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EXAMPLE 21.8 Field of an electric dipole

Point charges q1 = +12 nC and q2 = -12 nC are 0.100 m apart  
(Fig. 21.22). (Such pairs of point charges with equal magnitude and 
opposite sign are called electric dipoles.) Compute the electric field 
caused by q1, the field caused by q2 

, and the total field (a) at point a;  
(b) at point b; and (c) at point c.

IDENTIFY and SET UP We must find the total electric field at various 
points due to two point charges. We use the principle of superposition: 
E
S

= E
S

1 + E
S

2. Figure 21.22 shows the coordinate system and the loca-
tions of the field points a, b, and c.

EXECUTE At each field point, E
S

 depends on E
S

1 and E
S

2 there; we first 
calculate the magnitudes E1 and E2 at each field point. At a the magni-
tude of the field E

S

1a caused by q1 is

 E1a =
1

4pP0
 
0 q1 0
r2

 = 19.0 * 109 N # m2>C22 
12 * 10-9 C

10.060 m22

 = 3.0 * 104 N>C

We calculate the other field magnitudes in a similar way. The results 
are

 E1a = 3.0 * 104 N>C
 E1b = 6.8 * 104 N>C
 E1c = 6.39 * 103 N>C
 E2a = 6.8 * 104 N>C
 E2b = 0.55 * 104 N>C
 E2c = E1c = 6.39 * 103 N>C

The directions of the corresponding fields are in all cases away from 
the positive charge q1 and toward the negative charge q2. 

(a) At a, E
S

1a and E
S

2a are both directed to the right, so

E
S

a = E1a dn + E2a dn = 19.8 * 104 N>C2 dn

(b) At b, E
S

1b is directed to the left and E
S

2b is directed to the right, so

E
S

b = -E1b dn + E2b dn = 1-6.2 * 104 N>C2 dn

(c) Figure 21.22 shows the directions of E
S

1 and E
S

2 at c. Both  vectors 
have the same x-component:

 E1cx = E2cx = E1c cos a = 16.39 * 103 N>C21 5
132

 = 2.46 * 103 N>C

From symmetry, E1y and E2y are equal and opposite, so their sum is 
zero. Hence

E
S

c = 212.46 * 103 N>C2dn = 14.9 * 103 N>C2 dn

EVALUATE We can also find E
S

c by using Eq. (21.7) for the field 
of a point charge. The displacement vector rS1 from q1 to point c is 
rS1 = r  cos a  dn + r  sin a  en. Hence the unit vector that points from q1 to 
point c is rn1 = rS1>r = cos a  dn + sin a  en. By symmetry, the unit vector 
that points from q2 to point c has the opposite x-component but the same 
y-component: rn2 = -cos a  dn + sin a  en. We can now use Eq. (21.7) to 
write the fields E

S

1c and E
S

2c at c in vector form, then find their sum. 
Since q2 = -q1 and the distance r to c is the same for both charges,

 E
S

c = E
S

1c + E
S

2c =
1

4pP0
 
q1

r2 rn1 +
1

4pP0
 
q2

r2 rn2

 =
1

4pP0r2 1q1rn1 + q2 rn22

 =
q1

4pP0 r2 1rn1 − rn22

 =
1

4pP0
 
q1

r2 12 cos a  dn2

 = 219.0 * 109 N # m2>C22 
12 * 10-9 C

10.13 m22  1 5
132 dn

 = 14.9 * 103 N>C2 dn

This is the same as we calculated in part (c).

KEYCONCEPT To find the net electric field at a point due to two or 
more point charges, first find the field at that point due to each individ-
ual charge. Then use vector addition to find the magnitude and direction 
of the net field at that point.
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Figure 21.22 Electric field at three points, a, b, and c, set up by 
charges q1 and q2 , which form an electric dipole.
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EXAMPLE 21.9 Field of a ring of charge

Charge Q is uniformly distributed around a conducting ring of radius a  
(Fig. 21.23). Find the electric field at a point P on the ring axis at a 
distance x from its center.

IDENTIFY and SET UP This is a problem in the superposition of electric 
fields. Each bit of charge around the ring produces an electric field at an 
arbitrary point on the x-axis; our target variable is the total field at this 
point due to all such bits of charge.

EXECUTE We divide the ring into infinitesimal segments ds as shown in 
Fig. 21.23. In terms of the linear charge density l = Q>2pa, the charge 
in a segment of length ds is dQ = l ds. Consider two identical seg-
ments, one as shown in the figure at y = a and another halfway around 
the ring at y = -a. From Example 21.4, we see that the net force dF

S
 

they exert on a point test charge at P, and thus their net field dE
S

, are 
directed along the x-axis. The same is true for any such pair of segments 
around the ring, so the net field at P is along the x-axis: E

S
= Ex dn .

To calculate Ex, note that the square of the distance r from a single 
ring segment to the point P is r2 = x2 + a2. Hence the magnitude of 
this segment’s contribution dE

S
 to the electric field at P is

dE =
1

4pP0
 

dQ

x2 + a2

The x-component of this field is dEx = dE cos a. We know dQ =  l ds 
and Fig. 21.23 shows that cos a = x>r = x>1x2 + a221>2, so

 dEx = dE cos a =
1

4pP0
 

dQ

x2 + a2 
x2x2 + a2

=
1

4pP0
 

lx

1x2 + a223>2 ds

To find Ex we integrate this expression over the entire ring—that is, 
for s from 0 to 2pa (the circumference of the ring). The integrand has 
the same value for all points on the ring, so it can be taken outside the 
integral. Hence we get

 Ex = LdEx =
1

4pP0
 

lx

1x2 + a223>2 L
2pa

0

ds

 =
1

4pP0
 

lx

1x2 + a223>2 12pa2

 E
S

= Ex dn =
1

4pP0
 

Qx

1x2 + a223>2 dn (21.8)

EVALUATE Equation (21.8) shows that E
S

= 0 at the center of the ring 
1x = 02. This makes sense; charges on opposite sides of the ring push 
in opposite directions on a test charge at the center, and the vector sum 
of each such pair of forces is zero. When the field point P is much far-
ther from the ring than the ring’s radius, we have x W a and the de-
nominator in Eq. (21.8) becomes approximately equal to x3. In this limit 
the electric field at P is

E
S

=
1

4pP0
 
Q

x2 dn

That is, when the ring is so far away that its radius is negligible in com-
parison to the distance x, its field is the same as that of a point charge.

KEYCONCEPT To find the vector components of the net electric 
field at a point due to a continuous distribution of charge, first divide the 
distribution into infinitesimally small segments. Then find the compo-
nents of the field at the point due to one such segment. Finally, integrate 
each component of the field due to a segment over all segments in the 
charge distribution.
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Figure 21.23 Calculating the electric field on the axis of a ring of 
charge. In this figure, the charge is assumed to be positive.

EXAMPLE 21.10 Field of a charged line segment

Positive charge Q is distributed uniformly along the y-axis between 
y = -a and y = +a. Find the electric field at point P on the x-axis at a 
distance x from the origin.

IDENTIFY and SET UP Figure 21.24 shows the situation. As in  
Example 21.9, we must find the electric field due to a continuous dis-
tribution of charge. Our target variable is an expression for the electric 
field at P as a function of x. The x-axis is a perpendicular bisector of the 
segment, so we can use a symmetry argument.

EXECUTE We divide the line charge of length 2a into infinitesimal 
segments of length dy. The linear charge density is l = Q>2a, and the 
charge in a segment is dQ = l dy = 1Q>2a2dy. The distance r from a 
segment at height y to the field point P is r = 1x2 + y221>2, so the mag-
nitude of the field at P due to the segment at height y is

dE =
1

4pP0
 
dQ

r2 =
1

4pP0
 
Q

2a
 

dy

1x2 + y22

Figure 21.24 Our sketch for this problem.
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Figure 21.24 shows that the x- and y-components of this field  
are dEx = dE cos a and dEy = -dE sin a, where cos a = x>r and  
sin a = y>r. Hence

 dEx =
1

4pP0
 
Q

2a
 

x dy

1x2 + y223>2

 dEy = -  
1

4pP0
 
Q

2a
 

y dy

1x2 + y223>2

To find the total field at P, we must sum the fields from all segments 
along the line—that is, we must integrate from y = -a to y = +a. 
You should work out the details of the integration (a table of integrals 
will help). The results are

 Ex =
1

4pP0
 
Q

2a L
+a

-a

x dy

1x2 + y223>2 =
Q

4pP0
 

1

x2x2 + a2

 Ey = -  
1

4pP0
 
Q

2a L
+a

-a

y dy

1x2 + y223>2 = 0

or, in vector form,

E
S

=
1

4pP0
 

Q

x2x2 + a2
 dn (21.9)

E
S

 points away from the line of charge if l is positive and toward the 
line of charge if l is negative.

EVALUATE Using a symmetry argument as in Example 21.9, we could 
have guessed that Ey would be zero; if we place a positive test charge  
at P, the upper half of the line of charge pushes downward on it, and the 
lower half pushes up with equal magnitude. Symmetry also tells us that 
the upper and lower halves of the segment contribute equally to the total 
field at P.

If the segment is very short (or the field point is very far from the seg-
ment) so that x W a, we can ignore a in the denominator of Eq. (21.9). 
Then the field becomes that of a point charge, just as in Example 21.9:

E
S

=
1

4pP0
 
Q

x2 dn

To see what happens if the segment is very long (or the field point is 
very close to it) so that a W x, we first rewrite Eq. (21.9) slightly:

E
S

=
1

2pP0
 

l

x21x2>a22 + 1
 dn (21.10)

In the limit a W x we can ignore x2>a2 in the denominator of  
Eq. (21.10), so

E
S

=
l

2pP0 x
 dn

This is the field of an infinitely long line of charge. At any point P 
at a perpendicular distance r from the line in any direction, E

S
 has 

magnitude

E =
l

2pP0r
  (infinite line of charge)

Note that this field is proportional to 1>r rather than to 1>r2 as for a 
point charge.

There’s really no such thing in nature as an infinite line of charge. 
But when the field point is close enough to the line, there’s very little 
difference between the result for an infinite line and the real-life finite 
case. For example, if the distance r of the field point from the center of 
the line is 1% of the length of the line, the value of E differs from the 
infinite-length value by less than 0.02%.

KEYCONCEPT The electric field due to a symmetrical distribution 
of charge is most easily calculated at a point of symmetry. Whenever 
possible, take advantage of the symmetry of the situation to check your 
results.

EXAMPLE 21.11 Field of a uniformly charged disk

A nonconducting disk of radius R has a uniform positive surface charge 
density s. Find the electric field at a point along the axis of the disk a 
distance x from its center. Assume that x is positive.

IDENTIFY and SET UP Figure 21.25 shows the situation. We represent 
the charge distribution as a collection of concentric rings of charge dQ.  
In Example 21.9 we obtained Eq. (21.8) for the field on the axis of a 
single uniformly charged ring, so all we need do here is integrate the 
contributions of our rings.

EXECUTE A typical ring has charge dQ, inner radius r, and outer radius 
r + dr. Its area is approximately equal to its width dr times its circum-
ference 2pr, or dA = 2pr dr. The charge per unit area is s = dQ>dA, 
so the charge of the ring is dQ = s dA = 2psr dr. We use dQ in place 
of Q in Eq. (21.8), the expression for the field due to a ring that we 
found in Example 21.9, and replace the ring radius a with r. Then the 
field component dEx at point P due to this ring is

dEx =
1

4pP0
 

2psrx dr

1x2 + r223>2

To find the total field due to all the rings, we integrate dEx over r from 
r = 0 to r = R (not from -R to R):

Ex = L
R

0

1
4pP0

 
12psr dr2x

1x2 + r223>2 =
sx
4P0 L

R

0

2r dr

1x2 + r223>2

You can evaluate this integral by making the substitution t =  x2 + r2 
(which yields dt = 2r dr); you can work out the details. The result is

 Ex =
sx
2P0

 c -  
12x2 + R2

+
1
x
d

 =
s

2P0
 c 1 -

121R2>x22 + 1
d  (21.11)

Figure 21.25 Our sketch for this problem.
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EVALUATE If the disk is very large (or if we are very close to it), so that 
R W x, the term 1>21R2>x22 + 1 in Eq. (21.11) is very much less than 1.  
Then Eq. (21.11) becomes

E =
s

2P0
 (21.12)

Our final result does not contain the distance x from the plane. Hence 
the electric field produced by an infinite plane sheet of charge is inde-
pendent of the distance from the sheet. The field direction is every-
where perpendicular to the sheet, away from it. There is no such thing 
as an infinite sheet of charge, but if the dimensions of the sheet are 

much larger than the distance x of the field point P from the sheet, the 
field is very nearly given by Eq. (21.12).

If P is to the left of the plane 1x 6 02, the result is the same except 
that the direction of E

S
 is to the left instead of the right. If the surface 

charge density is negative, the directions of the fields on both sides of 
the plane are toward it rather than away from it.

KEYCONCEPT To find the electric field due to a two-dimensional 
charge distribution such as a disk, divide the distribution into infinitesi-
mal segments such as rings for which you know the components of the 
electric field. Then integrate over these segments to find the net field.

EXAMPLE 21.12 Field of two oppositely charged infinite sheets

Two infinite plane sheets with uniform surface charge densities +s 
and -s are placed parallel to each other with separation d (Fig. 21.26). 
Find the electric field between the sheets, above the upper sheet, and 
below the lower sheet.

IDENTIFY and SET UP Equation (21.12) gives the electric field due to a 
single infinite plane sheet of charge. To find the field due to two such sheets, 
we combine the fields by using the principle of superposition (Fig. 21.26).

EXECUTE From Eq. (21.12), both E
S

1 and E
S

2 have the same magnitude 
at all points, independent of distance from either sheet:

E1 = E2 =
s

2P0

From Example 21.11, E
S

1 is everywhere directed away from sheet 1, and 
E
S

2 is everywhere directed toward sheet 2.
Between the sheets, E

S

1 and E
S

2 reinforce each other; above the upper 
sheet and below the lower sheet, they cancel each other. Thus the total 
field is

E
S

= E
S

1 + E
S

2 = d 0    above the upper sheet 
s

P0
 en   between the sheets 

0    below the lower sheet 

EVALUATE Because we considered the sheets to be infinite, our result 
does not depend on the separation d. Our result shows that the field be-
tween oppositely charged plates is essentially uniform if the plate sepa-
ration is much smaller than the dimensions of the plates. We actually 
used this result in Example 21.7 (Section 21.4).

   CAUTION    Electric fields are not “flows” You may have thought 
that the field E

S

1 of sheet 1 would be unable to “penetrate” sheet 2, and 
that field E

S

2 caused by sheet 2 would be unable to “penetrate” sheet 1. 
You might conclude this if you think of the electric field as some kind 
of physical substance that “flows” into or out of charges. But there is 
no such substance, and the electric fields E

S

1 and E
S

2 depend on only the 
individual charge distributions that create them. The total field at every 
point is just the vector sum of E

S

1 and E
S

2. ❙

KEYCONCEPT An infinite, uniform sheet of charge produces a uni-
form electric field at all points. If the charge is positive, the field points 
away from the sheet; if the charge is negative, the field points toward 
the sheet.
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Figure 21.26 Finding the electric field due to two oppositely charged 
infinite sheets. The sheets are seen edge-on; only a portion of the infi-
nite sheets can be shown!

TEST YOUR UNDERSTANDING OF SECTION 21.5 Suppose that the line of charge in  
Fig. 21.24 (Example 21.10) had charge +Q distributed uniformly between y = 0 and y = +a and 
had charge -Q distributed uniformly between y = 0 and y = -a. In this situation, the electric 
field at P would be (i) in the positive x-direction; (ii) in the negative x-direction; (iii) in the positive 
y-direction; (iv) in the negative y-direction; (v) zero; (vi) none of these.

❙ (iv) Think of a pair of segments of length dy, one at coordinate y70 and the other at coordinate 
-y60. The upper segment has a positive charge and produces an electric field dE

S
 at P that points 

away from the segment, so this dE
S

 has a positive x-component and a negative y-component, like the 
vector dE

S
 in Fig. 21.24. The lower segment has the same amount of negative charge. It produces a 

dE
S

 that has the same magnitude but points toward the lower segment, so it has a negative x-compo-
nent and a negative y-component. By symmetry, the two x-components are equal but opposite, so 
they cancel. Thus the total electric field has only a negative y-component.ANSWER


