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CPUs

 CPU performance
 CPU power consumption.
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Elements of CPU 
performance

 Cycle time.
 CPU pipeline.
 Memory system.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Pipelining

 Several instructions are executed 
simultaneously at different stages of 
completion.

 Various conditions can cause pipeline 
bubbles that reduce utilization:
 branches;
 memory system delays;
 etc.
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Pipeline structures

 Both ARM and SHARC have 3-stage pipes:
 fetch instruction from memory;
 decode opcode and operands;
 execute.
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ARM pipeline execution

add r0,r1,#5

sub r2,r3,r6

cmp r2,#3

fetch

time

decode

fetch

execute

decode

fetch

execute

decode execute

1 2 3
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Performance measures

 Latency: time it takes for an instruction to 
get through the pipeline.

 Throughput: number of instructions 
executed per time period.

 Pipelining increases throughput without 
reducing latency.
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Pipeline stalls

 If every step cannot be completed in the 
same amount of time, pipeline stalls.

 Bubbles introduced by stall increase 
latency, reduce throughput.
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ARM multi-cycle LDMIA 
instruction

fetch decodeex ld r2ldmia
r0,{r2,r3}

sub
r2,r3,r6

cmp
r2,#3

ex ld r3

fetch

time

decode ex sub

fetch decodeex cmp
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Control stalls

 Branches often introduce stalls (branch 
penalty).
 Stall time may depend on whether branch is 

taken.
 May have to squash instructions that 

already started executing.
 Don’t know what to fetch until condition is 

evaluated.
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ARM pipelined branch

time

fetch decode ex bnebne foo

sub
r2,r3,r6

fetch decode

foo add
r0,r1,r2

ex bne

fetch decode ex add

ex bne
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Delayed branch

 To increase pipeline efficiency, delayed 
branch mechanism requires n instructions 
after branch always executed whether 
branch is executed or not.

 SHARC supports delayed and non-delayed 
branches.
 Specified by bit in branch instruction.
 2 instruction branch delay slot.
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Example: SHARC code 
scheduling

L1=5;

DM(I0,M1)=R1;
L8=8;

DM(I8,M9)=R2;

 CPU cannot use DAG 
on cycle just after 
loading DAG’s 
register.
 CPU performs NOP 

between register 
assign and DM.
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Rescheduled SHARC code

L1=5;

L8=8;
DM(I0,M1)=R1;

DM(I8,M9)=R2;

 Avoids two NOP 
cycles.
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Example: ARM execution 
time

 Determine execution time of FIR filter:
for (i=0; i<N; i++)

f = f + c[i]*x[i];

 Only branch in loop test may take more 
than one cycle.
 BLT loop takes 1 cycle best case, 3 worst 

case.
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Superscalar execution

 Superscalar processor can execute several 
instructions per cycle.
 Uses multiple pipelined data paths.

 Programs execute faster, but it is harder 
to determine how much faster.
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Data dependencies

 Execution time depends on operands, not 
just opcode.

 Superscalar CPU checks data 
dependencies dynamically:

add r2,r0,r1
add r3,r2,r5

data dependency r0 r1

r2 r5

r3
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Memory system 
performance

 Caches introduce indeterminacy in 
execution time.
 Depends on order of execution.

 Cache miss penalty: added time due to a 
cache miss.

 Several reasons for a miss: compulsory, 
conflict, capacity.
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CPU power consumption

 Most modern CPUs are designed with 
power consumption in mind to some 
degree.

 Power vs. energy:
 heat depends on power consumption;
 battery life depends on energy consumption.
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CMOS power consumption

 Voltage drops: power consumption 
proportional to V2.

 Toggling: more activity means more 
power.

 Leakage: basic circuit characteristics; can 
be eliminated by disconnecting power.
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CPU power-saving 
strategies

 Reduce power supply voltage.
 Run at lower clock frequency.
 Disable function units with control signals 

when not in use.
 Disconnect parts from power supply when 

not in use.
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Power management styles

 Static power management: does not 
depend on CPU activity.
 Example: user-activated power-down mode.

 Dynamic power management: based on 
CPU activity.
 Example: disabling off function units.
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Application: PowerPC 603 
energy features

 Provides doze, nap, sleep modes.
 Dynamic power management features:
 Uses static logic.
 Can shut down unused execution units.
 Cache organized into subarrays to minimize 

amount of active circuitry.
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PowerPC 603 activity

 Percentage of time units are idle for SPEC 
integer/floating-point:

unit Specint92 Specfp92
D cache 29% 28%
I cache 29% 17%
load/store 35% 17%
fixed-point 38% 76%
floating-point 99% 30%
system register 89% 97%



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Power-down costs

 Going into a power-down mode costs:
 time;
 energy.

 Must determine if going into mode is 
worthwhile.

 Can model CPU power states with power 
state machine.
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Application: StrongARM 
SA-1100 power saving

 Processor takes two supplies:
 VDD is main 3.3V supply.
 VDDX is 1.5V.

 Three power modes:
 Run: normal operation.
 Idle: stops CPU clock, with logic still powered.
 Sleep: shuts off most of chip activity; 3 steps, 

each about 30 µs; wakeup takes > 10 ms.
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SA-1100 power state 
machine

run

idle sleep

Prun = 400 mW

Pidle = 50 mW Psleep = 0.16 mW

10 µs

10 µs
90 µs

160 ms
90 µs


