
© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Introduction

 Object-oriented design.
 Unified Modeling Language (UML).

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

System modeling

 Need languages to describe systems:
 useful across several levels of abstraction;
 understandable within and between

organizations.
 Block diagrams are a start, but don’t cover

everything.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Object-oriented design

 Object-oriented (OO) design: A
generalization of object-oriented
programming.

 Object = state + methods.
 State provides each object with its own

identity.
 Methods provide an abstract interface to the

object.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

OO implementation in C++

class display {

pixels : pixeltype[IMAX,JMAX];
public:

display() { }

pixeltype pixel(int i, int j) {
return pixels[i,j]; }

void set_pixel(pixeltype val, int
i, int j) { pixels[i,j] = val; }

}

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

OO implementation in C

typedef struct { pixels:
pixeltype[IMAX,JMAX]; } display;

display d1;
pixeltype pixelval(pixel *px, int i, int j)
{ return px[i,j]; }

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Objects and classes

 Class: object type.
 Class defines the object’s state elements

but state values may change over time.
 Class defines the methods used to interact

with all objects of that type.
 Each object has its own state.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

OO design principles

 Some objects will closely correspond to
real-world objects.
 Some objects may be useful only for

description or implementation.
 Objects provide interfaces to read/write

state, hiding the object’s implementation
from the rest of the system.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

UML

 Developed by Booch et al.
 Goals:
 object-oriented;
 visual;
 useful at many levels of abstraction;
 usable for all aspects of design.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

UML object

d1: Display

pixels: array[] of pixels
elements
menu_items

pixels is a
2-D array

comment

object name
class name

attributes

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

UML class

Display

pixels
elements
menu_items

mouse_click()
draw_box operations

class name

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

The class interface

 The operations provide the abstract
interface between the class’s
implementation and other classes.

 Operations may have arguments, return
values.

 An operation can examine and/or modify
the object’s state.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Choose your interface
properly

 If the interface is too small/specialized:
 object is hard to use for even one application;
 even harder to reuse.

 If the interface is too large:
 class becomes too cumbersome for designers

to understand;
 implementation may be too slow;
 spec and implementation are probably buggy.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Relationships between
objects and classes

 Association: objects communicate but one
does not own the other.

 Aggregation: a complex object is made of
several smaller objects.

 Composition: aggregation in which owner
does not allow access to its components.

 Generalization: define one class in terms
of another.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Class derivation

 May want to define one class in terms of
another.
 Derived class inherits attributes, operations of

base class.

Derived_class

Base_class

UML
generalization

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Class derivation example

Display

pixels
elements
menu_items

pixel()
set_pixel()
mouse_click()
draw_box

BW_display Color_map_display

base
class

derived class

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Multiple inheritance

Speaker Display

Multimedia_display

base classes

derived class

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Links and associations

 Link: describes relationships between
objects.

 Association: describes relationship
between classes.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Link example

 Link defines the contains relationship:

message
msg = msg1
length = 1102

message
msg = msg2
length = 2114

message set

count = 2

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Association example

message
msg: ADPCM_stream
length : integer

message set

count : integer

0..* 1

contains

contained messages # containing message sets

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Stereotypes

 Stereotype: recurring combination of
elements in an object or class.

 Example:
 <<foo>>

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Behavioral description

 Several ways to describe behavior:
 internal view;
 external view.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

State machines

a b

state state name

transition

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Event-driven state
machines

 Behavioral descriptions are written as
event-driven state machines.
 Machine changes state when receiving an

input.
 An event may come from inside or outside

of the system.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Types of events

 Signal: asynchronous event.
 Call: synchronized communication.
 Timer: activated by time.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Signal event

<<signal>>
mouse_click

leftorright: button
x, y: position

declaration

a

b

mouse_click(x,y,button)

event description

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Call event

c d

draw_box(10,5,3,2,blue)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Timer event

e f

tm(time-value)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Example state machine

region
found

got menu
item

called
menu item

found
object

object
highlighted

start

finish

mouse_click(x,y,button)/
find_region(region)

input/output
region = menu/
which_menu(i) call_menu(I)

region = drawing/
find_object(objid) highlight(objid)

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sequence diagram

 Shows sequence of operations over time.
 Relates behaviors of multiple objects.

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Sequence diagram
example

m: Mouse d1: Display u: Menu

mouse_click(x,y,button)
which_menu(x,y,i)

call_menu(i)

time

© 2000 Morgan
Kaufman

Overheads for Computers as
Components

Summary

 Object-oriented design helps us organize
a design.

 UML is a transportable system design
language.
 Provides structural and behavioral description

primitives.

