Please ensure Javascript is enabled for purposes of website accessibility

Παρουσίαση/Προβολή

Εικόνα επιλογής

Machine Learning

(DIT187) -  Anastasia Krithara

Περιγραφή Μαθήματος

General Information

  • When: Every Monday @ 18:00 (GMT+3)
  • Slides to be uploaded on eClass

Instructor

  • Anastasia Krithara (akrithara@iit.demokritos.gr)

Book

  • Book not required - slides describe all you need (and they include references to additional material)

Marking scheme

  • Exercises; 50% [2 mini-projects]
  • Final exam (oral): 50% 
  • To pass the course: average grade >6

Lectures

  • 01 - Introduction 
  • 02 - Decision trees 
  • 03 - Linear Regression 
  • 04 - Logistic Regression 
  • 05 - kNN_Clustering & Evaluation metrics
  • 06 - Applied Machine Learning
  • 07 - Support Vector Machines 
  • 08 - Ensembles 
  • 09 - Feature Selection 
  • 10 - Naive Bayes 
  • 11 - Sampling 
  • 12 - Advice
  • 13 - Projects presentation by the students 

Exams

  • To be announced

Ημερομηνία δημιουργίας

Πέμπτη 22 Οκτωβρίου 2020