
Introduction to multiprocessor
programming

Why do we need multi-core processors?

n Until ~2005 processor
performance increase
driven by

l Clock speed
l Execution optimization
l Cache

n Power wall
n ILP wall

è Led to multicore
processors

è Parallelism must be
exposed by the
programmer

(source http://www.gotw.ca/publications/concurrency-ddj.htm)

Processor Breakthroughs

A major architecture disruption: multiprocessing and
specialization will have a strong impact on software

Time

Processor
Power

Intel 8086

1980 1990 2000

PowerQUICC II

Multi-processing

Processor
specialization

2015-2020 (?)

Architectural
break point

CISC era

RISC era

Technology limitations: perf. by
parallelism no more by frequency =>

disruption in programming model, long
term research challenges

Domain oriented architectures: eg with
predictable performance to control the
timeliness in RT critical applis, dynamic
reconfiguration for adaptive, distributed

critical architectures (multilevel RT
composability)

Source:
G. Edelin

(Thales),
2009

Motivation

End user perspective Target architecture perspective

• Explore/Develop algorithms

• Use a simple, comfortable language
• E.g. Matlab, Scilab, …

• Don’t want to care about
• data types
• parallelism

• End result
• Performance
• Energy efficient
• Cost efficient
• Fast development time

• Multi-Processor System-on-Chip

• Parallel processor cores
• Parallel programming model
• E.g. pthreads, MPI, OpenMP

• Parallelism with the processor cores
• Single Instruction Multiple Data
• Very Long Instruction Word

• Native data types
• E.g. 32-bit integer
• Other data types perform

inefficient

ALMA in a Nutshell

n Hide the complexity of the underlying hardware to the end user
n ALMA will develop an approach for compiling annotated Scilab

code to MPSoC architectures
n Algorithms and tools for

l High-level, platform-independent application code performance
estimation and optimization

l Identification of possible partitions and their placement on different
resources of the underlying architectures

l Data type binding and data parallelization to exploit data-level
parallelism

n Develop an unified SystemC simulation framework to provide
an environment for simulating MPSoCs

n Two state-of-the-art architectures provided by RECORE and
KIT

n Net result: smaller application development time/effort and
faster time-to-market

Objectives

n Extend Scilab for optimization on high-level system models

n Develop a parallelization and optimization environment

n Employ and extend two different architectures

n Parallel code generation

n Parallel code simulation

Challenges for Compiling Scilab to MPSoCs

n Scilab (Matlab-like) programming language
l Dynamic typing (scalars, vectors, matrices)
l Pointer-free, i.e. no memory aliasing problems
l End users typically use floating-point data types
l Natural parallelism within vector operations

n MPSoC target architectures
l Exploit coarse-grain parallelism (task-level)

n Distributed memory
l Exploit fine-grain parallelism (instruction-level)

ALMA Architectures (1/2): Recore X2014

n Scalability by virtue of
l Packet-switched Network-on-Chip
l Distributed memories & I/O
l Distributed control
l Distributed processing cores

n Xentium® processing tile
l Fixed-point DSP processing
l 10-issue VLIW processor
l SIMD capability
l Streaming communication services

n Reconfigurability
l Smart memory tile (RAM/FIFO)
l Separate applications from each others
l Guarantee QoS
l Fault tolerant application mapping

ALMA Architectures (2/2): KIT Kahrisma

Pr
oc

es
so

r C
on

tr
ol

 U
ni

t

M
ai

n
M

em
or

y

C
on

te
xt

 M
em

or
y

C
ac

he
 S

ub
sy

st
em

Control Flow Tiles

Rename Tiles

 EDPE Array

Instruction Cache Tiles

EDPE

EDPE

EDPE

EDPE

DSP Instance I DSP Instance II

2-issue VLIW 2-issue VLIW ISA4-issue VLIW ISA 6-issue VLIW ISA Processor
Instances

DSP Instances

In
st

ru
ct

io
n

pr
e-

pr
oc

es
si

ng

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

…...

…...

…...

…...

…...

…...

n Dynamic reconfigurable
MPSoC

n Modules can be
reconfigured to
processors or DSPs

n Dynamic clustered VLIW
processor instances

n Local scratchpad memory
n Non-coherent access to

main memory
n Communication between

cores through a network

ALMA Development Flow (overview)

Optimized
application code on
multi-core platform

Embedded application design Multi-core hardware design

Translation to
Scilab &

annotations

Abstract
hardware

description
(ADL)

KIT
C-compiler

Multi-core
simulator

Parameters		for	
algorithm	
optimization

C-based	code	with	parallel	descriptions

ALMA
algorithm

parallelization
tools

Executable	binary	(for	simulator	and	HW)

Recore
C-compiler

Structural	
hardware
description

Feedback	for	
optimization	

Input for the ALMA tools

ALMA dialect of the Scilab language

n Subset of Scilab language

n Extended by a preprocessing language
l Variables declaration
l Static types specification
l Maximum size of vector and matrix data

types definition

n Extended by an annotation language for
supporting parallelism extraction

Applications

Telecom-
munication

Image	
Processing

Annotated	Scilab	Code

Architecture	
Description

ADL

ADL	
Compiler

GeCoS	Framework

Fine-Grain
Parallelism	Ext.

Corase-Grain	
Parallelism	Ext.

Parallel	Code	
Generation

ALMA	IR

ALMA	IR

Annotated	C	Code

Target-Spec.	Compilation

C	Code	+	Back-Annotation

ALMA	Multi-
Core	Simulator

Binary

Profile
Information

JSON

Kahrisma	
Compiler

Recore	
Compiler

ALMA	Architectures

Kahrisma	
Arch.

Recore	
Arch.

Ite
ra
tiv

e	
O
pt
im

iza
tio

n

ALMA	Front-End	Tools

Source-Level
Profiler

Profile
Information

SciLab	Front-End
(SAFE)

High-Level	
Optimizer

HLIR

HLIR

Legend

ADL

App.	Code

Information

ALMA Front-end tools

n Scilab Front-End (SAFE)
n Parses Scilab source code and

produces high level intermediate
representation (HLIR) expressed in C

n ALMA profiler (aprof)
l Early performance estimation at the

HLIR level

n High-Level Optimizer (HLO)
l Applies platform independent

optimizations to the HLIR

Applications

Telecom-
munication

Image	
Processing

Annotated	Scilab	Code

Architecture	
Description

ADL

ADL	
Compiler

GeCoS	Framework

Fine-Grain
Parallelism	Ext.

Corase-Grain	
Parallelism	Ext.

Parallel	Code	
Generation

ALMA	IR

ALMA	IR

Annotated	C	Code

Target-Spec.	Compilation

C	Code	+	Back-Annotation

ALMA	Multi-
Core	Simulator

Binary

Profile
Information

JSON

Kahrisma	
Compiler

Recore	
Compiler

ALMA	Architectures

Kahrisma	
Arch.

Recore	
Arch.

Ite
ra
tiv

e	
O
pt
im

iza
tio

n

ALMA	Front-End	Tools

Source-Level
Profiler

Profile
Information

SciLab	Front-End
(SAFE)

High-Level	
Optimizer

HLIR

HLIR

Legend

ADL

App.	Code

Information

Parallelization Tools (Fine grain extraction)

Applications

Telecom-
munication

Image	
Processing

Annotated	Scilab	Code

Architecture	
Description

ADL

ADL	
Compiler

GeCoS	Framework

Fine-Grain
Parallelism	Ext.

Corase-Grain	
Parallelism	Ext.

Parallel	Code	
Generation

ALMA	IR

ALMA	IR

Annotated	C	Code

Target-Spec.	Compilation

C	Code	+	Back-Annotation

ALMA	Multi-
Core	Simulator

Binary

Profile
Information

JSON

Kahrisma	
Compiler

Recore	
Compiler

ALMA	Architectures

Kahrisma	
Arch.

Recore	
Arch.

Ite
ra
tiv

e	
O
pt
im

iza
tio

n

ALMA	Front-End	Tools

Source-Level
Profiler

Profile
Information

SciLab	Front-End
(SAFE)

High-Level	
Optimizer

HLIR

HLIR

Legend

ADL

App.	Code

Information

n Floating point to fixed point
l No hardware support for FP in

embedded multi-core systems
l Provides an automated floating to

fixed point conversion tool

n SIMD/SWP parallelization
l Loop parallelization and layout

optimization for SIMD ISA.
l Explore perf./accuracy trade-off in

fixed point encodings

Parallelization Tools (Coarse-grain extraction)

Coarse-grain parallelism
extraction and optimization

n Responsible for the global optimization
n Transformation of ALMA IR CFDG to

Hierarchical Task Graph (HTG)
n Resource availability from ADL
n HTG partitioning to cores
n Optimal mapping and scheduling of

tasks to architecture resources
n Exploits profiling information from the

simulator for better resource usage
estimation

Applications

Telecom-
munication

Image	
Processing

Annotated	Scilab	Code

Architecture	
Description

ADL

ADL	
Compiler

GeCoS	Framework

Fine-Grain
Parallelism	Ext.

Corase-Grain	
Parallelism	Ext.

Parallel	Code	
Generation

ALMA	IR

ALMA	IR

Annotated	C	Code

Target-Spec.	Compilation

C	Code	+	Back-Annotation

ALMA	Multi-
Core	Simulator

Binary

Profile
Information

JSON

Kahrisma	
Compiler

Recore	
Compiler

ALMA	Architectures

Kahrisma	
Arch.

Recore	
Arch.

Ite
ra
tiv

e	
O
pt
im

iza
tio

n

ALMA	Front-End	Tools

Source-Level
Profiler

Profile
Information

SciLab	Front-End
(SAFE)

High-Level	
Optimizer

HLIR

HLIR

Legend

ADL

App.	Code

Information

Parallel platform code generation

Parallel platform code generation

n Generates target-specific C code
l Maps Scilab variables to memory

locations
l Expresses communication
l Expresses SIMD instruction as

intrinsics
n Uses Recore/Kahrisma C compiler

l Exploits ILP by VLIW compilation
l Generates executable for the

hardware and simulator

Applications

Telecom-
munication

Image	
Processing

Annotated	Scilab	Code

Architecture	
Description

ADL

ADL	
Compiler

GeCoS	Framework

Fine-Grain
Parallelism	Ext.

Corase-Grain	
Parallelism	Ext.

Parallel	Code	
Generation

ALMA	IR

ALMA	IR

Annotated	C	Code

Target-Spec.	Compilation

C	Code	+	Back-Annotation

ALMA	Multi-
Core	Simulator

Binary

Profile
Information

JSON

Kahrisma	
Compiler

Recore	
Compiler

ALMA	Architectures

Kahrisma	
Arch.

Recore	
Arch.

Ite
ra
tiv

e	
O
pt
im

iza
tio

n

ALMA	Front-End	Tools

Source-Level
Profiler

Profile
Information

SciLab	Front-End
(SAFE)

High-Level	
Optimizer

HLIR

HLIR

Legend

ADL

App.	Code

Information

Multicore architecture simulation

Multicore architecture simulation

n Simulation of ALMA target
architectures

n Retargetable
l Structure defined by ADL
l Implementation by library of SystemC

modules
n Mixed-accuracy simulation

l Behavioural or cycle-accurate
l For individual modules (processor core,

memory subsystem, network)
n Collect profiling and tracing

information

Applications

Telecom-
munication

Image	
Processing

Annotated	Scilab	Code

Architecture	
Description

ADL

ADL	
Compiler

GeCoS	Framework

Fine-Grain
Parallelism	Ext.

Corase-Grain	
Parallelism	Ext.

Parallel	Code	
Generation

ALMA	IR

ALMA	IR

Annotated	C	Code

Target-Spec.	Compilation

C	Code	+	Back-Annotation

ALMA	Multi-
Core	Simulator

Binary

Profile
Information

JSON

Kahrisma	
Compiler

Recore	
Compiler

ALMA	Architectures

Kahrisma	
Arch.

Recore	
Arch.

Ite
ra
tiv

e	
O
pt
im

iza
tio

n

ALMA	Front-End	Tools

Source-Level
Profiler

Profile
Information

SciLab	Front-End
(SAFE)

High-Level	
Optimizer

HLIR

HLIR

Legend

ADL

App.	Code

Information

ALMA Architecture Description Language (ADL)

ALMA ADL

n Architecture Description Language
(ADL)

n Tailored to the requirements of ALMA
1. Enables target independence of the

compilation toolchain
2. Used as architecture description for the

simulator
3. Enables design-space exploration

n Compact specification of regular
MPSoC structures by for and if
constructs

n Structural specification annotated
with behavioural information

Applications

Telecom-
munication

Image	
Processing

Annotated	Scilab	Code

Architecture	
Description

ADL

ADL	
Compiler

GeCoS	Framework

Fine-Grain
Parallelism	Ext.

Corase-Grain	
Parallelism	Ext.

Parallel	Code	
Generation

ALMA	IR

ALMA	IR

Annotated	C	Code

Target-Spec.	Compilation

C	Code	+	Back-Annotation

ALMA	Multi-
Core	Simulator

Binary

Profile
Information

JSON

Kahrisma	
Compiler

Recore	
Compiler

ALMA	Architectures

Kahrisma	
Arch.

Recore	
Arch.

Ite
ra
tiv

e	
O
pt
im

iza
tio

n

ALMA	Front-End	Tools

Source-Level
Profiler

Profile
Information

SciLab	Front-End
(SAFE)

High-Level	
Optimizer

HLIR

HLIR

Legend

ADL

App.	Code

Information

n IEEE 802.16e PHY Layer in NT x NR MIMO Configuration
n Typical example of a state-of-the-art wireless communication system

n Application requirements impose hard, real-time constraints.
n Design time must follow shrinking time-to-market.

Test Case (1/2): Telecommunications

Rx 1

Rx NR

FFT

Equalizer

Channel
Estimator

Derando
mizer

Deinter
leaver

Symbol
Deconstr

uction

- Cyclic
Prefix

Diversity
Combiner

- Cyclic
PrefixFFT

SDU
Generati

on

Data
SDUs

Uplink

Frame
Deconstr

uction

MAC-
PHY
I/F

BS Rx

`

ALMA 1st IncrementALMA 2nd Increment
Tx 1

Tx NT

FEC
Encod

er
Interle
aver

Constel.
Mapping

IFFT + Cyclic
Prefix

S-T
Coding

IFFT + Cyclic
Prefix

+ Pre
amble

Data
SDUs

PHYMAC

UL/DL
Frame
Mapper

UL/DL
Schedul

er

BS Tx

PDU
Generation

MAC-
PHY
I/F

Frame
Constr
uction

Downlink
MAC/PHY
Control

Symbol
Constr
uction

Rando
mizer

. .
. . . .

. . .

. .
.

. .
. . .
. . .
.

FEC
Decoder

Const.
Demap

n Feature based algorithm for object recognition and multi-object tracking

n Use of Scale Invariant Feature Transform (SIFT)

n The final goal is to run such applications in smart cameras

Test Case (2/2): Image Processing

Summary

n ALMA Goal: Hide the complexity of the underlying
hardware to the end user

n ALMA will develop an approach for compiling annotated
Scilab code to MPSoCs

n ALMA toolchain components
l Front-end tools (Scilab parser, high-level optimizer, profiler)
l Fine-grain parallelism extraction
l Coarse-grain parallelism extraction
l SystemC multi-core simulator

n ALMA toolchain is kept platform independent by a novel
Architecture Description Language

n Two state-of-the-art architectures provided by
RECORE and KIT

n Evaluated by two test cases from Telecommunications
and Image Processing domain

