
© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

CPUs

 CPU performance
 CPU power consumption.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Elements of CPU 
performance

 Cycle time.
 CPU pipeline.
 Memory system.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Pipelining

 Several instructions are executed 
simultaneously at different stages of 
completion.

 Various conditions can cause pipeline 
bubbles that reduce utilization:
 branches;
 memory system delays;
 etc.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Pipeline structures

 Both ARM and SHARC have 3-stage pipes:
 fetch instruction from memory;
 decode opcode and operands;
 execute.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

ARM pipeline execution

add r0,r1,#5

sub r2,r3,r6

cmp r2,#3

fetch

time

decode

fetch

execute

decode

fetch

execute

decode execute

1 2 3



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Performance measures

 Latency: time it takes for an instruction to 
get through the pipeline.

 Throughput: number of instructions 
executed per time period.

 Pipelining increases throughput without 
reducing latency.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Pipeline stalls

 If every step cannot be completed in the 
same amount of time, pipeline stalls.

 Bubbles introduced by stall increase 
latency, reduce throughput.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

ARM multi-cycle LDMIA 
instruction

fetch decodeex ld r2ldmia
r0,{r2,r3}

sub
r2,r3,r6

cmp
r2,#3

ex ld r3

fetch

time

decode ex sub

fetch decodeex cmp



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Control stalls

 Branches often introduce stalls (branch 
penalty).
 Stall time may depend on whether branch is 

taken.
 May have to squash instructions that 

already started executing.
 Don’t know what to fetch until condition is 

evaluated.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

ARM pipelined branch

time

fetch decode ex bnebne foo

sub
r2,r3,r6

fetch decode

foo add
r0,r1,r2

ex bne

fetch decode ex add

ex bne



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Delayed branch

 To increase pipeline efficiency, delayed 
branch mechanism requires n instructions 
after branch always executed whether 
branch is executed or not.

 SHARC supports delayed and non-delayed 
branches.
 Specified by bit in branch instruction.
 2 instruction branch delay slot.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Example: SHARC code 
scheduling

L1=5;

DM(I0,M1)=R1;
L8=8;

DM(I8,M9)=R2;

 CPU cannot use DAG 
on cycle just after 
loading DAG’s 
register.
 CPU performs NOP 

between register 
assign and DM.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Rescheduled SHARC code

L1=5;

L8=8;
DM(I0,M1)=R1;

DM(I8,M9)=R2;

 Avoids two NOP 
cycles.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Example: ARM execution 
time

 Determine execution time of FIR filter:
for (i=0; i<N; i++)

f = f + c[i]*x[i];

 Only branch in loop test may take more 
than one cycle.
 BLT loop takes 1 cycle best case, 3 worst 

case.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Superscalar execution

 Superscalar processor can execute several 
instructions per cycle.
 Uses multiple pipelined data paths.

 Programs execute faster, but it is harder 
to determine how much faster.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Data dependencies

 Execution time depends on operands, not 
just opcode.

 Superscalar CPU checks data 
dependencies dynamically:

add r2,r0,r1
add r3,r2,r5

data dependency r0 r1

r2 r5

r3



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Memory system 
performance

 Caches introduce indeterminacy in 
execution time.
 Depends on order of execution.

 Cache miss penalty: added time due to a 
cache miss.

 Several reasons for a miss: compulsory, 
conflict, capacity.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

CPU power consumption

 Most modern CPUs are designed with 
power consumption in mind to some 
degree.

 Power vs. energy:
 heat depends on power consumption;
 battery life depends on energy consumption.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

CMOS power consumption

 Voltage drops: power consumption 
proportional to V2.

 Toggling: more activity means more 
power.

 Leakage: basic circuit characteristics; can 
be eliminated by disconnecting power.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

CPU power-saving 
strategies

 Reduce power supply voltage.
 Run at lower clock frequency.
 Disable function units with control signals 

when not in use.
 Disconnect parts from power supply when 

not in use.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Power management styles

 Static power management: does not 
depend on CPU activity.
 Example: user-activated power-down mode.

 Dynamic power management: based on 
CPU activity.
 Example: disabling off function units.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Application: PowerPC 603 
energy features

 Provides doze, nap, sleep modes.
 Dynamic power management features:
 Uses static logic.
 Can shut down unused execution units.
 Cache organized into subarrays to minimize 

amount of active circuitry.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

PowerPC 603 activity

 Percentage of time units are idle for SPEC 
integer/floating-point:

unit Specint92 Specfp92
D cache 29% 28%
I cache 29% 17%
load/store 35% 17%
fixed-point 38% 76%
floating-point 99% 30%
system register 89% 97%



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Power-down costs

 Going into a power-down mode costs:
 time;
 energy.

 Must determine if going into mode is 
worthwhile.

 Can model CPU power states with power 
state machine.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Application: StrongARM 
SA-1100 power saving

 Processor takes two supplies:
 VDD is main 3.3V supply.
 VDDX is 1.5V.

 Three power modes:
 Run: normal operation.
 Idle: stops CPU clock, with logic still powered.
 Sleep: shuts off most of chip activity; 3 steps, 

each about 30 µs; wakeup takes > 10 ms.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

SA-1100 power state 
machine

run

idle sleep

Prun = 400 mW

Pidle = 50 mW Psleep = 0.16 mW

10 µs

10 µs
90 µs

160 ms
90 µs


