
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

CPUs

 Input and output.
 Supervisor mode, exceptions, traps.
 Co-processors.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

I/O devices

 Usually includes some non-digital
component.

 Typical digital interface to CPU:

CPU

status
reg

data
reg m

ec
ha

ni
sm

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Application: 8251 UART

 Universal asynchronous receiver
transmitter (UART) : provides serial
communication.

 8251 functions are integrated into
standard PC interface chip.

 Allows many communication parameters
to be programmed.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Serial communication

 Characters are transmitted separately:

time

bit 0 bit 1 bit n-1

no
char

start stop...

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Serial communication
parameters

 Baud (bit) rate.
 Number of bits per character.
 Parity/no parity.
 Even/odd parity.
 Length of stop bit (1, 1.5, 2 bits).

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

8251 CPU interface

CPU 8251

status
(8 bit)

data
(8 bit)

serial
port

xmit/
rcv

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Programming I/O

 Two types of instructions can support I/O:
 special-purpose I/O instructions;
 memory-mapped load/store instructions.

 Intel x86 provides in, out instructions.
Most other CPUs use memory-mapped
I/O.

 I/O instructions do not preclude memory-
mapped I/O.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM memory-mapped I/O

 Define location for device:
DEV1 EQU 0x1000

 Read/write code:
LDR r1,#DEV1 ; set up device adrs
LDR r0,[r1] ; read DEV1

LDR r0,#8 ; set up value to write

STR r0,[r1] ; write value to device

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

SHARC memory mapped
I/O

 Device must be in external memory space
(above 0x400000).

 Use DM to control access:
I0 = 0x400000;

M0 = 0;

R1 = DM(I0,M0);

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Peek and poke

 Traditional HLL interfaces:
int peek(char *location) {

return *location; }

void poke(char *location, char
newval) {

(*location) = newval; }

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Busy/wait output

 Simplest way to program device.
 Use instructions to test when device is ready.

current_char = mystring;

while (*current_char != ‘\0’) {

poke(OUT_CHAR,*current_char);
while (peek(OUT_STATUS) != 0);

current_char++;

}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Simultaneous busy/wait
input and output

while (TRUE) {
/* read */
while (peek(IN_STATUS) == 0);
achar = (char)peek(IN_DATA);
/* write */
poke(OUT_DATA,achar);
poke(OUT_STATUS,1);
while (peek(OUT_STATUS) != 0);
}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Interrupt I/O

 Busy/wait is very inefficient.
 CPU can’t do other work while testing device.
 Hard to do simultaneous I/O.

 Interrupts allow a device to change the
flow of control in the CPU.
 Causes subroutine call to handle device.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Interrupt interface

CPU

status
reg

data
reg m

ec
ha

ni
sm

PC
intr request

intr ack

data/address

IR

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Interrupt behavior

 Based on subroutine call mechanism.
 Interrupt forces next instruction to be a

subroutine call to a predetermined
location.
 Return address is saved to resume executing

foreground program.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Interrupt physical
interface

 CPU and device are connected by CPU
bus.

 CPU and device handshake:
 device asserts interrupt request;
 CPU asserts interrupt acknowledge when it

can handle the interrupt.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: character I/O
handlers

void input_handler() {

achar = peek(IN_DATA);

gotchar = TRUE;

poke(IN_STATUS,0);

}

void output_handler() {

}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: interrupt-driven
main program

main() {
while (TRUE) {

if (gotchar) {
poke(OUT_DATA,achar);
poke(OUT_STATUS,1);
gotchar = FALSE;
}

}
}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: interrupt I/O with
buffers

 Queue for characters:

head tailhead tail

a

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Buffer-based input handler

void input_handler() {
char achar;
if (full_buffer()) error = 1;
else { achar = peek(IN_DATA);
add_char(achar); }
poke(IN_STATUS,0);
if (nchars == 1)

{ poke(OUT_DATA,remove_char();
poke(OUT_STATUS,1); }
}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

I/O sequence diagram

:foreground :input :output :queue

empty

a

empty

b

bc

c

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Debugging interrupt code

 What if you forget to change registers?
 Foreground program can exhibit mysterious

bugs.
 Bugs will be hard to repeat---depend on

interrupt timing.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Priorities and vectors

 Two mechanisms allow us to make
interrupts more specific:
 Priorities determine what interrupt gets CPU

first.
 Vectors determine what code is called for

each type of interrupt.
 Mechanisms are orthogonal: most CPUs

provide both.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Prioritized interrupts

CPU

device 1 device 2 device n

L1 L2 .. Ln

interrupt
acknowledge

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Interrupt prioritization

 Masking: interrupt with priority lower than
current priority is not recognized until
pending interrupt is complete.

 Non-maskable interrupt (NMI): highest-
priority, never masked.
 Often used for power-down.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example: Prioritized I/O

:interrupts :foreground :A :B :C

B

A,B

C

A

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Interrupt vectors

 Allow different devices to be handled by
different code.

 Interrupt vector table:

handler 0
handler 1
handler 2
handler 3

Interrupt
vector

table head

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Interrupt vector
acquisition

:CPU :device

receive
request

receive
ack

receive
vector

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Generic interrupt
mechanism

intr?
N

Y
Assume priority selection is

handled before this
point.

N
ignore

Y

ack

vector?
Y

Y
Ntimeout?Y

bus error

call table[vector]

intr priority >
current
priority?

continue
execution

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Interrupt sequence

 CPU acknowledges request.
 Device sends vector.
 CPU calls handler.
 Software processes request.
 CPU restores state to foreground program.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sources of interrupt
overhead

 Handler execution time.
 Interrupt mechanism overhead.
 Register save/restore.
 Pipeline-related penalties.
 Cache-related penalties.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM interrupts

 ARM7 supports two types of interrupts:
 Fast interrupt requests (FIQs).
 Interrupt requests (IRQs).

 Interrupt table starts at location 0.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM interrupt procedure

 CPU actions:
 Save PC. Copy CPSR to SPSR.
 Force bits in CPSR to record interrupt.
 Force PC to vector.

 Handler responsibilities:
 Restore proper PC.
 Restore CPSR from SPSR.
 Clear interrupt disable flags.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM interrupt latency

 Worst-case latency to respond to interrupt
is 27 cycles:
 Two cycles to synchronize external request.
 Up to 20 cycles to complete current

instruction.
 Three cycles for data abort.
 Two cycles to enter interrupt handling state.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

SHARC interrupt structure

 Interrupts are vectored and prioritized.
 Priorities are fixed: reset highest, user SW

interrupt 3 lowest.
 Vectors are also fixed. Vector is offset in

vector table. Table starts at 0x20000 in
internal memory, 0x40000 in external
memory.v

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

SHARC interrupt sequence

Start: must be executing or IDLE/IDLE16.
1. Output appropriate interrupt vector

address.
2. Push PC value onto PC stack.
3. Set bit in interrupt latch register.
4. Set IMASKP to current nesting state.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

SHARC interrupt return

Initiated by RTI instruction.
1. Return to address at top of PC stack.
2. Pop PC stack.
3. Pop status stack if appropriate.
4. Clear bits in interrupt latch register and

IMASKP.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

SHARC interrupt
performance

Three stages of response:
 1 cycle: synchronization and latching;
 1 cycle: recognition;
 2 cycles: brancing to vector.

Total latency: 3 cycles.
Multiprocessor vector interrupts have 6

cycle latency.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Supervisor mode

 May want to provide protective barriers
between programs.
 Avoid memory corruption.

 Need supervisor mode to manage the
various programs.

 SHARC does not have a supervisor mode.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

ARM supervisor mode

 Use SWI instruction to enter supervisor
mode, similar to subroutine:
SWI CODE_1

 Sets PC to 0x08.
 Argument to SWI is passed to supervisor

mode code.
 Saves CPSR in SPSR.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Exception

 Exception: internally detected error.
 Exceptions are synchronous with

instructions but unpredictable.
 Build exception mechanism on top of

interrupt mechanism.
 Exceptions are usually prioritized and

vectorized.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Trap

 Trap (software interrupt): an exception
generated by an instruction.
 Call supervisor mode.

 ARM uses SWI instruction for traps.
 SHARC offers three levels of software

interrupts.
 Called by setting bits in IRPTL register.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Co-processor

 Co-processor: added function unit that is
called by instruction.
 Floating-point units are often structured as

co-processors.
 ARM allows up to 16 designer-selected co-

processors.
 Floating-point co-processor uses units 1 and

2.

