
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Introduction

 Object-oriented design.
 Unified Modeling Language (UML).

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

System modeling

 Need languages to describe systems:
 useful across several levels of abstraction;
 understandable within and between

organizations.
 Block diagrams are a start, but don’t cover

everything.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Object-oriented design

 Object-oriented (OO) design: A
generalization of object-oriented
programming.

 Object = state + methods.
 State provides each object with its own

identity.
 Methods provide an abstract interface to the

object.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

OO implementation in C++

class display {

pixels : pixeltype[IMAX,JMAX];
public:

display() { }

pixeltype pixel(int i, int j) {
return pixels[i,j]; }

void set_pixel(pixeltype val, int
i, int j) { pixels[i,j] = val; }

}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

OO implementation in C

typedef struct { pixels:
pixeltype[IMAX,JMAX]; } display;

display d1;
pixeltype pixelval(pixel *px, int i, int j)
{ return px[i,j]; }

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Objects and classes

 Class: object type.
 Class defines the object’s state elements

but state values may change over time.
 Class defines the methods used to interact

with all objects of that type.
 Each object has its own state.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

OO design principles

 Some objects will closely correspond to
real-world objects.
 Some objects may be useful only for

description or implementation.
 Objects provide interfaces to read/write

state, hiding the object’s implementation
from the rest of the system.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

UML

 Developed by Booch et al.
 Goals:
 object-oriented;
 visual;
 useful at many levels of abstraction;
 usable for all aspects of design.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

UML object

d1: Display

pixels: array[] of pixels
elements
menu_items

pixels is a
2-D array

comment

object name
class name

attributes

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

UML class

Display

pixels
elements
menu_items

mouse_click()
draw_box operations

class name

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

The class interface

 The operations provide the abstract
interface between the class’s
implementation and other classes.

 Operations may have arguments, return
values.

 An operation can examine and/or modify
the object’s state.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Choose your interface
properly

 If the interface is too small/specialized:
 object is hard to use for even one application;
 even harder to reuse.

 If the interface is too large:
 class becomes too cumbersome for designers

to understand;
 implementation may be too slow;
 spec and implementation are probably buggy.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Relationships between
objects and classes

 Association: objects communicate but one
does not own the other.

 Aggregation: a complex object is made of
several smaller objects.

 Composition: aggregation in which owner
does not allow access to its components.

 Generalization: define one class in terms
of another.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Class derivation

 May want to define one class in terms of
another.
 Derived class inherits attributes, operations of

base class.

Derived_class

Base_class

UML
generalization

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Class derivation example

Display

pixels
elements
menu_items

pixel()
set_pixel()
mouse_click()
draw_box

BW_display Color_map_display

base
class

derived class

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Multiple inheritance

Speaker Display

Multimedia_display

base classes

derived class

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Links and associations

 Link: describes relationships between
objects.

 Association: describes relationship
between classes.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Link example

 Link defines the contains relationship:

message
msg = msg1
length = 1102

message
msg = msg2
length = 2114

message set

count = 2

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Association example

message
msg: ADPCM_stream
length : integer

message set

count : integer

0..* 1

contains

contained messages # containing message sets

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Stereotypes

 Stereotype: recurring combination of
elements in an object or class.

 Example:
 <<foo>>

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Behavioral description

 Several ways to describe behavior:
 internal view;
 external view.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

State machines

a b

state state name

transition

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Event-driven state
machines

 Behavioral descriptions are written as
event-driven state machines.
 Machine changes state when receiving an

input.
 An event may come from inside or outside

of the system.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Types of events

 Signal: asynchronous event.
 Call: synchronized communication.
 Timer: activated by time.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Signal event

<<signal>>
mouse_click

leftorright: button
x, y: position

declaration

a

b

mouse_click(x,y,button)

event description

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Call event

c d

draw_box(10,5,3,2,blue)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Timer event

e f

tm(time-value)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example state machine

region
found

got menu
item

called
menu item

found
object

object
highlighted

start

finish

mouse_click(x,y,button)/
find_region(region)

input/output
region = menu/
which_menu(i) call_menu(I)

region = drawing/
find_object(objid) highlight(objid)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sequence diagram

 Shows sequence of operations over time.
 Relates behaviors of multiple objects.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sequence diagram
example

m: Mouse d1: Display u: Menu

mouse_click(x,y,button)
which_menu(x,y,i)

call_menu(i)

time

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Summary

 Object-oriented design helps us organize
a design.

 UML is a transportable system design
language.
 Provides structural and behavioral description

primitives.

