Designing with
miCroprocessors

Architectures and components:
software;
hardware.

Debugging.
Manufacturing testing.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Hardware platform
architecture

Contains several elements:
CPU;
bus;
memory;

I/O devices: networking, sensors,
actuators, etc.

How big/fast much each one be?

© 2000 Morgan Overheads for Computers as
Kaufman Components

The PC as a platform

Advantages:
cheap and easy to get;
rich and familiar software environment.
Disadvantages:

requires a lot of hardware resources;
not well-adapted to real-time.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Typical PC hardware

. o -
3!
CPU bus n S
> 5 e >
O O .
. - - *é’ high-speed bus
low-speed bus
bU.S < p >
interface —
© 2000 Morgan Overheads for Computers as

Kaufman Components

Typical busses

ISA (Industry Standard Architecture):
original IBM PC bus, low-speed by today’s
standard.

PCI: standard for high-speed interfacing
33 or 66 MHz.
USB (Universal Serial Bus), Firewire:

relatively low-cost serial interface with
high speed.

© 2000 Morgan Overheads for Computers as
Kaufman Components

PC platform software

IBM PC uses BIOS (Basic I/O System) to
implement low-level functions:

boot-up;
minimal device drivers.

BIOS has become a generic term for the
lowest-level system software.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Example: StrongARM

StrongARM system includes:
CPU chip (3.686 MHz clock)
system control module (32.768 kHz clock).

Real-time clock;

operating system timer
general-purpose 1/0;
interrupt controller;

power manager controller;
reset controller.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Pros and cons

Plentiful hardware options.
Simple programming semantics.

Good software development
environments.

Performance-limited.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Apple Newton hardware

architecture

ARM 610

ROM

RAM

<
<

>
>

PCMCI

serial I/F

speaker

=
T

© 2000 Morgan Desigg\ﬁmgﬁggtg%goﬁ(g%rﬁﬁéagéd Systems

Kaufman

Motorola Envoy hardware

architecture

1 MB DRAM

4 MB flash

s

Magicbus

C
CPU

1

power supply

© 2000 Morgan DesigerAazstondatibivforiBmbedded Systems

Kaufman Components

—

touchscreen

InfoPad hardware
architecture

Speech -
codec display
Video
decompressor

ARM 60

other I/O

© 2000 Morgan Overheads for Comqﬁﬁﬁafrans Computers
Kaufman Components '

Hardware vs. software

Special-purpose hardware often consumes
much less power.

Need to think about communication
between units, multiprocessing.

Accelerators often require limits on
parameters.

May be OK if standards limit parameters.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Philips set-top box
hardware architecture

DRAM

MPEG
audio

I/O
PCMCIA CD-I
graphics
© 2000 Morgan Overheads for Computers as Philips journal

Kaufman Components

Viper set-top-box chip

MIPS Trimedia

© 2000 Morgan Overheadygfor Computers as
Kaufman Components

Tl Open Multimedia
Applications Platform

Dual-processor shared memory system:

external memory

DSP

GPP IDN) % IDN) % task
ON manager ON & 1/0
ctrl

http://www.ti.com/ sc/docs/aglps/wireless/omap/overview.htm
© 2000 Morgan Overheads for Computers as

Kaufman Components

Agere StarPro platform

T

16 VO
Slgzals

STARPRO

SC140 SC140 SC140 § BIt (
300 MHz 300 MHz soomHz [BlY 768 kB [lDaytonalBus
4-MAC 4-MAC 4-MAC IN6timers Program & g ANAYVSIS,

SuperCore SuperCore SuperCore [_ Data System WinavionalBus
P Iriage [Bridge Memory B arbitrator

Clk Sync Data Addr Data Arb

Clk Sync Data || Clk Sync Data

Data Pump Data Pump Data Pump Off-board
or or or Memory &
Other DSPs Other DSPs Other DSPs Peripherals

http://wwax\fl.élr}]ceea%ts. o1 C%igg e/r sétglépro/ arch.html

Kaufman Components

© 2000 Morgan

C-Port C5 network
p ro c e s s o r http://www.cportcorp.com/products/digital.htm

A
to
framer

... (16 total)

600 Mbps

© 2000 Morgan Overheads ®r Computers as
Kaufman to mem Components

Hardware and software
architectures

Hardware and software are intimately
related:

software doesn’t run without hardware;

how much hardware you need is
determined by the software requirements:
speed;
memory.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Software architecture

Functional description must be broken into
pieces:

division among people;
conceptual organization;
performance;

testability;

maintenance.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Software components

Need to break the design up into pieces to
be able to write the code.

Some component designs come up often.

A IS @ generic description
of a component that can be customized
and used in different circumstances.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Software state machine

State machine keeps internal state as a
variable, changes state based on inputs.

Uses:
control-dominated code;
reactive systems.

© 2000 Morgan Overheads for Computers as
Kaufman Components

State machine
specification

inl=1/x=a
° & r=0/out2=1

r=1/out1=0

»
>

© 2000 Morgan Overheads for Computers as
Kaufman Components

in1=0/x=b

s=0/out1=0

s=1/outl=1

C code structure

Current state is kept in a variable.

State table is implemented as a switch.
Cases define states.
States can test inputs.

Switch is repeatedly evaluated in a while
loop.

© 2000 Morgan Overheads for Computers as
Kaufman Components

C state machine structure

while (TRUE) ({
switch (state) {

case statel:

© 2000 Morgan Overheads for Computers as
Kaufman Components

C state table

switch (state) {

case A: 1f (i1inl==1) { x = a; state =
else { x = b; state = D; }
break;

case B: 1f (r==0) { out2 = 1; state
else { outl = 0; state = C; }
break;

case C: 1f (s==0) { outl = 0; state
else { outl = 1; state = D; }
break;

© 2000 Morgan Overheads for Computers as
Kaufman Components

Data stream

Commonly used in signal processing:
new data constantly arrives;
each datum has a limited lifetime.

dl|| d2| d3 | d4 ||dS5 | d6 | d7

Use a circular buffer to hold the data
stream.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Circular buffers

Indexes locate currently used data,
current input data:

mmput — 4+ dl use — d5
d2 input o d2
d3 d3
use ——| d4 d4
© 2000 Morgan Overheads for Computers as

Kaufman Components

C circular buffer

To compute FIR filter value f:

for (£=0, 1c=0, 1buff = circ buff head;
ic < N;
ibuff = (ibuff = N-1 ? 0 : ibuff++))
f = f + cl[ic] * circ buffl[ibuff]

© 2000 Morgan Overheads for Computers as
Kaufman Components

Software design
techniques

Want to develop as much code as possible
on a standard platform:

friendlier programming environment;
easier debugging.
May need to devise software stubs to

allow testing of software elements without
the full hardware/software platform.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Host/target design

Use a host system to prepare software for
target system:

target
system

serial line
host system

© 2000 Morgan Overheads for Computers as
Kaufman Components

Host-based tools

Cross compiler:
compiles code on host for target system.

Cross debugger:

displays target state, allows target system to
be controlled.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Evaluation boards

Designed by CPU manufacturer or others.
Includes CPU, memory, some I/O devices.
May include prototyping section.

CPU manufacturer often gives out
evaluation board netlist---can be used as

starting point for your custom board
design.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Adding logic to a board

Programmable logic devices (PLDs)
provide low/medium density logic.

Field-programmable gate arrays (FPGAS)
provide more logic and multi-level logic.

Application-specific integrated circuits
(ASICs) are manufactured for a single
purpose.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Debugging embedded
systems

Challenges:
target system may be hard to observe;
target may be hard to control;
may be hard to generate realistic inputs;
setup sequence may be complex.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Software debuggers

A monitor program residing on the target
provides basic debugger functions.

Debugger should have a minimal footprint
INn memory.

User program must be careful not to
destroy debugger program, but , should
be able to recover from some damage
caused by user code.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Breakpoints

A breakpoint allows the user to stop

execution, examine system state, and
change state.

Replace the breakpointed instruction with
a subroutine call to the monitor program.

© 2000 Morgan

Overheads for Computers as
Kaufman

Components

ARM breakpoints

0x400 MUL r4,r6,r6
0x404 ADD r2,r2,r4

0x408 ADD r0,r0,#1
0x40c B loop i

0x400 MUL r4,r6,r6
0x404 ADD r2,r2,r4
0x408 ADD r0,r0,#1

0x40c BL bkpoint

© 2000 Morgan Overheads for Computers as

Kaufman

Components

Breakpoint handler actions

Save registers.
Allow user to examine machine.

Before returning, restore system state.

Safest way to execute the instruction is to
replace it and execute in place.

Put another breakpoint after the replaced
oreakpoint to allow restoring the original
breakpoint.

© 2000 Morgan Overheads for Computers as
Kaufman Components

In-circuit emulators

A microprocessor in-circuit emulator is a
specially-instrumented microprocessor.

Allows you to stop execution, examine
CPU state, modify registers.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Logic analyzers

A logic analyzer is an array of low-grade
oscilloscopes:

-\

© 2000 Morgan Overheads for Computers as
Kaufman Components

Logic analyzer
architecture

sample
memory

system clock vector

state or 20
- timing mode e
keypad :
M display
© 2000 Morgan Overheads for Computers as

Kaufman Components

How to exercise code

Run on host system.

Run on target system.

Run in instruction-level simulator.
Run on cycle-accurate simulator.

Run in hardware/software co-simulation
environment.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Manufacturing testing

Goal: ensure that manufacturing produces
defect-free copies of the design.

Can test by comparing unit being tested
to the expected behavior.

But running tests is expensive.

Maximize confidence while minimizing
testing cost.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Testing concepts

Yield: proportion of manufactured systems
that work.

Proper manufacturing maximizes yield.
Proper testing accurately estimates vyield.

Field return: defective unit that leaves the
factory.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Faults

Manufacturing problems can be caused by
many thing.

Fault model: model that predicts effects of
a particular type of fault.

Fault coverage: proportion of possible

faults found by a set of test.

Having a fault model allows us to determine
fault coverage.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Software vs. hardware
testing

When testing code, we have no fault
model.

We verify the implementation, not the
manufacturing.

Simple tests (e.g., ECC) work well to verify
software manufacturing.
Hardware requires manufacturing tests in
addition to implementation verification.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Hardware fault models

Stuck-at 0/1 fault model:
output of gate is always 0/1.

01 >o

© 2000 Morgan Overheads for Computers as
Kaufman Components

Combinational testing

Every gate can be stuck-at-0, stuck-at-1.

Usually test for single stuck-at-faults.
One fault at a time.
Multiple faults can mask each other.

We can generate a test for a gate by:
controlling the gate’s input;

observing the gate’s output through other
gates.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Sequential testing

A state machine is combinational logic +
registers.

Sequential testing is considerably harder.

A single stuck-at fault affects the machine on
every cycle.

Fault behavior on one cycle can be masked by
same fault on other cycles.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Scan chains

A scannable register operates in two
modes:

normal;

scan---forms an element in a shift register.
Using scan chains reduces sequential
testing to combinational testing.

Unloading/unloading scan chain is slow.
May use partial scan.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Test generation

Automatic test pattern generation (ATPG)

programs: produce a set of tests given the
logic structure.

Some faults may not be testable---
redundant.

Timeout on a fault may mean hard-to-test or
untestable.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Boundary scan

R

Simplifies testing of multiple chips on a
board.

Registers on pins can be configured as a scan
chain.

© 2000 Morgan Overheads for Computers as
Kaufman Components

