
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Designing with
microprocessors

 Architectures and components:
 software;
 hardware.

 Debugging.
 Manufacturing testing.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Hardware platform
architecture

Contains several elements:
 CPU;
 bus;
 memory;
 I/O devices: networking, sensors,

actuators, etc.
How big/fast much each one be?

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

The PC as a platform

 Advantages:
 cheap and easy to get;
 rich and familiar software environment.

 Disadvantages:
 requires a lot of hardware resources;
 not well-adapted to real-time.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Typical PC hardware
platform

CPU

CPU bus

memory

DMA
controller

timers

bus
interface

bu
s

in
te

rf
ac

e

high-speed bus

low-speed bus

device

device

intr
ctrl

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Typical busses

 ISA (Industry Standard Architecture):
original IBM PC bus, low-speed by today’s
standard.

 PCI: standard for high-speed interfacing
 33 or 66 MHz.

 USB (Universal Serial Bus), Firewire:
relatively low-cost serial interface with
high speed.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

PC platform software

 IBM PC uses BIOS (Basic I/O System) to
implement low-level functions:
 boot-up;
 minimal device drivers.

 BIOS has become a generic term for the
lowest-level system software.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: StrongARM

 StrongARM system includes:
 CPU chip (3.686 MHz clock)
 system control module (32.768 kHz clock).

• Real-time clock;
• operating system timer
• general-purpose I/O;
• interrupt controller;
• power manager controller;
• reset controller.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Pros and cons

 Plentiful hardware options.
 Simple programming semantics.
 Good software development

environments.
 Performance-limited.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Apple Newton hardware
architecture

ARM 610 ROM RAM

Runt
ASIC

LCD

speaker

serial I/F

A/D

tablet

PCMCIA

infrared

Design Automation for Embedded Systems

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Motorola Envoy hardware
architecture

PCMCIA 1 MB DRAM 4 MB flash

Astro
system
ASIC

68439
CPU

audio

modem

infrared

power supply

A/D touchscreen

Magicbus

Design Automation for Embedded Systems

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

InfoPad hardware
architecture

Wireless network
interface

Speech
codec

Video
decompressor

ARM 60

display

Keyboard/pointer

other I/O

IEEE Trans. Computers

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Hardware vs. software

 Special-purpose hardware often consumes
much less power.

 Need to think about communication
between units, multiprocessing.

 Accelerators often require limits on
parameters.
 May be OK if standards limit parameters.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Philips set-top box
hardware architecture

Network
interface

MPEG
demux

MPEG
audio

MPEG
video

NTSC
CD-I

graphics
PCMCIA

DRAM

I/O

NVRAM

DRAM

DRAM

Philips journal

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Viper set-top-box chip

MIPS Trimedia

Off-chip SDRAM

bridge bridge

devices devices

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

TI Open Multimedia
Applications Platform

 Dual-processor shared memory system:

GPP
OS

DSP
manager

General-purpose
processor

DSP

DSP
OS

DSP
task
& I/O
ctrl

bridge

Mem
ctrl

external memory

http://www.ti.com/sc/docs/apps/wireless/omap/overview.htm

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Agere StarPro platform

http://www.lucent.com/micro/starpro/arch.html

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C-Port C5 network
processor

HDLC
engine

HDLC
engine

Memory
ctrl

… (16 total)

to mem

to
framer

600 Mbps

RISC
executive
controller

fabric
processor

to ATM

other
channel processors

http://www.cportcorp.com/products/digital.htm

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Hardware and software
architectures

Hardware and software are intimately
related:

 software doesn’t run without hardware;
 how much hardware you need is

determined by the software requirements:
 speed;
 memory.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software architecture

Functional description must be broken into
pieces:

 division among people;
 conceptual organization;
 performance;
 testability;
 maintenance.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software components

 Need to break the design up into pieces to
be able to write the code.

 Some component designs come up often.
 A design pattern is a generic description

of a component that can be customized
and used in different circumstances.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software state machine

 State machine keeps internal state as a
variable, changes state based on inputs.

 Uses:
 control-dominated code;
 reactive systems.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

State machine
specification

A B

C D

in1=1/x=a

in1=0/x=b

r=0/out2=1
r=1/out1=0

s=1/out1=1

s=0/out1=0

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C code structure

 Current state is kept in a variable.
 State table is implemented as a switch.
 Cases define states.
 States can test inputs.

 Switch is repeatedly evaluated in a while
loop.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C state machine structure

while (TRUE) {

switch (state) {
case state1: …

}
}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C state table

switch (state) {
case A: if (in1==1) { x = a; state = B; }
else { x = b; state = D; }
break;

case B: if (r==0) { out2 = 1; state = B; }
else { out1 = 0; state = C; }
break;

case C: if (s==0) { out1 = 0; state = C; }
else { out1 = 1; state = D; }
break;

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Data stream

 Commonly used in signal processing:
 new data constantly arrives;
 each datum has a limited lifetime.

 Use a circular buffer to hold the data
stream.

d1 d2 d3 d4 d5 d6 d7

time ttime t+1

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Circular buffers

 Indexes locate currently used data,
current input data:

d1

d2

d3

d4

time t1

use

input d5

d2

d3

d4

time t1+1

use
input

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

C circular buffer

To compute FIR filter value f:

for (f=0, ic=0, ibuff = circ_buff_head;

ic < N;
ibuff = (ibuff = N-1 ? 0 : ibuff++))

f = f + c[ic] * circ_buff[ibuff]

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software design
techniques

 Want to develop as much code as possible
on a standard platform:
 friendlier programming environment;
 easier debugging.

 May need to devise software stubs to
allow testing of software elements without
the full hardware/software platform.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Host/target design

 Use a host system to prepare software for
target system:

target
system

host system
serial line

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Host-based tools

 Cross compiler:
 compiles code on host for target system.

 Cross debugger:
 displays target state, allows target system to

be controlled.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Evaluation boards

 Designed by CPU manufacturer or others.
 Includes CPU, memory, some I/O devices.
 May include prototyping section.
 CPU manufacturer often gives out

evaluation board netlist---can be used as
starting point for your custom board
design.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Adding logic to a board

 Programmable logic devices (PLDs)
provide low/medium density logic.

 Field-programmable gate arrays (FPGAs)
provide more logic and multi-level logic.

 Application-specific integrated circuits
(ASICs) are manufactured for a single
purpose.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Debugging embedded
systems

 Challenges:
 target system may be hard to observe;
 target may be hard to control;
 may be hard to generate realistic inputs;
 setup sequence may be complex.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software debuggers

 A monitor program residing on the target
provides basic debugger functions.

 Debugger should have a minimal footprint
in memory.

 User program must be careful not to
destroy debugger program, but , should
be able to recover from some damage
caused by user code.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Breakpoints

 A breakpoint allows the user to stop
execution, examine system state, and
change state.

 Replace the breakpointed instruction with
a subroutine call to the monitor program.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM breakpoints

0x400 MUL r4,r6,r6
0x404 ADD r2,r2,r4
0x408 ADD r0,r0,#1
0x40c B loop

uninstrumented code

0x400 MUL r4,r6,r6
0x404 ADD r2,r2,r4
0x408 ADD r0,r0,#1
0x40c BL bkpoint

code with breakpoint

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Breakpoint handler actions

 Save registers.
 Allow user to examine machine.
 Before returning, restore system state.
 Safest way to execute the instruction is to

replace it and execute in place.
 Put another breakpoint after the replaced

breakpoint to allow restoring the original
breakpoint.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

In-circuit emulators

 A microprocessor in-circuit emulator is a
specially-instrumented microprocessor.

 Allows you to stop execution, examine
CPU state, modify registers.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Logic analyzers

 A logic analyzer is an array of low-grade
oscilloscopes:

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Logic analyzer
architecture

UUT sample
memory microprocessor

controller

system clock

clock
gen

state or
timing mode

vector
address

displaykeypad

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

How to exercise code

 Run on host system.
 Run on target system.
 Run in instruction-level simulator.
 Run on cycle-accurate simulator.
 Run in hardware/software co-simulation

environment.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Manufacturing testing

 Goal: ensure that manufacturing produces
defect-free copies of the design.

 Can test by comparing unit being tested
to the expected behavior.
 But running tests is expensive.

 Maximize confidence while minimizing
testing cost.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Testing concepts

 Yield: proportion of manufactured systems
that work.
 Proper manufacturing maximizes yield.
 Proper testing accurately estimates yield.

 Field return: defective unit that leaves the
factory.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Faults

 Manufacturing problems can be caused by
many thing.

 Fault model: model that predicts effects of
a particular type of fault.

 Fault coverage: proportion of possible
faults found by a set of test.
 Having a fault model allows us to determine

fault coverage.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Software vs. hardware
testing

 When testing code, we have no fault
model.
 We verify the implementation, not the

manufacturing.
 Simple tests (e.g., ECC) work well to verify

software manufacturing.
 Hardware requires manufacturing tests in

addition to implementation verification.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Hardware fault models

 Stuck-at 0/1 fault model:
 output of gate is always 0/1.

0 01 0

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Combinational testing

 Every gate can be stuck-at-0, stuck-at-1.
 Usually test for single stuck-at-faults.
 One fault at a time.
 Multiple faults can mask each other.

 We can generate a test for a gate by:
 controlling the gate’s input;
 observing the gate’s output through other

gates.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sequential testing

 A state machine is combinational logic +
registers.

 Sequential testing is considerably harder.
 A single stuck-at fault affects the machine on

every cycle.
 Fault behavior on one cycle can be masked by

same fault on other cycles.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Scan chains

 A scannable register operates in two
modes:
 normal;
 scan---forms an element in a shift register.

 Using scan chains reduces sequential
testing to combinational testing.
 Unloading/unloading scan chain is slow.
 May use partial scan.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Test generation

 Automatic test pattern generation (ATPG)
programs: produce a set of tests given the
logic structure.

 Some faults may not be testable---
redundant.
 Timeout on a fault may mean hard-to-test or

untestable.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Boundary scan

 Simplifies testing of multiple chips on a
board.
 Registers on pins can be configured as a scan

chain.

