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CPUs

 Caches.
 Memory management.
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Cache operation

 Many main memory locations are mapped 
onto one cache entry.

 May have caches for:
 instructions;
 data;
 data + instructions (unified).

 Memory access time is no longer 
deterministic.
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Terms

 Cache hit: required location is in cache.
 Cache miss: required location is not in 

cache.
 Working set: set of locations used by 

program in a time interval.
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Types of misses

 Compulsory (cold): location has never 
been accessed.

 Capacity: working set is too large.
 Conflict: multiple locations in working set 

map to same cache entry.
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Memory system 
performance

 h = cache hit rate.
 tcache = cache access time, tmain = main 

memory access time.
 Average memory access time:
 tav = htcache + (1-h)tmain
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Multiple levels of cache

CPU L1 cache L2 cache
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Multi-level cache access 
time

 h1 = cache hit rate.
 h2 = rate for miss on L1, hit on L2.
 Average memory access time:
 tav = h1tL1 + (h2-h1)tL2 + (1- h2-h1)tmain
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Replacement policies

 Replacement policy: strategy for choosing 
which cache entry to throw out to make 
room for a new memory location.

 Two popular strategies:
 Random.
 Least-recently used (LRU).
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Cache organizations

 Fully-associative: any memory location 
can be stored anywhere in the cache 
(almost never implemented).

 Direct-mapped: each memory location 
maps onto exactly one cache entry.

 N-way set-associative: each memory 
location can go into one of n sets.
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Cache performance 
benefits

 Keep frequently-accessed locations in fast 
cache.

 Cache retrieves more than one word at a 
time.
 Sequential accesses are faster after first 

access.
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Direct-mapped cache

valid

=
tag index offset

hit value

tag data
1 0xabcd byte byte byte ...

byte

cache block
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Write operations

 Write-through: immediately copy write to 
main memory.

 Write-back: write to main memory only 
when location is removed from cache.
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Direct-mapped cache 
locations

 Many locations map onto the same cache 
block.

 Conflict misses are easy to generate:
 Array a[] uses locations 0, 1, 2, …
 Array b[] uses locations 1024, 1025, 1026, …
 Operation a[i] + b[i] generates conflict 

misses.
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Set-associative cache

 A set of direct-mapped caches:

Set 1 Set 2 Set n...

hit data
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Example: direct-mapped 
vs. set-associative

address data
000 0101
001 1111
010 0000
011 0110
100 1000
101 0001
110 1010
111 0100
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Direct-mapped cache 
behavior

 After 001 access:
block tag data
00 - -
01 0 1111
10 - -
11 - -

 After 010 access:
block tag data
00 - -
01 0 1111
10 0 0000
11 - -
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Direct-mapped cache 
behavior, cont’d.

 After 011 access:
block tag data
00 - -
01 0 1111
10 0 0000
11 0 0110

 After 100 access:
block tag data
00 1 1000
01 0 1111
10 0 0000
11 0 0110



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Direct-mapped cache 
behavior, cont’d.

 After 101 access:
block tag data
00 1 1000
01 1 0001
10 0 0000
11 0 0110

 After 111 access:
block tag data
00 1 1000
01 1 0001
10 0 0000
11 1 0100
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2-way set-associtive cache 
behavior

 Final state of cache (twice as big as 
direct-mapped):
set blk 0 tag blk 0 data blk 1 tag blk 1 data
00 1 1000 - -
01 0 1111 1 0001
10 0 0000 - -
11 0 0110 1 0100
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2-way set-associative 
cache behavior

 Final state of cache (same size as direct-
mapped):
set blk 0 tag blk 0 data blk 1 tag blk 1 data
0 01 0000 10 1000
1 10 0111 11 0100
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Example caches

 StrongARM:
 16 Kbyte, 32-way, 32-byte block instruction 

cache.
 16 Kbyte, 32-way, 32-byte block data cache 

(write-back).
 SHARC:
 32-instruction, 2-way instruction cache.
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Memory management units

 Memory management unit (MMU) 
translates addresses:

CPU main
memory

memory
management

unit

logical
address

physical
address
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Memory management 
tasks

 Allows programs to move in physical 
memory during execution.

 Allows virtual memory:
 memory images kept in secondary storage;
 images returned to main memory on demand 

during execution.
 Page fault: request for location not 

resident in memory.
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Address translation

 Requires some sort of register/table to 
allow arbitrary mappings of logical to 
physical addresses.

 Two basic schemes:
 segmented;
 paged.

 Segmentation and paging can be 
combined (x86).
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Segments and pages

memory

segment 1

segment 2

page 1
page 2
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Segment address 
translation

segment base address logical address

range
check

physical address

+

range
error

segment lower bound
segment upper bound
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Page address translation

page offset

page offset

page i base

concatenate
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Page table organizations

flat tree

page descriptor

page
descriptor
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Caching address 
translations

 Large translation tables require main 
memory access.

 TLB: cache for address translation.
 Typically small.
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ARM memory management

 Memory region types:
 section: 1 Mbyte block;
 large page: 64 kbytes;
 small page: 4 kbytes.

 An address is marked as section-mapped 
or page-mapped.

 Two-level translation scheme.
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ARM address translation

offset1st index 2nd index

physical address

Translation table
base register

1st level table
descriptor

2nd level table
descriptor

concatenate

concatenate


