Παρουσίαση/Προβολή
(DIT187) - Anastasia Krithara
Περιγραφή Μαθήματος
General Information
- When: Every Monday @ 18:00 (GMT+3)
- Slides to be uploaded on eClass
Instructor
- Anastasia Krithara (akrithara@iit.demokritos.gr)
Book
- Book not required - slides describe all you need (and they include references to additional material)
Marking scheme
- Exercises; 50% [2 mini-projects]
- Final exam (oral): 50%
- To pass the course: average grade >6
Lectures
- 01 - Introduction
- 02 - Decision trees
- 03 - Linear Regression
- 04 - Logistic Regression
- 05 - kNN_Clustering & Evaluation metrics
- 06 - Applied Machine Learning
- 07 - Support Vector Machines
- 08 - Ensembles
- 09 - Feature Selection
- 10 - Naive Bayes
- 11 - Sampling
- 12 - Advice
- 13 - Projects presentation by the students
Exams
- To be announced

Ημερομηνία δημιουργίας
Πέμπτη 22 Οκτωβρίου 2020
-
Δεν υπάρχει περίγραμμα