Introduction

Object-oriented design.
Unified Modeling Language (UML).

© 2000 Morgan Overheads for Computers as
Kaufman Components

System modeling

Need languages to describe systems:
useful across several levels of abstraction;

understandable within and between
organizations.

Block diagrams are a start, but don’t cover
everything.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Object-oriented design

Object-oriented (OO) design: A
generalization of object-oriented
programming.

Object = state + methods.

State provides each object with its own
identity.

Methods provide an abstract interface to the
object.

© 2000 Morgan Overheads for Computers as
Kaufman Components

00 implementation in C++

class display {

pixels : pixeltype[IMAX,JMAX];

public:

J

display() { }
pixeltype pixel (int i, int 7J) {
return pixels[i,73]; }

void set pixel (pixeltype val, int
1, int j) { pixels[i,3] = val; }

© 2000 Morgan Overheads for Computers as
Kaufman Components

00 implementationin C

typedef struct { pixels:
pixeltype [IMAX,JMAX]; } display;

display dl;

pixeltype pixelval (pixel *px, 1nt 1, int 7J)
{ return pxI[1i,7]]; }

© 2000 Morgan Overheads for Computers as
Kaufman Components

Objects and classes

Class: object type.

Class defines the object’s state elements
but state values may change over time.

Class defines the methods used to interact
with all objects of that type.
Each object has its own state.

© 2000 Morgan Overheads for Computers as
Kaufman Components

OO design principles

Some objects will closely correspond to

real-world objects.
Some objects may be useful only for

description or implementation.

Objects provide interfaces to read/write

state, hiding the object’s implementation

from the rest of the system.

© 2000 Morgan Overheads for Computers as
Kaufman Components

UML

Developed by Booch et al.

Goals:
object-oriented;
visual;
useful at many levels of abstraction;
usable for all aspects of design.

© 2000 Morgan Overheads for Computers as
Kaufman Components

UML object

object name

/ class name

dl: DispIgy

pixels: array[] of pixels

elements
menu_items\
comment \

attributes

© 2000 Morgan Overheads for Computers as
Kaufman Components

UML class

© 2000 Morgan
Kaufman

Display «—

I

pixels

elements
menu_items

mouse_click()
draw box

-

-

Overheads for Computers as

Components

class name

operations

The class interface

The operations provide the abstract
interface between the class’s
implementation and other classes.

Operations may have arguments, return
values.

An operation can examine and/or modify
the object’s state.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Choose your interface
properly

If the interface is too small/specialized:
object is hard to use for even one application;
even harder to reuse.

If the interface is too large:

class becomes too cumbersome for designers
to understand;

implementation may be too slow;
spec and implementation are probably buggy.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Relationships between
objects and classes

Association: objects communicate but one
does not own the other.

Aggregation: a complex object is made of
several smaller objects.

Composition: aggregation in which owner
does not allow access to its components.

Generalization: define one class in terms
of another.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Class derivation

May want to define one class in terms of
another.

Derived class inherits attributes, operations of
base class.

Derived class

\/

Base class

UML
generalization

© 2000 Morgan Overheads for Computers as
Kaufman Components

Class derivation example

Display base
pixels / class
elements

menu_1tems

pixel()
derived class set_pixel()
v mouse_click()
S
BW _display Color map display
© 2000 Morgan Overheads for Computers as

Kaufman Components

Multiple inheritance

base classes

/

Speaker

Display

/\

Multimedia display

derived class

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Links and associations

Link: describes relationships between
objects.
Association: describes relationship
between classes.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Link example

Link defines the contains relationship:

message

msg = msgl \ message set
length = 1102

count = 2
message /
msg = msg2

length = 2114

© 2000 Morgan Overheads for Computers as
Kaufman Components

Association example

contained messages # containing message sets
™A
message 0. * | ¥ message set
msg: ADPCM_stream [© :
: N _ count : integer
length . 1nteger contains

© 2000 Morgan Overheads for Computers as
Kaufman Components

Stereotypes

Stereotype: recurring combination of
elements in an object or class.

Example:
<<foo>>

© 2000 Morgan Overheads for Computers as
Kaufman Components

Behavioral description

Several ways to describe behavior:
internal view;
external view.

© 2000 Morgan Overheads for Computers as
Kaufman Components

State machines

transition

/. f

state state name

© 2000 Morgan Overheads for Computers as
Kaufman Components

Event-driven state
machines

Behavioral descriptions are written as
event-driven state machines.

Machine changes state when receiving an
input.

An event may come from inside or outside
of the system.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Types of events

Signal: asynchronous event.
Call: synchronized communication.
Timer: activated by time.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Signal event

<<signal>>

mouse_click 4

leftorn gl.lt.: button mouse CMbutton)
X, y: position -

. b
declaration [}

event description

© 2000 Morgan Overheads for Computers as
Kaufman Components

Call event

draw box(10,5,3,2,blue)

cW /d
) g

© 2000 Morgan Overheads for Computers as
Kaufman Components

Timer event

tm(time-value)

W C
-
o
© 2000 Morgan Overheads for Computers as

Kaufman Components

Example state machine

start input/output
mouse_click(x,y,button)/ ~Tregion =menu/
ﬁnd_region(region) which_menu(1) call_menu(I)

‘ reglon got menu called
\ found item menu item

region = drawing/

ﬁﬂd_ObjeCt(Objfg highlight(objid)

found bject
[o(l))?:ct } \hig(;llji;lted} {/“)

finish

© 2000 Morgan Overheads for Computers as
Kaufman Components

Sequence diagram

Shows sequence of operations over time.
Relates behaviors of multiple objects.

© 2000 Morgan Overheads for Computers as
Kaufman Components

Sequence diagram
example

m: Mouse d1: Display u: Menu

mouse click(x,y,button)
»— which_menu(x,y,i)

A 4

call menu(1)

A 4

v v v

© 2000 Morgan Overheads for Computers as
Kaufman Components

Summary

Object-oriented design helps us organize
a design.

UML is a transportable system design
language.

Provides structural and behavioral description
primitives.

© 2000 Morgan Overheads for Computers as
Kaufman Components

