
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Designing with
microprocessors

 Architectures and components:
 software;
 hardware.

 Debugging.
 Manufacturing testing.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Hardware platform
architecture

Contains several elements:
 CPU;
 bus;
 memory;
 I/O devices: networking, sensors,

actuators, etc.
How big/fast much each one be?

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

The PC as a platform

 Advantages:
 cheap and easy to get;
 rich and familiar software environment.

 Disadvantages:
 requires a lot of hardware resources;
 not well-adapted to real-time.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Typical PC hardware
platform

CPU

CPU bus

memory

DMA
controller

timers

bus
interface

bu
s

in
te

rf
ac

e

high-speed bus

low-speed bus

device

device

intr
ctrl

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Typical busses

 ISA (Industry Standard Architecture):
original IBM PC bus, low-speed by today’s
standard.

 PCI: standard for high-speed interfacing
 33 or 66 MHz.

 USB (Universal Serial Bus), Firewire:
relatively low-cost serial interface with
high speed.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

PC platform software

 IBM PC uses BIOS (Basic I/O System) to
implement low-level functions:
 boot-up;
 minimal device drivers.

 BIOS has become a generic term for the
lowest-level system software.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: StrongARM

 StrongARM system includes:
 CPU chip (3.686 MHz clock)
 system control module (32.768 kHz clock).

• Real-time clock;
• operating system timer
• general-purpose I/O;
• interrupt controller;
• power manager controller;
• reset controller.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Pros and cons

 Plentiful hardware options.
 Simple programming semantics.
 Good software development

environments.
 Performance-limited.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Apple Newton hardware
architecture

ARM 610 ROM RAM

Runt
ASIC

LCD

speaker

serial I/F

A/D

tablet

PCMCIA

infrared

Design Automation for Embedded Systems

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Motorola Envoy hardware
architecture

PCMCIA 1 MB DRAM 4 MB flash

Astro
system
ASIC

68439
CPU

audio

modem

infrared

power supply

A/D touchscreen

Magicbus

Design Automation for Embedded Systems

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

InfoPad hardware
architecture

Wireless network
interface

Speech
codec

Video
decompressor

ARM 60

display

Keyboard/pointer

other I/O

IEEE Trans. Computers

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Hardware vs. software

 Special-purpose hardware often consumes
much less power.

 Need to think about communication
between units, multiprocessing.

 Accelerators often require limits on
parameters.
 May be OK if standards limit parameters.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Philips set-top box
hardware architecture

Network
interface

MPEG
demux

MPEG
audio

MPEG
video

NTSC
CD-I

graphics
PCMCIA

DRAM

I/O

NVRAM

DRAM

DRAM

Philips journal

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Viper set-top-box chip

MIPS Trimedia

Off-chip SDRAM

bridge bridge

devices devices

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

TI Open Multimedia
Applications Platform

 Dual-processor shared memory system:

GPP
OS

DSP
manager

General-purpose
processor

DSP

DSP
OS

DSP
task
& I/O
ctrl

bridge

Mem
ctrl

external memory

http://www.ti.com/sc/docs/apps/wireless/omap/overview.htm

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Agere StarPro platform

http://www.lucent.com/micro/starpro/arch.html

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C-Port C5 network
processor

HDLC
engine

HDLC
engine

Memory
ctrl

… (16 total)

to mem

to
framer

600 Mbps

RISC
executive
controller

fabric
processor

to ATM

other
channel processors

http://www.cportcorp.com/products/digital.htm

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Hardware and software
architectures

Hardware and software are intimately
related:

 software doesn’t run without hardware;
 how much hardware you need is

determined by the software requirements:
 speed;
 memory.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software architecture

Functional description must be broken into
pieces:

 division among people;
 conceptual organization;
 performance;
 testability;
 maintenance.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software components

 Need to break the design up into pieces to
be able to write the code.

 Some component designs come up often.
 A design pattern is a generic description

of a component that can be customized
and used in different circumstances.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software state machine

 State machine keeps internal state as a
variable, changes state based on inputs.

 Uses:
 control-dominated code;
 reactive systems.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

State machine
specification

A B

C D

in1=1/x=a

in1=0/x=b

r=0/out2=1
r=1/out1=0

s=1/out1=1

s=0/out1=0

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C code structure

 Current state is kept in a variable.
 State table is implemented as a switch.
 Cases define states.
 States can test inputs.

 Switch is repeatedly evaluated in a while
loop.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C state machine structure

while (TRUE) {

switch (state) {
case state1: …

}
}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C state table

switch (state) {
case A: if (in1==1) { x = a; state = B; }
else { x = b; state = D; }
break;

case B: if (r==0) { out2 = 1; state = B; }
else { out1 = 0; state = C; }
break;

case C: if (s==0) { out1 = 0; state = C; }
else { out1 = 1; state = D; }
break;

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Data stream

 Commonly used in signal processing:
 new data constantly arrives;
 each datum has a limited lifetime.

 Use a circular buffer to hold the data
stream.

d1 d2 d3 d4 d5 d6 d7

time ttime t+1

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Circular buffers

 Indexes locate currently used data,
current input data:

d1

d2

d3

d4

time t1

use

input d5

d2

d3

d4

time t1+1

use
input

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C circular buffer

To compute FIR filter value f:

for (f=0, ic=0, ibuff = circ_buff_head;

ic < N;
ibuff = (ibuff = N-1 ? 0 : ibuff++))

f = f + c[ic] * circ_buff[ibuff]

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software design
techniques

 Want to develop as much code as possible
on a standard platform:
 friendlier programming environment;
 easier debugging.

 May need to devise software stubs to
allow testing of software elements without
the full hardware/software platform.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Host/target design

 Use a host system to prepare software for
target system:

target
system

host system
serial line

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Host-based tools

 Cross compiler:
 compiles code on host for target system.

 Cross debugger:
 displays target state, allows target system to

be controlled.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Evaluation boards

 Designed by CPU manufacturer or others.
 Includes CPU, memory, some I/O devices.
 May include prototyping section.
 CPU manufacturer often gives out

evaluation board netlist---can be used as
starting point for your custom board
design.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Adding logic to a board

 Programmable logic devices (PLDs)
provide low/medium density logic.

 Field-programmable gate arrays (FPGAs)
provide more logic and multi-level logic.

 Application-specific integrated circuits
(ASICs) are manufactured for a single
purpose.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Debugging embedded
systems

 Challenges:
 target system may be hard to observe;
 target may be hard to control;
 may be hard to generate realistic inputs;
 setup sequence may be complex.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software debuggers

 A monitor program residing on the target
provides basic debugger functions.

 Debugger should have a minimal footprint
in memory.

 User program must be careful not to
destroy debugger program, but , should
be able to recover from some damage
caused by user code.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Breakpoints

 A breakpoint allows the user to stop
execution, examine system state, and
change state.

 Replace the breakpointed instruction with
a subroutine call to the monitor program.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM breakpoints

0x400 MUL r4,r6,r6
0x404 ADD r2,r2,r4
0x408 ADD r0,r0,#1
0x40c B loop

uninstrumented code

0x400 MUL r4,r6,r6
0x404 ADD r2,r2,r4
0x408 ADD r0,r0,#1
0x40c BL bkpoint

code with breakpoint

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Breakpoint handler actions

 Save registers.
 Allow user to examine machine.
 Before returning, restore system state.
 Safest way to execute the instruction is to

replace it and execute in place.
 Put another breakpoint after the replaced

breakpoint to allow restoring the original
breakpoint.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

In-circuit emulators

 A microprocessor in-circuit emulator is a
specially-instrumented microprocessor.

 Allows you to stop execution, examine
CPU state, modify registers.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Logic analyzers

 A logic analyzer is an array of low-grade
oscilloscopes:

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Logic analyzer
architecture

UUT sample
memory microprocessor

controller

system clock

clock
gen

state or
timing mode

vector
address

displaykeypad

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

How to exercise code

 Run on host system.
 Run on target system.
 Run in instruction-level simulator.
 Run on cycle-accurate simulator.
 Run in hardware/software co-simulation

environment.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Manufacturing testing

 Goal: ensure that manufacturing produces
defect-free copies of the design.

 Can test by comparing unit being tested
to the expected behavior.
 But running tests is expensive.

 Maximize confidence while minimizing
testing cost.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Testing concepts

 Yield: proportion of manufactured systems
that work.
 Proper manufacturing maximizes yield.
 Proper testing accurately estimates yield.

 Field return: defective unit that leaves the
factory.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Faults

 Manufacturing problems can be caused by
many thing.

 Fault model: model that predicts effects of
a particular type of fault.

 Fault coverage: proportion of possible
faults found by a set of test.
 Having a fault model allows us to determine

fault coverage.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software vs. hardware
testing

 When testing code, we have no fault
model.
 We verify the implementation, not the

manufacturing.
 Simple tests (e.g., ECC) work well to verify

software manufacturing.
 Hardware requires manufacturing tests in

addition to implementation verification.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Hardware fault models

 Stuck-at 0/1 fault model:
 output of gate is always 0/1.

0 01 0

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Combinational testing

 Every gate can be stuck-at-0, stuck-at-1.
 Usually test for single stuck-at-faults.
 One fault at a time.
 Multiple faults can mask each other.

 We can generate a test for a gate by:
 controlling the gate’s input;
 observing the gate’s output through other

gates.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sequential testing

 A state machine is combinational logic +
registers.

 Sequential testing is considerably harder.
 A single stuck-at fault affects the machine on

every cycle.
 Fault behavior on one cycle can be masked by

same fault on other cycles.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Scan chains

 A scannable register operates in two
modes:
 normal;
 scan---forms an element in a shift register.

 Using scan chains reduces sequential
testing to combinational testing.
 Unloading/unloading scan chain is slow.
 May use partial scan.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Test generation

 Automatic test pattern generation (ATPG)
programs: produce a set of tests given the
logic structure.

 Some faults may not be testable---
redundant.
 Timeout on a fault may mean hard-to-test or

untestable.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Boundary scan

 Simplifies testing of multiple chips on a
board.
 Registers on pins can be configured as a scan

chain.

