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Designing with 
microprocessors

 Architectures and components:
 software;
 hardware.

 Debugging.
 Manufacturing testing.
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Hardware platform 
architecture

Contains several elements:
 CPU;
 bus;
 memory;
 I/O devices: networking, sensors, 

actuators, etc.
How big/fast much each one be?
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The PC as a platform

 Advantages:
 cheap and easy to get;
 rich and familiar software environment.

 Disadvantages:
 requires a lot of hardware resources;
 not well-adapted to real-time.
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Typical PC hardware 
platform
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Typical busses

 ISA (Industry Standard Architecture): 
original IBM PC bus, low-speed by today’s 
standard.

 PCI: standard for high-speed interfacing
 33 or 66 MHz.

 USB (Universal Serial Bus), Firewire: 
relatively low-cost serial interface with 
high speed.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

PC platform software

 IBM PC uses BIOS (Basic I/O System) to 
implement low-level functions:
 boot-up;
 minimal device drivers.

 BIOS has become a generic term for the 
lowest-level system software.
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Example: StrongARM

 StrongARM system includes:
 CPU chip (3.686 MHz clock)
 system control module (32.768 kHz clock).

• Real-time clock;
• operating system timer
• general-purpose I/O;
• interrupt controller;
• power manager controller;
• reset controller.
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Pros and cons

 Plentiful hardware options.
 Simple programming semantics.
 Good software development 

environments.
 Performance-limited.
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Apple Newton hardware 
architecture

ARM 610 ROM RAM
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Design Automation for Embedded Systems
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Motorola Envoy hardware 
architecture

PCMCIA 1 MB DRAM 4 MB flash

Astro
system
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A/D touchscreen

Magicbus

Design Automation for Embedded Systems
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InfoPad hardware 
architecture

Wireless network
interface

Speech
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IEEE Trans. Computers



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Hardware vs. software

 Special-purpose hardware often consumes 
much less power.

 Need to think about communication 
between units, multiprocessing.

 Accelerators often require limits on 
parameters.
 May be OK if standards limit parameters.
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Philips set-top box 
hardware architecture
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Viper set-top-box chip

MIPS Trimedia

Off-chip SDRAM

bridge bridge

devices devices
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TI Open Multimedia 
Applications Platform

 Dual-processor shared memory system:
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http://www.ti.com/sc/docs/apps/wireless/omap/overview.htm
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Agere StarPro platform

http://www.lucent.com/micro/starpro/arch.html
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C-Port C5 network 
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http://www.cportcorp.com/products/digital.htm
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Hardware and software 
architectures

Hardware and software are intimately 
related:

 software doesn’t run without hardware;
 how much hardware you need is 

determined by the software requirements:
 speed;
 memory.
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Software architecture

Functional description must be broken into 
pieces:

 division among people;
 conceptual organization;
 performance;
 testability;
 maintenance.
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Software components

 Need to break the design up into pieces to 
be able to write the code.

 Some component designs come up often.
 A design pattern is a generic description 

of a component that can be customized 
and used in different circumstances.
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Software state machine

 State machine keeps internal state as a 
variable, changes state based on inputs.

 Uses:
 control-dominated code;
 reactive systems.
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State machine 
specification

A B

C D

in1=1/x=a

in1=0/x=b

r=0/out2=1
r=1/out1=0

s=1/out1=1

s=0/out1=0
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C code structure

 Current state is kept in a variable.
 State table is implemented as a switch.
 Cases define states.
 States can test inputs.

 Switch is repeatedly evaluated in a while 
loop.
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C state machine structure

while (TRUE) {

switch (state) {
case state1: …

}
}
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C state table

switch (state) {
case A: if (in1==1) { x = a; state = B; }
else { x = b; state = D; }
break;

case B: if (r==0) { out2 = 1; state = B; }
else { out1 = 0; state = C; }
break;

case C: if (s==0) { out1 = 0; state = C; }
else { out1 = 1; state = D; }
break;
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Data stream

 Commonly used in signal processing:
 new data constantly arrives;
 each datum has a limited lifetime.

 Use a circular buffer to hold the data 
stream.

d1 d2 d3 d4 d5 d6 d7

time ttime t+1
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Circular buffers

 Indexes locate currently used data, 
current input data:

d1

d2

d3
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time t1

use

input d5
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C circular buffer

To compute FIR filter value f:

for (f=0, ic=0, ibuff = circ_buff_head;

ic < N;
ibuff = (ibuff = N-1 ? 0 : ibuff++) )

f = f + c[ic] * circ_buff[ibuff]
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Software design 
techniques

 Want to develop as much code as possible 
on a standard platform:
 friendlier programming environment;
 easier debugging.

 May need to devise software stubs to 
allow testing of software elements without 
the full hardware/software platform.
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Host/target design

 Use a host system to prepare software for 
target system:

target
system

host system
serial line
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Host-based tools

 Cross compiler:
 compiles code on host for target system.

 Cross debugger:
 displays target state, allows target system to 

be controlled.
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Evaluation boards

 Designed by CPU manufacturer or others.
 Includes CPU, memory, some I/O devices.
 May include prototyping section.
 CPU manufacturer often gives out 

evaluation board netlist---can be used as 
starting point for your custom board 
design.
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Adding logic to a board

 Programmable logic devices (PLDs) 
provide low/medium density logic.

 Field-programmable gate arrays (FPGAs) 
provide more logic and multi-level logic.

 Application-specific integrated circuits
(ASICs) are manufactured for a single 
purpose.
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Debugging embedded 
systems

 Challenges:
 target system may be hard to observe;
 target may be hard to control;
 may be hard to generate realistic inputs;
 setup sequence may be complex.
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Software debuggers

 A monitor program residing on the target 
provides basic debugger functions.

 Debugger should have a minimal footprint 
in memory.

 User program must be careful not to 
destroy debugger program, but , should 
be able to recover from some damage 
caused by user code.
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Breakpoints

 A breakpoint allows the user to stop 
execution, examine system state, and 
change state.

 Replace the breakpointed instruction with 
a subroutine call to the monitor program.
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ARM breakpoints

0x400  MUL r4,r6,r6
0x404  ADD r2,r2,r4
0x408  ADD r0,r0,#1
0x40c  B loop

uninstrumented code

0x400  MUL r4,r6,r6
0x404  ADD r2,r2,r4
0x408  ADD r0,r0,#1
0x40c  BL bkpoint

code with breakpoint



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Breakpoint handler actions

 Save registers.
 Allow user to examine machine.
 Before returning, restore system state.
 Safest way to execute the instruction is to 

replace it and execute in place.
 Put another breakpoint after the replaced 

breakpoint to allow restoring the original 
breakpoint.
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In-circuit emulators

 A microprocessor in-circuit emulator is a 
specially-instrumented microprocessor.

 Allows you to stop execution, examine 
CPU state, modify registers.
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Logic analyzers

 A logic analyzer is an array of low-grade 
oscilloscopes:
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Logic analyzer 
architecture

UUT sample
memory microprocessor
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How to exercise code

 Run on host system.
 Run on target system.
 Run in instruction-level simulator.
 Run on cycle-accurate simulator.
 Run in hardware/software co-simulation 

environment.
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Manufacturing testing

 Goal: ensure that manufacturing produces 
defect-free copies of the design.

 Can test by comparing unit being tested 
to the expected behavior.
 But running tests is expensive.

 Maximize confidence while minimizing 
testing cost.
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Testing concepts

 Yield: proportion of manufactured systems 
that work.
 Proper manufacturing maximizes yield.
 Proper testing accurately estimates yield.

 Field return: defective unit that leaves the 
factory.
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Faults

 Manufacturing problems can be caused by 
many thing.

 Fault model: model that predicts effects of 
a particular type of fault.

 Fault coverage: proportion of possible 
faults found by a set of test.
 Having a fault model allows us to determine 

fault coverage.
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Software vs. hardware 
testing

 When testing code, we have no fault 
model.
 We verify the implementation, not the 

manufacturing.
 Simple tests (e.g., ECC) work well to verify 

software manufacturing.
 Hardware requires manufacturing tests in 

addition to implementation verification.
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Hardware fault models

 Stuck-at 0/1 fault model:
 output of gate is always 0/1.

0 01 0
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Combinational testing

 Every gate can be stuck-at-0, stuck-at-1.
 Usually test for single stuck-at-faults.
 One fault at a time.
 Multiple faults can mask each other.

 We can generate a test for a gate by:
 controlling the gate’s input;
 observing the gate’s output through other 

gates.
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Sequential testing

 A state machine is combinational logic + 
registers.

 Sequential testing is considerably harder.
 A single stuck-at fault affects the machine on 

every cycle.
 Fault behavior on one cycle can be masked by 

same fault on other cycles.
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Scan chains

 A scannable register operates in two 
modes:
 normal;
 scan---forms an element in a shift register.

 Using scan chains reduces sequential 
testing to combinational testing.
 Unloading/unloading scan chain is slow.
 May use partial scan.
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Test generation

 Automatic test pattern generation (ATPG) 
programs: produce a set of tests given the 
logic structure.

 Some faults may not be testable---
redundant.
 Timeout on a fault may mean hard-to-test or 

untestable.
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Boundary scan

 Simplifies testing of multiple chips on a 
board.
 Registers on pins can be configured as a scan 

chain.


