜔0 + 2𝜋𝑚 ,

From the Euler equation it follows:

𝑥 𝑛 = cos(𝜔0𝑛) =
1

2
𝑒𝑗𝑛𝜔0 + 𝑒−𝑗𝑛𝜔0

Since the DTFT is linear, we have:

𝑋 𝑒𝑗𝜔 = 𝐹
1

2
𝑒𝑗𝑛𝜔0 + 𝑒−𝑗𝑛𝜔0 =

1

2
𝐹 𝑒𝑗𝑛𝜔0 +

1

2
𝐹 𝑒−𝑗𝑛𝜔0

=
1

2


𝑚=−∞

∞

2𝜋 𝛿 𝜔 − 𝜔0 + 2𝜋𝑚 +
1

2


𝑚=−∞

∞

2𝜋 𝛿 𝜔 + 𝜔0 + 2𝜋𝑚

= 𝜋 

𝑚=−∞

∞

𝛿 𝜔 − 𝜔0 + 2𝜋𝑚 + 𝛿 𝜔 + 𝜔0 + 2𝜋𝑚
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Example 8 (continued)

(a) 𝑥[𝑛] = cos(𝜔0𝑛),    (b) 𝑋 𝑒𝑗𝜔 = 𝜋 σ𝑚=−∞
∞ 𝛿 𝜔 − 𝜔0 + 2𝜋𝑚 + 𝛿 𝜔 + 𝜔0 + 2𝜋𝑚

If we limit the solution to the frequency interval [- π,π), the above equation is written:

𝑋 𝑒𝑗𝜔 = 𝜋 𝛿 𝜔 − 𝜔0 + 𝛿 𝜔 + 𝜔0

Working analogously for the sine function, we get:

s𝑖𝑛(𝜔0𝑛) =
1

2
𝑗 𝑒𝑗𝑛𝜔0 − 𝑒−𝑗𝑛𝜔0 𝜋𝑗 

𝑚=−∞

∞

{𝛿 𝜔 − 𝜔0 + 2𝜋𝑚 − 𝛿 𝜔 + 𝜔0 + 2𝜋𝑚 }
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Symmetry and Conjugation

• For a real discrete-time signal 𝑥[𝑛], the function 𝑋 𝑒𝑗𝜔 is conjugate-

symmetric, that is, it satisfies the equation:

𝑋 𝑒−𝑗𝜔 = 𝑋∗ 𝑒𝑗𝜔

• This relationship is called Hermitian symmetry and is equivalent to the 

following expressions:

o 𝑋𝑅 𝑒−𝑗𝜔 = 𝑋𝑅 𝑒𝑗𝜔 The real part has perfect symmetry

o 𝑋𝐼 𝑒−𝑗𝜔 = −𝑋𝐼 𝑒𝑗𝜔 The imaginary part has unnecessary symmetry

o 𝑋 𝑒−𝑗𝜔 = 𝑋 𝑒𝑗𝜔 The magnitude has perfect symmetry

o ∡𝑋 𝑒−𝑗𝜔 = −∡𝑋 𝑒𝑗𝜔 The phase has redundant symmetry

• Application: Based on the property of symmetry it follows that for the plotting 

of the function 𝑋(𝑒𝑗𝜔) we need only half a period, we usually choose 𝝎 ∈ 𝟎, 𝝅 .
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Symmetry and Conjugation Properties

Signal 𝒙[𝒏] DTFT transform 𝑿(𝒆𝒋𝝎)

Real and even Real and even

Real and odd Ιmaginary and odd

Imaginary and even Ιmaginary and even

Imaginary and odd Real and odd
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Reversal & Shift in Time

• Reversal in the time domain corresponds to reversal also in the 

frequency domain. Specifically, if the DTFT of a signal 𝑥[𝑛] is 𝑋 𝑒𝑗𝜔 , 

then:

𝑥[−𝑛]
𝐷𝑇𝐹𝑇

𝑋 𝑒−𝑗𝜔

• A shift in the time domain corresponds to a phase shift in the frequency 

domain, while the magnitude spectrum (meter) remains the same.

Specifically, if the DTFT of a signal 𝑥[𝑛] is 𝑋 𝑒𝑗𝜔 , then:

𝑥[𝑛 − 𝑛0]
𝐷𝑇𝐹𝑇

𝑒−𝑗𝑛0𝜔𝑋 𝑒𝑗𝜔

• From the property it becomes clear that the frequency content of a 

signal depends only on its form and not on its position.
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Example 9

Calculate the DTFT of the signals and plot the magnitude and phase spectra:

(a) 𝑥1 𝑛 = 𝑢 𝑛 + 2 − 𝑢[𝑛 − 2] (b) 𝑥2 𝑛 = 𝑥1 𝑛 − 2

Answer: (a) The given signal can be written:

𝑥1 𝑛 = 𝛿 𝑛 + 2 + 𝛿 𝑛 + 1 + 𝛿 𝑛 + 𝛿 𝑛 − 1

We know that:

𝛿 𝑛
𝐷𝑇𝐹𝑇

𝛥 𝑒𝑗𝜔 = 1

Based on the time shift property it follows that:

𝛿[𝑛 − 𝑛0]
𝐷𝑇𝐹𝑇

𝑒−𝑗𝑛0𝜔𝛥 𝑒𝑗𝜔

Therefore for the time-shifted versions of 𝛿 𝑛 , we have:

𝛿[𝑛 + 2]
𝐷𝑇𝐹𝑇

𝑒𝑗2𝜔 𝛿[𝑛 + 1]
𝐷𝑇𝐹𝑇

𝑒𝑗𝜔 𝛿[𝑛 − 1]
𝐷𝑇𝐹𝑇

𝑒−𝑗𝜔

Based on the linearity property of the DTFT it follows:

𝑋1 𝑒𝑗𝜔 = 𝑒𝑗2𝜔 + 𝑒𝑗𝜔 + 1 + 𝑒−𝑗𝜔
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Example 9 (continued)

• In the figure are given the graphical 

representations of 𝑥1[𝑛] and a full 

period in the frequency interval 

[−𝜋, 𝜋] of the magnitude and phase 

spectra of the function 𝑋1 𝑒𝑗𝜔 .

• We notice that the maximum value 

of the spectrum is equal to the 

number of pulses (in our example it 

is 4).

• Also, the number of spectrum waves 

in a period depends on the number 

of pulses that make up the signal 

𝑥1[𝑛].
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Example 9 (continued)

(b) The given mark may be written: 𝑥2 𝑛 = 𝑥1 𝑛 − 2 = 𝑢 𝑛 − 𝑢[𝑛 − 4].

Based on the time shift property of the DTFT, the DTFT of 𝑥2 𝑛 is:

𝑋2 𝑒𝑗𝜔

= 𝑒−𝑗2𝜔𝑋1 𝑒𝑗𝜔

= 𝑒−𝑗2𝜔 𝑒𝑗2𝜔 + 𝑒𝑗𝜔 + 1 + 𝑒−𝑗𝜔

= 1 + 𝑒−𝑗𝜔 + 𝑒−2𝑗𝜔 + 𝑒−3𝑗𝜔 (1)

Regarding the magnitude and the phase of the function 𝑋2 𝑒𝑗𝜔 :

𝑋2 𝑒𝑗𝜔 = 𝑋1 𝑒𝑗𝜔 and∡𝑋2 𝑒𝑗𝜔 = ∡𝑋1 𝑒𝑗𝜔 + 2𝜔
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Example 9 (continued)

• From the adjacent figure, we 
observe that the magnitude
spectrum of the time-shifted signal 
𝑥2 𝑛 remains the same as that of 
the original signal 𝑥1[𝑛], while the 
phase spectrum is shifted by 2𝜔.

• Note: The spectra were designed in 
the frequency range [−𝜋, 𝜋).
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Shift & Differentiation in Frequency

• Multiplying a discrete-time signal by a complex exponential term 𝑒𝑗𝑛0𝜔 causes 

the spectrum 𝑋 𝑒𝑗𝜔 to shift in the frequency domain by 𝜔0. Specifically, if the 

DTFT of a signal 𝑥[𝑛] is 𝑋 𝑒𝑗𝜔 , then:

𝑒𝑗𝑛0𝜔𝑥 𝑛
𝐷𝑇𝐹𝑇

𝑋 𝑒𝑗 𝜔−𝜔0

• If the DTFT of a signal 𝑥[𝑛] is 𝑋 𝑒𝑗𝜔 , then the derivative of the spectrum holds 

the equation:

−𝑗𝑛𝑥 𝑛
𝐷𝑇𝐹𝑇 𝑑𝑋 𝑒𝑗𝜔

𝑑𝜔
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Example 10

To calculate the DTFT of the signal 𝑦[𝑛] = 𝑥 𝑛 cos 𝑛𝜔0 , when the DTFT of 𝑥 𝑛 is 

known.

Answer: Based on the Euler equation, the cosine is written:

cos 𝑛𝜔0 =
1

2
𝑒𝑗𝑛𝜔0 + 𝑒−𝑗𝑛𝜔0

Therefore, the signal 𝑦[𝑛] is:

𝑦 𝑛 = 𝑥 𝑛 cos 𝑛𝜔0 = 𝑥 𝑛
1

2
𝑒𝑗𝑛𝜔0 + 𝑒−𝑗𝑛𝜔0 =

=
1

2
𝑒𝑗𝑛𝜔0𝑥 𝑛 +

1

2
𝑒−𝑗𝑛𝜔0𝑥 𝑛

Applying the shift property to the frequency of the DTFT, we have:

𝑥 𝑛 cos 𝑛𝜔0

𝐷𝑇𝐹𝑇 1

2
𝑋 𝑒𝑗 𝜔−𝜔0 +

1

2
𝑋 𝑒𝑗(𝜔+𝜔0)
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Time Scale Change – Frequency Derivation

1. Multiplying the time variable 𝑛 by a rational number 𝑘 corresponds to dividing 

the frequency variable by the same number 𝑘, i.e. if 𝑥[𝑛]
𝐷𝑇𝐹𝑇

𝑋 𝑒𝑗𝜔 , then:

𝑥[𝑘𝑛]
𝐷𝑇𝐹𝑇

𝑋 𝑒𝑗𝜔/𝑘

2. If 𝑥[𝑛]
𝐷𝑇𝐹𝑇

𝑋 𝑒𝑗𝜔 , then:

𝑛𝑥 𝑛
𝐷𝑇𝐹𝑇

𝑗
𝑑𝑋 𝑒𝑗𝜔

𝑑𝜔

−𝑗𝑛 𝑘𝑥 𝑛
𝐷𝑇𝐹𝑇

𝑗
𝑑𝑘𝑋 𝑒𝑗𝜔

𝑑𝜔𝑘
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Convolution Theorem

• If the DTFTs of the sequences 𝑥[𝑛] and ℎ[𝑛] are 𝑋 𝑒𝑗𝜔 and 𝐻 𝑒𝑗𝜔 , then the 

convolution of the two sequences holds:

ℎ 𝑛 ∗ 𝑥 𝑛
𝐷𝑇𝐹𝑇

𝐻 𝑒𝑗𝜔 𝑋 𝑒𝑗𝜔

• This property simplifies the analysis of discrete-time systems, as it transforms 
the computationally difficult operation of convolution into the computationally 
simple operation of multiplication.

• The computation in the time-domain of the output of an LSI system is given by 
the convolution:

𝑦 𝑛 = ℎ[𝑛] ∗ 𝑥[𝑛]

using the convolution property, the DTFT of the output is:

𝑌 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑋 𝑒𝑗𝜔

• Writing the above relationship in magnitude and phase, yields:

𝑌 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑋 𝑒𝑗𝜔

∡𝑌 𝑒𝑗𝜔 = ∡𝐻 𝑒𝑗𝜔 + ∡𝑋 𝑒𝑗𝜔
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Example 11

Calculate the output 𝑦[𝑛] of a discrete-time LSI system with impulse response 

ℎ 𝑛 = 0.2𝑛𝑢 𝑛 when the input is 𝑥 𝑛 = 0.5𝑛 𝑢[𝑛].

Answer: We calculate the DTFT of the sequences ℎ 𝑛 και 𝑥 𝑛 . Is:

𝐻 𝑒𝑗𝜔 =
1

1−0.2 𝑒−𝑗𝜔 and    𝛸 𝑒𝑗𝜔 =
1

1−0.5 𝑒−𝑗𝜔

The output results from convolution 𝑦[𝑛] = ℎ 𝑛 ∗ 𝑥 𝑛 . Using the convolution 

property of the DTFT we have:

𝑌 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑋 𝑒𝑗𝜔 =
1

1 − 0.2 𝑒−𝑗𝜔

1

1 − 0.5 𝑒−𝑗𝜔

=
1

(1 − 0.2𝑒−𝑗𝜔)(1 − 0.5𝑒−𝑗𝜔)

To obtain the sequence 𝑦[𝑛] from the function 𝑌 𝑒𝑗𝜔 we will need to calculate the 

inverse DTFT of  𝑌 𝑒𝑗𝜔 .
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Example 11 (continued)

We break it down 𝑌 𝑒𝑗𝜔 into a sum of several fractions:

𝑌 𝑒𝑗𝜔 =
1

(1 − 0.2𝑒−𝑗𝜔)(1 − 0.5𝑒−𝑗𝜔)
=

𝐶1

1 − 0.2𝑒−𝑗𝜔
+

𝐶2

1 − 0.5𝑒−𝑗𝜔
(1)

where the coefficients 𝐶1 και 𝐶2are constants to be determined. We perform the 

operations on the right member of equation (1) and obtain:

𝑌 𝑒𝑗𝜔 =
𝐶1 − 0.5𝐶1𝑒−𝑗𝜔 + 𝐶2 − 0.2𝐶2𝑒−𝑗𝜔

(1 − 0.2𝑒−𝑗𝜔)(1 − 0.5𝑒−𝑗𝜔)
(2)

Equating the numerators of the left-hand member of equation (1) and equation

(2), we have:

1 = 𝐶1 − 0.5𝐶1𝑒−𝑗𝜔 + 𝐶2 − 0.2𝐶2𝑒−𝑗𝜔 = (𝐶1+𝐶2) − 0.5𝐶1 + 0.2𝐶2 𝑒−𝑗𝜔
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Example 11 (continued)

We calculate the constants 𝐶1 και 𝐶2 by solving the system:

𝐶1 + 𝐶2 = 1

0.5𝐶1 + 0.2𝐶2 = 0

The result is:

𝐶1 = −2/3 and   𝐶2 = 5/3

so equation (1) is written:

𝑌 𝑒𝑗𝜔 =
−2/3

1 − 0.2𝑒−𝑗𝜔
+

5/3

1 − 0.5𝑒−𝑗𝜔
(1)

Therefore based on the table of useful DTFT pairs, the inverse DTFT is:

𝑦 𝑛 = −
2

3
0.2 𝑛𝑢 𝑛 +

5

3
0.5 𝑛𝑢 𝑛 = −

2

3
0.2 𝑛 +

5

3
0.5 𝑛 𝑢 𝑛
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Signal Multiplication – Periodic Convolution

1. If the DTFTs of the sequences 𝑥[𝑛] and 𝑦[𝑛] are 𝑋 𝑒𝑗𝜔 and 𝑌 𝑒𝑗𝜔 respectively, 

then the DTFT of the product of the signals 𝑥[𝑛] and 𝑦[𝑛] is:

𝑥 𝑛 𝑦 𝑛
𝐷𝑇𝐹𝑇 1

2𝜋
𝑋 𝑒𝑗𝜔 ∗ 𝑌 𝑒𝑗𝜔

2. The DTFT of the product of two periodic sequences 𝑥[𝑛] and 𝑦[𝑛] with the same 

period 𝛮, is the periodic convolution of the individual DTFTs 𝑋 𝑒𝑗𝜔 and 

𝑌 𝑒𝑗𝜔 signals.

𝑥 𝑛 𝑦 𝑛
𝐷𝑇𝐹𝑇 1

2𝜋
න

−𝜋

𝜋

𝑋 𝑒𝑗𝜃 𝑌 𝑒𝑗 𝜔−𝜃 𝑑𝜃 = 𝑋 𝑒𝑗𝜔 ⊛ 𝑌 𝑒𝑗𝜔
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Time and Frequency Symmetry

The duality (symmetry) property of the Fourier transform between the time 

and frequency domains for continuous time signals also applies to the DTFT.

Is particularly useful for calculating the DTFT on signals that are not fully 

summable.

The pairs of equations apply:



𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]
𝐷𝑇𝐹𝑇



𝑘=−∞

∞

𝑥 𝑘 𝑒−𝑗𝜔𝑘



𝑘=−∞

∞

𝑋 𝑘 𝑒−𝑗𝜔𝑘𝑛
𝐷𝑇𝐹𝑇



𝑘=−∞

∞

2𝜋 𝑋 𝑘 𝛿 𝜔 + 𝜔𝑘
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Example 12

Calculate the DTFT of the signal 𝑥[𝑛] = cos(𝜔0𝑛) using the duality (symmetry) 
property.

Answer: From Example 8 we know that the DTFT of cos 𝜔0𝑛 in range [−𝜋, 𝜋), is:

𝑋 𝑒𝑗𝜔 = 𝜋 𝛿 𝜔 − 𝜔0 + 𝛿 𝜔 + 𝜔0

We will verify the result with the duality (symmetry) property.

From the Euler equation we have 𝑥 𝑛 = cos(𝜔0𝑛) = 0.5 𝑒𝑗𝑛𝜔0 + 𝑒−𝑗𝑛𝜔0 .

Because 𝑒𝑗𝑛𝜔0 𝛿 𝜔 − 𝜔0 from the relationship:



𝑘=−∞

∞

𝑋 𝑘 𝑒−𝑗𝜔𝑘𝑛
𝐷𝑇𝐹𝑇



𝑘=−∞

∞

2𝜋 𝑋 𝑘 𝛿 𝜔 + 𝜔𝑘

resulting:

cos(𝜔0𝑛) =
1

2
𝑒𝑗𝑛𝜔0 + 𝑒−𝑗𝑛𝜔0 𝜋 𝛿 𝜔 − 𝜔0 + 𝛿 𝜔 + 𝜔0
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Correlation

If the DTFTs of the sequences 𝑥[𝑛] and 𝑦[𝑛] are 𝑋 𝑒𝑗𝜔 and 𝑌 𝑒𝑗𝜔 , 

respectively, then for the correlation 𝑅𝑥𝑦[𝑛] of the two sequences 

defined by the equation:

𝑅𝑥𝑦[𝑛] = 

𝑛=−∞

∞

𝑥 𝑛 𝑦[𝑛 − 𝑘]

apply:

𝑅𝑥𝑦 𝑛
𝐷𝑇𝐹𝑇

𝑋 𝑒𝑗𝜔 𝑌 𝑒−𝑗𝜔
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Parseval’s Theorem

• The energy of a discrete-time signal 𝑥 𝑛 can be calculated from the equation:

𝐸𝑥 = 

𝑛=−∞

∞

𝑥[𝑛] 2 =
1

2𝜋
න

−𝜋

𝜋

𝑋(𝑒𝑗𝜔)
2

𝑑𝜔

• The DTFT conserves the total energy during the transition from the time 

domain to the frequency domain, which is why it is also called the conservation 

of energy theorem.

• The term 𝑋(𝑒𝑗𝜔)
2

is called energy-density  spectrum and expresses the energy 

of the signal per frequency unit.

• If the sign 𝑥 𝑛 is real, the equation is written:

𝐸𝑥 = 

𝑛=−∞

∞

𝑥[𝑛] 2 = න

0

𝜋
𝑋 𝑒𝑗𝜔 2

𝜋
𝑑𝜔
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Example 13

Calculate the energy of the sequence 𝑥 𝑛 = 0.5𝑛𝑢 𝑛 from its spectrum.

Answer: The DTFT of the sequence 𝑥 𝑛 = 0.5𝑛𝑢 𝑛 is:

𝑋 𝑒𝑗𝜔 =
1

1 − 0.5 𝑒−𝑗𝜔

Its width is:

𝑋 𝑒𝑗𝜔 2
= 𝑋 𝑒𝑗𝜔 𝑋∗ 𝑒𝑗𝜔 =

1

1 − 0.5𝑒−𝑗𝜔

1

1 − 0.5𝑒𝑗𝜔
=

1

1.25 − cos𝜔

Since the sequence is real, the energy is given by the Parseval equation:

𝐸𝑥 = න

0

𝜋
𝑋 𝑒𝑗𝜔 2

𝜋
𝑑𝜔 = න

0

𝜋
1

𝜋(1.25 − 𝑐𝑜𝑠𝜔)
𝑑𝜔 = ⋯ =

4

3
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Relationship of DTFT 
with other Transforms

• With the Fourier transform

• With the Z-transform
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DTFT relationship with Fourier 

• A discrete-time signal 𝑥 𝑛 derived from sampling a continous-time signal 𝑥(𝑡) with 
sampling period 𝑇𝑠,  i.e. 𝑥 𝑛 = 𝑥 𝑛𝑇𝑠 = 𝑥(𝑡)|𝑡=𝑛𝑇𝑠

has a DTFT:

𝑋 𝑒𝑗𝜔 = 

𝑛=−∞

+∞

𝑥[𝑛] 𝑒−𝑗𝑛𝜔

• Continuous-time Fourier transform 𝛸𝑠 𝛺 Fourier of the sequence 𝑥 𝑛 calculated for 
𝜔 = 𝛺𝛵𝑠

𝛸𝑠 𝛺 = ቚ𝑋𝑠 𝑒𝑗𝜔

𝜔=𝛺𝛵𝑠

= 𝛸𝑠 𝑒𝑗𝛺𝛵𝑠 = 

𝑛=−∞

+∞

𝑥[𝑛] 𝑒−𝑗𝑛𝛺𝛵𝑠

• From the time shift property of the 𝛿 𝑡 − 𝑛𝑇𝑠

𝐹
𝑒−𝑗𝑛𝛺𝛵𝑠 of Z-Transform, the inverse 

Fourier transform of the function is found 𝛸𝑠 𝛺 . Is:

𝑥𝑠 𝑡 = 

𝑛=−∞

+∞

𝑥[𝑛] 𝛿 𝑡 − 𝑛𝑇𝑠

• Therefore, its 𝑥 𝑛 DTFT is identical to the continuous-time 𝛸𝑠 𝛺 Fourier transform of 
the sampled signal 𝑥𝑠 𝑡 , since:

𝑥𝑠 𝑡 = 

𝑛=−∞

+∞

𝑥[𝑛] 𝛿 𝑡 − 𝑛𝑇𝑠

𝐹
𝛸𝑠 𝛺 = 

𝑛=−∞

+∞

𝑥[𝑛] 𝑒−𝑗𝑛𝛺𝛵𝑠
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DTFT relationship with Fourier 

(a) Signal spectrum 𝑥 𝑡 ,

(b) One of the spectrum terms 
𝑋𝑠 𝛺 of the sampled signal 
𝑥𝑠 𝑡 ,

(c) Periodic 𝛸 𝑒𝑗𝜔 sequence 

spectrum 𝑥[𝑛] for 𝑓𝑠 > 2𝑓𝑚𝑎𝑥

(d) Periodic 𝛸 𝑒𝑗𝜔 sequence 

spectrum 𝑥[𝑛] for 𝑓𝑠 < 2𝑓𝑚𝑎𝑥
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DTFT relationship with Fourier Transform

• Between the DTFT of a sequence 𝑥 𝑛 = 𝑥 𝑛𝑇𝑠 = 𝑥(𝑡)|𝑡=𝑛𝑇𝑠
, which has 

resulted from sampling (sampling period 𝑇𝑠) of a continuous time signal 𝑥(𝑡), 

the relationship applies:

𝛸𝑠 𝑒𝑗𝛺𝛵𝑠 = ቚ𝑋𝑠 𝑒𝑗𝜔

𝜔=𝛺𝛵𝑠

=
1

𝑇𝑠


𝑘=−∞

+∞

𝑋
𝜔

𝛵𝑠
−

2𝜋𝑘

𝛵𝑠

Therefore, the spectrum of the sequence 𝑥[𝑛] consists of periodic repetitions 

with a period 2𝜋/𝑇𝑠 of the continuous-time signal spectrum 𝑥(𝑡), with 

magnitude multiplied by 1/𝑇𝑠 .

• In order to be able to reconstruct the continuous-time signal 𝑥(𝑡) from the 

sequence 𝑥[𝑛], the periodic repetitions of the spectrum must 𝑋 𝑒𝑗𝜔 not 

overlap. This condition is met when:

𝛺𝑚𝑎𝑥𝑇𝑠 < 𝜋 ֜ 2𝜋𝑓𝑚𝑎𝑥 1/𝑓𝑠 < 𝜋 ֜ 𝑓𝑠 > 2𝑓𝑚𝑎𝑥

which is known as the Nyquist condition or criterion.
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DTFT relationship with Z -transform

• We know that the DTFT results from the Z-transform calculated on the unit 

circle, since it is within the convergence region, i.e. by setting 𝑧 = 𝑒𝑗𝜔:

𝐷𝑇𝐹𝑇 𝑥 𝑛 = 𝑋 𝑒𝑗𝜔 = 

𝑛=−∞

∞

𝑥[𝑛] 𝑒−𝑗𝜔𝑛 = ቚ𝑋 𝑧
𝑧=𝑒𝑗𝜔

• Therefore, the DTFT can be considered as a subcase of the Z-transform for 

|𝑧| = 1.

• However, there are discrete-time signals for which it is not possible 

to calculate the DTFT from Z, because the latter does not converge.
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Relationship of DTFT to discrete Fourier Series

For a periodic discrete-time signal with period and fundamental frequency 𝜔0 = 2𝜋/𝛮, the
coefficients of the exponential 𝑋[𝑘] Fourier series are calculated from the equation:

𝑋 𝑘 =
1

𝑁


𝑛=0

𝑁−1

𝑥 𝑛 𝑒−𝑗𝜔0𝑘𝑛

and the signal is decomposed into an exponential Fourier Series as: 𝑥 𝑛 = σ𝑘=0
𝑁−1 𝑋[𝑘] 𝑒𝑗𝜔0𝑘𝑛

Calculating the DTFT for the above signal, we have:

𝑋 𝑒𝑗𝜔 = 𝐹 𝑥 𝑛 = 𝐹 

𝑘=0

𝑁−1

𝑋 𝑘 𝑒𝑗𝜔0𝑘𝑛 = 

𝑘=0

𝑁−1

𝑋 𝑘 𝐹 𝑒𝑗𝜔0𝑘𝑛 = 2𝜋 

𝑘=0

𝑁−1

𝑋 𝑘 𝛿 𝜔 − 𝑘𝜔0

For the same signal (period 𝛮 and fundamental frequency 𝜔0 = 2𝜋/𝛮), the DTFT is:

𝑋 𝑒𝑗𝜔 =
2𝜋

𝑁


𝑘=−∞

∞

𝑋𝑁 𝑒𝑗𝑘𝜔0 𝛿 𝜔 − 𝑘𝜔0

From the previous two relations, it follows:

𝑋 𝑘 = ቤ
1

𝑁
𝑋𝑁 𝑒𝑗𝑘𝜔0

𝜔=𝑘𝜔0

Fourier series are identical to the coefficients of the discrete spectrum of the DTFT for 
periodic signals at integer multiples of the fundamental frequency.
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Sample Rate Conversion

• Down-sampling

• Up-sampling

• Real number sample rate conversion
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Down-sampling

• It turns out that the DTFT transform of the subsampled signal 𝑥𝑑 𝑛 = 𝑥 𝑛𝛭 , 

(𝛭 > 1), is:

𝑋𝑑 𝑒𝑗𝜔 =
1

𝛭
𝑋 𝑒𝑗𝜔/𝛭

• Shrinking the signal in time by a factor 𝛭 causes the spectrum to expand by the 

same factor.

• Attention: In the subsampling of a DX signal with a coefficient M, in order not 

to result in an overlap of the frequencies, the signal must be spectrally limited 

up to the frequency 𝜋/𝛭.

• If the condition holds, then the spectrum of the subsampled signal is an 

extended version of the spectrum of the original signal.

• If the condition does not hold, then before subsampling we have to filter the 

signal with a deep-pass filter with a cut-off frequency 𝜔𝑐 = 𝜋/𝛭 (filter gain 

𝛭).
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Example 14

A discrete pulse is given by the equation 𝑥[𝑛] = 𝑢[𝑛 + 2] − 𝑢[𝑛 − 2]. The pulse is 

subsampled with 𝛭 = 2and the sequence is obtained 𝑥𝑑[𝑛]. Find the DTFTs of the 

sequences 𝑥[𝑛] and 𝑥𝑑[𝑛].

Answer: The sequence 𝑥[𝑛] is written:

𝑥 𝑛 = 𝛿 𝑛 + 2 + 𝛿 𝑛 + 1 + 𝛿 𝑛 + 𝛿 𝑛 − 1

and has a Z-transform:

𝑋 𝑧 = 𝑧2 + 𝑧1 + 𝑧0 + 𝑧−1 = 𝑧2 + 𝑧 + 1 + 𝑧−1

with region of convergence the whole field Z. Since the unit circle is included in the

region of convergence of the Z-transform, the DTFT is:

𝑋 𝑒𝑗𝜔 = ቚ𝑋 𝑧
𝑧=𝑒𝑗𝜔

= 𝑒𝑗2𝜔 + 𝑒𝑗𝜔 + 1 + 𝑒−𝑗𝜔

= 𝑒𝑗
𝜔
2 𝑒𝑗

3𝜔
2 + 𝑒𝑗

𝜔
2 + 𝑒−𝑗

𝜔
2 + 𝑒−𝑗

3𝜔
2 = 𝑒𝑗

𝜔
2 𝑒𝑗

3𝜔
2 + 𝑒−𝑗

3𝜔
2 + 𝑒𝑗

𝜔
2 + 𝑒−𝑗

𝜔
2

= 2𝑒𝑗
𝜔
2 cos

3𝜔

2
+ cos

𝜔

2
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Example 14 (continued)

The subsampled sequence is given by the equation:

𝑥𝑑 𝑛 = 𝑥 2𝑛 = 𝑢 2𝑛 + 2 − 𝑢 2𝑛 − 2 = 𝑢 𝑛 + 1 − 𝑢 𝑛 − 1 ֜𝑥𝑑 𝑛

= 𝛿 𝑛 + 1 + 𝛿 𝑛

and has a Z-transform:

𝑋 𝑧 = 𝑧1 + 𝑧0 = 𝑧 + 1

with region of convergence the whole field Z. Since the unit circle is included in the

region of convergence, the DTFT is:

𝑋𝑑 𝑒𝑗𝜔 = ቚ𝑋 𝑧
𝑧=𝑒𝑗𝜔

= 𝑒𝑗𝜔 + 1 = 𝑒𝑗
𝜔
2 𝑒𝑗

𝜔
2 + 𝑒−𝑗

𝜔
2 = 2𝑒𝑗

𝜔
2 cos

𝜔

2

Comparing the DTFTs we notice that they do not satisfy the equation (10.63), that

is:

𝑋𝑑 𝑒𝑗𝜔 ≠
1

2
𝑋 𝑒𝑗𝜔/2
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Example 14 (continued)

The same observation results from the comparison of the following spectra. 
The reason this happens is the aliasing effect, because as can be seen from the 
figure, the original signal is not of finite bandwidth and therefore its maximum 
frequency exceeds the frequency 𝜋/2. Therefore, during the sampling we 
performed, the Nyquist criterion was violated.

(a) Magnitude spectrum of the sequence𝑥[𝑛] = 𝑢[𝑛 + 2] − 𝑢[𝑛 − 2]
(b) Magnitude spectrum of the sequence𝑥𝑑[𝑛] = 𝑢[𝑛 + 1] − 𝑢[𝑛 − 1]
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Up-sampling

• In up-sampling, the new signal 𝑥𝑢 𝑛 is formed by interpolating a number of 

𝛮 − 1 zero values between two consecutive samples of it 𝑥[𝑛]:

𝑥𝑢 𝑛 = ቊ
𝑥 𝑛/𝑁 , 𝑛 = 0, ±1, ±2, …

0, αλλού

• If 𝑋 𝑒𝑗𝜔 is the DTFT of the signal 𝑥[𝑛], then the DTFT of the downsampled 

signal 𝑥𝑢 𝑛 , is:

𝑋𝑢 𝑒𝑗𝜔 = 

𝑛=0,±𝑁,…

𝑥 𝑛/𝑁 𝑒−𝑗𝑛𝜔 = 

𝑚=−∞

∞

𝑥[𝑚] 𝑒−𝑗𝑁𝑚𝜔 = 𝑋 𝑒𝑗𝜔𝑁

• Stretching the signal in time by a factor 𝛮 causes the spectrum to shrink by the 

same factor.

• Up-sampling does not lead to a violation of the Nyquist criterion. But after 

frequency multiplication, its images must be removed 𝑋 𝑒𝑗𝜔 except those that 

are in integer multiples of 2𝜋. This is done by filtering the up-sampled signal 

𝑥𝑢 𝑛 with a low-pass filter with cut-off frequency 𝜔𝑐 = 𝜋/𝛮 and gain N.
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Divisor and Interceptor

• Decimator: the series connection of the frequency divider with the low- pass 

filter.

• Interpolator: the series connection of the frequency multiplier with the low-

pass 
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Real number sample rate conversion

• To convert the sampling rate by an real factor 𝑅 = 𝑁/𝑀, we connect in series a 

divider (decimator), which decreases the sampling rate by a factor 𝛭, with an 

interpolator (interpolator), which increases the sampling rate by a factor 𝛮.

Explicit sample rate converter

69



Example 15

Storing digital audio on a CD disc uses 𝑓𝑠 = 44.1 𝑘𝐻𝑧 while on a magnetic tape (DAT) 

it uses 𝑓𝑠 = 48 𝑘𝐻𝑧. Find the filter in the explicit sample rate converter to enable 

direct transfer of digitized music from CD to DAT.

Answer: We factor the sampling rates into prime factors and have: 𝑓𝑠𝐷𝐴𝑇 = 273 53 and 

𝑓𝑠𝐶𝐷 = 22325272.

𝑅 =
𝑀

𝑁
=

273 53

22 32 52 72 =
25 5

3 72 =
160

147

To convert the sampling rate from 44.1 kHz to 48 kHz, frequency multiplication with 

M=160 and then frequency division with N=147. 

The low-pass filter between the multiplier and the frequency divider has a cut-off 

frequency:

𝜔𝑐 = min
𝜋

𝛭
,

𝜋

𝛮
= min

𝜋

160
,

𝜋

147
=

𝜋

160

and gain 𝑅 = 160.
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Example 16

We sample the analog signal 𝑥𝛼 𝑡 = 1 + cos 15𝜋𝑡 with a sampling period 𝑇𝑠 = 0,1 𝑠𝑒𝑐 and 

pass it through a low-pass filter with a cut-off frequency 𝑓𝑐 = 2,5 𝐻𝑧. What is the signal 

produced at the output of the filter?

Answer: The analog signal contains a DC component with zero frequency and a cosine 

component with frequency 2𝜋𝐹 = 15𝜋 𝐹 = 7,5 𝐻𝑧, which is also the maximum frequency 

(𝐹𝑚𝑎𝑥) of the analog signal.

The sampling frequency is 𝑓𝑠 = 1/𝑇𝑠 = 1/0,1 𝑠𝑒𝑐 = 10 𝐻𝑧. Since, it follows that the 

𝑓𝑠 = 7,5 < 10 = 2𝐹𝑚𝑎𝑥 Nyquist criterion is not satisfied, so frequency folding will appear for 

those frequencies that are outside the spectral range defined based on the sampling 

frequency, i.e. the spectral range −𝑓𝑠/2, 𝑓𝑠/2 = −5𝐻𝑧, 5𝐻𝑧 .

Therefore, the frequency 𝐹 = 𝐹𝑚𝑎𝑥 = 7,5 𝐻𝑧 of the signal will be folded and show the aliasing 

frequency 𝐹′ = 𝐹 − 𝑘𝑓𝑠 = 7,5 − 𝑘10 = 7,5 − 1𝑥10 = −2,5 𝐻𝑧. So the cos 15𝜋𝑡 7.5 Hz cosine 

component of the analog signal, when sampled will look like a 2.5 Hz cosine.

The DC component is not affected by sampling.
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Example 16 (continued)

Based on the above, the discrete-time signal resulting from the sampling is:

𝑥𝑠[𝑛] = 𝑥𝑎 𝑡 ቚ
𝑡=𝑛𝑇𝑠=𝑛/10

= 1 + cos
15𝜋

10
𝑛

= 1 + cos
3𝜋

2
𝑛 = 1 + cos 2𝜋 −

𝜋

2
𝑛 = 1 + cos

𝜋𝑛

2

To calculate the signal at the output of the low-pass filter, we need to obtain the 

spectral form of the discrete-time signal. The DTFT of the sampled signal 𝑥𝑠[𝑛] is:

𝑋𝑠 𝛺 = ቚ𝑋𝑠 𝑒𝑗𝜔

𝜔=𝛺𝑇𝑠

=
1

𝑇𝑠


𝑘=−∞

∞

𝑋𝑎 𝛺 − 𝑘𝛺𝑠

=
1

𝑇𝑠


𝑘=−∞

∞

2𝜋𝛿 𝜔 − 𝑘𝛺𝑠 + 𝜋 𝛿 𝛺 − 𝑘𝛺𝑠 −
𝜋

2
+ 𝛿 𝛺 − 𝑘𝛺𝑠 +

𝜋

2

where 𝛺𝑠 = 2𝜋/𝑇𝑠 .
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Example 16 (continued)

Spectrum of a discrete-time signal and spectrum of the low-pass filter.
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Example 16 (continued)

The only components of the signal spectrum that exit the low-pass filter are:

𝑋𝑠 𝛺 = 2𝜋𝛿 𝛺 + 𝜋 𝛿 𝛺 −
𝜋

2
+ 𝛿 𝛺 +

𝜋

2

Fourier transform we find that the analog signal produced at the output of the 
low-pass filter is:

ො𝑥𝑠 𝑡 = 1 + cos
𝜋𝑡

2
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