
© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

CPUs

 Caches.
 Memory management.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Caches and CPUs

CPU
ca

ch
e

co
nt

ro
lle

r cache
main

memory

data

data

address

data

address



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Cache operation

 Many main memory locations are mapped 
onto one cache entry.

 May have caches for:
 instructions;
 data;
 data + instructions (unified).

 Memory access time is no longer 
deterministic.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Terms

 Cache hit: required location is in cache.
 Cache miss: required location is not in 

cache.
 Working set: set of locations used by 

program in a time interval.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Types of misses

 Compulsory (cold): location has never 
been accessed.

 Capacity: working set is too large.
 Conflict: multiple locations in working set 

map to same cache entry.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Memory system 
performance

 h = cache hit rate.
 tcache = cache access time, tmain = main 

memory access time.
 Average memory access time:
 tav = htcache + (1-h)tmain



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Multiple levels of cache

CPU L1 cache L2 cache



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Multi-level cache access 
time

 h1 = cache hit rate.
 h2 = rate for miss on L1, hit on L2.
 Average memory access time:
 tav = h1tL1 + (h2-h1)tL2 + (1- h2-h1)tmain



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Replacement policies

 Replacement policy: strategy for choosing 
which cache entry to throw out to make 
room for a new memory location.

 Two popular strategies:
 Random.
 Least-recently used (LRU).



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Cache organizations

 Fully-associative: any memory location 
can be stored anywhere in the cache 
(almost never implemented).

 Direct-mapped: each memory location 
maps onto exactly one cache entry.

 N-way set-associative: each memory 
location can go into one of n sets.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Cache performance 
benefits

 Keep frequently-accessed locations in fast 
cache.

 Cache retrieves more than one word at a 
time.
 Sequential accesses are faster after first 

access.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Direct-mapped cache

valid

=
tag index offset

hit value

tag data
1 0xabcd byte byte byte ...

byte

cache block



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Write operations

 Write-through: immediately copy write to 
main memory.

 Write-back: write to main memory only 
when location is removed from cache.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Direct-mapped cache 
locations

 Many locations map onto the same cache 
block.

 Conflict misses are easy to generate:
 Array a[] uses locations 0, 1, 2, …
 Array b[] uses locations 1024, 1025, 1026, …
 Operation a[i] + b[i] generates conflict 

misses.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Set-associative cache

 A set of direct-mapped caches:

Set 1 Set 2 Set n...

hit data



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Example: direct-mapped 
vs. set-associative

address data
000 0101
001 1111
010 0000
011 0110
100 1000
101 0001
110 1010
111 0100



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Direct-mapped cache 
behavior

 After 001 access:
block tag data
00 - -
01 0 1111
10 - -
11 - -

 After 010 access:
block tag data
00 - -
01 0 1111
10 0 0000
11 - -



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Direct-mapped cache 
behavior, cont’d.

 After 011 access:
block tag data
00 - -
01 0 1111
10 0 0000
11 0 0110

 After 100 access:
block tag data
00 1 1000
01 0 1111
10 0 0000
11 0 0110



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Direct-mapped cache 
behavior, cont’d.

 After 101 access:
block tag data
00 1 1000
01 1 0001
10 0 0000
11 0 0110

 After 111 access:
block tag data
00 1 1000
01 1 0001
10 0 0000
11 1 0100



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

2-way set-associtive cache 
behavior

 Final state of cache (twice as big as 
direct-mapped):
set blk 0 tag blk 0 data blk 1 tag blk 1 data
00 1 1000 - -
01 0 1111 1 0001
10 0 0000 - -
11 0 0110 1 0100



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

2-way set-associative 
cache behavior

 Final state of cache (same size as direct-
mapped):
set blk 0 tag blk 0 data blk 1 tag blk 1 data
0 01 0000 10 1000
1 10 0111 11 0100



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Example caches

 StrongARM:
 16 Kbyte, 32-way, 32-byte block instruction 

cache.
 16 Kbyte, 32-way, 32-byte block data cache 

(write-back).
 SHARC:
 32-instruction, 2-way instruction cache.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Memory management units

 Memory management unit (MMU) 
translates addresses:

CPU main
memory

memory
management

unit

logical
address

physical
address



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Memory management 
tasks

 Allows programs to move in physical 
memory during execution.

 Allows virtual memory:
 memory images kept in secondary storage;
 images returned to main memory on demand 

during execution.
 Page fault: request for location not 

resident in memory.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Address translation

 Requires some sort of register/table to 
allow arbitrary mappings of logical to 
physical addresses.

 Two basic schemes:
 segmented;
 paged.

 Segmentation and paging can be 
combined (x86).



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Segments and pages

memory

segment 1

segment 2

page 1
page 2



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Segment address 
translation

segment base address logical address

range
check

physical address

+

range
error

segment lower bound
segment upper bound



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Page address translation

page offset

page offset

page i base

concatenate



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Page table organizations

flat tree

page descriptor

page
descriptor



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

Caching address 
translations

 Large translation tables require main 
memory access.

 TLB: cache for address translation.
 Typically small.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

ARM memory management

 Memory region types:
 section: 1 Mbyte block;
 large page: 64 kbytes;
 small page: 4 kbytes.

 An address is marked as section-mapped 
or page-mapped.

 Two-level translation scheme.



© 2000 Morgan 
Kaufman

Overheads for Computers as 
Components

ARM address translation

offset1st index 2nd index

physical address

Translation table
base register

1st level table
descriptor

2nd level table
descriptor

concatenate

concatenate


